1 /*
2 * Copyright © 2010 - 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef BRW_COMPILER_H
25 #define BRW_COMPILER_H
26
27 #include <stdio.h>
28 #include "c11/threads.h"
29 #include "dev/intel_device_info.h"
30 #include "isl/isl.h"
31 #include "util/macros.h"
32 #include "util/mesa-sha1.h"
33 #include "util/enum_operators.h"
