• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #if LLVM_AVAILABLE
8 #include "ac_llvm_util.h"
9 #endif
10 
11 #include "ac_nir.h"
12 #include "ac_shader_util.h"
13 #include "compiler/nir/nir_serialize.h"
14 #include "nir/tgsi_to_nir.h"
15 #include "si_build_pm4.h"
16 #include "sid.h"
17 #include "util/crc32.h"
18 #include "util/disk_cache.h"
19 #include "util/hash_table.h"
20 #include "util/mesa-sha1.h"
21 #include "util/u_async_debug.h"
22 #include "util/u_math.h"
23 #include "util/u_memory.h"
24 #include "util/u_prim.h"
25 #include "tgsi/tgsi_from_mesa.h"
26 
27 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx);
28 
si_determine_wave_size(struct si_screen * sscreen,struct si_shader * shader)29 unsigned si_determine_wave_size(struct si_screen *sscreen, struct si_shader *shader)
30 {
31    /* There are a few uses that pass shader=NULL here, expecting the default compute wave size. */
32    struct si_shader_info *info = shader ? &shader->selector->info : NULL;
33    gl_shader_stage stage = shader ? shader->selector->stage : MESA_SHADER_COMPUTE;
34 
35    if (sscreen->info.gfx_level < GFX10)
36       return 64;
37 
38    /* Legacy GS only supports Wave64. */
39    if ((stage == MESA_SHADER_VERTEX && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
40        (stage == MESA_SHADER_TESS_EVAL && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
41        (stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg))
42       return 64;
43 
44    /* Workgroup sizes that are not divisible by 64 use Wave32. */
45    if (stage == MESA_SHADER_COMPUTE && info && !info->base.workgroup_size_variable &&
46        (info->base.workgroup_size[0] *
47         info->base.workgroup_size[1] *
48         info->base.workgroup_size[2]) % 64 != 0)
49       return 32;
50 
51    /* AMD_DEBUG wave flags override everything else. */
52    if (sscreen->debug_flags &
53        (stage == MESA_SHADER_COMPUTE ? DBG(W32_CS) :
54         stage == MESA_SHADER_FRAGMENT ? DBG(W32_PS) : DBG(W32_GE)))
55       return 32;
56 
57    if (sscreen->debug_flags &
58        (stage == MESA_SHADER_COMPUTE ? DBG(W64_CS) :
59         stage == MESA_SHADER_FRAGMENT ? DBG(W64_PS) : DBG(W64_GE)))
60       return 64;
61 
62    /* Shader profiles. */
63    if (info && info->options & SI_PROFILE_WAVE32)
64       return 32;
65 
66    if (info && info->options & SI_PROFILE_GFX10_WAVE64 &&
67        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3))
68       return 64;
69 
70    /* Gfx10: Pixel shaders without interp instructions don't suffer from reduced interpolation
71     * performance in Wave32, so use Wave32. This helps Piano and Voloplosion.
72     *
73     * Gfx11: Prefer Wave64 to take advantage of doubled VALU performance.
74     */
75    if (sscreen->info.gfx_level < GFX11 && stage == MESA_SHADER_FRAGMENT && !info->num_inputs)
76       return 32;
77 
78    /* Gfx10: There are a few very rare cases where VS is better with Wave32, and there are no
79     * known cases where Wave64 is better.
80     *
81     * Wave32 is disabled for GFX10 when culling is active as a workaround for #6457. I don't
82     * know why this helps.
83     *
84     * Gfx11: Prefer Wave64 because it's slightly better than Wave32.
85     */
86    if (stage <= MESA_SHADER_GEOMETRY &&
87        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3) &&
88        !(sscreen->info.gfx_level == GFX10 && shader && shader->key.ge.opt.ngg_culling))
89       return 32;
90 
91    /* TODO: Merged shaders must use the same wave size because the driver doesn't recompile
92     * individual shaders of merged shaders to match the wave size between them.
93     */
94    bool merged_shader = stage <= MESA_SHADER_GEOMETRY && shader && !shader->is_gs_copy_shader &&
95                         (shader->key.ge.as_ls || shader->key.ge.as_es ||
96                          stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_GEOMETRY);
97 
98    /* Divergent loops in Wave64 can end up having too many iterations in one half of the wave
99     * while the other half is idling but occupying VGPRs, preventing other waves from launching.
100     * Wave32 eliminates the idling half to allow the next wave to start.
101     *
102     * Gfx11: Wave32 continues to be faster with divergent loops despite worse VALU performance.
103     */
104    if (!merged_shader && info && info->has_divergent_loop)
105       return 32;
106 
107    return 64;
108 }
109 
110 /* SHADER_CACHE */
111 
112 /**
113  * Return the IR key for the shader cache.
114  */
si_get_ir_cache_key(struct si_shader_selector * sel,bool ngg,bool es,unsigned wave_size,unsigned char ir_sha1_cache_key[20])115 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
116                          unsigned wave_size, unsigned char ir_sha1_cache_key[20])
117 {
118    struct blob blob = {};
119    unsigned ir_size;
120    void *ir_binary;
121 
122    if (sel->nir_binary) {
123       ir_binary = sel->nir_binary;
124       ir_size = sel->nir_size;
125    } else {
126       assert(sel->nir);
127 
128       blob_init(&blob);
129       /* Keep debug info if NIR debug prints are in use. */
130       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
131       ir_binary = blob.data;
132       ir_size = blob.size;
133    }
134 
135    /* These settings affect the compilation, but they are not derived
136     * from the input shader IR.
137     */
138    unsigned shader_variant_flags = 0;
139 
140    if (ngg)
141       shader_variant_flags |= 1 << 0;
142    if (sel->nir)
143       shader_variant_flags |= 1 << 1;
144    if (wave_size == 32)
145       shader_variant_flags |= 1 << 2;
146 
147    /* bit gap */
148 
149    /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context
150     * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc.
151     */
152    if (sel->screen->use_ngg_culling)
153       shader_variant_flags |= 1 << 4;
154    if (sel->screen->record_llvm_ir)
155       shader_variant_flags |= 1 << 5;
156    if (sel->screen->info.has_image_opcodes)
157       shader_variant_flags |= 1 << 6;
158    if (sel->screen->options.no_infinite_interp)
159       shader_variant_flags |= 1 << 7;
160    if (sel->screen->options.clamp_div_by_zero)
161       shader_variant_flags |= 1 << 8;
162    if ((sel->stage == MESA_SHADER_VERTEX ||
163         sel->stage == MESA_SHADER_TESS_EVAL ||
164         sel->stage == MESA_SHADER_GEOMETRY) &&
165        !es &&
166        sel->screen->options.vrs2x2)
167       shader_variant_flags |= 1 << 10;
168    if (sel->screen->options.inline_uniforms)
169       shader_variant_flags |= 1 << 11;
170    if (sel->screen->options.clear_lds)
171       shader_variant_flags |= 1 << 12;
172 
173    struct mesa_sha1 ctx;
174    _mesa_sha1_init(&ctx);
175    _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
176    _mesa_sha1_update(&ctx, ir_binary, ir_size);
177    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
178 
179    if (ir_binary == blob.data)
180       blob_finish(&blob);
181 }
182 
183 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)184 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
185 {
186    /* data may be NULL if size == 0 */
187    if (size)
188       memcpy(ptr, data, size);
189    ptr += DIV_ROUND_UP(size, 4);
190    return ptr;
191 }
192 
193 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)194 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
195 {
196    memcpy(data, ptr, size);
197    ptr += DIV_ROUND_UP(size, 4);
198    return ptr;
199 }
200 
201 /**
202  * Write the size as uint followed by the data. Return the next dword
203  * following the copied data.
204  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)205 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
206 {
207    *ptr++ = size;
208    return write_data(ptr, data, size);
209 }
210 
211 /**
212  * Read the size as uint followed by the data. Return both via parameters.
213  * Return the next dword following the data.
214  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)215 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
216 {
217    *size = *ptr++;
218    assert(*data == NULL);
219    if (!*size)
220       return ptr;
221    *data = malloc(*size);
222    return read_data(ptr, *data, *size);
223 }
224 
225 struct si_shader_blob_head {
226    uint32_t size;
227    uint32_t type;
228    uint32_t crc32;
229 };
230 
231 /**
232  * Return the shader binary in a buffer.
233  */
si_get_shader_binary(struct si_shader * shader)234 static uint32_t *si_get_shader_binary(struct si_shader *shader)
235 {
236    /* There is always a size of data followed by the data itself. */
237    unsigned llvm_ir_size =
238       shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
239 
240    /* Refuse to allocate overly large buffers and guard against integer
241     * overflow. */
242    if (shader->binary.code_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4 ||
243        shader->binary.num_symbols > UINT_MAX / 32)
244       return NULL;
245 
246    unsigned size = sizeof(struct si_shader_blob_head) +
247                    align(sizeof(shader->config), 4) +
248                    align(sizeof(shader->info), 4) +
249                    4 + 4 + align(shader->binary.code_size, 4) +
250                    4 + shader->binary.num_symbols * 8 +
251                    4 + align(llvm_ir_size, 4);
252    uint32_t *buffer = (uint32_t*)CALLOC(1, size);
253    if (!buffer)
254       return NULL;
255 
256    struct si_shader_blob_head *head = (struct si_shader_blob_head *)buffer;
257    head->type = shader->binary.type;
258    head->size = size;
259 
260    uint32_t *data = buffer + sizeof(*head) / 4;
261    uint32_t *ptr = data;
262 
263    ptr = write_data(ptr, &shader->config, sizeof(shader->config));
264    ptr = write_data(ptr, &shader->info, sizeof(shader->info));
265    ptr = write_data(ptr, &shader->binary.exec_size, 4);
266    ptr = write_chunk(ptr, shader->binary.code_buffer, shader->binary.code_size);
267    ptr = write_chunk(ptr, shader->binary.symbols, shader->binary.num_symbols * 8);
268    ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
269    assert((char *)ptr - (char *)buffer == (ptrdiff_t)size);
270 
271    /* Compute CRC32. */
272    head->crc32 = util_hash_crc32(data, size - sizeof(*head));
273 
274    return buffer;
275 }
276 
si_load_shader_binary(struct si_shader * shader,void * binary)277 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
278 {
279    struct si_shader_blob_head *head = (struct si_shader_blob_head *)binary;
280    unsigned chunk_size;
281    unsigned code_size;
282 
283    uint32_t *ptr = (uint32_t *)binary + sizeof(*head) / 4;
284    if (util_hash_crc32(ptr, head->size - sizeof(*head)) != head->crc32) {
285       fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
286       return false;
287    }
288 
289    shader->binary.type = (enum si_shader_binary_type)head->type;
290    ptr = read_data(ptr, &shader->config, sizeof(shader->config));
291    ptr = read_data(ptr, &shader->info, sizeof(shader->info));
292    ptr = read_data(ptr, &shader->binary.exec_size, 4);
293    ptr = read_chunk(ptr, (void **)&shader->binary.code_buffer, &code_size);
294    shader->binary.code_size = code_size;
295    ptr = read_chunk(ptr, (void **)&shader->binary.symbols, &chunk_size);
296    shader->binary.num_symbols = chunk_size / 8;
297    ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
298 
299    if (!shader->is_gs_copy_shader &&
300        shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
301       shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
302       if (!shader->gs_copy_shader)
303          return false;
304 
305       shader->gs_copy_shader->is_gs_copy_shader = true;
306 
307       if (!si_load_shader_binary(shader->gs_copy_shader, (uint8_t*)binary + head->size)) {
308          FREE(shader->gs_copy_shader);
309          shader->gs_copy_shader = NULL;
310          return false;
311       }
312 
313       util_queue_fence_init(&shader->gs_copy_shader->ready);
314       shader->gs_copy_shader->selector = shader->selector;
315       shader->gs_copy_shader->is_gs_copy_shader = true;
316       shader->gs_copy_shader->wave_size =
317          si_determine_wave_size(shader->selector->screen, shader->gs_copy_shader);
318 
319       si_shader_binary_upload(shader->selector->screen, shader->gs_copy_shader, 0);
320    }
321 
322    return true;
323 }
324 
325 /**
326  * Insert a shader into the cache. It's assumed the shader is not in the cache.
327  * Use si_shader_cache_load_shader before calling this.
328  */
si_shader_cache_insert_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader,bool insert_into_disk_cache)329 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
330                                    struct si_shader *shader, bool insert_into_disk_cache)
331 {
332    uint32_t *hw_binary;
333    struct hash_entry *entry;
334    uint8_t key[CACHE_KEY_SIZE];
335    bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size;
336 
337    if (!insert_into_disk_cache && memory_cache_full)
338       return;
339 
340    entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
341    if (entry)
342       return; /* already added */
343 
344    hw_binary = si_get_shader_binary(shader);
345    if (!hw_binary)
346       return;
347 
348    unsigned size = *hw_binary;
349 
350    if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
351       uint32_t *gs_copy_binary = si_get_shader_binary(shader->gs_copy_shader);
352       if (!gs_copy_binary) {
353          FREE(hw_binary);
354          return;
355       }
356 
357       /* Combine both binaries. */
358       size += *gs_copy_binary;
359       uint32_t *combined_binary = (uint32_t*)MALLOC(size);
360       if (!combined_binary) {
361          FREE(hw_binary);
362          FREE(gs_copy_binary);
363          return;
364       }
365 
366       memcpy(combined_binary, hw_binary, *hw_binary);
367       memcpy(combined_binary + *hw_binary / 4, gs_copy_binary, *gs_copy_binary);
368       FREE(hw_binary);
369       FREE(gs_copy_binary);
370       hw_binary = combined_binary;
371    }
372 
373    if (!memory_cache_full) {
374       if (_mesa_hash_table_insert(sscreen->shader_cache,
375                                   mem_dup(ir_sha1_cache_key, 20),
376                                   hw_binary) == NULL) {
377           FREE(hw_binary);
378           return;
379       }
380 
381       sscreen->shader_cache_size += size;
382    }
383 
384    if (sscreen->disk_shader_cache && insert_into_disk_cache) {
385       disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
386       disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, size, NULL);
387    }
388 
389    if (memory_cache_full)
390       FREE(hw_binary);
391 }
392 
si_shader_cache_load_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader)393 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
394                                  struct si_shader *shader)
395 {
396    struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
397 
398    if (entry) {
399       if (si_load_shader_binary(shader, entry->data)) {
400          p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
401          return true;
402       }
403    }
404    p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
405 
406    if (!sscreen->disk_shader_cache)
407       return false;
408 
409    unsigned char sha1[CACHE_KEY_SIZE];
410    disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
411 
412    size_t total_size;
413    uint32_t *buffer = (uint32_t*)disk_cache_get(sscreen->disk_shader_cache, sha1, &total_size);
414    if (buffer) {
415       unsigned size = *buffer;
416       unsigned gs_copy_binary_size = 0;
417 
418       /* The GS copy shader binary is after the GS binary. */
419       if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg)
420          gs_copy_binary_size = buffer[size / 4];
421 
422       if (total_size >= sizeof(uint32_t) && size + gs_copy_binary_size == total_size) {
423          if (si_load_shader_binary(shader, buffer)) {
424             free(buffer);
425             si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
426             p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
427             return true;
428          }
429       } else {
430          /* Something has gone wrong discard the item from the cache and
431           * rebuild/link from source.
432           */
433          assert(!"Invalid radeonsi shader disk cache item!");
434          disk_cache_remove(sscreen->disk_shader_cache, sha1);
435       }
436    }
437 
438    free(buffer);
439    p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
440    return false;
441 }
442 
si_shader_cache_key_hash(const void * key)443 static uint32_t si_shader_cache_key_hash(const void *key)
444 {
445    /* Take the first dword of SHA1. */
446    return *(uint32_t *)key;
447 }
448 
si_shader_cache_key_equals(const void * a,const void * b)449 static bool si_shader_cache_key_equals(const void *a, const void *b)
450 {
451    /* Compare SHA1s. */
452    return memcmp(a, b, 20) == 0;
453 }
454 
si_destroy_shader_cache_entry(struct hash_entry * entry)455 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
456 {
457    FREE((void *)entry->key);
458    FREE(entry->data);
459 }
460 
si_init_shader_cache(struct si_screen * sscreen)461 bool si_init_shader_cache(struct si_screen *sscreen)
462 {
463    (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
464    sscreen->shader_cache =
465       _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
466    sscreen->shader_cache_size = 0;
467    /* Maximum size: 64MB on 32 bits, 1GB else */
468    sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024;
469 
470    return sscreen->shader_cache != NULL;
471 }
472 
si_destroy_shader_cache(struct si_screen * sscreen)473 void si_destroy_shader_cache(struct si_screen *sscreen)
474 {
475    if (sscreen->shader_cache)
476       _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
477    simple_mtx_destroy(&sscreen->shader_cache_mutex);
478 }
479 
480 /* SHADER STATES */
481 
si_shader_encode_vgprs(struct si_shader * shader)482 unsigned si_shader_encode_vgprs(struct si_shader *shader)
483 {
484    assert(shader->selector->screen->info.gfx_level >= GFX10 || shader->wave_size == 64);
485    return shader->config.num_vgprs / (shader->wave_size == 32 ? 8 : 4) - 1;
486 }
487 
si_shader_encode_sgprs(struct si_shader * shader)488 unsigned si_shader_encode_sgprs(struct si_shader *shader)
489 {
490    if (shader->selector->screen->info.gfx_level >= GFX10)
491       return 0; /* Gfx10+ don't have the SGPRS field and always allocate 128 SGPRs. */
492 
493    return shader->config.num_sgprs / 8 - 1;
494 }
495 
si_shader_mem_ordered(struct si_shader * shader)496 bool si_shader_mem_ordered(struct si_shader *shader)
497 {
498    if (shader->selector->screen->info.gfx_level < GFX10)
499       return false;
500 
501    /* Return true if both types of VMEM that return something are used. */
502    return shader->info.uses_vmem_sampler_or_bvh &&
503           (shader->info.uses_vmem_load_other ||
504            shader->config.scratch_bytes_per_wave);
505 }
506 
si_set_tesseval_regs(struct si_screen * sscreen,const struct si_shader_selector * tes,struct si_shader * shader)507 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
508                                  struct si_shader *shader)
509 {
510    const struct si_shader_info *info = &tes->info;
511    enum tess_primitive_mode tes_prim_mode = info->base.tess._primitive_mode;
512    unsigned tes_spacing = info->base.tess.spacing;
513    bool tes_vertex_order_cw = !info->base.tess.ccw;
514    bool tes_point_mode = info->base.tess.point_mode;
515    unsigned type, partitioning, topology, distribution_mode;
516 
517    switch (tes_prim_mode) {
518    case TESS_PRIMITIVE_ISOLINES:
519       type = V_028B6C_TESS_ISOLINE;
520       break;
521    case TESS_PRIMITIVE_TRIANGLES:
522       type = V_028B6C_TESS_TRIANGLE;
523       break;
524    case TESS_PRIMITIVE_QUADS:
525       type = V_028B6C_TESS_QUAD;
526       break;
527    default:
528       assert(0);
529       return;
530    }
531 
532    switch (tes_spacing) {
533    case TESS_SPACING_FRACTIONAL_ODD:
534       partitioning = V_028B6C_PART_FRAC_ODD;
535       break;
536    case TESS_SPACING_FRACTIONAL_EVEN:
537       partitioning = V_028B6C_PART_FRAC_EVEN;
538       break;
539    case TESS_SPACING_EQUAL:
540       partitioning = V_028B6C_PART_INTEGER;
541       break;
542    default:
543       assert(0);
544       return;
545    }
546 
547    if (tes_point_mode)
548       topology = V_028B6C_OUTPUT_POINT;
549    else if (tes_prim_mode == TESS_PRIMITIVE_ISOLINES)
550       topology = V_028B6C_OUTPUT_LINE;
551    else if (tes_vertex_order_cw)
552       /* for some reason, this must be the other way around */
553       topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
554    else
555       topology = V_028B6C_OUTPUT_TRIANGLE_CW;
556 
557    if (sscreen->info.has_distributed_tess) {
558       if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
559          distribution_mode = V_028B6C_TRAPEZOIDS;
560       else
561          distribution_mode = V_028B6C_DONUTS;
562    } else
563       distribution_mode = V_028B6C_NO_DIST;
564 
565    shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
566                           S_028B6C_TOPOLOGY(topology) |
567                           S_028B6C_DISTRIBUTION_MODE(distribution_mode);
568 }
569 
570 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
571  * whether the "fractional odd" tessellation spacing is used.
572  *
573  * Possible VGT configurations and which state should set the register:
574  *
575  *   Reg set in | VGT shader configuration   | Value
576  * ------------------------------------------------------
577  *     VS as VS | VS                         | 30
578  *     VS as ES | ES -> GS -> VS             | 30
579  *    TES as VS | LS -> HS -> VS             | 14 or 30
580  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
581  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader)582 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
583                                          struct si_shader *shader)
584 {
585    if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.gfx_level >= GFX10)
586       return;
587 
588    /* VS as VS, or VS as ES: */
589    if ((sel->stage == MESA_SHADER_VERTEX &&
590         (!shader->key.ge.as_ls && !shader->is_gs_copy_shader)) ||
591        /* TES as VS, or TES as ES: */
592        sel->stage == MESA_SHADER_TESS_EVAL) {
593       unsigned vtx_reuse_depth = 30;
594 
595       if (sel->stage == MESA_SHADER_TESS_EVAL &&
596           sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
597          vtx_reuse_depth = 14;
598 
599       shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
600    }
601 }
602 
603 static struct si_pm4_state *
si_get_shader_pm4_state(struct si_shader * shader,void (* emit_func)(struct si_context * ctx,unsigned index))604 si_get_shader_pm4_state(struct si_shader *shader,
605                         void (*emit_func)(struct si_context *ctx, unsigned index))
606 {
607    si_pm4_clear_state(&shader->pm4, shader->selector->screen, false);
608    shader->pm4.atom.emit = emit_func;
609    return &shader->pm4;
610 }
611 
si_get_num_vs_user_sgprs(struct si_shader * shader,unsigned num_always_on_user_sgprs)612 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
613                                          unsigned num_always_on_user_sgprs)
614 {
615    struct si_shader_selector *vs =
616       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
617    unsigned num_vbos_in_user_sgprs = vs->info.num_vbos_in_user_sgprs;
618 
619    /* 1 SGPR is reserved for the vertex buffer pointer. */
620    assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
621 
622    if (num_vbos_in_user_sgprs)
623       return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
624 
625    /* Add the pointer to VBO descriptors. */
626    return num_always_on_user_sgprs + 1;
627 }
628 
629 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
si_get_vs_vgpr_comp_cnt(struct si_screen * sscreen,struct si_shader * shader,bool legacy_vs_prim_id)630 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
631                                         bool legacy_vs_prim_id)
632 {
633    assert(shader->selector->stage == MESA_SHADER_VERTEX ||
634           (shader->previous_stage_sel && shader->previous_stage_sel->stage == MESA_SHADER_VERTEX));
635 
636    /* GFX6-9   LS    (VertexID, RelAutoIndex,           InstanceID / StepRate0, InstanceID)
637     * GFX6-9   ES,VS (VertexID, InstanceID / StepRate0, VSPrimID,               InstanceID)
638     * GFX10-11 LS    (VertexID, RelAutoIndex,           UserVGPR1,              UserVGPR2 or InstanceID)
639     * GFX10-11 ES,VS (VertexID, UserVGPR1,              UserVGPR2 or VSPrimID,  UserVGPR3 or InstanceID)
640     */
641    bool is_ls = shader->selector->stage == MESA_SHADER_TESS_CTRL || shader->key.ge.as_ls;
642    unsigned max = 0;
643 
644    if (shader->info.uses_instanceid) {
645       if (sscreen->info.gfx_level >= GFX10)
646          max = MAX2(max, 3);
647       else if (is_ls)
648          max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
649       else
650          max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
651    }
652 
653    if (legacy_vs_prim_id)
654       max = MAX2(max, 2); /* VSPrimID */
655 
656    /* GFX11: We prefer to compute RelAutoIndex using (WaveID * WaveSize + ThreadID).
657     * Older chips didn't have WaveID in LS.
658     */
659    if (is_ls && sscreen->info.gfx_level <= GFX10_3)
660       max = MAX2(max, 1); /* RelAutoIndex */
661 
662    return max;
663 }
664 
si_get_shader_prefetch_size(struct si_shader * shader)665 unsigned si_get_shader_prefetch_size(struct si_shader *shader)
666 {
667    /* inst_pref_size is calculated in cache line size granularity */
668    assert(!(shader->bo->b.b.width0 & 0x7f));
669    return MIN2(shader->bo->b.b.width0, 8064) / 128;
670 }
671 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)672 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
673 {
674    struct si_pm4_state *pm4;
675    uint64_t va;
676 
677    assert(sscreen->info.gfx_level <= GFX8);
678 
679    pm4 = si_get_shader_pm4_state(shader, NULL);
680    if (!pm4)
681       return;
682 
683    va = shader->bo->gpu_address;
684    si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
685 
686    shader->config.rsrc1 = S_00B528_VGPRS(si_shader_encode_vgprs(shader)) |
687                           S_00B528_SGPRS(si_shader_encode_sgprs(shader)) |
688                           S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
689                           S_00B528_DX10_CLAMP(1) |
690                           S_00B528_FLOAT_MODE(shader->config.float_mode);
691    shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
692                           S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
693    si_pm4_finalize(pm4);
694 }
695 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)696 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
697 {
698    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
699    if (!pm4)
700       return;
701 
702    uint64_t va = shader->bo->gpu_address;
703    unsigned num_user_sgprs = sscreen->info.gfx_level >= GFX9 ?
704                                 si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR) :
705                                 GFX6_TCS_NUM_USER_SGPR;
706 
707    if (sscreen->info.gfx_level >= GFX11) {
708       si_pm4_set_reg_idx3(pm4, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
709                           ac_apply_cu_en(S_00B404_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)) |
710                                          S_00B404_CU_EN(0xffff),
711                                          C_00B404_CU_EN, 16, &sscreen->info));
712 
713       si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
714    } else if (sscreen->info.gfx_level >= GFX10) {
715       si_pm4_set_reg(pm4, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
716    } else if (sscreen->info.gfx_level >= GFX9) {
717       si_pm4_set_reg(pm4, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
718    } else {
719       si_pm4_set_reg(pm4, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
720       si_pm4_set_reg(pm4, R_00B424_SPI_SHADER_PGM_HI_HS,
721                      S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8));
722    }
723 
724    si_pm4_set_reg(pm4, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
725                   S_00B428_VGPRS(si_shader_encode_vgprs(shader)) |
726                   S_00B428_SGPRS(si_shader_encode_sgprs(shader)) |
727                   S_00B428_DX10_CLAMP(1) |
728                   S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) |
729                   S_00B428_FLOAT_MODE(shader->config.float_mode) |
730                   S_00B428_LS_VGPR_COMP_CNT(sscreen->info.gfx_level >= GFX9 ?
731                                             si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0));
732 
733    shader->config.rsrc2 = S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
734                           S_00B42C_USER_SGPR(num_user_sgprs);
735 
736    if (sscreen->info.gfx_level >= GFX10)
737       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
738    else if (sscreen->info.gfx_level >= GFX9)
739       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
740    else
741       shader->config.rsrc2 |= S_00B42C_OC_LDS_EN(1);
742 
743    if (sscreen->info.gfx_level <= GFX8)
744       si_pm4_set_reg(pm4, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
745 
746    si_pm4_finalize(pm4);
747 }
748 
si_emit_shader_es(struct si_context * sctx,unsigned index)749 static void si_emit_shader_es(struct si_context *sctx, unsigned index)
750 {
751    struct si_shader *shader = sctx->queued.named.es;
752 
753    radeon_begin(&sctx->gfx_cs);
754    radeon_opt_set_context_reg(sctx, R_028AAC_VGT_ESGS_RING_ITEMSIZE,
755                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
756                               shader->selector->info.esgs_vertex_stride / 4);
757 
758    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
759       radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
760                                  shader->vgt_tf_param);
761 
762    if (shader->vgt_vertex_reuse_block_cntl)
763       radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
764                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
765                                  shader->vgt_vertex_reuse_block_cntl);
766    radeon_end_update_context_roll(sctx);
767 }
768 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)769 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
770 {
771    struct si_pm4_state *pm4;
772    unsigned num_user_sgprs;
773    unsigned vgpr_comp_cnt;
774    uint64_t va;
775    unsigned oc_lds_en;
776 
777    assert(sscreen->info.gfx_level <= GFX8);
778 
779    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_es);
780    if (!pm4)
781       return;
782 
783    va = shader->bo->gpu_address;
784 
785    if (shader->selector->stage == MESA_SHADER_VERTEX) {
786       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
787       num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
788    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
789       vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
790       num_user_sgprs = SI_TES_NUM_USER_SGPR;
791    } else
792       unreachable("invalid shader selector type");
793 
794    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
795 
796    si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
797    si_pm4_set_reg(pm4, R_00B324_SPI_SHADER_PGM_HI_ES,
798                   S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8));
799    si_pm4_set_reg(pm4, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
800                   S_00B328_VGPRS(si_shader_encode_vgprs(shader)) |
801                   S_00B328_SGPRS(si_shader_encode_sgprs(shader)) |
802                   S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
803                   S_00B328_DX10_CLAMP(1) |
804                   S_00B328_FLOAT_MODE(shader->config.float_mode));
805    si_pm4_set_reg(pm4, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
806                   S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
807                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
808 
809    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
810       si_set_tesseval_regs(sscreen, shader->selector, shader);
811 
812    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
813    si_pm4_finalize(pm4);
814 }
815 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)816 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
817                       struct gfx9_gs_info *out)
818 {
819    unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
820    unsigned input_prim = gs->info.base.gs.input_primitive;
821    bool uses_adjacency =
822       input_prim >= MESA_PRIM_LINES_ADJACENCY && input_prim <= MESA_PRIM_TRIANGLE_STRIP_ADJACENCY;
823 
824    /* All these are in dwords: */
825    /* We can't allow using the whole LDS, because GS waves compete with
826     * other shader stages for LDS space. */
827    const unsigned max_lds_size = 8 * 1024;
828    const unsigned esgs_itemsize = es->info.esgs_vertex_stride / 4;
829    unsigned esgs_lds_size;
830 
831    /* All these are per subgroup: */
832    const unsigned max_out_prims = 32 * 1024;
833    const unsigned max_es_verts = 255;
834    const unsigned ideal_gs_prims = 64;
835    unsigned max_gs_prims, gs_prims;
836    unsigned min_es_verts, es_verts, worst_case_es_verts;
837 
838    if (uses_adjacency || gs_num_invocations > 1)
839       max_gs_prims = 127 / gs_num_invocations;
840    else
841       max_gs_prims = 255;
842 
843    /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
844     * Make sure we don't go over the maximum value.
845     */
846    if (gs->info.base.gs.vertices_out > 0) {
847       max_gs_prims =
848          MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
849    }
850    assert(max_gs_prims > 0);
851 
852    /* If the primitive has adjacency, halve the number of vertices
853     * that will be reused in multiple primitives.
854     */
855    min_es_verts = gs->info.gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
856 
857    gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
858    worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
859 
860    /* Compute ESGS LDS size based on the worst case number of ES vertices
861     * needed to create the target number of GS prims per subgroup.
862     */
863    esgs_lds_size = esgs_itemsize * worst_case_es_verts;
864 
865    /* If total LDS usage is too big, refactor partitions based on ratio
866     * of ESGS item sizes.
867     */
868    if (esgs_lds_size > max_lds_size) {
869       /* Our target GS Prims Per Subgroup was too large. Calculate
870        * the maximum number of GS Prims Per Subgroup that will fit
871        * into LDS, capped by the maximum that the hardware can support.
872        */
873       gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
874       assert(gs_prims > 0);
875       worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
876 
877       esgs_lds_size = esgs_itemsize * worst_case_es_verts;
878       assert(esgs_lds_size <= max_lds_size);
879    }
880 
881    /* Now calculate remaining ESGS information. */
882    if (esgs_lds_size)
883       es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
884    else
885       es_verts = max_es_verts;
886 
887    /* Vertices for adjacency primitives are not always reused, so restore
888     * it for ES_VERTS_PER_SUBGRP.
889     */
890    min_es_verts = gs->info.gs_input_verts_per_prim;
891 
892    /* For normal primitives, the VGT only checks if they are past the ES
893     * verts per subgroup after allocating a full GS primitive and if they
894     * are, kick off a new subgroup.  But if those additional ES verts are
895     * unique (e.g. not reused) we need to make sure there is enough LDS
896     * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
897     */
898    es_verts -= min_es_verts - 1;
899 
900    out->es_verts_per_subgroup = es_verts;
901    out->gs_prims_per_subgroup = gs_prims;
902    out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
903    out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
904    out->esgs_ring_size = esgs_lds_size;
905 
906    assert(out->max_prims_per_subgroup <= max_out_prims);
907 }
908 
gfx9_set_gs_sgpr_num_es_outputs(struct si_context * sctx,unsigned esgs_vertex_stride)909 static void gfx9_set_gs_sgpr_num_es_outputs(struct si_context *sctx, unsigned esgs_vertex_stride)
910 {
911    /* The stride must always be odd (e.g. a multiple of 4 + 1) to reduce LDS bank conflicts. */
912    assert(esgs_vertex_stride % 4 == 1);
913    unsigned num_es_outputs = (esgs_vertex_stride - 1) / 4;
914 
915    /* If there are no ES outputs, GS doesn't use this SGPR field, so only set it if the number
916     * is non-zero.
917     */
918    if (num_es_outputs)
919       SET_FIELD(sctx->current_gs_state, GS_STATE_NUM_ES_OUTPUTS, num_es_outputs);
920 }
921 
si_emit_shader_gs(struct si_context * sctx,unsigned index)922 static void si_emit_shader_gs(struct si_context *sctx, unsigned index)
923 {
924    struct si_shader *shader = sctx->queued.named.gs;
925 
926    if (sctx->gfx_level >= GFX9)
927       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4);
928 
929    radeon_begin(&sctx->gfx_cs);
930 
931    /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
932     * R_028A68_VGT_GSVS_RING_OFFSET_3 */
933    radeon_opt_set_context_reg3(
934       sctx, R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
935       shader->gs.vgt_gsvs_ring_offset_1, shader->gs.vgt_gsvs_ring_offset_2,
936       shader->gs.vgt_gsvs_ring_offset_3);
937 
938    /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
939    radeon_opt_set_context_reg(sctx, R_028AB0_VGT_GSVS_RING_ITEMSIZE,
940                               SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
941                               shader->gs.vgt_gsvs_ring_itemsize);
942 
943    /* R_028B38_VGT_GS_MAX_VERT_OUT */
944    radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
945                               shader->gs.vgt_gs_max_vert_out);
946 
947    /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
948     * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
949    radeon_opt_set_context_reg4(
950       sctx, R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
951       shader->gs.vgt_gs_vert_itemsize, shader->gs.vgt_gs_vert_itemsize_1,
952       shader->gs.vgt_gs_vert_itemsize_2, shader->gs.vgt_gs_vert_itemsize_3);
953 
954    /* R_028B90_VGT_GS_INSTANCE_CNT */
955    radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
956                               shader->gs.vgt_gs_instance_cnt);
957 
958    if (sctx->gfx_level >= GFX9) {
959       /* R_028A44_VGT_GS_ONCHIP_CNTL */
960       radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
961                                  shader->gs.vgt_gs_onchip_cntl);
962       /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
963       if (sctx->gfx_level == GFX9) {
964          radeon_opt_set_context_reg(sctx, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
965                                     SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
966                                     shader->gs.vgt_gs_max_prims_per_subgroup);
967       }
968 
969       if (shader->key.ge.part.gs.es->stage == MESA_SHADER_TESS_EVAL)
970          radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
971                                     shader->vgt_tf_param);
972       if (shader->vgt_vertex_reuse_block_cntl)
973          radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
974                                     SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
975                                     shader->vgt_vertex_reuse_block_cntl);
976    }
977    radeon_end_update_context_roll(sctx);
978 
979    /* These don't cause any context rolls. */
980    radeon_begin_again(&sctx->gfx_cs);
981    if (sctx->gfx_level >= GFX7) {
982       if (sctx->screen->info.uses_kernel_cu_mask) {
983          radeon_opt_set_sh_reg_idx(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
984                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
985                                    3, shader->gs.spi_shader_pgm_rsrc3_gs);
986       } else {
987          radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
988                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
989                                shader->gs.spi_shader_pgm_rsrc3_gs);
990       }
991    }
992    if (sctx->gfx_level >= GFX10) {
993       if (sctx->screen->info.uses_kernel_cu_mask) {
994          radeon_opt_set_sh_reg_idx(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
995                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
996                                    3, shader->gs.spi_shader_pgm_rsrc4_gs);
997       } else {
998          radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
999                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1000                                shader->gs.spi_shader_pgm_rsrc4_gs);
1001       }
1002    }
1003    radeon_end();
1004 }
1005 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)1006 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
1007 {
1008    struct si_shader_selector *sel = shader->selector;
1009    const uint8_t *num_components = sel->info.num_stream_output_components;
1010    unsigned gs_num_invocations = sel->info.base.gs.invocations;
1011    struct si_pm4_state *pm4;
1012    uint64_t va;
1013    unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
1014    unsigned offset;
1015 
1016    assert(sscreen->info.gfx_level < GFX11); /* gfx11 doesn't have the legacy pipeline */
1017 
1018    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_gs);
1019    if (!pm4)
1020       return;
1021 
1022    offset = num_components[0] * sel->info.base.gs.vertices_out;
1023    shader->gs.vgt_gsvs_ring_offset_1 = offset;
1024 
1025    if (max_stream >= 2)
1026       offset += num_components[1] * sel->info.base.gs.vertices_out;
1027    shader->gs.vgt_gsvs_ring_offset_2 = offset;
1028 
1029    if (max_stream >= 3)
1030       offset += num_components[2] * sel->info.base.gs.vertices_out;
1031    shader->gs.vgt_gsvs_ring_offset_3 = offset;
1032 
1033    if (max_stream >= 4)
1034       offset += num_components[3] * sel->info.base.gs.vertices_out;
1035    shader->gs.vgt_gsvs_ring_itemsize = offset;
1036 
1037    /* The GSVS_RING_ITEMSIZE register takes 15 bits */
1038    assert(offset < (1 << 15));
1039 
1040    shader->gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
1041 
1042    shader->gs.vgt_gs_vert_itemsize = num_components[0];
1043    shader->gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
1044    shader->gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
1045    shader->gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
1046 
1047    shader->gs.vgt_gs_instance_cnt =
1048       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1049 
1050    /* Copy over fields from the GS copy shader to make them easily accessible from GS. */
1051    shader->pa_cl_vs_out_cntl = shader->gs_copy_shader->pa_cl_vs_out_cntl;
1052 
1053    va = shader->bo->gpu_address;
1054 
1055    if (sscreen->info.gfx_level >= GFX9) {
1056       unsigned input_prim = sel->info.base.gs.input_primitive;
1057       gl_shader_stage es_stage = shader->key.ge.part.gs.es->stage;
1058       unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1059 
1060       if (es_stage == MESA_SHADER_VERTEX) {
1061          es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1062       } else if (es_stage == MESA_SHADER_TESS_EVAL)
1063          es_vgpr_comp_cnt = shader->key.ge.part.gs.es->info.uses_primid ? 3 : 2;
1064       else
1065          unreachable("invalid shader selector type");
1066 
1067       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1068        * VGPR[0:4] are always loaded.
1069        */
1070       if (sel->info.uses_invocationid)
1071          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1072       else if (sel->info.uses_primid)
1073          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1074       else if (input_prim >= MESA_PRIM_TRIANGLES)
1075          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1076       else
1077          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1078 
1079       unsigned num_user_sgprs;
1080       if (es_stage == MESA_SHADER_VERTEX)
1081          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1082       else
1083          num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1084 
1085       if (sscreen->info.gfx_level >= GFX10) {
1086          si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1087       } else {
1088          si_pm4_set_reg(pm4, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
1089       }
1090 
1091       uint32_t rsrc1 = S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1092                        S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1093                        S_00B228_DX10_CLAMP(1) |
1094                        S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1095                        S_00B228_FLOAT_MODE(shader->config.float_mode) |
1096                        S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
1097       uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
1098                        S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1099                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1100                        S_00B22C_LDS_SIZE(shader->config.lds_size) |
1101                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1102 
1103       if (sscreen->info.gfx_level >= GFX10) {
1104          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1105       } else {
1106          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1107       }
1108 
1109       si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
1110       si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
1111 
1112       shader->gs.spi_shader_pgm_rsrc3_gs =
1113          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1114                         S_00B21C_WAVE_LIMIT(0x3F),
1115                         C_00B21C_CU_EN, 0, &sscreen->info);
1116       shader->gs.spi_shader_pgm_rsrc4_gs =
1117          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) |
1118                         S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
1119                         C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1120 
1121       shader->gs.vgt_gs_onchip_cntl =
1122          S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
1123          S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
1124          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
1125       shader->gs.vgt_gs_max_prims_per_subgroup =
1126          S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
1127       shader->gs.vgt_esgs_ring_itemsize = shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4;
1128 
1129       if (es_stage == MESA_SHADER_TESS_EVAL)
1130          si_set_tesseval_regs(sscreen, shader->key.ge.part.gs.es, shader);
1131 
1132       polaris_set_vgt_vertex_reuse(sscreen, shader->key.ge.part.gs.es, shader);
1133    } else {
1134       shader->gs.spi_shader_pgm_rsrc3_gs =
1135          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1136                         S_00B21C_WAVE_LIMIT(0x3F),
1137                         C_00B21C_CU_EN, 0, &sscreen->info);
1138 
1139       si_pm4_set_reg(pm4, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
1140       si_pm4_set_reg(pm4, R_00B224_SPI_SHADER_PGM_HI_GS,
1141                      S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8));
1142 
1143       si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1144                      S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1145                      S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1146                      S_00B228_DX10_CLAMP(1) |
1147                      S_00B228_FLOAT_MODE(shader->config.float_mode));
1148       si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1149                      S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
1150                      S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1151    }
1152    si_pm4_finalize(pm4);
1153 }
1154 
gfx10_is_ngg_passthrough(struct si_shader * shader)1155 bool gfx10_is_ngg_passthrough(struct si_shader *shader)
1156 {
1157    struct si_shader_selector *sel = shader->selector;
1158 
1159    /* Never use NGG passthrough if culling is possible even when it's not used by this shader,
1160     * so that we don't get context rolls when enabling and disabling NGG passthrough.
1161     */
1162    if (sel->screen->use_ngg_culling)
1163       return false;
1164 
1165    /* The definition of NGG passthrough is:
1166     * - user GS is turned off (no amplification, no GS instancing, and no culling)
1167     * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1)
1168     * - vertex indices are packed into 1 VGPR
1169     * - Navi23 and later chips can optionally skip the gs_alloc_req message
1170     *
1171     * NGG passthrough still allows the use of LDS.
1172     */
1173    return sel->stage != MESA_SHADER_GEOMETRY && !shader->key.ge.opt.ngg_culling;
1174 }
1175 
1176 template <enum si_has_tess HAS_TESS>
gfx10_emit_shader_ngg(struct si_context * sctx,unsigned index)1177 static void gfx10_emit_shader_ngg(struct si_context *sctx, unsigned index)
1178 {
1179    struct si_shader *shader = sctx->queued.named.gs;
1180 
1181    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1182       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1183 
1184    radeon_begin(&sctx->gfx_cs);
1185    if (HAS_TESS) {
1186       radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1187                                  shader->vgt_tf_param);
1188    }
1189    radeon_opt_set_context_reg(sctx, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1190                               SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1191                               shader->ngg.ge_max_output_per_subgroup);
1192    radeon_opt_set_context_reg(sctx, R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1193                               shader->ngg.ge_ngg_subgrp_cntl);
1194    radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1195                               shader->ngg.vgt_primitiveid_en);
1196    if (sctx->gfx_level < GFX11) {
1197       radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1198                                  shader->ngg.vgt_gs_onchip_cntl);
1199    }
1200    radeon_opt_set_context_reg(sctx, R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1201                               shader->ngg.vgt_gs_max_vert_out);
1202    radeon_opt_set_context_reg(sctx, R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1203                               shader->ngg.vgt_gs_instance_cnt);
1204    radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1205                               shader->ngg.spi_vs_out_config);
1206    radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1207                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1208                               shader->ngg.spi_shader_pos_format);
1209    radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1210                               shader->ngg.pa_cl_vte_cntl);
1211    radeon_end_update_context_roll(sctx);
1212 
1213    /* These don't cause a context roll. */
1214    radeon_begin_again(&sctx->gfx_cs);
1215    if (sctx->screen->info.uses_kernel_cu_mask) {
1216       radeon_opt_set_sh_reg_idx(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1217                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1218                                 3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1219       radeon_opt_set_sh_reg_idx(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1220                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1221                                 3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1222    } else {
1223       radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1224                             SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1225                             shader->ngg.spi_shader_pgm_rsrc3_gs);
1226       radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1227                             SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1228                             shader->ngg.spi_shader_pgm_rsrc4_gs);
1229    }
1230    radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1231                               shader->ngg.ge_pc_alloc);
1232    radeon_end();
1233 }
1234 
1235 template <enum si_has_tess HAS_TESS>
gfx11_dgpu_emit_shader_ngg(struct si_context * sctx,unsigned index)1236 static void gfx11_dgpu_emit_shader_ngg(struct si_context *sctx, unsigned index)
1237 {
1238    struct si_shader *shader = sctx->queued.named.gs;
1239 
1240    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1241       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1242 
1243    radeon_begin(&sctx->gfx_cs);
1244    gfx11_begin_packed_context_regs();
1245    if (HAS_TESS) {
1246       gfx11_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1247                                 shader->vgt_tf_param);
1248    }
1249    gfx11_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1250                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1251                              shader->ngg.ge_max_output_per_subgroup);
1252    gfx11_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1253                              shader->ngg.ge_ngg_subgrp_cntl);
1254    gfx11_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1255                              shader->ngg.vgt_primitiveid_en);
1256    gfx11_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1257                              shader->ngg.vgt_gs_max_vert_out);
1258    gfx11_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1259                              shader->ngg.vgt_gs_instance_cnt);
1260    gfx11_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1261                              shader->ngg.spi_vs_out_config);
1262    gfx11_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1263                              shader->ngg.spi_shader_pos_format);
1264    gfx11_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1265                              shader->ngg.pa_cl_vte_cntl);
1266    gfx11_end_packed_context_regs();
1267 
1268    assert(!sctx->screen->info.uses_kernel_cu_mask);
1269    if (sctx->screen->info.has_set_sh_pairs_packed) {
1270       gfx11_opt_push_gfx_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1271                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1272                                 shader->gs.spi_shader_pgm_rsrc3_gs);
1273       gfx11_opt_push_gfx_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1274                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1275                                 shader->gs.spi_shader_pgm_rsrc4_gs);
1276    } else {
1277       if (sctx->screen->info.uses_kernel_cu_mask) {
1278          radeon_opt_set_sh_reg_idx(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1279                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1280                                    3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1281          radeon_opt_set_sh_reg_idx(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1282                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1283                                    3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1284       } else {
1285          radeon_opt_set_sh_reg(sctx, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1286                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1287                                shader->ngg.spi_shader_pgm_rsrc3_gs);
1288          radeon_opt_set_sh_reg(sctx, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1289                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1290                                shader->ngg.spi_shader_pgm_rsrc4_gs);
1291       }
1292    }
1293 
1294    radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1295                               shader->ngg.ge_pc_alloc);
1296    radeon_end();
1297 }
1298 
si_get_input_prim(const struct si_shader_selector * gs,const union si_shader_key * key)1299 unsigned si_get_input_prim(const struct si_shader_selector *gs, const union si_shader_key *key)
1300 {
1301    if (gs->stage == MESA_SHADER_GEOMETRY)
1302       return gs->info.base.gs.input_primitive;
1303 
1304    if (gs->stage == MESA_SHADER_TESS_EVAL) {
1305       if (gs->info.base.tess.point_mode)
1306          return MESA_PRIM_POINTS;
1307       if (gs->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
1308          return MESA_PRIM_LINES;
1309       return MESA_PRIM_TRIANGLES;
1310    }
1311 
1312    if (key->ge.opt.ngg_culling & SI_NGG_CULL_LINES)
1313       return MESA_PRIM_LINES;
1314 
1315    return MESA_PRIM_TRIANGLES; /* worst case for all callers */
1316 }
1317 
si_get_vs_out_cntl(const struct si_shader_selector * sel,const struct si_shader * shader,bool ngg)1318 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel,
1319                                    const struct si_shader *shader, bool ngg)
1320 {
1321    /* Clip distances can be killed, but cull distances can't. */
1322    unsigned clipcull_mask = (sel->info.clipdist_mask & ~shader->key.ge.opt.kill_clip_distances) |
1323                             sel->info.culldist_mask;
1324    bool writes_psize = sel->info.writes_psize && !shader->key.ge.opt.kill_pointsize;
1325    bool writes_layer = sel->info.writes_layer && !shader->key.ge.opt.kill_layer;
1326    bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1327                        writes_layer || sel->info.writes_viewport_index ||
1328                        sel->screen->options.vrs2x2;
1329 
1330    return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) |
1331           S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) |
1332           S_02881C_USE_VTX_POINT_SIZE(writes_psize) |
1333           S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1334           S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) |
1335           S_02881C_USE_VTX_RENDER_TARGET_INDX(writes_layer) |
1336           S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1337           S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1338           S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1339                                             (sel->screen->info.gfx_level >= GFX10_3 &&
1340                                              shader->info.nr_pos_exports > 1));
1341 }
1342 
1343 /**
1344  * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1345  * in NGG mode.
1346  */
gfx10_shader_ngg(struct si_screen * sscreen,struct si_shader * shader)1347 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1348 {
1349    const struct si_shader_selector *gs_sel = shader->selector;
1350    const struct si_shader_info *gs_info = &gs_sel->info;
1351    const gl_shader_stage gs_stage = shader->selector->stage;
1352    const struct si_shader_selector *es_sel =
1353       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1354    const struct si_shader_info *es_info = &es_sel->info;
1355    const gl_shader_stage es_stage = es_sel->stage;
1356    unsigned num_user_sgprs;
1357    unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1358    uint64_t va;
1359    bool window_space = gs_sel->stage == MESA_SHADER_VERTEX ?
1360                           gs_info->base.vs.window_space_position : 0;
1361    bool es_enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || es_info->uses_primid;
1362    unsigned gs_num_invocations = gs_sel->stage == MESA_SHADER_GEOMETRY ?
1363                                     CLAMP(gs_info->base.gs.invocations, 1, 32) : 0;
1364    unsigned input_prim = si_get_input_prim(gs_sel, &shader->key);
1365    bool break_wave_at_eoi = false;
1366 
1367    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
1368    if (!pm4)
1369       return;
1370 
1371    if (sscreen->info.has_set_context_pairs_packed) {
1372       if (es_stage == MESA_SHADER_TESS_EVAL)
1373          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_ON>;
1374       else
1375          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_OFF>;
1376    } else {
1377       if (es_stage == MESA_SHADER_TESS_EVAL)
1378          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_ON>;
1379       else
1380          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_OFF>;
1381    }
1382 
1383    va = shader->bo->gpu_address;
1384 
1385    if (es_stage == MESA_SHADER_VERTEX) {
1386       es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1387 
1388       if (es_info->base.vs.blit_sgprs_amd) {
1389          num_user_sgprs =
1390             SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1391       } else {
1392          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1393       }
1394    } else {
1395       assert(es_stage == MESA_SHADER_TESS_EVAL);
1396       es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1397       num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1398 
1399       if (es_enable_prim_id || gs_info->uses_primid)
1400          break_wave_at_eoi = true;
1401    }
1402 
1403    /* Primitives with adjancency can only occur without tessellation. */
1404    assert(gs_info->gs_input_verts_per_prim <= 3 || es_stage == MESA_SHADER_VERTEX);
1405 
1406    /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1407     * VGPR[0:4] are always loaded.
1408     *
1409     * Vertex shaders always need to load VGPR3, because they need to
1410     * pass edge flags for decomposed primitives (such as quads) to the PA
1411     * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1412     */
1413    if (gs_info->uses_invocationid ||
1414        (gfx10_edgeflags_have_effect(shader) && !gfx10_is_ngg_passthrough(shader)))
1415       gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1416    else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1417             (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1418       gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1419    else if (input_prim >= MESA_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1420       gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1421    else
1422       gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1423 
1424    si_pm4_set_reg(pm4, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1425    si_pm4_set_reg(pm4, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1426                   S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1427                   S_00B228_FLOAT_MODE(shader->config.float_mode) |
1428                   S_00B228_DX10_CLAMP(1) |
1429                   S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1430                   S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1431    si_pm4_set_reg(pm4, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1432                   S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1433                   S_00B22C_USER_SGPR(num_user_sgprs) |
1434                   S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1435                   S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1436                   S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1437                   S_00B22C_LDS_SIZE(shader->config.lds_size));
1438 
1439    /* Set register values emitted conditionally in gfx10_emit_shader_ngg_*. */
1440    shader->ngg.spi_shader_pos_format =
1441       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1442       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1443                                                                   : V_02870C_SPI_SHADER_NONE) |
1444       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1445                                                                   : V_02870C_SPI_SHADER_NONE) |
1446       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1447                                                                   : V_02870C_SPI_SHADER_NONE);
1448    shader->ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1449    shader->ngg.vgt_gs_instance_cnt =
1450       S_028B90_ENABLE(gs_num_invocations > 1) |
1451       S_028B90_CNT(gs_num_invocations) |
1452       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1453    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true);
1454 
1455    if (gs_stage == MESA_SHADER_GEOMETRY) {
1456       shader->ngg.esgs_vertex_stride = es_sel->info.esgs_vertex_stride / 4;
1457       shader->ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1458       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(gs_sel->info.base.gs.vertices_out);
1459    } else {
1460       shader->ngg.esgs_vertex_stride = 1;
1461       shader->ngg.vgt_gs_max_vert_out = 1;
1462       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(1);
1463    }
1464 
1465    if (es_stage == MESA_SHADER_TESS_EVAL)
1466       si_set_tesseval_regs(sscreen, es_sel, shader);
1467 
1468    shader->ngg.vgt_primitiveid_en =
1469       S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.ge.mono.u.vs_export_prim_id ||
1470                                         gs_sel->info.writes_primid);
1471 
1472    unsigned late_alloc_wave64, cu_mask;
1473 
1474    ac_compute_late_alloc(&sscreen->info, true, shader->key.ge.opt.ngg_culling,
1475                          shader->config.scratch_bytes_per_wave > 0,
1476                          &late_alloc_wave64, &cu_mask);
1477 
1478    /* Oversubscribe PC. This improves performance when there are too many varyings. */
1479    unsigned oversub_pc_lines, oversub_pc_factor = 1;
1480 
1481    if (shader->key.ge.opt.ngg_culling) {
1482       /* Be more aggressive with NGG culling. */
1483       if (shader->info.nr_param_exports > 4)
1484          oversub_pc_factor = 4;
1485       else if (shader->info.nr_param_exports > 2)
1486          oversub_pc_factor = 3;
1487       else
1488          oversub_pc_factor = 2;
1489    }
1490    oversub_pc_lines = late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0;
1491    shader->ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) |
1492                              S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1493    shader->ngg.vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(es_enable_prim_id);
1494    shader->ngg.spi_shader_pgm_rsrc3_gs =
1495       ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) |
1496                      S_00B21C_WAVE_LIMIT(0x3F),
1497                      C_00B21C_CU_EN, 0, &sscreen->info);
1498    shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64);
1499    shader->ngg.spi_vs_out_config =
1500       S_0286C4_VS_EXPORT_COUNT(MAX2(shader->info.nr_param_exports, 1) - 1) |
1501       S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1502 
1503    if (sscreen->info.gfx_level >= GFX11) {
1504       shader->ngg.spi_shader_pgm_rsrc4_gs |=
1505          ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) |
1506                         S_00B204_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
1507                         C_00B204_CU_EN_GFX11, 16, &sscreen->info);
1508    } else {
1509       shader->ngg.spi_shader_pgm_rsrc4_gs |=
1510          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff),
1511                         C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1512    }
1513 
1514    if (sscreen->info.gfx_level >= GFX11) {
1515       /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1516       unsigned max_prim_grp_size = 252;
1517       unsigned prim_amp_factor = gs_stage == MESA_SHADER_GEOMETRY ?
1518                                     gs_sel->info.base.gs.vertices_out : 1;
1519 
1520       shader->ge_cntl = S_03096C_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1521                         S_03096C_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1522                         S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) |
1523                         S_03096C_PRIM_GRP_SIZE_GFX11(
1524                            CLAMP(max_prim_grp_size / MAX2(prim_amp_factor, 1), 1, 256));
1525    } else {
1526       shader->ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(shader->ngg.max_gsprims) |
1527                         S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts) |
1528                         S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
1529 
1530       shader->ngg.vgt_gs_onchip_cntl =
1531          S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1532          S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1533          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1534 
1535       /* On gfx10, the GE only checks against the maximum number of ES verts after
1536        * allocating a full GS primitive. So we need to ensure that whenever
1537        * this check passes, there is enough space for a full primitive without
1538        * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256
1539        * if we have enough LDS.
1540        *
1541        * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0.
1542        */
1543       if ((sscreen->info.gfx_level == GFX10) &&
1544           (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1545           shader->ngg.hw_max_esverts != 256 &&
1546           shader->ngg.hw_max_esverts > 5) {
1547          /* This could be based on the input primitive type. 5 is the worst case
1548           * for primitive types with adjacency.
1549           */
1550          shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1551          shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1552       }
1553    }
1554 
1555    if (window_space) {
1556       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1557    } else {
1558       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) |
1559                                    S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1560                                    S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1561                                    S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1562    }
1563 
1564    shader->ngg.vgt_shader_stages_en =
1565       S_028B54_ES_EN(es_stage == MESA_SHADER_TESS_EVAL ?
1566                         V_028B54_ES_STAGE_DS : V_028B54_ES_STAGE_REAL) |
1567       S_028B54_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1568       S_028B54_PRIMGEN_EN(1) |
1569       S_028B54_PRIMGEN_PASSTHRU_EN(gfx10_is_ngg_passthrough(shader)) |
1570       S_028B54_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader) &&
1571                                        sscreen->info.family >= CHIP_NAVI23) |
1572       S_028B54_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader)) |
1573       S_028B54_GS_W32_EN(shader->wave_size == 32) |
1574       S_028B54_MAX_PRIMGRP_IN_WAVE(2);
1575 
1576    si_pm4_finalize(pm4);
1577 }
1578 
si_emit_shader_vs(struct si_context * sctx,unsigned index)1579 static void si_emit_shader_vs(struct si_context *sctx, unsigned index)
1580 {
1581    struct si_shader *shader = sctx->queued.named.vs;
1582 
1583    radeon_begin(&sctx->gfx_cs);
1584    radeon_opt_set_context_reg(sctx, R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1585                               shader->vs.vgt_gs_mode);
1586    radeon_opt_set_context_reg(sctx, R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1587                               shader->vs.vgt_primitiveid_en);
1588 
1589    if (sctx->gfx_level <= GFX8) {
1590       radeon_opt_set_context_reg(sctx, R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1591                                  shader->vs.vgt_reuse_off);
1592    }
1593 
1594    radeon_opt_set_context_reg(sctx, R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1595                               shader->vs.spi_vs_out_config);
1596 
1597    radeon_opt_set_context_reg(sctx, R_02870C_SPI_SHADER_POS_FORMAT,
1598                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1599                               shader->vs.spi_shader_pos_format);
1600 
1601    radeon_opt_set_context_reg(sctx, R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1602                               shader->vs.pa_cl_vte_cntl);
1603 
1604    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1605       radeon_opt_set_context_reg(sctx, R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1606                                  shader->vgt_tf_param);
1607 
1608    if (shader->vgt_vertex_reuse_block_cntl)
1609       radeon_opt_set_context_reg(sctx, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1610                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1611                                  shader->vgt_vertex_reuse_block_cntl);
1612 
1613    /* Required programming for tessellation. (legacy pipeline only) */
1614    if (sctx->gfx_level >= GFX10 && shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1615       radeon_opt_set_context_reg(sctx, R_028A44_VGT_GS_ONCHIP_CNTL,
1616                                  SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1617                                  S_028A44_ES_VERTS_PER_SUBGRP(250) |
1618                                  S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1619                                  S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1620    }
1621 
1622    radeon_end_update_context_roll(sctx);
1623 
1624    /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1625    if (sctx->gfx_level >= GFX10) {
1626       radeon_begin_again(&sctx->gfx_cs);
1627       radeon_opt_set_uconfig_reg(sctx, R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1628                                  shader->vs.ge_pc_alloc);
1629       radeon_end();
1630    }
1631 }
1632 
1633 /**
1634  * Compute the state for \p shader, which will run as a vertex shader on the
1635  * hardware.
1636  *
1637  * If \p gs is non-NULL, it points to the geometry shader for which this shader
1638  * is the copy shader.
1639  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)1640 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1641                          struct si_shader_selector *gs)
1642 {
1643    const struct si_shader_info *info = &shader->selector->info;
1644    struct si_pm4_state *pm4;
1645    unsigned num_user_sgprs, vgpr_comp_cnt;
1646    uint64_t va;
1647    unsigned nparams, oc_lds_en;
1648    bool window_space = shader->selector->stage == MESA_SHADER_VERTEX ?
1649                           info->base.vs.window_space_position : 0;
1650    bool enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || info->uses_primid;
1651 
1652    assert(sscreen->info.gfx_level < GFX11);
1653 
1654    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_vs);
1655    if (!pm4)
1656       return;
1657 
1658    /* We always write VGT_GS_MODE in the VS state, because every switch
1659     * between different shader pipelines involving a different GS or no
1660     * GS at all involves a switch of the VS (different GS use different
1661     * copy shaders). On the other hand, when the API switches from a GS to
1662     * no GS and then back to the same GS used originally, the GS state is
1663     * not sent again.
1664     */
1665    if (!gs) {
1666       unsigned mode = V_028A40_GS_OFF;
1667 
1668       /* PrimID needs GS scenario A. */
1669       if (enable_prim_id)
1670          mode = V_028A40_GS_SCENARIO_A;
1671 
1672       shader->vs.vgt_gs_mode = S_028A40_MODE(mode);
1673       shader->vs.vgt_primitiveid_en = enable_prim_id;
1674    } else {
1675       shader->vs.vgt_gs_mode =
1676          ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.gfx_level);
1677       shader->vs.vgt_primitiveid_en = 0;
1678    }
1679 
1680    if (sscreen->info.gfx_level <= GFX8) {
1681       /* Reuse needs to be set off if we write oViewport. */
1682       shader->vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1683    }
1684 
1685    va = shader->bo->gpu_address;
1686 
1687    if (gs) {
1688       vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1689       num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1690    } else if (shader->selector->stage == MESA_SHADER_VERTEX) {
1691       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1692 
1693       if (info->base.vs.blit_sgprs_amd) {
1694          num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1695       } else {
1696          num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1697       }
1698    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1699       vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1700       num_user_sgprs = SI_TES_NUM_USER_SGPR;
1701    } else
1702       unreachable("invalid shader selector type");
1703 
1704    /* VS is required to export at least one param. */
1705    nparams = MAX2(shader->info.nr_param_exports, 1);
1706    shader->vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1707 
1708    if (sscreen->info.gfx_level >= GFX10) {
1709       shader->vs.spi_vs_out_config |=
1710          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1711    }
1712 
1713    shader->vs.spi_shader_pos_format =
1714       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1715       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1716                                                                   : V_02870C_SPI_SHADER_NONE) |
1717       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1718                                                                   : V_02870C_SPI_SHADER_NONE) |
1719       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1720                                                                   : V_02870C_SPI_SHADER_NONE);
1721    unsigned late_alloc_wave64, cu_mask;
1722    ac_compute_late_alloc(&sscreen->info, false, false,
1723                          shader->config.scratch_bytes_per_wave > 0,
1724                          &late_alloc_wave64, &cu_mask);
1725 
1726    shader->vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) |
1727                             S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1728    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false);
1729 
1730    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1731 
1732    if (sscreen->info.gfx_level >= GFX7) {
1733       si_pm4_set_reg_idx3(pm4, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
1734                           ac_apply_cu_en(S_00B118_CU_EN(cu_mask) |
1735                                          S_00B118_WAVE_LIMIT(0x3F),
1736                                          C_00B118_CU_EN, 0, &sscreen->info));
1737       si_pm4_set_reg(pm4, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
1738    }
1739 
1740    si_pm4_set_reg(pm4, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1741    si_pm4_set_reg(pm4, R_00B124_SPI_SHADER_PGM_HI_VS,
1742                   S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8));
1743 
1744    uint32_t rsrc1 =
1745       S_00B128_VGPRS(si_shader_encode_vgprs(shader)) |
1746       S_00B128_SGPRS(si_shader_encode_sgprs(shader)) |
1747       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1748       S_00B128_DX10_CLAMP(1) |
1749       S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1750       S_00B128_FLOAT_MODE(shader->config.float_mode);
1751    uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1752                     S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1753 
1754    if (sscreen->info.gfx_level >= GFX10)
1755       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5);
1756    else if (sscreen->info.gfx_level == GFX9)
1757       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1758 
1759    if (si_shader_uses_streamout(shader)) {
1760       rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->info.base.xfb_stride[0]) |
1761                S_00B12C_SO_BASE1_EN(!!shader->selector->info.base.xfb_stride[1]) |
1762                S_00B12C_SO_BASE2_EN(!!shader->selector->info.base.xfb_stride[2]) |
1763                S_00B12C_SO_BASE3_EN(!!shader->selector->info.base.xfb_stride[3]) |
1764                S_00B12C_SO_EN(1);
1765    }
1766 
1767    si_pm4_set_reg(pm4, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1768    si_pm4_set_reg(pm4, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1769 
1770    if (window_space)
1771       shader->vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1772    else
1773       shader->vs.pa_cl_vte_cntl =
1774          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1775          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1776          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1777 
1778    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1779       si_set_tesseval_regs(sscreen, shader->selector, shader);
1780 
1781    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
1782    si_pm4_finalize(pm4);
1783 }
1784 
si_get_spi_shader_col_format(struct si_shader * shader)1785 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1786 {
1787    unsigned spi_shader_col_format = shader->key.ps.part.epilog.spi_shader_col_format;
1788    unsigned value = 0, num_mrts = 0;
1789    unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1790 
1791    /* Remove holes in spi_shader_col_format. */
1792    for (i = 0; i < num_targets; i++) {
1793       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1794 
1795       if (spi_format) {
1796          value |= spi_format << (num_mrts * 4);
1797          num_mrts++;
1798       }
1799    }
1800 
1801    return value;
1802 }
1803 
gfx6_emit_shader_ps(struct si_context * sctx,unsigned index)1804 static void gfx6_emit_shader_ps(struct si_context *sctx, unsigned index)
1805 {
1806    struct si_shader *shader = sctx->queued.named.ps;
1807 
1808    radeon_begin(&sctx->gfx_cs);
1809    radeon_opt_set_context_reg2(sctx, R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1810                                shader->ps.spi_ps_input_ena,
1811                                shader->ps.spi_ps_input_addr);
1812    radeon_opt_set_context_reg(sctx, R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1813                               shader->ps.spi_baryc_cntl);
1814    radeon_opt_set_context_reg(sctx, R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1815                               shader->ps.spi_ps_in_control);
1816    radeon_opt_set_context_reg2(sctx, R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1817                                shader->ps.spi_shader_z_format,
1818                                shader->ps.spi_shader_col_format);
1819    radeon_opt_set_context_reg(sctx, R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1820                               shader->ps.cb_shader_mask);
1821    radeon_end_update_context_roll(sctx);
1822 }
1823 
gfx11_dgpu_emit_shader_ps(struct si_context * sctx,unsigned index)1824 static void gfx11_dgpu_emit_shader_ps(struct si_context *sctx, unsigned index)
1825 {
1826    struct si_shader *shader = sctx->queued.named.ps;
1827 
1828    radeon_begin(&sctx->gfx_cs);
1829    gfx11_begin_packed_context_regs();
1830    gfx11_opt_set_context_reg(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
1831                              shader->ps.spi_ps_input_ena);
1832    gfx11_opt_set_context_reg(R_0286D0_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
1833                              shader->ps.spi_ps_input_addr);
1834    gfx11_opt_set_context_reg(R_0286E0_SPI_BARYC_CNTL, SI_TRACKED_SPI_BARYC_CNTL,
1835                              shader->ps.spi_baryc_cntl);
1836    gfx11_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
1837                              shader->ps.spi_ps_in_control);
1838    gfx11_opt_set_context_reg(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
1839                              shader->ps.spi_shader_z_format);
1840    gfx11_opt_set_context_reg(R_028714_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
1841                              shader->ps.spi_shader_col_format);
1842    gfx11_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
1843                              shader->ps.cb_shader_mask);
1844    gfx11_end_packed_context_regs();
1845    radeon_end(); /* don't track context rolls on GFX11 */
1846 }
1847 
si_shader_ps(struct si_screen * sscreen,struct si_shader * shader)1848 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
1849 {
1850    struct si_shader_info *info = &shader->selector->info;
1851    const unsigned input_ena = shader->config.spi_ps_input_ena;
1852 
1853    /* we need to enable at least one of them, otherwise we hang the GPU */
1854    assert(G_0286CC_PERSP_SAMPLE_ENA(input_ena) || G_0286CC_PERSP_CENTER_ENA(input_ena) ||
1855           G_0286CC_PERSP_CENTROID_ENA(input_ena) || G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) ||
1856           G_0286CC_LINEAR_SAMPLE_ENA(input_ena) || G_0286CC_LINEAR_CENTER_ENA(input_ena) ||
1857           G_0286CC_LINEAR_CENTROID_ENA(input_ena) || G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena));
1858    /* POS_W_FLOAT_ENA requires one of the perspective weights. */
1859    assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
1860           G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
1861           G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
1862 
1863    /* Validate interpolation optimization flags (read as implications). */
1864    assert(!shader->key.ps.part.prolog.bc_optimize_for_persp ||
1865           (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1866    assert(!shader->key.ps.part.prolog.bc_optimize_for_linear ||
1867           (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1868    assert(!shader->key.ps.part.prolog.force_persp_center_interp ||
1869           (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1870    assert(!shader->key.ps.part.prolog.force_linear_center_interp ||
1871           (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1872    assert(!shader->key.ps.part.prolog.force_persp_sample_interp ||
1873           (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
1874    assert(!shader->key.ps.part.prolog.force_linear_sample_interp ||
1875           (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
1876 
1877    /* color_two_side always enables FRONT_FACE. Since st/mesa disables two-side colors if the back
1878     * face is culled, the only case when both color_two_side and force_front_face_input can be set
1879     * is when the front face is culled (which means force_front_face_input == -1).
1880     */
1881    assert(!shader->key.ps.opt.force_front_face_input || !G_0286CC_FRONT_FACE_ENA(input_ena) ||
1882           (shader->key.ps.part.prolog.color_two_side &&
1883            shader->key.ps.opt.force_front_face_input == -1));
1884 
1885    /* Validate cases when the optimizations are off (read as implications). */
1886    assert(shader->key.ps.part.prolog.bc_optimize_for_persp ||
1887           !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
1888    assert(shader->key.ps.part.prolog.bc_optimize_for_linear ||
1889           !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
1890 
1891    /* DB_SHADER_CONTROL */
1892    shader->ps.db_shader_control = S_02880C_Z_EXPORT_ENABLE(info->writes_z) |
1893                                   S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(info->writes_stencil) |
1894                                   S_02880C_MASK_EXPORT_ENABLE(shader->ps.writes_samplemask) |
1895                                   S_02880C_KILL_ENABLE(si_shader_uses_discard(shader));
1896 
1897    switch (info->base.fs.depth_layout) {
1898    case FRAG_DEPTH_LAYOUT_GREATER:
1899       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
1900       break;
1901    case FRAG_DEPTH_LAYOUT_LESS:
1902       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
1903       break;
1904    default:;
1905    }
1906 
1907    /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
1908     *
1909     *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
1910     * --|-----------|------------|------------|--------------------|-------------------|-------------
1911     * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
1912     * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
1913     * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
1914     * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
1915     * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
1916     *
1917     * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
1918     * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
1919     *
1920     * Don't use ReZ without profiling !!!
1921     *
1922     * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
1923     * shaders.
1924     */
1925    if (info->base.fs.early_fragment_tests) {
1926       /* Cases 3, 4. */
1927       shader->ps.db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
1928                                       S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
1929                                       S_02880C_EXEC_ON_NOOP(info->base.writes_memory);
1930    } else if (info->base.writes_memory) {
1931       /* Case 2. */
1932       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
1933                                       S_02880C_EXEC_ON_HIER_FAIL(1);
1934    } else {
1935       /* Case 1. */
1936       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
1937    }
1938 
1939    if (info->base.fs.post_depth_coverage)
1940       shader->ps.db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
1941 
1942    /* Bug workaround for smoothing (overrasterization) on GFX6. */
1943    if (sscreen->info.gfx_level == GFX6 && shader->key.ps.mono.poly_line_smoothing) {
1944       shader->ps.db_shader_control &= C_02880C_Z_ORDER;
1945       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z);
1946    }
1947 
1948    if (sscreen->info.has_rbplus && !sscreen->info.rbplus_allowed)
1949       shader->ps.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
1950 
1951    /* SPI_BARYC_CNTL.POS_FLOAT_LOCATION
1952     * Possible values:
1953     * 0 -> Position = pixel center
1954     * 1 -> Position = pixel centroid
1955     * 2 -> Position = at sample position
1956     *
1957     * From GLSL 4.5 specification, section 7.1:
1958     *   "The variable gl_FragCoord is available as an input variable from
1959     *    within fragment shaders and it holds the window relative coordinates
1960     *    (x, y, z, 1/w) values for the fragment. If multi-sampling, this
1961     *    value can be for any location within the pixel, or one of the
1962     *    fragment samples. The use of centroid does not further restrict
1963     *    this value to be inside the current primitive."
1964     *
1965     * Meaning that centroid has no effect and we can return anything within
1966     * the pixel. Thus, return the value at sample position, because that's
1967     * the most accurate one shaders can get.
1968     */
1969    shader->ps.spi_baryc_cntl = S_0286E0_POS_FLOAT_LOCATION(2) |
1970                                S_0286E0_POS_FLOAT_ULC(info->base.fs.pixel_center_integer) |
1971                                S_0286E0_FRONT_FACE_ALL_BITS(1);
1972    shader->ps.spi_shader_col_format = si_get_spi_shader_col_format(shader);
1973    shader->ps.cb_shader_mask = ac_get_cb_shader_mask(shader->key.ps.part.epilog.spi_shader_col_format);
1974    shader->ps.spi_ps_input_ena = shader->config.spi_ps_input_ena;
1975    shader->ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
1976    shader->ps.num_interp = si_get_ps_num_interp(shader);
1977    shader->ps.spi_shader_z_format =
1978       ac_get_spi_shader_z_format(info->writes_z, info->writes_stencil, shader->ps.writes_samplemask,
1979                                  shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz);
1980 
1981    /* Ensure that some export memory is always allocated, for two reasons:
1982     *
1983     * 1) Correctness: The hardware ignores the EXEC mask if no export
1984     *    memory is allocated, so KILL and alpha test do not work correctly
1985     *    without this.
1986     * 2) Performance: Every shader needs at least a NULL export, even when
1987     *    it writes no color/depth output. The NULL export instruction
1988     *    stalls without this setting.
1989     *
1990     * Don't add this to CB_SHADER_MASK.
1991     *
1992     * GFX10 supports pixel shaders without exports by setting both
1993     * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
1994     * instructions if any are present.
1995     *
1996     * RB+ depth-only rendering requires SPI_SHADER_32_R.
1997     */
1998    bool has_mrtz = info->writes_z || info->writes_stencil || shader->ps.writes_samplemask;
1999 
2000    if (!shader->ps.spi_shader_col_format) {
2001       if (shader->key.ps.part.epilog.rbplus_depth_only_opt) {
2002          shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2003       } else if (!has_mrtz) {
2004          if (sscreen->info.gfx_level >= GFX10) {
2005             if (G_02880C_KILL_ENABLE(shader->ps.db_shader_control))
2006                shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2007          } else {
2008             shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2009          }
2010       }
2011    }
2012 
2013    /* Enable PARAM_GEN for point smoothing.
2014     * Gfx11 workaround when there are no PS inputs but LDS is used.
2015     */
2016    bool param_gen = shader->key.ps.mono.point_smoothing ||
2017                     (sscreen->info.gfx_level == GFX11 && !shader->ps.num_interp &&
2018                      shader->config.lds_size);
2019 
2020    shader->ps.spi_ps_in_control = S_0286D8_NUM_INTERP(shader->ps.num_interp) |
2021                                   S_0286D8_PARAM_GEN(param_gen) |
2022                                   S_0286D8_PS_W32_EN(shader->wave_size == 32);
2023 
2024    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
2025    if (!pm4)
2026       return;
2027 
2028    if (sscreen->info.has_set_context_pairs_packed)
2029       pm4->atom.emit = gfx11_dgpu_emit_shader_ps;
2030    else
2031       pm4->atom.emit = gfx6_emit_shader_ps;
2032 
2033    /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */
2034    if (sscreen->dpbb_allowed &&
2035        (sscreen->pbb_context_states_per_bin > 1 ||
2036         sscreen->pbb_persistent_states_per_bin > 1)) {
2037       si_pm4_cmd_add(pm4, PKT3(PKT3_EVENT_WRITE, 0, 0));
2038       si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2039    }
2040 
2041    if (sscreen->info.gfx_level >= GFX11) {
2042       unsigned cu_mask_ps = gfx103_get_cu_mask_ps(sscreen);
2043 
2044       si_pm4_set_reg_idx3(pm4, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
2045                           ac_apply_cu_en(S_00B004_CU_EN(cu_mask_ps >> 16) |
2046                                          S_00B004_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
2047                                          C_00B004_CU_EN, 16, &sscreen->info));
2048    }
2049 
2050    uint64_t va = shader->bo->gpu_address;
2051    si_pm4_set_reg(pm4, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
2052    si_pm4_set_reg(pm4, R_00B024_SPI_SHADER_PGM_HI_PS,
2053                   S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8));
2054 
2055    si_pm4_set_reg(pm4, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
2056                   S_00B028_VGPRS(si_shader_encode_vgprs(shader)) |
2057                   S_00B028_SGPRS(si_shader_encode_sgprs(shader)) |
2058                   S_00B028_DX10_CLAMP(1) |
2059                   S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) |
2060                   S_00B028_FLOAT_MODE(shader->config.float_mode));
2061    si_pm4_set_reg(pm4, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
2062                   S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
2063                   S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
2064                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
2065    si_pm4_finalize(pm4);
2066 }
2067 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)2068 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
2069 {
2070    assert(shader->wave_size);
2071 
2072    switch (shader->selector->stage) {
2073    case MESA_SHADER_VERTEX:
2074       if (shader->key.ge.as_ls)
2075          si_shader_ls(sscreen, shader);
2076       else if (shader->key.ge.as_es)
2077          si_shader_es(sscreen, shader);
2078       else if (shader->key.ge.as_ngg)
2079          gfx10_shader_ngg(sscreen, shader);
2080       else
2081          si_shader_vs(sscreen, shader, NULL);
2082       break;
2083    case MESA_SHADER_TESS_CTRL:
2084       si_shader_hs(sscreen, shader);
2085       break;
2086    case MESA_SHADER_TESS_EVAL:
2087       if (shader->key.ge.as_es)
2088          si_shader_es(sscreen, shader);
2089       else if (shader->key.ge.as_ngg)
2090          gfx10_shader_ngg(sscreen, shader);
2091       else
2092          si_shader_vs(sscreen, shader, NULL);
2093       break;
2094    case MESA_SHADER_GEOMETRY:
2095       if (shader->key.ge.as_ngg) {
2096          gfx10_shader_ngg(sscreen, shader);
2097       } else {
2098          /* VS must be initialized first because GS uses its fields. */
2099          si_shader_vs(sscreen, shader->gs_copy_shader, shader->selector);
2100          si_shader_gs(sscreen, shader);
2101       }
2102       break;
2103    case MESA_SHADER_FRAGMENT:
2104       si_shader_ps(sscreen, shader);
2105       break;
2106    default:
2107       assert(0);
2108    }
2109 
2110    assert(!(sscreen->debug_flags & DBG(SQTT)) || shader->pm4.spi_shader_pgm_lo_reg != 0);
2111 }
2112 
si_clear_vs_key_inputs(union si_shader_key * key)2113 static void si_clear_vs_key_inputs(union si_shader_key *key)
2114 {
2115    key->ge.mono.instance_divisor_is_one = 0;
2116    key->ge.mono.instance_divisor_is_fetched = 0;
2117    key->ge.mono.vs_fetch_opencode = 0;
2118    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2119 }
2120 
si_vs_key_update_inputs(struct si_context * sctx)2121 void si_vs_key_update_inputs(struct si_context *sctx)
2122 {
2123    struct si_shader_selector *vs = sctx->shader.vs.cso;
2124    struct si_vertex_elements *elts = sctx->vertex_elements;
2125    union si_shader_key *key = &sctx->shader.vs.key;
2126 
2127    if (!vs)
2128       return;
2129 
2130    if (vs->info.base.vs.blit_sgprs_amd) {
2131       si_clear_vs_key_inputs(key);
2132       key->ge.opt.prefer_mono = 0;
2133       sctx->uses_nontrivial_vs_inputs = false;
2134       return;
2135    }
2136 
2137    bool uses_nontrivial_vs_inputs = false;
2138 
2139    if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched)
2140       uses_nontrivial_vs_inputs = true;
2141 
2142    key->ge.mono.instance_divisor_is_one = elts->instance_divisor_is_one;
2143    key->ge.mono.instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
2144    key->ge.opt.prefer_mono = elts->instance_divisor_is_fetched;
2145 
2146    unsigned count_mask = (1 << vs->info.num_inputs) - 1;
2147    unsigned fix = elts->fix_fetch_always & count_mask;
2148    unsigned opencode = elts->fix_fetch_opencode & count_mask;
2149 
2150    if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
2151       uint32_t mask = elts->fix_fetch_unaligned & count_mask;
2152       while (mask) {
2153          unsigned i = u_bit_scan(&mask);
2154          unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
2155          unsigned vbidx = elts->vertex_buffer_index[i];
2156          struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
2157          unsigned align_mask = (1 << log_hw_load_size) - 1;
2158          if (vb->buffer_offset & align_mask) {
2159             fix |= 1 << i;
2160             opencode |= 1 << i;
2161          }
2162       }
2163    }
2164 
2165    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2166 
2167    while (fix) {
2168       unsigned i = u_bit_scan(&fix);
2169       uint8_t fix_fetch = elts->fix_fetch[i];
2170 
2171       key->ge.mono.vs_fix_fetch[i].bits = fix_fetch;
2172       if (fix_fetch)
2173          uses_nontrivial_vs_inputs = true;
2174    }
2175    key->ge.mono.vs_fetch_opencode = opencode;
2176    if (opencode)
2177       uses_nontrivial_vs_inputs = true;
2178 
2179    sctx->uses_nontrivial_vs_inputs = uses_nontrivial_vs_inputs;
2180 
2181    /* draw_vertex_state (display lists) requires that all VS input lowering is disabled
2182     * because its vertex elements never need any lowering.
2183     *
2184     * We just computed the key because we needed to set uses_nontrivial_vs_inputs, so that we know
2185     * whether the VS should be updated when we switch from draw_vertex_state to draw_vbo. Now
2186     * clear the VS input bits for draw_vertex_state. This should happen rarely because VS inputs
2187     * don't usually need any lowering.
2188     */
2189    if (uses_nontrivial_vs_inputs && sctx->force_trivial_vs_inputs)
2190       si_clear_vs_key_inputs(key);
2191 }
2192 
si_get_vs_key_inputs(struct si_context * sctx,union si_shader_key * key)2193 static void si_get_vs_key_inputs(struct si_context *sctx, union si_shader_key *key)
2194 {
2195    key->ge.mono.instance_divisor_is_one = sctx->shader.vs.key.ge.mono.instance_divisor_is_one;
2196    key->ge.mono.instance_divisor_is_fetched = sctx->shader.vs.key.ge.mono.instance_divisor_is_fetched;
2197    key->ge.mono.vs_fetch_opencode = sctx->shader.vs.key.ge.mono.vs_fetch_opencode;
2198    memcpy(key->ge.mono.vs_fix_fetch, sctx->shader.vs.key.ge.mono.vs_fix_fetch,
2199           sizeof(key->ge.mono.vs_fix_fetch));
2200 }
2201 
si_update_ps_inputs_read_or_disabled(struct si_context * sctx)2202 void si_update_ps_inputs_read_or_disabled(struct si_context *sctx)
2203 {
2204    struct si_shader_selector *ps = sctx->shader.ps.cso;
2205 
2206    /* Find out if PS is disabled. */
2207    bool ps_disabled = true;
2208    if (ps) {
2209       bool ps_modifies_zs = ps->info.base.fs.uses_discard ||
2210                             ps->info.writes_z ||
2211                             ps->info.writes_stencil ||
2212                             ps->info.writes_samplemask ||
2213                             sctx->queued.named.blend->alpha_to_coverage ||
2214                             sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS ||
2215                             sctx->queued.named.rasterizer->poly_stipple_enable ||
2216                             sctx->queued.named.rasterizer->point_smooth;
2217 
2218       ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
2219                     (!ps_modifies_zs && !ps->info.base.writes_memory &&
2220                      !si_any_colorbuffer_written(sctx));
2221    }
2222 
2223    uint64_t ps_inputs_read_or_disabled;
2224 
2225    if (ps_disabled) {
2226       ps_inputs_read_or_disabled = 0;
2227    } else {
2228       uint64_t inputs_read = ps->info.inputs_read;
2229 
2230       if (ps->info.colors_read && sctx->queued.named.rasterizer->two_side) {
2231          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL0))
2232             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC0);
2233 
2234          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL1))
2235             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC1);
2236       }
2237 
2238       ps_inputs_read_or_disabled = inputs_read;
2239    }
2240 
2241    if (sctx->ps_inputs_read_or_disabled != ps_inputs_read_or_disabled) {
2242       sctx->ps_inputs_read_or_disabled = ps_inputs_read_or_disabled;
2243       sctx->do_update_shaders = true;
2244    }
2245 }
2246 
si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context * sctx)2247 void si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context *sctx)
2248 {
2249    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
2250    struct si_shader_selector *ps = sctx->shader.ps.cso;
2251 
2252    if (!hw_vs->cso || !ps)
2253       return;
2254 
2255    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2256    union si_shader_key *vs_key = &hw_vs->key; /* could also be TES or GS before PS */
2257    union si_shader_key *ps_key = &sctx->shader.ps.key;
2258 
2259    bool old_kill_pointsize = vs_key->ge.opt.kill_pointsize;
2260    bool old_color_two_side = ps_key->ps.part.prolog.color_two_side;
2261    bool old_poly_stipple = ps_key->ps.part.prolog.poly_stipple;
2262    bool old_poly_line_smoothing = ps_key->ps.mono.poly_line_smoothing;
2263    bool old_point_smoothing = ps_key->ps.mono.point_smoothing;
2264    int old_force_front_face_input = ps_key->ps.opt.force_front_face_input;
2265 
2266    if (sctx->current_rast_prim == MESA_PRIM_POINTS) {
2267       vs_key->ge.opt.kill_pointsize = 0;
2268       ps_key->ps.part.prolog.color_two_side = 0;
2269       ps_key->ps.part.prolog.poly_stipple = 0;
2270       ps_key->ps.mono.poly_line_smoothing = 0;
2271       ps_key->ps.mono.point_smoothing = rs->point_smooth;
2272       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2273    } else if (util_prim_is_lines(sctx->current_rast_prim)) {
2274       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize;
2275       ps_key->ps.part.prolog.color_two_side = 0;
2276       ps_key->ps.part.prolog.poly_stipple = 0;
2277       ps_key->ps.mono.poly_line_smoothing = rs->line_smooth && sctx->framebuffer.nr_samples <= 1;
2278       ps_key->ps.mono.point_smoothing = 0;
2279       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2280    } else {
2281       /* Triangles. */
2282       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize &&
2283                                       !rs->polygon_mode_is_points;
2284       ps_key->ps.part.prolog.color_two_side = rs->two_side && ps->info.colors_read;
2285       ps_key->ps.part.prolog.poly_stipple = rs->poly_stipple_enable;
2286       ps_key->ps.mono.poly_line_smoothing = rs->poly_smooth && sctx->framebuffer.nr_samples <= 1;
2287       ps_key->ps.mono.point_smoothing = 0;
2288       ps_key->ps.opt.force_front_face_input = rs->force_front_face_input &&
2289                                               ps->info.uses_frontface;
2290    }
2291 
2292    if (vs_key->ge.opt.kill_pointsize != old_kill_pointsize ||
2293        ps_key->ps.part.prolog.color_two_side != old_color_two_side ||
2294        ps_key->ps.part.prolog.poly_stipple != old_poly_stipple ||
2295        ps_key->ps.mono.poly_line_smoothing != old_poly_line_smoothing ||
2296        ps_key->ps.mono.point_smoothing != old_point_smoothing ||
2297        ps_key->ps.opt.force_front_face_input != old_force_front_face_input)
2298       sctx->do_update_shaders = true;
2299 }
2300 
si_get_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2301 static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2302                                   union si_shader_key *key)
2303 {
2304    key->ge.opt.kill_clip_distances = vs->info.clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable;
2305 
2306    /* Find out which VS outputs aren't used by the PS. */
2307    uint64_t outputs_written = vs->info.outputs_written_before_ps;
2308    uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled;
2309 
2310    key->ge.opt.kill_layer = vs->info.writes_layer &&
2311                             sctx->framebuffer.state.layers <= 1;
2312    key->ge.opt.kill_outputs = ~linked & outputs_written;
2313    key->ge.opt.ngg_culling = sctx->ngg_culling;
2314    key->ge.mono.u.vs_export_prim_id = vs->stage != MESA_SHADER_GEOMETRY &&
2315                                       sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid;
2316    key->ge.opt.remove_streamout = vs->info.enabled_streamout_buffer_mask &&
2317                                   !sctx->streamout.enabled_mask;
2318 }
2319 
si_clear_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2320 static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2321                                     union si_shader_key *key)
2322 {
2323    key->ge.opt.kill_clip_distances = 0;
2324    key->ge.opt.kill_outputs = 0;
2325    key->ge.opt.remove_streamout = 0;
2326    key->ge.opt.ngg_culling = 0;
2327    key->ge.mono.u.vs_export_prim_id = 0;
2328 }
2329 
si_ps_key_update_framebuffer(struct si_context * sctx)2330 void si_ps_key_update_framebuffer(struct si_context *sctx)
2331 {
2332    struct si_shader_selector *sel = sctx->shader.ps.cso;
2333    union si_shader_key *key = &sctx->shader.ps.key;
2334 
2335    if (!sel)
2336       return;
2337 
2338    if (sel->info.color0_writes_all_cbufs &&
2339        sel->info.colors_written == 0x1)
2340       key->ps.part.epilog.last_cbuf = MAX2(sctx->framebuffer.state.nr_cbufs, 1) - 1;
2341    else
2342       key->ps.part.epilog.last_cbuf = 0;
2343 
2344    /* ps_uses_fbfetch is true only if the color buffer is bound. */
2345    if (sctx->ps_uses_fbfetch) {
2346       struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
2347       struct pipe_resource *tex = cb0->texture;
2348 
2349       /* 1D textures are allocated and used as 2D on GFX9. */
2350       key->ps.mono.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
2351       key->ps.mono.fbfetch_is_1D =
2352          sctx->gfx_level != GFX9 &&
2353          (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
2354       key->ps.mono.fbfetch_layered =
2355          tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2356          tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2357          tex->target == PIPE_TEXTURE_3D;
2358    } else {
2359       key->ps.mono.fbfetch_msaa = 0;
2360       key->ps.mono.fbfetch_is_1D = 0;
2361       key->ps.mono.fbfetch_layered = 0;
2362    }
2363 }
2364 
si_ps_key_update_framebuffer_blend_rasterizer(struct si_context * sctx)2365 void si_ps_key_update_framebuffer_blend_rasterizer(struct si_context *sctx)
2366 {
2367    struct si_shader_selector *sel = sctx->shader.ps.cso;
2368    if (!sel)
2369       return;
2370 
2371    union si_shader_key *key = &sctx->shader.ps.key;
2372    struct si_state_blend *blend = sctx->queued.named.blend;
2373    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2374    bool alpha_to_coverage = blend->alpha_to_coverage && rs->multisample_enable &&
2375                             sctx->framebuffer.nr_samples >= 2;
2376    unsigned need_src_alpha_4bit = blend->need_src_alpha_4bit;
2377 
2378    /* Old key data for comparison. */
2379    struct si_ps_epilog_bits old_epilog;
2380    memcpy(&old_epilog, &key->ps.part.epilog, sizeof(old_epilog));
2381    bool old_prefer_mono = key->ps.opt.prefer_mono;
2382 #ifndef NDEBUG
2383    struct si_shader_key_ps old_key;
2384    memcpy(&old_key, &key->ps, sizeof(old_key));
2385 #endif
2386 
2387    key->ps.part.epilog.alpha_to_one = blend->alpha_to_one && rs->multisample_enable;
2388    key->ps.part.epilog.alpha_to_coverage_via_mrtz =
2389       sctx->gfx_level >= GFX11 && alpha_to_coverage &&
2390       (sel->info.writes_z || sel->info.writes_stencil || sel->info.writes_samplemask);
2391 
2392    /* Remove the gl_SampleMask fragment shader output if MSAA is disabled.
2393     * This is required for correctness and it's also an optimization.
2394     */
2395    key->ps.part.epilog.kill_samplemask = sel->info.writes_samplemask &&
2396                                          (sctx->framebuffer.nr_samples <= 1 ||
2397                                           !rs->multisample_enable);
2398 
2399    /* If alpha-to-coverage isn't exported via MRTZ, set that we need to export alpha
2400     * through MRT0.
2401     */
2402    if (alpha_to_coverage && !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2403       need_src_alpha_4bit |= 0xf;
2404 
2405    /* Select the shader color format based on whether
2406     * blending or alpha are needed.
2407     */
2408    key->ps.part.epilog.spi_shader_col_format =
2409       (blend->blend_enable_4bit & need_src_alpha_4bit &
2410        sctx->framebuffer.spi_shader_col_format_blend_alpha) |
2411       (blend->blend_enable_4bit & ~need_src_alpha_4bit &
2412        sctx->framebuffer.spi_shader_col_format_blend) |
2413       (~blend->blend_enable_4bit & need_src_alpha_4bit &
2414        sctx->framebuffer.spi_shader_col_format_alpha) |
2415       (~blend->blend_enable_4bit & ~need_src_alpha_4bit &
2416        sctx->framebuffer.spi_shader_col_format);
2417    key->ps.part.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
2418 
2419    key->ps.part.epilog.dual_src_blend_swizzle = sctx->gfx_level >= GFX11 &&
2420                                                 blend->dual_src_blend &&
2421                                                 (sel->info.colors_written_4bit & 0xff) == 0xff;
2422 
2423    /* The output for dual source blending should have
2424     * the same format as the first output.
2425     */
2426    if (blend->dual_src_blend) {
2427       key->ps.part.epilog.spi_shader_col_format |=
2428          (key->ps.part.epilog.spi_shader_col_format & 0xf) << 4;
2429    }
2430 
2431    /* If alpha-to-coverage is enabled, we have to export alpha
2432     * even if there is no color buffer.
2433     *
2434     * Gfx11 exports alpha-to-coverage via MRTZ if MRTZ is present.
2435     */
2436    if (!(key->ps.part.epilog.spi_shader_col_format & 0xf) && alpha_to_coverage &&
2437        !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2438       key->ps.part.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
2439 
2440    /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
2441     * to the range supported by the type if a channel has less
2442     * than 16 bits and the export format is 16_ABGR.
2443     */
2444    if (sctx->gfx_level <= GFX7 && sctx->family != CHIP_HAWAII) {
2445       key->ps.part.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
2446       key->ps.part.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
2447    }
2448 
2449    /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
2450    if (!key->ps.part.epilog.last_cbuf) {
2451       key->ps.part.epilog.spi_shader_col_format &= sel->info.colors_written_4bit;
2452       key->ps.part.epilog.color_is_int8 &= sel->info.colors_written;
2453       key->ps.part.epilog.color_is_int10 &= sel->info.colors_written;
2454    }
2455 
2456    /* Enable RB+ for depth-only rendering. Registers must be programmed as follows:
2457     *    CB_COLOR_CONTROL.MODE = CB_DISABLE
2458     *    CB_COLOR0_INFO.FORMAT = COLOR_32
2459     *    CB_COLOR0_INFO.NUMBER_TYPE = NUMBER_FLOAT
2460     *    SPI_SHADER_COL_FORMAT.COL0_EXPORT_FORMAT = SPI_SHADER_32_R
2461     *    SX_PS_DOWNCONVERT.MRT0 = SX_RT_EXPORT_32_R
2462     *
2463     * Also, the following conditions must be met.
2464     */
2465    key->ps.part.epilog.rbplus_depth_only_opt =
2466       sctx->screen->info.rbplus_allowed &&
2467       blend->cb_target_enabled_4bit == 0 && /* implies CB_DISABLE */
2468       !alpha_to_coverage &&
2469       !sel->info.base.writes_memory &&
2470       !key->ps.part.epilog.spi_shader_col_format;
2471 
2472    /* Eliminate shader code computing output values that are unused.
2473     * This enables dead code elimination between shader parts.
2474     * Check if any output is eliminated.
2475     *
2476     * Dual source blending never has color buffer 1 enabled, so ignore it.
2477     *
2478     * On gfx11, pixel shaders that write memory should be compiled with an inlined epilog,
2479     * so that the compiler can see s_endpgm and deallocates VGPRs before memory stores return.
2480     */
2481    if (sel->info.colors_written_4bit &
2482        (blend->dual_src_blend ? 0xffffff0f : 0xffffffff) &
2483        ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit))
2484       key->ps.opt.prefer_mono = 1;
2485    else if (sctx->gfx_level >= GFX11 && sel->info.base.writes_memory)
2486       key->ps.opt.prefer_mono = 1;
2487    else
2488       key->ps.opt.prefer_mono = 0;
2489 
2490    /* Update shaders only if the key changed. */
2491    if (memcmp(&key->ps.part.epilog, &old_epilog, sizeof(old_epilog)) ||
2492        key->ps.opt.prefer_mono != old_prefer_mono) {
2493       sctx->do_update_shaders = true;
2494    } else {
2495       assert(memcmp(&key->ps, &old_key, sizeof(old_key)) == 0);
2496    }
2497 }
2498 
si_ps_key_update_rasterizer(struct si_context * sctx)2499 void si_ps_key_update_rasterizer(struct si_context *sctx)
2500 {
2501    struct si_shader_selector *sel = sctx->shader.ps.cso;
2502    union si_shader_key *key = &sctx->shader.ps.key;
2503    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2504 
2505    if (!sel)
2506       return;
2507 
2508    bool old_flatshade_colors = key->ps.part.prolog.flatshade_colors;
2509    bool old_clamp_color = key->ps.part.epilog.clamp_color;
2510 
2511    key->ps.part.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color;
2512    key->ps.part.epilog.clamp_color = rs->clamp_fragment_color;
2513 
2514    if (key->ps.part.prolog.flatshade_colors != old_flatshade_colors ||
2515        key->ps.part.epilog.clamp_color != old_clamp_color)
2516       sctx->do_update_shaders = true;
2517 }
2518 
si_ps_key_update_dsa(struct si_context * sctx)2519 void si_ps_key_update_dsa(struct si_context *sctx)
2520 {
2521    union si_shader_key *key = &sctx->shader.ps.key;
2522 
2523    key->ps.part.epilog.alpha_func = sctx->queued.named.dsa->alpha_func;
2524 }
2525 
si_ps_key_update_sample_shading(struct si_context * sctx)2526 void si_ps_key_update_sample_shading(struct si_context *sctx)
2527 {
2528    struct si_shader_selector *sel = sctx->shader.ps.cso;
2529    union si_shader_key *key = &sctx->shader.ps.key;
2530 
2531    if (!sel)
2532       return;
2533 
2534    if (sctx->ps_iter_samples > 1 && sel->info.reads_samplemask)
2535       key->ps.part.prolog.samplemask_log_ps_iter = util_logbase2(sctx->ps_iter_samples);
2536    else
2537       key->ps.part.prolog.samplemask_log_ps_iter = 0;
2538 }
2539 
si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context * sctx)2540 void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx)
2541 {
2542    struct si_shader_selector *sel = sctx->shader.ps.cso;
2543    union si_shader_key *key = &sctx->shader.ps.key;
2544    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2545 
2546    if (!sel)
2547       return;
2548 
2549    /* Old key data for comparison. */
2550    struct si_ps_prolog_bits old_prolog;
2551    memcpy(&old_prolog, &key->ps.part.prolog, sizeof(old_prolog));
2552    bool old_interpolate_at_sample_force_center = key->ps.mono.interpolate_at_sample_force_center;
2553 
2554    bool uses_persp_center = sel->info.uses_persp_center ||
2555                             (!rs->flatshade && sel->info.uses_persp_center_color);
2556    bool uses_persp_centroid = sel->info.uses_persp_centroid ||
2557                               (!rs->flatshade && sel->info.uses_persp_centroid_color);
2558    bool uses_persp_sample = sel->info.uses_persp_sample ||
2559                             (!rs->flatshade && sel->info.uses_persp_sample_color);
2560 
2561    if (rs->force_persample_interp && rs->multisample_enable &&
2562        sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
2563       key->ps.part.prolog.force_persp_sample_interp =
2564          uses_persp_center || uses_persp_centroid;
2565 
2566       key->ps.part.prolog.force_linear_sample_interp =
2567          sel->info.uses_linear_center || sel->info.uses_linear_centroid;
2568 
2569       key->ps.part.prolog.force_persp_center_interp = 0;
2570       key->ps.part.prolog.force_linear_center_interp = 0;
2571       key->ps.part.prolog.bc_optimize_for_persp = 0;
2572       key->ps.part.prolog.bc_optimize_for_linear = 0;
2573       key->ps.mono.interpolate_at_sample_force_center = 0;
2574    } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
2575       key->ps.part.prolog.force_persp_sample_interp = 0;
2576       key->ps.part.prolog.force_linear_sample_interp = 0;
2577       key->ps.part.prolog.force_persp_center_interp = 0;
2578       key->ps.part.prolog.force_linear_center_interp = 0;
2579       key->ps.part.prolog.bc_optimize_for_persp =
2580          uses_persp_center && uses_persp_centroid;
2581       key->ps.part.prolog.bc_optimize_for_linear =
2582          sel->info.uses_linear_center && sel->info.uses_linear_centroid;
2583       key->ps.mono.interpolate_at_sample_force_center = 0;
2584    } else {
2585       key->ps.part.prolog.force_persp_sample_interp = 0;
2586       key->ps.part.prolog.force_linear_sample_interp = 0;
2587 
2588       /* Make sure SPI doesn't compute more than 1 pair
2589        * of (i,j), which is the optimization here. */
2590       key->ps.part.prolog.force_persp_center_interp = uses_persp_center +
2591                                                       uses_persp_centroid +
2592                                                       uses_persp_sample > 1;
2593 
2594       key->ps.part.prolog.force_linear_center_interp = sel->info.uses_linear_center +
2595                                                        sel->info.uses_linear_centroid +
2596                                                        sel->info.uses_linear_sample > 1;
2597       key->ps.part.prolog.bc_optimize_for_persp = 0;
2598       key->ps.part.prolog.bc_optimize_for_linear = 0;
2599       key->ps.mono.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample;
2600    }
2601 
2602    /* Update shaders only if the key changed. */
2603    if (memcmp(&key->ps.part.prolog, &old_prolog, sizeof(old_prolog)) ||
2604        key->ps.mono.interpolate_at_sample_force_center != old_interpolate_at_sample_force_center)
2605       sctx->do_update_shaders = true;
2606 }
2607 
2608 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,union si_shader_key * key)2609 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
2610                                           union si_shader_key *key)
2611 {
2612    struct si_context *sctx = (struct si_context *)ctx;
2613 
2614    switch (sel->stage) {
2615    case MESA_SHADER_VERTEX:
2616       if (!sctx->shader.tes.cso && !sctx->shader.gs.cso)
2617          si_get_vs_key_outputs(sctx, sel, key);
2618       else
2619          si_clear_vs_key_outputs(sctx, sel, key);
2620       break;
2621    case MESA_SHADER_TESS_CTRL:
2622       if (sctx->gfx_level >= GFX9) {
2623          si_get_vs_key_inputs(sctx, key);
2624          key->ge.part.tcs.ls = sctx->shader.vs.cso;
2625       }
2626       break;
2627    case MESA_SHADER_TESS_EVAL:
2628       if (!sctx->shader.gs.cso)
2629          si_get_vs_key_outputs(sctx, sel, key);
2630       else
2631          si_clear_vs_key_outputs(sctx, sel, key);
2632       break;
2633    case MESA_SHADER_GEOMETRY:
2634       if (sctx->gfx_level >= GFX9) {
2635          if (sctx->shader.tes.cso) {
2636             si_clear_vs_key_inputs(key);
2637             key->ge.part.gs.es = sctx->shader.tes.cso;
2638          } else {
2639             si_get_vs_key_inputs(sctx, key);
2640             key->ge.part.gs.es = sctx->shader.vs.cso;
2641          }
2642 
2643          /* Only NGG can eliminate GS outputs, because the code is shared with VS. */
2644          if (sctx->ngg)
2645             si_get_vs_key_outputs(sctx, sel, key);
2646          else
2647             si_clear_vs_key_outputs(sctx, sel, key);
2648       }
2649       break;
2650    case MESA_SHADER_FRAGMENT:
2651       break;
2652    default:
2653       assert(0);
2654    }
2655 }
2656 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)2657 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2658 {
2659    struct si_shader_selector *sel = shader->selector;
2660    struct si_screen *sscreen = sel->screen;
2661    struct ac_llvm_compiler **compiler;
2662    struct util_debug_callback *debug = &shader->compiler_ctx_state.debug;
2663 
2664    if (thread_index >= 0) {
2665       if (low_priority) {
2666          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler_lowp));
2667          compiler = &sscreen->compiler_lowp[thread_index];
2668       } else {
2669          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
2670          compiler = &sscreen->compiler[thread_index];
2671       }
2672       if (!debug->async)
2673          debug = NULL;
2674    } else {
2675       assert(!low_priority);
2676       compiler = &shader->compiler_ctx_state.compiler;
2677    }
2678 
2679    if (!sscreen->use_aco && !*compiler)
2680       *compiler = si_create_llvm_compiler(sscreen);
2681 
2682    if (unlikely(!si_create_shader_variant(sscreen, *compiler, shader, debug))) {
2683       PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->stage);
2684       shader->compilation_failed = true;
2685       return;
2686    }
2687 
2688    if (shader->compiler_ctx_state.is_debug_context) {
2689       FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2690       if (f) {
2691          si_shader_dump(sscreen, shader, NULL, f, false);
2692          fclose(f);
2693       }
2694    }
2695 
2696    si_shader_init_pm4_state(sscreen, shader);
2697 }
2698 
si_build_shader_variant_low_priority(void * job,void * gdata,int thread_index)2699 static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index)
2700 {
2701    struct si_shader *shader = (struct si_shader *)job;
2702 
2703    assert(thread_index >= 0);
2704 
2705    si_build_shader_variant(shader, thread_index, true);
2706 }
2707 
2708 /* This should be const, but C++ doesn't allow implicit zero-initialization with const. */
2709 static union si_shader_key zeroed;
2710 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,const union si_shader_key * key)2711 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2712                                        struct si_compiler_ctx_state *compiler_state,
2713                                        const union si_shader_key *key)
2714 {
2715    struct si_shader **mainp = si_get_main_shader_part(sel, key);
2716 
2717    if (!*mainp) {
2718       struct si_shader *main_part = CALLOC_STRUCT(si_shader);
2719 
2720       if (!main_part)
2721          return false;
2722 
2723       /* We can leave the fence as permanently signaled because the
2724        * main part becomes visible globally only after it has been
2725        * compiled. */
2726       util_queue_fence_init(&main_part->ready);
2727 
2728       main_part->selector = sel;
2729       if (sel->stage <= MESA_SHADER_GEOMETRY) {
2730          main_part->key.ge.as_es = key->ge.as_es;
2731          main_part->key.ge.as_ls = key->ge.as_ls;
2732          main_part->key.ge.as_ngg = key->ge.as_ngg;
2733       }
2734       main_part->is_monolithic = false;
2735       main_part->wave_size = si_determine_wave_size(sscreen, main_part);
2736 
2737       if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
2738                              &compiler_state->debug)) {
2739          FREE(main_part);
2740          return false;
2741       }
2742       *mainp = main_part;
2743    }
2744    return true;
2745 }
2746 
2747 /* A helper to copy *key to *local_key and return local_key. */
2748 template<typename SHADER_KEY_TYPE>
2749 static ALWAYS_INLINE const SHADER_KEY_TYPE *
use_local_key_copy(const SHADER_KEY_TYPE * key,SHADER_KEY_TYPE * local_key,unsigned key_size)2750 use_local_key_copy(const SHADER_KEY_TYPE *key, SHADER_KEY_TYPE *local_key, unsigned key_size)
2751 {
2752    if (key != local_key)
2753       memcpy(local_key, key, key_size);
2754 
2755    return local_key;
2756 }
2757 
2758 #define NO_INLINE_UNIFORMS false
2759 
2760 /**
2761  * Select a shader variant according to the shader key.
2762  *
2763  * This uses a C++ template to compute the optimal memcmp size at compile time, which is important
2764  * for getting inlined memcmp. The memcmp size depends on the shader key type and whether inlined
2765  * uniforms are enabled.
2766  */
2767 template<bool INLINE_UNIFORMS = true, typename SHADER_KEY_TYPE>
si_shader_select_with_key(struct si_context * sctx,struct si_shader_ctx_state * state,const SHADER_KEY_TYPE * key)2768 static int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state,
2769                                      const SHADER_KEY_TYPE *key)
2770 {
2771    struct si_screen *sscreen = sctx->screen;
2772    struct si_shader_selector *sel = state->cso;
2773    struct si_shader_selector *previous_stage_sel = NULL;
2774    struct si_shader *current = state->current;
2775    struct si_shader *shader = NULL;
2776    const SHADER_KEY_TYPE *zeroed_key = (SHADER_KEY_TYPE*)&zeroed;
2777 
2778    /* "opt" must be the last field and "inlined_uniform_values" must be the last field inside opt.
2779     * If there is padding, insert the padding manually before opt or inside opt.
2780     */
2781    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt) + sizeof(key->opt) == sizeof(*key));
2782    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt.inlined_uniform_values) +
2783                  sizeof(key->opt.inlined_uniform_values) == sizeof(*key));
2784 
2785    const unsigned key_size_no_uniforms = sizeof(*key) - sizeof(key->opt.inlined_uniform_values);
2786    /* Don't compare inlined_uniform_values if uniform inlining is disabled. */
2787    const unsigned key_size = INLINE_UNIFORMS ? sizeof(*key) : key_size_no_uniforms;
2788    const unsigned key_opt_size =
2789       INLINE_UNIFORMS ? sizeof(key->opt) :
2790                         sizeof(key->opt) - sizeof(key->opt.inlined_uniform_values);
2791 
2792    /* si_shader_select_with_key must not modify 'key' because it would affect future shaders.
2793     * If we need to modify it for this specific shader (eg: to disable optimizations), we
2794     * use a copy.
2795     */
2796    SHADER_KEY_TYPE local_key;
2797 
2798    if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) {
2799       /* Disable shader variant optimizations. */
2800       key = use_local_key_copy<SHADER_KEY_TYPE>(key, &local_key, key_size);
2801       memset(&local_key.opt, 0, key_opt_size);
2802    }
2803 
2804 again:
2805    /* Check if we don't need to change anything.
2806     * This path is also used for most shaders that don't need multiple
2807     * variants, it will cost just a computation of the key and this
2808     * test. */
2809    if (likely(current && memcmp(&current->key, key, key_size) == 0)) {
2810       if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
2811          if (current->is_optimized) {
2812             key = use_local_key_copy(key, &local_key, key_size);
2813             memset(&local_key.opt, 0, key_opt_size);
2814             goto current_not_ready;
2815          }
2816 
2817          util_queue_fence_wait(&current->ready);
2818       }
2819 
2820       return current->compilation_failed ? -1 : 0;
2821    }
2822 current_not_ready:
2823 
2824    /* This must be done before the mutex is locked, because async GS
2825     * compilation calls this function too, and therefore must enter
2826     * the mutex first.
2827     */
2828    util_queue_fence_wait(&sel->ready);
2829 
2830    simple_mtx_lock(&sel->mutex);
2831 
2832    int variant_count = 0;
2833    const int max_inline_uniforms_variants = 5;
2834 
2835    /* Find the shader variant. */
2836    const unsigned cnt = sel->variants_count;
2837    for (unsigned i = 0; i < cnt; i++) {
2838       const SHADER_KEY_TYPE *iter_key = (const SHADER_KEY_TYPE *)&sel->keys[i];
2839 
2840       if (memcmp(iter_key, key, key_size_no_uniforms) == 0) {
2841          struct si_shader *iter = sel->variants[i];
2842 
2843          /* Check the inlined uniform values separately, and count
2844           * the number of variants based on them.
2845           */
2846          if (key->opt.inline_uniforms &&
2847              memcmp(iter_key->opt.inlined_uniform_values,
2848                     key->opt.inlined_uniform_values,
2849                     MAX_INLINABLE_UNIFORMS * 4) != 0) {
2850             if (variant_count++ > max_inline_uniforms_variants) {
2851                key = use_local_key_copy(key, &local_key, key_size);
2852                /* Too many variants. Disable inlining for this shader. */
2853                local_key.opt.inline_uniforms = 0;
2854                memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4);
2855                simple_mtx_unlock(&sel->mutex);
2856                goto again;
2857             }
2858             continue;
2859          }
2860 
2861          simple_mtx_unlock(&sel->mutex);
2862 
2863          if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
2864             /* If it's an optimized shader and its compilation has
2865              * been started but isn't done, use the unoptimized
2866              * shader so as not to cause a stall due to compilation.
2867              */
2868             if (iter->is_optimized) {
2869                key = use_local_key_copy(key, &local_key, key_size);
2870                memset(&local_key.opt, 0, key_opt_size);
2871                goto again;
2872             }
2873 
2874             util_queue_fence_wait(&iter->ready);
2875          }
2876 
2877          if (iter->compilation_failed) {
2878             return -1; /* skip the draw call */
2879          }
2880 
2881          state->current = sel->variants[i];
2882          return 0;
2883       }
2884    }
2885 
2886    /* Build a new shader. */
2887    shader = CALLOC_STRUCT(si_shader);
2888    if (!shader) {
2889       simple_mtx_unlock(&sel->mutex);
2890       return -ENOMEM;
2891    }
2892 
2893    util_queue_fence_init(&shader->ready);
2894 
2895    if (!sscreen->use_aco && !sctx->compiler)
2896       sctx->compiler = si_create_llvm_compiler(sctx->screen);
2897 
2898    shader->selector = sel;
2899    *((SHADER_KEY_TYPE*)&shader->key) = *key;
2900    shader->wave_size = si_determine_wave_size(sscreen, shader);
2901    shader->compiler_ctx_state.compiler = sctx->compiler;
2902    shader->compiler_ctx_state.debug = sctx->debug;
2903    shader->compiler_ctx_state.is_debug_context = sctx->is_debug;
2904 
2905    /* If this is a merged shader, get the first shader's selector. */
2906    if (sscreen->info.gfx_level >= GFX9) {
2907       if (sel->stage == MESA_SHADER_TESS_CTRL)
2908          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.tcs.ls;
2909       else if (sel->stage == MESA_SHADER_GEOMETRY)
2910          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.gs.es;
2911 
2912       /* We need to wait for the previous shader. */
2913       if (previous_stage_sel)
2914          util_queue_fence_wait(&previous_stage_sel->ready);
2915    }
2916 
2917    bool is_pure_monolithic =
2918       sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed_key->mono, sizeof(key->mono)) != 0;
2919 
2920    /* Compile the main shader part if it doesn't exist. This can happen
2921     * if the initial guess was wrong.
2922     */
2923    if (!is_pure_monolithic) {
2924       bool ok = true;
2925 
2926       /* Make sure the main shader part is present. This is needed
2927        * for shaders that can be compiled as VS, LS, or ES, and only
2928        * one of them is compiled at creation.
2929        *
2930        * It is also needed for GS, which can be compiled as non-NGG
2931        * and NGG.
2932        *
2933        * For merged shaders, check that the starting shader's main
2934        * part is present.
2935        */
2936       if (previous_stage_sel) {
2937          union si_shader_key shader1_key = zeroed;
2938 
2939          if (sel->stage == MESA_SHADER_TESS_CTRL) {
2940             shader1_key.ge.as_ls = 1;
2941          } else if (sel->stage == MESA_SHADER_GEOMETRY) {
2942             shader1_key.ge.as_es = 1;
2943             shader1_key.ge.as_ngg = ((struct si_shader_key_ge*)key)->as_ngg; /* for Wave32 vs Wave64 */
2944          } else {
2945             assert(0);
2946          }
2947 
2948          simple_mtx_lock(&previous_stage_sel->mutex);
2949          ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state,
2950                                          &shader1_key);
2951          simple_mtx_unlock(&previous_stage_sel->mutex);
2952       }
2953 
2954       if (ok) {
2955          ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state,
2956                                          (union si_shader_key*)key);
2957       }
2958 
2959       if (!ok) {
2960          FREE(shader);
2961          simple_mtx_unlock(&sel->mutex);
2962          return -ENOMEM; /* skip the draw call */
2963       }
2964    }
2965 
2966    if (sel->variants_count == sel->variants_max_count) {
2967       sel->variants_max_count += 2;
2968       sel->variants = (struct si_shader**)
2969          realloc(sel->variants, sel->variants_max_count * sizeof(struct si_shader*));
2970       sel->keys = (union si_shader_key*)
2971          realloc(sel->keys, sel->variants_max_count * sizeof(union si_shader_key));
2972    }
2973 
2974    /* Keep the reference to the 1st shader of merged shaders, so that
2975     * Gallium can't destroy it before we destroy the 2nd shader.
2976     *
2977     * Set sctx = NULL, because it's unused if we're not releasing
2978     * the shader, and we don't have any sctx here.
2979     */
2980    si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
2981 
2982    /* Monolithic-only shaders don't make a distinction between optimized
2983     * and unoptimized. */
2984    shader->is_monolithic =
2985       is_pure_monolithic || memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
2986 
2987    shader->is_optimized = !is_pure_monolithic &&
2988                           memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
2989 
2990    /* If it's an optimized shader, compile it asynchronously. */
2991    if (shader->is_optimized) {
2992       /* Compile it asynchronously. */
2993       util_queue_add_job(&sscreen->shader_compiler_queue_opt_variants, shader, &shader->ready,
2994                          si_build_shader_variant_low_priority, NULL, 0);
2995 
2996       /* Add only after the ready fence was reset, to guard against a
2997        * race with si_bind_XX_shader. */
2998       sel->variants[sel->variants_count] = shader;
2999       sel->keys[sel->variants_count] = shader->key;
3000       sel->variants_count++;
3001 
3002       /* Use the default (unoptimized) shader for now. */
3003       key = use_local_key_copy(key, &local_key, key_size);
3004       memset(&local_key.opt, 0, key_opt_size);
3005       simple_mtx_unlock(&sel->mutex);
3006 
3007       if (sscreen->options.sync_compile)
3008          util_queue_fence_wait(&shader->ready);
3009 
3010       goto again;
3011    }
3012 
3013    /* Reset the fence before adding to the variant list. */
3014    util_queue_fence_reset(&shader->ready);
3015 
3016    sel->variants[sel->variants_count] = shader;
3017    sel->keys[sel->variants_count] = shader->key;
3018    sel->variants_count++;
3019 
3020    simple_mtx_unlock(&sel->mutex);
3021 
3022    assert(!shader->is_optimized);
3023    si_build_shader_variant(shader, -1, false);
3024 
3025    util_queue_fence_signal(&shader->ready);
3026 
3027    if (!shader->compilation_failed)
3028       state->current = shader;
3029 
3030    return shader->compilation_failed ? -1 : 0;
3031 }
3032 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state)3033 int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state)
3034 {
3035    struct si_context *sctx = (struct si_context *)ctx;
3036 
3037    si_shader_selector_key(ctx, state->cso, &state->key);
3038 
3039    if (state->cso->stage == MESA_SHADER_FRAGMENT) {
3040       if (state->key.ps.opt.inline_uniforms)
3041          return si_shader_select_with_key(sctx, state, &state->key.ps);
3042       else
3043          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ps);
3044    } else {
3045       if (state->key.ge.opt.inline_uniforms) {
3046          return si_shader_select_with_key(sctx, state, &state->key.ge);
3047       } else {
3048          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ge);
3049       }
3050    }
3051 }
3052 
si_parse_next_shader_property(const struct si_shader_info * info,union si_shader_key * key)3053 static void si_parse_next_shader_property(const struct si_shader_info *info,
3054                                           union si_shader_key *key)
3055 {
3056    gl_shader_stage next_shader = info->base.next_stage;
3057 
3058    switch (info->base.stage) {
3059    case MESA_SHADER_VERTEX:
3060       switch (next_shader) {
3061       case MESA_SHADER_GEOMETRY:
3062          key->ge.as_es = 1;
3063          break;
3064       case MESA_SHADER_TESS_CTRL:
3065       case MESA_SHADER_TESS_EVAL:
3066          key->ge.as_ls = 1;
3067          break;
3068       default:
3069          /* If POSITION isn't written, it can only be a HW VS
3070           * if streamout is used. If streamout isn't used,
3071           * assume that it's a HW LS. (the next shader is TCS)
3072           * This heuristic is needed for separate shader objects.
3073           */
3074          if (!info->writes_position && !info->enabled_streamout_buffer_mask)
3075             key->ge.as_ls = 1;
3076       }
3077       break;
3078 
3079    case MESA_SHADER_TESS_EVAL:
3080       if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
3081          key->ge.as_es = 1;
3082       break;
3083 
3084    default:;
3085    }
3086 }
3087 
3088 /**
3089  * Compile the main shader part or the monolithic shader as part of
3090  * si_shader_selector initialization. Since it can be done asynchronously,
3091  * there is no way to report compile failures to applications.
3092  */
si_init_shader_selector_async(void * job,void * gdata,int thread_index)3093 static void si_init_shader_selector_async(void *job, void *gdata, int thread_index)
3094 {
3095    struct si_shader_selector *sel = (struct si_shader_selector *)job;
3096    struct si_screen *sscreen = sel->screen;
3097    struct ac_llvm_compiler **compiler;
3098    struct util_debug_callback *debug = &sel->compiler_ctx_state.debug;
3099 
3100    assert(!debug->debug_message || debug->async);
3101    assert(thread_index >= 0);
3102    assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
3103    compiler = &sscreen->compiler[thread_index];
3104 
3105    if (!sscreen->use_aco && !*compiler)
3106       *compiler = si_create_llvm_compiler(sscreen);
3107 
3108    /* Serialize NIR to save memory. Monolithic shader variants
3109     * have to deserialize NIR before compilation.
3110     */
3111    if (sel->nir) {
3112       struct blob blob;
3113       size_t size;
3114 
3115       blob_init(&blob);
3116       /* true = remove optional debugging data to increase
3117        * the likehood of getting more shader cache hits.
3118        * It also drops variable names, so we'll save more memory.
3119        * If NIR debug prints are used we don't strip to get more
3120        * useful logs.
3121        */
3122       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
3123       blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
3124       sel->nir_size = size;
3125    }
3126 
3127    /* Compile the main shader part for use with a prolog and/or epilog.
3128     * If this fails, the driver will try to compile a monolithic shader
3129     * on demand.
3130     */
3131    if (!sscreen->use_monolithic_shaders) {
3132       struct si_shader *shader = CALLOC_STRUCT(si_shader);
3133       unsigned char ir_sha1_cache_key[20];
3134 
3135       if (!shader) {
3136          fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
3137          return;
3138       }
3139 
3140       /* We can leave the fence signaled because use of the default
3141        * main part is guarded by the selector's ready fence. */
3142       util_queue_fence_init(&shader->ready);
3143 
3144       shader->selector = sel;
3145       shader->is_monolithic = false;
3146       si_parse_next_shader_property(&sel->info, &shader->key);
3147 
3148       if (sel->stage <= MESA_SHADER_GEOMETRY &&
3149           sscreen->use_ngg && (!sel->info.enabled_streamout_buffer_mask ||
3150                                sscreen->info.gfx_level >= GFX11) &&
3151           ((sel->stage == MESA_SHADER_VERTEX && !shader->key.ge.as_ls) ||
3152            sel->stage == MESA_SHADER_TESS_EVAL || sel->stage == MESA_SHADER_GEOMETRY))
3153          shader->key.ge.as_ngg = 1;
3154 
3155       shader->wave_size = si_determine_wave_size(sscreen, shader);
3156 
3157       if (sel->nir) {
3158          if (sel->stage <= MESA_SHADER_GEOMETRY) {
3159             si_get_ir_cache_key(sel, shader->key.ge.as_ngg, shader->key.ge.as_es,
3160                                 shader->wave_size, ir_sha1_cache_key);
3161          } else {
3162             si_get_ir_cache_key(sel, false, false, shader->wave_size, ir_sha1_cache_key);
3163          }
3164       }
3165 
3166       /* Try to load the shader from the shader cache. */
3167       simple_mtx_lock(&sscreen->shader_cache_mutex);
3168 
3169       if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
3170          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3171          si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
3172       } else {
3173          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3174 
3175          /* Compile the shader if it hasn't been loaded from the cache. */
3176          if (!si_compile_shader(sscreen, *compiler, shader, debug)) {
3177             fprintf(stderr,
3178                "radeonsi: can't compile a main shader part (type: %s, name: %s).\n"
3179                "This is probably a driver bug, please report "
3180                "it to https://gitlab.freedesktop.org/mesa/mesa/-/issues.\n",
3181                gl_shader_stage_name(shader->selector->stage),
3182                shader->selector->info.base.name);
3183             FREE(shader);
3184             return;
3185          }
3186 
3187          simple_mtx_lock(&sscreen->shader_cache_mutex);
3188          si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
3189          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3190       }
3191 
3192       *si_get_main_shader_part(sel, &shader->key) = shader;
3193 
3194       /* Unset "outputs_written" flags for outputs converted to
3195        * DEFAULT_VAL, so that later inter-shader optimizations don't
3196        * try to eliminate outputs that don't exist in the final
3197        * shader.
3198        *
3199        * This is only done if non-monolithic shaders are enabled.
3200        */
3201       if ((sel->stage == MESA_SHADER_VERTEX ||
3202            sel->stage == MESA_SHADER_TESS_EVAL ||
3203            sel->stage == MESA_SHADER_GEOMETRY) &&
3204           !shader->key.ge.as_ls && !shader->key.ge.as_es) {
3205          unsigned i;
3206 
3207          for (i = 0; i < sel->info.num_outputs; i++) {
3208             unsigned semantic = sel->info.output_semantic[i];
3209             unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic];
3210 
3211             /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */
3212             if (G_028644_OFFSET(ps_input_cntl) != 0x20)
3213                continue;
3214 
3215             unsigned id;
3216 
3217             /* Remove the output from the mask. */
3218             if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
3219                 semantic != VARYING_SLOT_POS &&
3220                 semantic != VARYING_SLOT_PSIZ &&
3221                 semantic != VARYING_SLOT_CLIP_VERTEX &&
3222                 semantic != VARYING_SLOT_EDGE &&
3223                 semantic != VARYING_SLOT_LAYER) {
3224                id = si_shader_io_get_unique_index(semantic);
3225                sel->info.outputs_written_before_ps &= ~(1ull << id);
3226             }
3227          }
3228       }
3229    }
3230 
3231    /* Free NIR. We only keep serialized NIR after this point. */
3232    if (sel->nir) {
3233       ralloc_free(sel->nir);
3234       sel->nir = NULL;
3235    }
3236 }
3237 
si_schedule_initial_compile(struct si_context * sctx,gl_shader_stage stage,struct util_queue_fence * ready_fence,struct si_compiler_ctx_state * compiler_ctx_state,void * job,util_queue_execute_func execute)3238 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
3239                                  struct util_queue_fence *ready_fence,
3240                                  struct si_compiler_ctx_state *compiler_ctx_state, void *job,
3241                                  util_queue_execute_func execute)
3242 {
3243    util_queue_fence_init(ready_fence);
3244 
3245    struct util_async_debug_callback async_debug;
3246    bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
3247                 si_can_dump_shader(sctx->screen, stage, SI_DUMP_ALWAYS);
3248 
3249    if (debug) {
3250       u_async_debug_init(&async_debug);
3251       compiler_ctx_state->debug = async_debug.base;
3252    }
3253 
3254    util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
3255 
3256    if (debug) {
3257       util_queue_fence_wait(ready_fence);
3258       u_async_debug_drain(&async_debug, &sctx->debug);
3259       u_async_debug_cleanup(&async_debug);
3260    }
3261 
3262    if (sctx->screen->options.sync_compile)
3263       util_queue_fence_wait(ready_fence);
3264 }
3265 
3266 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(struct si_screen * sscreen,const struct si_shader_info * info,uint64_t * const_and_shader_buffers,uint64_t * samplers_and_images)3267 void si_get_active_slot_masks(struct si_screen *sscreen, const struct si_shader_info *info,
3268                               uint64_t *const_and_shader_buffers, uint64_t *samplers_and_images)
3269 {
3270    unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
3271 
3272    num_shaderbufs = info->base.num_ssbos;
3273    num_constbufs = info->base.num_ubos;
3274    /* two 8-byte images share one 16-byte slot */
3275    num_images = align(info->base.num_images, 2);
3276    num_msaa_images = align(BITSET_LAST_BIT(info->base.msaa_images), 2);
3277    num_samplers = BITSET_LAST_BIT(info->base.textures_used);
3278 
3279    /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
3280    start = si_get_shaderbuf_slot(num_shaderbufs - 1);
3281    *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
3282 
3283    /* The layout is:
3284     *   - fmask[last] ... fmask[0]     go to [15-last .. 15]
3285     *   - image[last] ... image[0]     go to [31-last .. 31]
3286     *   - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
3287     *
3288     * FMASKs for images are placed separately, because MSAA images are rare,
3289     * and so we can benefit from a better cache hit rate if we keep image
3290     * descriptors together.
3291     */
3292    if (sscreen->info.gfx_level < GFX11 && num_msaa_images)
3293       num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
3294 
3295    start = si_get_image_slot(num_images - 1) / 2;
3296    *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
3297 }
3298 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)3299 static void *si_create_shader_selector(struct pipe_context *ctx,
3300                                        const struct pipe_shader_state *state)
3301 {
3302    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3303    struct si_context *sctx = (struct si_context *)ctx;
3304    struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
3305 
3306    if (!sel)
3307       return NULL;
3308 
3309    sel->screen = sscreen;
3310    sel->compiler_ctx_state.debug = sctx->debug;
3311    sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
3312    sel->variants_max_count = 2;
3313    sel->keys = (union si_shader_key *)
3314       realloc(NULL, sel->variants_max_count * sizeof(union si_shader_key));
3315    sel->variants = (struct si_shader **)
3316       realloc(NULL, sel->variants_max_count * sizeof(struct si_shader *));
3317 
3318    if (state->type == PIPE_SHADER_IR_TGSI) {
3319       sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
3320    } else {
3321       assert(state->type == PIPE_SHADER_IR_NIR);
3322       sel->nir = (nir_shader*)state->ir.nir;
3323    }
3324 
3325    si_nir_scan_shader(sscreen, sel->nir, &sel->info);
3326 
3327    sel->stage = sel->nir->info.stage;
3328    const enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->stage);
3329    sel->pipe_shader_type = type;
3330    sel->const_and_shader_buf_descriptors_index =
3331       si_const_and_shader_buffer_descriptors_idx(type);
3332    sel->sampler_and_images_descriptors_index =
3333       si_sampler_and_image_descriptors_idx(type);
3334 
3335    if (si_can_dump_shader(sscreen, sel->stage, SI_DUMP_INIT_NIR))
3336       nir_print_shader(sel->nir, stderr);
3337 
3338    p_atomic_inc(&sscreen->num_shaders_created);
3339    si_get_active_slot_masks(sscreen, &sel->info, &sel->active_const_and_shader_buffers,
3340                             &sel->active_samplers_and_images);
3341 
3342    switch (sel->stage) {
3343    case MESA_SHADER_GEOMETRY:
3344       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3345       sel->rast_prim = (enum mesa_prim)sel->info.base.gs.output_primitive;
3346       if (util_rast_prim_is_triangles(sel->rast_prim))
3347          sel->rast_prim = MESA_PRIM_TRIANGLES;
3348 
3349       /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tessellation so
3350        * we can't split workgroups. Disable ngg if any of the following conditions is true:
3351        * - num_invocations * gs.vertices_out > 256
3352        * - LDS usage is too high
3353        */
3354       sel->tess_turns_off_ngg = sscreen->info.gfx_level >= GFX10 &&
3355                                 sscreen->info.gfx_level <= GFX10_3 &&
3356                                 (sel->info.base.gs.invocations * sel->info.base.gs.vertices_out > 256 ||
3357                                  sel->info.base.gs.invocations * sel->info.base.gs.vertices_out *
3358                                  (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
3359       break;
3360 
3361    case MESA_SHADER_VERTEX:
3362    case MESA_SHADER_TESS_EVAL:
3363       if (sel->stage == MESA_SHADER_TESS_EVAL) {
3364          if (sel->info.base.tess.point_mode)
3365             sel->rast_prim = MESA_PRIM_POINTS;
3366          else if (sel->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
3367             sel->rast_prim = MESA_PRIM_LINE_STRIP;
3368          else
3369             sel->rast_prim = MESA_PRIM_TRIANGLES;
3370       } else {
3371          sel->rast_prim = MESA_PRIM_TRIANGLES;
3372       }
3373       break;
3374    default:;
3375    }
3376 
3377    bool ngg_culling_allowed =
3378       sscreen->info.gfx_level >= GFX10 &&
3379       sscreen->use_ngg_culling &&
3380       sel->info.writes_position &&
3381       !sel->info.writes_viewport_index && /* cull only against viewport 0 */
3382       !sel->info.base.writes_memory &&
3383       /* NGG GS supports culling with streamout because it culls after streamout. */
3384       (sel->stage == MESA_SHADER_GEOMETRY || !sel->info.enabled_streamout_buffer_mask) &&
3385       (sel->stage != MESA_SHADER_GEOMETRY || sel->info.num_stream_output_components[0]) &&
3386       (sel->stage != MESA_SHADER_VERTEX ||
3387        (!sel->info.base.vs.blit_sgprs_amd &&
3388         !sel->info.base.vs.window_space_position));
3389 
3390    sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */
3391 
3392    if (ngg_culling_allowed) {
3393       if (sel->stage == MESA_SHADER_VERTEX) {
3394          if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL))
3395             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3396          else
3397             sel->ngg_cull_vert_threshold = 128;
3398       } else if (sel->stage == MESA_SHADER_TESS_EVAL ||
3399                  sel->stage == MESA_SHADER_GEOMETRY) {
3400          if (sel->rast_prim != MESA_PRIM_POINTS)
3401             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3402       }
3403    }
3404 
3405    (void)simple_mtx_init(&sel->mutex, mtx_plain);
3406 
3407    si_schedule_initial_compile(sctx, sel->stage, &sel->ready, &sel->compiler_ctx_state,
3408                                sel, si_init_shader_selector_async);
3409    return sel;
3410 }
3411 
si_create_shader(struct pipe_context * ctx,const struct pipe_shader_state * state)3412 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
3413 {
3414    struct si_context *sctx = (struct si_context *)ctx;
3415    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3416    bool cache_hit;
3417    struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
3418       ctx, &sscreen->live_shader_cache, state, &cache_hit);
3419 
3420    if (sel && cache_hit && sctx->debug.debug_message) {
3421       if (sel->main_shader_part)
3422          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part, &sctx->debug);
3423       if (sel->main_shader_part_ls)
3424          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls, &sctx->debug);
3425       if (sel->main_shader_part_es)
3426          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
3427       if (sel->main_shader_part_ngg)
3428          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg, &sctx->debug);
3429       if (sel->main_shader_part_ngg_es)
3430          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es, &sctx->debug);
3431    }
3432    return sel;
3433 }
3434 
si_update_streamout_state(struct si_context * sctx)3435 static void si_update_streamout_state(struct si_context *sctx)
3436 {
3437    struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
3438 
3439    if (!shader_with_so)
3440       return;
3441 
3442    sctx->streamout.enabled_stream_buffers_mask = shader_with_so->info.enabled_streamout_buffer_mask;
3443    sctx->streamout.stride_in_dw = shader_with_so->info.base.xfb_stride;
3444 
3445    /* GDS must be allocated when any GDS instructions are used, otherwise it hangs. */
3446    if (sctx->gfx_level >= GFX11 && shader_with_so->info.enabled_streamout_buffer_mask &&
3447        !sctx->screen->gds_oa) {
3448       /* Gfx11 only uses GDS OA, not GDS memory. */
3449       simple_mtx_lock(&sctx->screen->gds_mutex);
3450       if (!sctx->screen->gds_oa) {
3451          sctx->screen->gds_oa = sctx->ws->buffer_create(sctx->ws, 1, 1, RADEON_DOMAIN_OA,
3452                                                         RADEON_FLAG_DRIVER_INTERNAL);
3453          assert(sctx->screen->gds_oa);
3454       }
3455       simple_mtx_unlock(&sctx->screen->gds_mutex);
3456 
3457       if (sctx->screen->gds_oa)
3458          sctx->ws->cs_add_buffer(&sctx->gfx_cs, sctx->screen->gds_oa, RADEON_USAGE_READWRITE,
3459                                  (enum radeon_bo_domain)0);
3460    }
3461 }
3462 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)3463 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
3464                                 struct si_shader *old_hw_vs_variant,
3465                                 struct si_shader_selector *next_hw_vs,
3466                                 struct si_shader *next_hw_vs_variant)
3467 {
3468    if (next_hw_vs &&
3469        (!old_hw_vs ||
3470         (old_hw_vs->stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
3471         (next_hw_vs->stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
3472         old_hw_vs->info.clipdist_mask != next_hw_vs->info.clipdist_mask ||
3473         old_hw_vs->info.culldist_mask != next_hw_vs->info.culldist_mask || !old_hw_vs_variant ||
3474         !next_hw_vs_variant ||
3475         old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl))
3476       si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3477 }
3478 
si_update_rasterized_prim(struct si_context * sctx)3479 static void si_update_rasterized_prim(struct si_context *sctx)
3480 {
3481    struct si_shader *hw_vs = si_get_vs(sctx)->current;
3482 
3483    if (sctx->shader.gs.cso) {
3484       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3485       si_set_rasterized_prim(sctx, sctx->shader.gs.cso->rast_prim, hw_vs, sctx->ngg);
3486    } else if (sctx->shader.tes.cso) {
3487       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3488       si_set_rasterized_prim(sctx, sctx->shader.tes.cso->rast_prim, hw_vs, sctx->ngg);
3489    } else {
3490       /* The rasterized prim is determined by draw calls. */
3491    }
3492 
3493    /* This must be done unconditionally because it also depends on si_shader fields. */
3494    si_update_ngg_sgpr_state_out_prim(sctx, hw_vs, sctx->ngg);
3495 }
3496 
si_update_common_shader_state(struct si_context * sctx,struct si_shader_selector * sel,enum pipe_shader_type type)3497 static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel,
3498                                           enum pipe_shader_type type)
3499 {
3500    si_set_active_descriptors_for_shader(sctx, sel);
3501 
3502    sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) ||
3503                                   si_shader_uses_bindless_samplers(sctx->shader.gs.cso) ||
3504                                   si_shader_uses_bindless_samplers(sctx->shader.ps.cso) ||
3505                                   si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) ||
3506                                   si_shader_uses_bindless_samplers(sctx->shader.tes.cso);
3507    sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) ||
3508                                 si_shader_uses_bindless_images(sctx->shader.gs.cso) ||
3509                                 si_shader_uses_bindless_images(sctx->shader.ps.cso) ||
3510                                 si_shader_uses_bindless_images(sctx->shader.tcs.cso) ||
3511                                 si_shader_uses_bindless_images(sctx->shader.tes.cso);
3512 
3513    if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY)
3514       sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */
3515 
3516    si_invalidate_inlinable_uniforms(sctx, type);
3517    sctx->do_update_shaders = true;
3518 }
3519 
si_update_last_vgt_stage_state(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant)3520 static void si_update_last_vgt_stage_state(struct si_context *sctx,
3521                                            /* hw_vs refers to the last VGT stage */
3522                                            struct si_shader_selector *old_hw_vs,
3523                                            struct si_shader *old_hw_vs_variant)
3524 {
3525    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
3526 
3527    si_update_vs_viewport_state(sctx);
3528    si_update_streamout_state(sctx);
3529    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, hw_vs->cso, hw_vs->current);
3530    si_update_rasterized_prim(sctx);
3531 
3532    /* Clear kill_pointsize because we only want it to be set in the last shader before PS. */
3533    sctx->shader.vs.key.ge.opt.kill_pointsize = 0;
3534    sctx->shader.tes.key.ge.opt.kill_pointsize = 0;
3535    sctx->shader.gs.key.ge.opt.kill_pointsize = 0;
3536    si_vs_ps_key_update_rast_prim_smooth_stipple(sctx);
3537 }
3538 
si_bind_vs_shader(struct pipe_context * ctx,void * state)3539 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3540 {
3541    struct si_context *sctx = (struct si_context *)ctx;
3542    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3543    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3544    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3545 
3546    if (sctx->shader.vs.cso == sel)
3547       return;
3548 
3549    sctx->shader.vs.cso = sel;
3550    sctx->shader.vs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3551    sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
3552    sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false;
3553 
3554    if (si_update_ngg(sctx))
3555       si_shader_change_notify(sctx);
3556 
3557    si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX);
3558    si_select_draw_vbo(sctx);
3559    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3560    si_vs_key_update_inputs(sctx);
3561 
3562    if (sctx->screen->dpbb_allowed) {
3563       bool force_off = sel && sel->info.options & SI_PROFILE_VS_NO_BINNING;
3564 
3565       if (force_off != sctx->dpbb_force_off_profile_vs) {
3566          sctx->dpbb_force_off_profile_vs = force_off;
3567          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3568       }
3569    }
3570 }
3571 
si_update_tess_uses_prim_id(struct si_context * sctx)3572 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3573 {
3574    sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3575       (sctx->shader.tes.cso && sctx->shader.tes.cso->info.uses_primid) ||
3576       (sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) ||
3577       (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) ||
3578       (sctx->shader.ps.cso && !sctx->shader.gs.cso && sctx->shader.ps.cso->info.uses_primid);
3579 }
3580 
si_update_ngg(struct si_context * sctx)3581 bool si_update_ngg(struct si_context *sctx)
3582 {
3583    if (!sctx->screen->use_ngg) {
3584       assert(!sctx->ngg);
3585       return false;
3586    }
3587 
3588    bool new_ngg = true;
3589 
3590    if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) {
3591       new_ngg = false;
3592    } else if (sctx->gfx_level < GFX11) {
3593       struct si_shader_selector *last = si_get_vs(sctx)->cso;
3594 
3595       if ((last && last->info.enabled_streamout_buffer_mask) ||
3596           sctx->streamout.prims_gen_query_enabled)
3597          new_ngg = false;
3598    }
3599 
3600    if (new_ngg != sctx->ngg) {
3601       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3602        * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3603        * pointers are set.
3604        */
3605       if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) {
3606          sctx->flags |= SI_CONTEXT_VGT_FLUSH;
3607          si_mark_atom_dirty(sctx, &sctx->atoms.s.cache_flush);
3608 
3609          if (sctx->gfx_level == GFX10) {
3610             /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */
3611             si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3612          }
3613       }
3614 
3615       sctx->ngg = new_ngg;
3616       si_select_draw_vbo(sctx);
3617       return true;
3618    }
3619    return false;
3620 }
3621 
si_bind_gs_shader(struct pipe_context * ctx,void * state)3622 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3623 {
3624    struct si_context *sctx = (struct si_context *)ctx;
3625    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3626    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3627    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3628    bool enable_changed = !!sctx->shader.gs.cso != !!sel;
3629    bool ngg_changed;
3630 
3631    if (sctx->shader.gs.cso == sel)
3632       return;
3633 
3634    sctx->shader.gs.cso = sel;
3635    sctx->shader.gs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3636    sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3637 
3638    si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY);
3639    si_select_draw_vbo(sctx);
3640 
3641    ngg_changed = si_update_ngg(sctx);
3642    if (ngg_changed || enable_changed)
3643       si_shader_change_notify(sctx);
3644    if (enable_changed) {
3645       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3646          si_update_tess_uses_prim_id(sctx);
3647    }
3648    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3649 }
3650 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)3651 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3652 {
3653    struct si_context *sctx = (struct si_context *)ctx;
3654    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3655    bool enable_changed = !!sctx->shader.tcs.cso != !!sel;
3656 
3657    /* Note it could happen that user shader sel is same as fixed function shader,
3658     * so we should update this field even sctx->shader.tcs.cso == sel.
3659     */
3660    sctx->is_user_tcs = !!sel;
3661 
3662    if (sctx->shader.tcs.cso == sel)
3663       return;
3664 
3665    sctx->shader.tcs.cso = sel;
3666    sctx->shader.tcs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3667    sctx->shader.tcs.key.ge.part.tcs.epilog.invoc0_tess_factors_are_def =
3668       sel ? sel->info.tessfactors_are_def_in_all_invocs : 0;
3669    si_update_tess_uses_prim_id(sctx);
3670    si_update_tess_in_out_patch_vertices(sctx);
3671 
3672    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL);
3673 
3674    if (enable_changed)
3675       sctx->last_tcs = NULL; /* invalidate derived tess state */
3676 }
3677 
si_bind_tes_shader(struct pipe_context * ctx,void * state)3678 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3679 {
3680    struct si_context *sctx = (struct si_context *)ctx;
3681    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3682    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3683    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3684    bool enable_changed = !!sctx->shader.tes.cso != !!sel;
3685 
3686    if (sctx->shader.tes.cso == sel)
3687       return;
3688 
3689    sctx->shader.tes.cso = sel;
3690    sctx->shader.tes.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3691    sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3692    si_update_tess_uses_prim_id(sctx);
3693 
3694    sctx->shader.tcs.key.ge.part.tcs.epilog.prim_mode =
3695       sel ? sel->info.base.tess._primitive_mode : 0;
3696 
3697    sctx->shader.tcs.key.ge.part.tcs.epilog.tes_reads_tess_factors =
3698       sel ? sel->info.reads_tess_factors : 0;
3699 
3700    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL);
3701    si_select_draw_vbo(sctx);
3702 
3703    bool ngg_changed = si_update_ngg(sctx);
3704    if (ngg_changed || enable_changed)
3705       si_shader_change_notify(sctx);
3706    if (enable_changed)
3707       sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
3708    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3709 }
3710 
si_update_vrs_flat_shading(struct si_context * sctx)3711 void si_update_vrs_flat_shading(struct si_context *sctx)
3712 {
3713    if (sctx->gfx_level >= GFX10_3 && sctx->shader.ps.cso) {
3714       struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
3715       struct si_shader_info *info = &sctx->shader.ps.cso->info;
3716       bool allow_flat_shading = info->allow_flat_shading;
3717 
3718       if (allow_flat_shading &&
3719           (rs->line_smooth || rs->poly_smooth || rs->poly_stipple_enable ||
3720            rs->point_smooth || (!rs->flatshade && info->uses_interp_color)))
3721          allow_flat_shading = false;
3722 
3723       if (sctx->allow_flat_shading != allow_flat_shading) {
3724          sctx->allow_flat_shading = allow_flat_shading;
3725          si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
3726       }
3727    }
3728 }
3729 
si_bind_ps_shader(struct pipe_context * ctx,void * state)3730 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
3731 {
3732    struct si_context *sctx = (struct si_context *)ctx;
3733    struct si_shader_selector *old_sel = sctx->shader.ps.cso;
3734    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3735 
3736    /* skip if supplied shader is one already in use */
3737    if (old_sel == sel)
3738       return;
3739 
3740    sctx->shader.ps.cso = sel;
3741    sctx->shader.ps.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3742 
3743    si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT);
3744    if (sel) {
3745       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3746          si_update_tess_uses_prim_id(sctx);
3747 
3748       if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
3749          si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
3750 
3751       if (sctx->screen->info.has_out_of_order_rast &&
3752           (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
3753            old_sel->info.base.fs.early_fragment_tests !=
3754               sel->info.base.fs.early_fragment_tests))
3755          si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
3756    }
3757    si_update_ps_colorbuf0_slot(sctx);
3758 
3759    si_ps_key_update_framebuffer(sctx);
3760    si_ps_key_update_framebuffer_blend_rasterizer(sctx);
3761    si_ps_key_update_rasterizer(sctx);
3762    si_ps_key_update_dsa(sctx);
3763    si_ps_key_update_sample_shading(sctx);
3764    si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx);
3765    si_update_ps_inputs_read_or_disabled(sctx);
3766    si_update_vrs_flat_shading(sctx);
3767 
3768    if (sctx->screen->dpbb_allowed) {
3769       bool force_off = sel && sel->info.options & SI_PROFILE_GFX9_GFX10_PS_NO_BINNING &&
3770                        (sctx->gfx_level >= GFX9 && sctx->gfx_level <= GFX10_3);
3771 
3772       if (force_off != sctx->dpbb_force_off_profile_ps) {
3773          sctx->dpbb_force_off_profile_ps = force_off;
3774          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3775       }
3776    }
3777 }
3778 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)3779 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
3780 {
3781    if (shader->is_optimized) {
3782       util_queue_drop_job(&sctx->screen->shader_compiler_queue_opt_variants, &shader->ready);
3783    }
3784 
3785    util_queue_fence_destroy(&shader->ready);
3786 
3787    /* If destroyed shaders were not unbound, the next compiled
3788     * shader variant could get the same pointer address and so
3789     * binding it to the same shader stage would be considered
3790     * a no-op, causing random behavior.
3791     */
3792    int state_index = -1;
3793 
3794    switch (shader->selector->stage) {
3795    case MESA_SHADER_VERTEX:
3796       if (shader->key.ge.as_ls) {
3797          if (sctx->gfx_level <= GFX8)
3798             state_index = SI_STATE_IDX(ls);
3799       } else if (shader->key.ge.as_es) {
3800          if (sctx->gfx_level <= GFX8)
3801             state_index = SI_STATE_IDX(es);
3802       } else if (shader->key.ge.as_ngg) {
3803          state_index = SI_STATE_IDX(gs);
3804       } else {
3805          state_index = SI_STATE_IDX(vs);
3806       }
3807       break;
3808    case MESA_SHADER_TESS_CTRL:
3809       state_index = SI_STATE_IDX(hs);
3810       break;
3811    case MESA_SHADER_TESS_EVAL:
3812       if (shader->key.ge.as_es) {
3813          if (sctx->gfx_level <= GFX8)
3814             state_index = SI_STATE_IDX(es);
3815       } else if (shader->key.ge.as_ngg) {
3816          state_index = SI_STATE_IDX(gs);
3817       } else {
3818          state_index = SI_STATE_IDX(vs);
3819       }
3820       break;
3821    case MESA_SHADER_GEOMETRY:
3822       if (shader->is_gs_copy_shader)
3823          state_index = SI_STATE_IDX(vs);
3824       else
3825          state_index = SI_STATE_IDX(gs);
3826       break;
3827    case MESA_SHADER_FRAGMENT:
3828       state_index = SI_STATE_IDX(ps);
3829       break;
3830    default:;
3831    }
3832 
3833    if (shader->gs_copy_shader)
3834       si_delete_shader(sctx, shader->gs_copy_shader);
3835 
3836    si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
3837    si_shader_destroy(shader);
3838    si_pm4_free_state(sctx, &shader->pm4, state_index);
3839 }
3840 
si_destroy_shader_selector(struct pipe_context * ctx,void * cso)3841 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
3842 {
3843    struct si_context *sctx = (struct si_context *)ctx;
3844    struct si_shader_selector *sel = (struct si_shader_selector *)cso;
3845    enum pipe_shader_type type = pipe_shader_type_from_mesa(sel->stage);
3846 
3847    util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
3848 
3849    if (sctx->shaders[type].cso == sel) {
3850       sctx->shaders[type].cso = NULL;
3851       sctx->shaders[type].current = NULL;
3852    }
3853 
3854    for (unsigned i = 0; i < sel->variants_count; i++) {
3855       si_delete_shader(sctx, sel->variants[i]);
3856    }
3857 
3858    if (sel->main_shader_part)
3859       si_delete_shader(sctx, sel->main_shader_part);
3860    if (sel->main_shader_part_ls)
3861       si_delete_shader(sctx, sel->main_shader_part_ls);
3862    if (sel->main_shader_part_es)
3863       si_delete_shader(sctx, sel->main_shader_part_es);
3864    if (sel->main_shader_part_ngg)
3865       si_delete_shader(sctx, sel->main_shader_part_ngg);
3866 
3867    free(sel->keys);
3868    free(sel->variants);
3869 
3870    util_queue_fence_destroy(&sel->ready);
3871    simple_mtx_destroy(&sel->mutex);
3872    ralloc_free(sel->nir);
3873    free(sel->nir_binary);
3874    free(sel);
3875 }
3876 
si_delete_shader_selector(struct pipe_context * ctx,void * state)3877 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
3878 {
3879    struct si_context *sctx = (struct si_context *)ctx;
3880    struct si_shader_selector *sel = (struct si_shader_selector *)state;
3881 
3882    si_shader_selector_reference(sctx, &sel, NULL);
3883 }
3884 
3885 /**
3886  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3887  */
si_cs_preamble_add_vgt_flush(struct si_context * sctx,bool tmz)3888 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx, bool tmz)
3889 {
3890    struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
3891    bool *has_vgt_flush = tmz ? &sctx->cs_preamble_has_vgt_flush_tmz :
3892                                &sctx->cs_preamble_has_vgt_flush;
3893 
3894    /* We shouldn't get here if registers are shadowed. */
3895    assert(!sctx->shadowing.registers);
3896 
3897    if (*has_vgt_flush)
3898       return;
3899 
3900    /* Done by Vulkan before VGT_FLUSH. */
3901    si_pm4_cmd_add(pm4, PKT3(PKT3_EVENT_WRITE, 0, 0));
3902    si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3903 
3904    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3905    si_pm4_cmd_add(pm4, PKT3(PKT3_EVENT_WRITE, 0, 0));
3906    si_pm4_cmd_add(pm4, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3907    si_pm4_finalize(pm4);
3908 
3909    *has_vgt_flush = true;
3910 }
3911 
3912 /**
3913  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
3914  */
si_emit_vgt_flush(struct radeon_cmdbuf * cs)3915 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
3916 {
3917    radeon_begin(cs);
3918 
3919    /* This is required before VGT_FLUSH. */
3920    radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0));
3921    radeon_emit(EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3922 
3923    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
3924    radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0));
3925    radeon_emit(EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3926    radeon_end();
3927 }
3928 
3929 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)3930 bool si_update_gs_ring_buffers(struct si_context *sctx)
3931 {
3932    assert(sctx->gfx_level < GFX11);
3933 
3934    struct si_shader_selector *es =
3935       sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso;
3936    struct si_shader_selector *gs = sctx->shader.gs.cso;
3937 
3938    /* Chip constants. */
3939    unsigned num_se = sctx->screen->info.max_se;
3940    unsigned wave_size = 64;
3941    unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
3942    /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
3943     * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
3944     */
3945    unsigned gs_vertex_reuse = (sctx->gfx_level >= GFX8 ? 32 : 16) * num_se;
3946    unsigned alignment = 256 * num_se;
3947    /* The maximum size is 63.999 MB per SE. */
3948    unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
3949 
3950    /* Calculate the minimum size. */
3951    unsigned min_esgs_ring_size = align(es->info.esgs_vertex_stride * gs_vertex_reuse * wave_size, alignment);
3952 
3953    /* These are recommended sizes, not minimum sizes. */
3954    unsigned esgs_ring_size =
3955       max_gs_waves * 2 * wave_size * es->info.esgs_vertex_stride * gs->info.gs_input_verts_per_prim;
3956    unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->info.max_gsvs_emit_size;
3957 
3958    min_esgs_ring_size = align(min_esgs_ring_size, alignment);
3959    esgs_ring_size = align(esgs_ring_size, alignment);
3960    gsvs_ring_size = align(gsvs_ring_size, alignment);
3961 
3962    esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
3963    gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
3964 
3965    /* Some rings don't have to be allocated if shaders don't use them.
3966     * (e.g. no varyings between ES and GS or GS and VS)
3967     *
3968     * GFX9 doesn't have the ESGS ring.
3969     */
3970    bool update_esgs = sctx->gfx_level <= GFX8 && esgs_ring_size &&
3971                       (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
3972    bool update_gsvs =
3973       gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
3974 
3975    if (!update_esgs && !update_gsvs)
3976       return true;
3977 
3978    if (update_esgs) {
3979       pipe_resource_reference(&sctx->esgs_ring, NULL);
3980       sctx->esgs_ring =
3981          pipe_aligned_buffer_create(sctx->b.screen,
3982                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
3983                                     SI_RESOURCE_FLAG_DISCARDABLE,
3984                                     PIPE_USAGE_DEFAULT,
3985                                     esgs_ring_size, sctx->screen->info.pte_fragment_size);
3986       if (!sctx->esgs_ring)
3987          return false;
3988    }
3989 
3990    if (update_gsvs) {
3991       pipe_resource_reference(&sctx->gsvs_ring, NULL);
3992       sctx->gsvs_ring =
3993          pipe_aligned_buffer_create(sctx->b.screen,
3994                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
3995                                     SI_RESOURCE_FLAG_DISCARDABLE,
3996                                     PIPE_USAGE_DEFAULT,
3997                                     gsvs_ring_size, sctx->screen->info.pte_fragment_size);
3998       if (!sctx->gsvs_ring)
3999          return false;
4000    }
4001 
4002    /* Set ring bindings. */
4003    if (sctx->esgs_ring) {
4004       assert(sctx->gfx_level <= GFX8);
4005       si_set_ring_buffer(sctx, SI_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
4006                          false, 0, 0, 0);
4007    }
4008    if (sctx->gsvs_ring) {
4009       si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
4010                          false, 0, 0, 0);
4011    }
4012 
4013    if (sctx->shadowing.registers) {
4014       /* These registers will be shadowed, so set them only once. */
4015       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4016 
4017       assert(sctx->gfx_level >= GFX7);
4018 
4019       si_emit_vgt_flush(cs);
4020 
4021       radeon_begin(cs);
4022 
4023       /* Set the GS registers. */
4024       if (sctx->esgs_ring) {
4025          assert(sctx->gfx_level <= GFX8);
4026          radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE,
4027                                 sctx->esgs_ring->width0 / 256);
4028       }
4029       if (sctx->gsvs_ring) {
4030          radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE,
4031                                 sctx->gsvs_ring->width0 / 256);
4032       }
4033       radeon_end();
4034       return true;
4035    }
4036 
4037    /* The codepath without register shadowing. */
4038    for (unsigned tmz = 0; tmz <= 1; tmz++) {
4039       struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4040       uint16_t *gs_ring_state_dw_offset = tmz ? &sctx->gs_ring_state_dw_offset_tmz :
4041                                                 &sctx->gs_ring_state_dw_offset;
4042       unsigned old_ndw = 0;
4043 
4044       si_cs_preamble_add_vgt_flush(sctx, tmz);
4045 
4046       if (!*gs_ring_state_dw_offset) {
4047          /* We are here for the first time. The packets will be added. */
4048          *gs_ring_state_dw_offset = pm4->ndw;
4049       } else {
4050          /* We have been here before. Overwrite the previous packets. */
4051          old_ndw = pm4->ndw;
4052          pm4->ndw = *gs_ring_state_dw_offset;
4053       }
4054 
4055       /* Unallocated rings are written to reserve the space in the pm4
4056        * (to be able to overwrite them later). */
4057       if (sctx->gfx_level >= GFX7) {
4058          if (sctx->gfx_level <= GFX8)
4059             si_pm4_set_reg(pm4, R_030900_VGT_ESGS_RING_SIZE,
4060                            sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4061          si_pm4_set_reg(pm4, R_030904_VGT_GSVS_RING_SIZE,
4062                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4063       } else {
4064          si_pm4_set_reg(pm4, R_0088C8_VGT_ESGS_RING_SIZE,
4065                         sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4066          si_pm4_set_reg(pm4, R_0088CC_VGT_GSVS_RING_SIZE,
4067                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4068       }
4069       si_pm4_finalize(pm4);
4070 
4071       if (old_ndw) {
4072          pm4->ndw = old_ndw;
4073          pm4->last_opcode = 255; /* invalid opcode (we don't save the last opcode) */
4074       }
4075    }
4076 
4077    /* Flush the context to re-emit both cs_preamble states. */
4078    sctx->initial_gfx_cs_size = 0; /* force flush */
4079    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
4080 
4081    return true;
4082 }
4083 
si_shader_lock(struct si_shader * shader)4084 static void si_shader_lock(struct si_shader *shader)
4085 {
4086    simple_mtx_lock(&shader->selector->mutex);
4087    if (shader->previous_stage_sel) {
4088       assert(shader->previous_stage_sel != shader->selector);
4089       simple_mtx_lock(&shader->previous_stage_sel->mutex);
4090    }
4091 }
4092 
si_shader_unlock(struct si_shader * shader)4093 static void si_shader_unlock(struct si_shader *shader)
4094 {
4095    if (shader->previous_stage_sel)
4096       simple_mtx_unlock(&shader->previous_stage_sel->mutex);
4097    simple_mtx_unlock(&shader->selector->mutex);
4098 }
4099 
4100 /**
4101  * @returns 1 if \p sel has been updated to use a new scratch buffer
4102  *          0 if not
4103  *          < 0 if there was a failure
4104  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)4105 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
4106 {
4107    uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
4108 
4109    if (!shader)
4110       return 0;
4111 
4112    /* This shader doesn't need a scratch buffer */
4113    if (shader->config.scratch_bytes_per_wave == 0)
4114       return 0;
4115 
4116    /* Prevent race conditions when updating:
4117     * - si_shader::scratch_bo
4118     * - si_shader::binary::code
4119     * - si_shader::previous_stage::binary::code.
4120     */
4121    si_shader_lock(shader);
4122 
4123    /* This shader is already configured to use the current
4124     * scratch buffer. */
4125    if (shader->scratch_bo == sctx->scratch_buffer) {
4126       si_shader_unlock(shader);
4127       return 0;
4128    }
4129 
4130    assert(sctx->scratch_buffer);
4131 
4132    /* Replace the shader bo with a new bo that has the relocs applied. */
4133    if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
4134       si_shader_unlock(shader);
4135       return -1;
4136    }
4137 
4138    /* Update the shader state to use the new shader bo. */
4139    si_shader_init_pm4_state(sctx->screen, shader);
4140 
4141    si_resource_reference(&shader->scratch_bo, sctx->scratch_buffer);
4142 
4143    si_shader_unlock(shader);
4144    return 1;
4145 }
4146 
si_update_scratch_relocs(struct si_context * sctx)4147 static bool si_update_scratch_relocs(struct si_context *sctx)
4148 {
4149    int r;
4150 
4151    /* Update the shaders, so that they are using the latest scratch.
4152     * The scratch buffer may have been changed since these shaders were
4153     * last used, so we still need to try to update them, even if they
4154     * require scratch buffers smaller than the current size.
4155     */
4156    r = si_update_scratch_buffer(sctx, sctx->shader.ps.current);
4157    if (r < 0)
4158       return false;
4159    if (r == 1)
4160       si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
4161 
4162    r = si_update_scratch_buffer(sctx, sctx->shader.gs.current);
4163    if (r < 0)
4164       return false;
4165    if (r == 1)
4166       si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
4167 
4168    r = si_update_scratch_buffer(sctx, sctx->shader.tcs.current);
4169    if (r < 0)
4170       return false;
4171    if (r == 1)
4172       si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current);
4173 
4174    /* VS can be bound as LS, ES, or VS. */
4175    r = si_update_scratch_buffer(sctx, sctx->shader.vs.current);
4176    if (r < 0)
4177       return false;
4178    if (r == 1) {
4179       if (sctx->shader.vs.current->key.ge.as_ls)
4180          si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
4181       else if (sctx->shader.vs.current->key.ge.as_es)
4182          si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
4183       else if (sctx->shader.vs.current->key.ge.as_ngg)
4184          si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
4185       else
4186          si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
4187    }
4188 
4189    /* TES can be bound as ES or VS. */
4190    r = si_update_scratch_buffer(sctx, sctx->shader.tes.current);
4191    if (r < 0)
4192       return false;
4193    if (r == 1) {
4194       if (sctx->shader.tes.current->key.ge.as_es)
4195          si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
4196       else if (sctx->shader.tes.current->key.ge.as_ngg)
4197          si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
4198       else
4199          si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
4200    }
4201 
4202    return true;
4203 }
4204 
si_update_spi_tmpring_size(struct si_context * sctx,unsigned bytes)4205 bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes)
4206 {
4207    unsigned spi_tmpring_size;
4208    ac_get_scratch_tmpring_size(&sctx->screen->info, bytes,
4209                                &sctx->max_seen_scratch_bytes_per_wave, &spi_tmpring_size);
4210 
4211    unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave *
4212                                   sctx->screen->info.max_scratch_waves;
4213 
4214    if (scratch_needed_size > 0) {
4215       if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
4216          /* Create a bigger scratch buffer */
4217          si_resource_reference(&sctx->scratch_buffer, NULL);
4218 
4219          sctx->scratch_buffer = si_aligned_buffer_create(
4220             &sctx->screen->b,
4221             PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4222             SI_RESOURCE_FLAG_DISCARDABLE,
4223             PIPE_USAGE_DEFAULT, scratch_needed_size,
4224             sctx->screen->info.pte_fragment_size);
4225          if (!sctx->scratch_buffer)
4226             return false;
4227       }
4228 
4229       if (sctx->gfx_level < GFX11 && !si_update_scratch_relocs(sctx))
4230          return false;
4231    }
4232 
4233    if (spi_tmpring_size != sctx->spi_tmpring_size) {
4234       sctx->spi_tmpring_size = spi_tmpring_size;
4235       si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
4236    }
4237    return true;
4238 }
4239 
si_init_tess_factor_ring(struct si_context * sctx)4240 void si_init_tess_factor_ring(struct si_context *sctx)
4241 {
4242    assert(!sctx->tess_rings);
4243 
4244    /* The address must be aligned to 2^19, because the shader only
4245     * receives the high 13 bits. Align it to 2MB to match the GPU page size.
4246     */
4247    sctx->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
4248                                                  PIPE_RESOURCE_FLAG_UNMAPPABLE |
4249                                                  SI_RESOURCE_FLAG_32BIT |
4250                                                  SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4251                                                  SI_RESOURCE_FLAG_DISCARDABLE,
4252                                                  PIPE_USAGE_DEFAULT,
4253                                                  sctx->screen->hs.tess_offchip_ring_size +
4254                                                  sctx->screen->hs.tess_factor_ring_size,
4255                                                  2 * 1024 * 1024);
4256    if (!sctx->tess_rings)
4257       return;
4258 
4259    if (sctx->screen->info.has_tmz_support) {
4260       sctx->tess_rings_tmz = pipe_aligned_buffer_create(sctx->b.screen,
4261                                                         PIPE_RESOURCE_FLAG_UNMAPPABLE |
4262                                                         PIPE_RESOURCE_FLAG_ENCRYPTED |
4263                                                         SI_RESOURCE_FLAG_32BIT |
4264                                                         SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4265                                                         SI_RESOURCE_FLAG_DISCARDABLE,
4266                                                         PIPE_USAGE_DEFAULT,
4267                                                         sctx->screen->hs.tess_offchip_ring_size +
4268                                                         sctx->screen->hs.tess_factor_ring_size,
4269                                                         2 * 1024 * 1024);
4270    }
4271 
4272    uint64_t factor_va =
4273       si_resource(sctx->tess_rings)->gpu_address + sctx->screen->hs.tess_offchip_ring_size;
4274 
4275    unsigned tf_ring_size_field = sctx->screen->hs.tess_factor_ring_size / 4;
4276    if (sctx->gfx_level >= GFX11)
4277       tf_ring_size_field /= sctx->screen->info.max_se;
4278 
4279    assert((tf_ring_size_field & C_030938_SIZE) == 0);
4280 
4281    if (sctx->shadowing.registers) {
4282       /* These registers will be shadowed, so set them only once. */
4283       /* TODO: tmz + shadowed_regs support */
4284       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4285 
4286       assert(sctx->gfx_level >= GFX7);
4287 
4288       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(sctx->tess_rings),
4289                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RINGS);
4290       si_emit_vgt_flush(cs);
4291 
4292       /* Set tessellation registers. */
4293       radeon_begin(cs);
4294       radeon_set_uconfig_reg(R_030938_VGT_TF_RING_SIZE,
4295                              S_030938_SIZE(tf_ring_size_field));
4296       radeon_set_uconfig_reg(R_030940_VGT_TF_MEMORY_BASE, factor_va >> 8);
4297       if (sctx->gfx_level >= GFX10) {
4298          radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI,
4299                                 S_030984_BASE_HI(factor_va >> 40));
4300       } else if (sctx->gfx_level == GFX9) {
4301          radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI,
4302                                 S_030944_BASE_HI(factor_va >> 40));
4303       }
4304       radeon_set_uconfig_reg(R_03093C_VGT_HS_OFFCHIP_PARAM,
4305                              sctx->screen->hs.hs_offchip_param);
4306       radeon_end();
4307       return;
4308    }
4309 
4310    /* The codepath without register shadowing is below. */
4311    /* Add these registers to cs_preamble_state. */
4312    for (unsigned tmz = 0; tmz <= 1; tmz++) {
4313       struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4314       struct pipe_resource *tf_ring = tmz ? sctx->tess_rings_tmz : sctx->tess_rings;
4315 
4316       if (!tf_ring)
4317          continue; /* TMZ not supported */
4318 
4319       uint64_t va = si_resource(tf_ring)->gpu_address + sctx->screen->hs.tess_offchip_ring_size;
4320 
4321       si_cs_preamble_add_vgt_flush(sctx, tmz);
4322 
4323       if (sctx->gfx_level >= GFX7) {
4324          si_pm4_set_reg(pm4, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size_field));
4325          si_pm4_set_reg(pm4, R_03093C_VGT_HS_OFFCHIP_PARAM, sctx->screen->hs.hs_offchip_param);
4326          si_pm4_set_reg(pm4, R_030940_VGT_TF_MEMORY_BASE, va >> 8);
4327          if (sctx->gfx_level >= GFX10)
4328             si_pm4_set_reg(pm4, R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(va >> 40));
4329          else if (sctx->gfx_level == GFX9)
4330             si_pm4_set_reg(pm4, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(va >> 40));
4331       } else {
4332          si_pm4_set_reg(pm4, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size_field));
4333          si_pm4_set_reg(pm4, R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
4334          si_pm4_set_reg(pm4, R_0089B0_VGT_HS_OFFCHIP_PARAM, sctx->screen->hs.hs_offchip_param);
4335       }
4336       si_pm4_finalize(pm4);
4337    }
4338 
4339    /* Flush the context to re-emit the cs_preamble state.
4340     * This is done only once in a lifetime of a context.
4341     */
4342    sctx->initial_gfx_cs_size = 0; /* force flush */
4343    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
4344 }
4345 
si_emit_vgt_pipeline_state(struct si_context * sctx,unsigned index)4346 static void si_emit_vgt_pipeline_state(struct si_context *sctx, unsigned index)
4347 {
4348    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4349 
4350    radeon_begin(cs);
4351    radeon_opt_set_context_reg(sctx, R_028B54_VGT_SHADER_STAGES_EN, SI_TRACKED_VGT_SHADER_STAGES_EN,
4352                               sctx->vgt_shader_stages_en);
4353    radeon_end_update_context_roll(sctx);
4354 
4355    if (sctx->gfx_level >= GFX10) {
4356       uint32_t ge_cntl = sctx->ge_cntl;
4357 
4358       if (sctx->gfx_level < GFX11 && sctx->shader.tes.cso) {
4359          /* This must be a multiple of VGT_LS_HS_CONFIG.NUM_PATCHES. */
4360          ge_cntl |= S_03096C_PRIM_GRP_SIZE_GFX10(sctx->num_patches_per_workgroup);
4361       }
4362 
4363       radeon_begin_again(cs);
4364       radeon_opt_set_uconfig_reg(sctx, R_03096C_GE_CNTL, SI_TRACKED_GE_CNTL, ge_cntl);
4365       radeon_end();
4366    }
4367 }
4368 
si_emit_scratch_state(struct si_context * sctx,unsigned index)4369 static void si_emit_scratch_state(struct si_context *sctx, unsigned index)
4370 {
4371    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4372 
4373    radeon_begin(cs);
4374    if (sctx->gfx_level >= GFX11) {
4375       radeon_set_context_reg_seq(R_0286E8_SPI_TMPRING_SIZE, 3);
4376       radeon_emit(sctx->spi_tmpring_size);                  /* SPI_TMPRING_SIZE */
4377       radeon_emit(sctx->scratch_buffer->gpu_address >> 8);  /* SPI_GFX_SCRATCH_BASE_LO */
4378       radeon_emit(sctx->scratch_buffer->gpu_address >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
4379    } else {
4380       radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4381    }
4382    radeon_end();
4383 
4384    if (sctx->scratch_buffer) {
4385       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer,
4386                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER);
4387    }
4388 }
4389 
4390 struct si_fixed_func_tcs_shader_key {
4391    uint64_t outputs_written;
4392    uint8_t vertices_out;
4393 };
4394 
si_fixed_func_tcs_shader_key_hash(const void * key)4395 static uint32_t si_fixed_func_tcs_shader_key_hash(const void *key)
4396 {
4397    return _mesa_hash_data(key, sizeof(struct si_fixed_func_tcs_shader_key));
4398 }
4399 
si_fixed_func_tcs_shader_key_equals(const void * a,const void * b)4400 static bool si_fixed_func_tcs_shader_key_equals(const void *a, const void *b)
4401 {
4402    return memcmp(a, b, sizeof(struct si_fixed_func_tcs_shader_key)) == 0;
4403 }
4404 
si_set_tcs_to_fixed_func_shader(struct si_context * sctx)4405 bool si_set_tcs_to_fixed_func_shader(struct si_context *sctx)
4406 {
4407    if (!sctx->fixed_func_tcs_shader_cache) {
4408       sctx->fixed_func_tcs_shader_cache = _mesa_hash_table_create(
4409          NULL, si_fixed_func_tcs_shader_key_hash,
4410          si_fixed_func_tcs_shader_key_equals);
4411    }
4412 
4413    struct si_fixed_func_tcs_shader_key key;
4414    key.outputs_written = sctx->shader.vs.cso->info.outputs_written_before_tes_gs;
4415    key.vertices_out = sctx->patch_vertices;
4416 
4417    struct hash_entry *entry = _mesa_hash_table_search(
4418       sctx->fixed_func_tcs_shader_cache, &key);
4419 
4420    struct si_shader_selector *tcs;
4421    if (entry)
4422       tcs = (struct si_shader_selector *)entry->data;
4423    else {
4424       tcs = (struct si_shader_selector *)si_create_passthrough_tcs(sctx);
4425       if (!tcs)
4426          return false;
4427       _mesa_hash_table_insert(sctx->fixed_func_tcs_shader_cache, &key, (void *)tcs);
4428    }
4429 
4430    sctx->shader.tcs.cso = tcs;
4431    sctx->shader.tcs.key.ge.part.tcs.epilog.invoc0_tess_factors_are_def =
4432       tcs->info.tessfactors_are_def_in_all_invocs;
4433 
4434    return true;
4435 }
4436 
si_update_tess_in_out_patch_vertices(struct si_context * sctx)4437 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx)
4438 {
4439    if (sctx->is_user_tcs) {
4440       struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4441 
4442       bool same_patch_vertices =
4443          sctx->gfx_level >= GFX9 &&
4444          sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out;
4445 
4446       if (sctx->shader.tcs.key.ge.opt.same_patch_vertices != same_patch_vertices) {
4447          sctx->shader.tcs.key.ge.opt.same_patch_vertices = same_patch_vertices;
4448          sctx->do_update_shaders = true;
4449       }
4450    } else {
4451       /* These fields are static for fixed function TCS. So no need to set
4452        * do_update_shaders between fixed-TCS draws. As fixed-TCS to user-TCS
4453        * or opposite, do_update_shaders should already be set by bind state.
4454        */
4455       sctx->shader.tcs.key.ge.opt.same_patch_vertices = sctx->gfx_level >= GFX9;
4456 
4457       /* User may only change patch vertices, needs to update fixed func TCS. */
4458       if (sctx->shader.tcs.cso &&
4459           sctx->shader.tcs.cso->info.base.tess.tcs_vertices_out != sctx->patch_vertices)
4460          sctx->do_update_shaders = true;
4461    }
4462 }
4463 
si_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)4464 static void si_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
4465 {
4466    struct si_context *sctx = (struct si_context *)ctx;
4467 
4468    if (sctx->patch_vertices != patch_vertices) {
4469       sctx->patch_vertices = patch_vertices;
4470       si_update_tess_in_out_patch_vertices(sctx);
4471       if (sctx->shader.tcs.current) {
4472          /* Update the io layout now if possible,
4473           * otherwise make sure it's done by si_update_shaders.
4474           */
4475          if (sctx->tess_rings)
4476             si_update_tess_io_layout_state(sctx);
4477          else
4478             sctx->do_update_shaders = true;
4479       }
4480 
4481    }
4482 }
4483 
4484 /**
4485  * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
4486  * LS.LDS_SIZE is shared by all 3 shader stages.
4487  *
4488  * The information about LDS and other non-compile-time parameters is then
4489  * written to userdata SGPRs.
4490  *
4491  * This depends on:
4492  * - patch_vertices
4493  * - VS and the currently selected shader variant (called by si_update_shaders)
4494  * - TCS and the currently selected shader variant (called by si_update_shaders)
4495  * - tess_uses_prim_id (called by si_update_shaders)
4496  * - sh_base[TESS_EVAL] depending on GS on/off (called by si_update_shaders)
4497  */
si_update_tess_io_layout_state(struct si_context * sctx)4498 void si_update_tess_io_layout_state(struct si_context *sctx)
4499 {
4500    struct si_shader *ls_current;
4501    struct si_shader_selector *ls;
4502    struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4503    unsigned tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
4504    bool has_primid_instancing_bug = sctx->gfx_level == GFX6 && sctx->screen->info.max_se == 1;
4505    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4506    uint8_t num_tcs_input_cp = sctx->patch_vertices;
4507 
4508    assert(sctx->shader.tcs.current);
4509 
4510    /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
4511    if (sctx->gfx_level >= GFX9) {
4512       ls_current = sctx->shader.tcs.current;
4513       ls = ls_current->key.ge.part.tcs.ls;
4514    } else {
4515       ls_current = sctx->shader.vs.current;
4516       ls = sctx->shader.vs.cso;
4517    }
4518 
4519    if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
4520        sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
4521        (!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid)))
4522       return;
4523 
4524    sctx->last_ls = ls_current;
4525    sctx->last_tcs = tcs;
4526    sctx->last_tes_sh_base = tes_sh_base;
4527    sctx->last_num_tcs_input_cp = num_tcs_input_cp;
4528    sctx->last_tess_uses_primid = tess_uses_primid;
4529 
4530    /* This calculates how shader inputs and outputs among VS, TCS, and TES
4531     * are laid out in LDS. */
4532    unsigned num_tcs_outputs = util_last_bit64(tcs->info.outputs_written_before_tes_gs);
4533    unsigned num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
4534    unsigned num_tcs_patch_outputs = util_last_bit64(tcs->info.patch_outputs_written);
4535 
4536    unsigned input_vertex_size = ls->info.lshs_vertex_stride;
4537    unsigned output_vertex_size = num_tcs_outputs * 16;
4538    unsigned input_patch_size;
4539 
4540    /* Allocate LDS for TCS inputs only if it's used. */
4541    if (!ls_current->key.ge.opt.same_patch_vertices ||
4542        tcs->info.base.inputs_read & ~tcs->info.tcs_vgpr_only_inputs)
4543       input_patch_size = num_tcs_input_cp * input_vertex_size;
4544    else
4545       input_patch_size = 0;
4546 
4547    unsigned pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
4548    unsigned output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
4549    unsigned lds_per_patch;
4550 
4551    /* Compute the LDS size per patch.
4552     *
4553     * LDS is used to store TCS outputs if they are read, and to store tess
4554     * factors if they are not defined in all invocations.
4555     */
4556    if (tcs->info.base.outputs_read ||
4557        tcs->info.base.patch_outputs_read ||
4558        !tcs->info.tessfactors_are_def_in_all_invocs) {
4559       lds_per_patch = input_patch_size + output_patch_size;
4560    } else {
4561       /* LDS will only store TCS inputs. The offchip buffer will only store TCS outputs. */
4562       lds_per_patch = MAX2(input_patch_size, output_patch_size);
4563    }
4564 
4565    /* Ensure that we only need 4 waves per CU, so that we don't need to check
4566     * resource usage (such as whether we have enough VGPRs to fit the whole
4567     * threadgroup into the CU). It also ensures that the number of tcs in and out
4568     * vertices per threadgroup are at most 256, which is the hw limit.
4569     */
4570    unsigned max_verts_per_patch = MAX2(num_tcs_input_cp, num_tcs_output_cp);
4571    unsigned num_patches = 256 / max_verts_per_patch;
4572 
4573    /* Not necessary for correctness, but higher numbers are slower.
4574     * The hardware can do more, but the radeonsi shader constant is
4575     * limited to 6 bits.
4576     */
4577    num_patches = MIN2(num_patches, 64); /* e.g. 64 triangles in exactly 3 waves */
4578 
4579    /* When distributed tessellation is unsupported, switch between SEs
4580     * at a higher frequency to manually balance the workload between SEs.
4581     */
4582    if (!sctx->screen->info.has_distributed_tess && sctx->screen->info.max_se > 1)
4583       num_patches = MIN2(num_patches, 16); /* recommended */
4584 
4585    /* Make sure the output data fits in the offchip buffer */
4586    num_patches =
4587       MIN2(num_patches, (sctx->screen->hs.tess_offchip_block_dw_size * 4) / output_patch_size);
4588 
4589    /* Make sure that the data fits in LDS. This assumes the shaders only
4590     * use LDS for the inputs and outputs.
4591     *
4592     * The maximum allowed LDS size is 32K. Higher numbers can hang.
4593     * Use 16K as the maximum, so that we can fit 2 workgroups on the same CU.
4594     */
4595    ASSERTED unsigned max_lds_size = 32 * 1024; /* hw limit */
4596    unsigned target_lds_size = 16 * 1024; /* target at least 2 workgroups per CU, 16K each */
4597    num_patches = MIN2(num_patches, target_lds_size / lds_per_patch);
4598    num_patches = MAX2(num_patches, 1);
4599    assert(num_patches * lds_per_patch <= max_lds_size);
4600 
4601    /* Make sure that vector lanes are fully occupied by cutting off the last wave
4602     * if it's only partially filled.
4603     */
4604    unsigned temp_verts_per_tg = num_patches * max_verts_per_patch;
4605    unsigned wave_size = ls_current->wave_size;
4606 
4607    if (temp_verts_per_tg > wave_size &&
4608        (wave_size - temp_verts_per_tg % wave_size >= MAX2(max_verts_per_patch, 8)))
4609       num_patches = (temp_verts_per_tg & ~(wave_size - 1)) / max_verts_per_patch;
4610 
4611    if (sctx->gfx_level == GFX6) {
4612       /* GFX6 bug workaround, related to power management. Limit LS-HS
4613        * threadgroups to only one wave.
4614        */
4615       unsigned one_wave = wave_size / max_verts_per_patch;
4616       num_patches = MIN2(num_patches, one_wave);
4617    }
4618 
4619    /* The VGT HS block increments the patch ID unconditionally
4620     * within a single threadgroup. This results in incorrect
4621     * patch IDs when instanced draws are used.
4622     *
4623     * The intended solution is to restrict threadgroups to
4624     * a single instance by setting SWITCH_ON_EOI, which
4625     * should cause IA to split instances up. However, this
4626     * doesn't work correctly on GFX6 when there is no other
4627     * SE to switch to.
4628     */
4629    if (has_primid_instancing_bug && tess_uses_primid)
4630       num_patches = 1;
4631 
4632    if (sctx->num_patches_per_workgroup != num_patches) {
4633       sctx->num_patches_per_workgroup = num_patches;
4634       si_mark_atom_dirty(sctx, &sctx->atoms.s.vgt_pipeline_state);
4635    }
4636 
4637    unsigned output_patch0_offset = input_patch_size * num_patches;
4638    unsigned perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
4639 
4640    /* Compute userdata SGPRs. */
4641    assert(((input_vertex_size / 4) & ~0xff) == 0);
4642    assert(((perpatch_output_offset / 4) & ~0xffff) == 0);
4643    assert(num_tcs_input_cp <= 32);
4644    assert(num_tcs_output_cp <= 32);
4645    assert(num_patches <= 64);
4646    assert(((pervertex_output_patch_size * num_patches) & ~0xffff) == 0);
4647 
4648    uint64_t ring_va = (unlikely(sctx->ws->cs_is_secure(&sctx->gfx_cs)) ?
4649       si_resource(sctx->tess_rings_tmz) : si_resource(sctx->tess_rings))->gpu_address;
4650    assert((ring_va & u_bit_consecutive(0, 19)) == 0);
4651 
4652    sctx->tes_offchip_ring_va_sgpr = ring_va;
4653    sctx->tcs_offchip_layout =
4654       (num_patches - 1) | ((num_tcs_output_cp - 1) << 6) | ((num_tcs_input_cp - 1) << 11) |
4655       ((pervertex_output_patch_size * num_patches) << 16);
4656 
4657    /* Compute the LDS size. */
4658    unsigned lds_size = lds_per_patch * num_patches;
4659 
4660    if (sctx->gfx_level >= GFX7) {
4661       assert(lds_size <= 65536);
4662       lds_size = align(lds_size, 512) / 512;
4663    } else {
4664       assert(lds_size <= 32768);
4665       lds_size = align(lds_size, 256) / 256;
4666    }
4667 
4668    /* Set SI_SGPR_VS_STATE_BITS. */
4669    SET_FIELD(sctx->current_vs_state, VS_STATE_LS_OUT_VERTEX_SIZE, input_vertex_size / 4);
4670    SET_FIELD(sctx->current_vs_state, VS_STATE_TCS_OUT_PATCH0_OFFSET, perpatch_output_offset / 4);
4671 
4672    /* We should be able to support in-shader LDS use with LLVM >= 9
4673     * by just adding the lds_sizes together, but it has never
4674     * been tested. */
4675    assert(ls_current->config.lds_size == 0);
4676 
4677    unsigned ls_hs_rsrc2;
4678 
4679    if (sctx->gfx_level >= GFX9) {
4680       ls_hs_rsrc2 = sctx->shader.tcs.current->config.rsrc2;
4681 
4682       if (sctx->gfx_level >= GFX10)
4683          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
4684       else
4685          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
4686    } else {
4687       ls_hs_rsrc2 = sctx->shader.vs.current->config.rsrc2;
4688 
4689       si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
4690       ls_hs_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
4691    }
4692 
4693    sctx->ls_hs_rsrc2 = ls_hs_rsrc2;
4694    sctx->ls_hs_config =
4695          S_028B58_NUM_PATCHES(sctx->num_patches_per_workgroup) |
4696          S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
4697          S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
4698 
4699    si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
4700 }
4701 
si_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4702 static void si_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4703 {
4704    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4705 
4706    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4707       return;
4708 
4709    radeon_begin(cs);
4710    if (sctx->screen->info.has_set_sh_pairs_packed) {
4711       gfx11_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4712                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4713 
4714       /* Set userdata SGPRs for merged LS-HS. */
4715       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4716                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4717                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4718                                 sctx->tcs_offchip_layout);
4719       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4720                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4721                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4722                                 sctx->tes_offchip_ring_va_sgpr);
4723    } else if (sctx->gfx_level >= GFX9) {
4724       radeon_opt_set_sh_reg(sctx, R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4725                             SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4726 
4727       /* Set userdata SGPRs for merged LS-HS. */
4728       radeon_opt_set_sh_reg2(sctx,
4729                              R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4730                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4731                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4732                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4733    } else {
4734       /* Due to a hw bug, RSRC2_LS must be written twice with another
4735        * LS register written in between. */
4736       if (sctx->gfx_level == GFX7 && sctx->family != CHIP_HAWAII)
4737          radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, sctx->ls_hs_rsrc2);
4738       radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
4739       radeon_emit(sctx->shader.vs.current->config.rsrc1);
4740       radeon_emit(sctx->ls_hs_rsrc2);
4741 
4742       /* Set userdata SGPRs for TCS. */
4743       radeon_opt_set_sh_reg3(sctx,
4744                              R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4745                              GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4746                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4747                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr,
4748                              sctx->current_vs_state);
4749    }
4750 
4751    /* Set userdata SGPRs for TES. */
4752    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4753    assert(tes_sh_base);
4754 
4755    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4756     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4757     * for tessellation and are unused in TES.
4758     */
4759    if (sctx->screen->info.has_set_sh_pairs_packed) {
4760       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4761                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4762                                 sctx->tcs_offchip_layout);
4763       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
4764                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
4765                                 sctx->tes_offchip_ring_va_sgpr);
4766    } else {
4767       bool has_gs = sctx->ngg || sctx->shader.gs.cso;
4768 
4769       radeon_opt_set_sh_reg2(sctx, tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4770                              has_gs ? SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX
4771                                     : SI_TRACKED_SPI_SHADER_USER_DATA_VS__BASE_VERTEX,
4772                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4773    }
4774    radeon_end();
4775 
4776    radeon_begin_again(cs);
4777    if (sctx->gfx_level >= GFX7) {
4778       radeon_opt_set_context_reg_idx(sctx, R_028B58_VGT_LS_HS_CONFIG,
4779                                      SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
4780    } else {
4781       radeon_opt_set_context_reg(sctx, R_028B58_VGT_LS_HS_CONFIG,
4782                                  SI_TRACKED_VGT_LS_HS_CONFIG, sctx->ls_hs_config);
4783    }
4784    radeon_end_update_context_roll(sctx);
4785 }
4786 
si_init_screen_live_shader_cache(struct si_screen * sscreen)4787 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
4788 {
4789    util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
4790                                si_destroy_shader_selector);
4791 }
4792 
4793 template<int NUM_INTERP>
si_emit_spi_map(struct si_context * sctx,unsigned index)4794 static void si_emit_spi_map(struct si_context *sctx, unsigned index)
4795 {
4796    struct si_shader *ps = sctx->shader.ps.current;
4797    unsigned spi_ps_input_cntl[NUM_INTERP];
4798 
4799    STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32);
4800 
4801    if (!NUM_INTERP)
4802       return;
4803 
4804    struct si_shader *vs = si_get_vs(sctx)->current;
4805    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
4806 
4807    for (unsigned i = 0; i < NUM_INTERP; i++) {
4808       union si_input_info input = ps->info.ps_inputs[i];
4809       unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic];
4810       bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20;
4811 
4812       if (non_default_val) {
4813          if (input.interpolate == INTERP_MODE_FLAT ||
4814              (input.interpolate == INTERP_MODE_COLOR && rs->flatshade))
4815             ps_input_cntl |= S_028644_FLAT_SHADE(1);
4816 
4817          if (input.fp16_lo_hi_valid) {
4818             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4819                              S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */
4820                              S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2));
4821          }
4822       }
4823 
4824       if (input.semantic == VARYING_SLOT_PNTC ||
4825           (input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 &&
4826            rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) {
4827          /* Overwrite the whole value (except OFFSET) for sprite coordinates. */
4828          ps_input_cntl &= ~C_028644_OFFSET;
4829          ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
4830          if (input.fp16_lo_hi_valid & 0x1) {
4831             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
4832                              S_028644_ATTR0_VALID(1);
4833          }
4834       }
4835 
4836       spi_ps_input_cntl[i] = ps_input_cntl;
4837    }
4838 
4839    /* Performance notes:
4840     *    Dota 2: Only ~16% of SPI map updates set different values.
4841     *    Talos: Only ~9% of SPI map updates set different values.
4842     */
4843    radeon_begin(&sctx->gfx_cs);
4844    radeon_opt_set_context_regn(sctx, R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
4845                                sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
4846    radeon_end_update_context_roll(sctx);
4847 }
4848 
si_init_shader_functions(struct si_context * sctx)4849 void si_init_shader_functions(struct si_context *sctx)
4850 {
4851    sctx->atoms.s.vgt_pipeline_state.emit = si_emit_vgt_pipeline_state;
4852    sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
4853    sctx->atoms.s.tess_io_layout.emit = si_emit_tess_io_layout_state;
4854 
4855    sctx->b.create_vs_state = si_create_shader;
4856    sctx->b.create_tcs_state = si_create_shader;
4857    sctx->b.create_tes_state = si_create_shader;
4858    sctx->b.create_gs_state = si_create_shader;
4859    sctx->b.create_fs_state = si_create_shader;
4860 
4861    sctx->b.bind_vs_state = si_bind_vs_shader;
4862    sctx->b.bind_tcs_state = si_bind_tcs_shader;
4863    sctx->b.bind_tes_state = si_bind_tes_shader;
4864    sctx->b.bind_gs_state = si_bind_gs_shader;
4865    sctx->b.bind_fs_state = si_bind_ps_shader;
4866 
4867    sctx->b.delete_vs_state = si_delete_shader_selector;
4868    sctx->b.delete_tcs_state = si_delete_shader_selector;
4869    sctx->b.delete_tes_state = si_delete_shader_selector;
4870    sctx->b.delete_gs_state = si_delete_shader_selector;
4871    sctx->b.delete_fs_state = si_delete_shader_selector;
4872 
4873    sctx->b.set_patch_vertices = si_set_patch_vertices;
4874 
4875    /* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys.
4876     * It improves performance for viewperf/snx.
4877     */
4878    sctx->emit_spi_map[0] = si_emit_spi_map<0>;
4879    sctx->emit_spi_map[1] = si_emit_spi_map<1>;
4880    sctx->emit_spi_map[2] = si_emit_spi_map<2>;
4881    sctx->emit_spi_map[3] = si_emit_spi_map<3>;
4882    sctx->emit_spi_map[4] = si_emit_spi_map<4>;
4883    sctx->emit_spi_map[5] = si_emit_spi_map<5>;
4884    sctx->emit_spi_map[6] = si_emit_spi_map<6>;
4885    sctx->emit_spi_map[7] = si_emit_spi_map<7>;
4886    sctx->emit_spi_map[8] = si_emit_spi_map<8>;
4887    sctx->emit_spi_map[9] = si_emit_spi_map<9>;
4888    sctx->emit_spi_map[10] = si_emit_spi_map<10>;
4889    sctx->emit_spi_map[11] = si_emit_spi_map<11>;
4890    sctx->emit_spi_map[12] = si_emit_spi_map<12>;
4891    sctx->emit_spi_map[13] = si_emit_spi_map<13>;
4892    sctx->emit_spi_map[14] = si_emit_spi_map<14>;
4893    sctx->emit_spi_map[15] = si_emit_spi_map<15>;
4894    sctx->emit_spi_map[16] = si_emit_spi_map<16>;
4895    sctx->emit_spi_map[17] = si_emit_spi_map<17>;
4896    sctx->emit_spi_map[18] = si_emit_spi_map<18>;
4897    sctx->emit_spi_map[19] = si_emit_spi_map<19>;
4898    sctx->emit_spi_map[20] = si_emit_spi_map<20>;
4899    sctx->emit_spi_map[21] = si_emit_spi_map<21>;
4900    sctx->emit_spi_map[22] = si_emit_spi_map<22>;
4901    sctx->emit_spi_map[23] = si_emit_spi_map<23>;
4902    sctx->emit_spi_map[24] = si_emit_spi_map<24>;
4903    sctx->emit_spi_map[25] = si_emit_spi_map<25>;
4904    sctx->emit_spi_map[26] = si_emit_spi_map<26>;
4905    sctx->emit_spi_map[27] = si_emit_spi_map<27>;
4906    sctx->emit_spi_map[28] = si_emit_spi_map<28>;
4907    sctx->emit_spi_map[29] = si_emit_spi_map<29>;
4908    sctx->emit_spi_map[30] = si_emit_spi_map<30>;
4909    sctx->emit_spi_map[31] = si_emit_spi_map<31>;
4910    sctx->emit_spi_map[32] = si_emit_spi_map<32>;
4911 }
4912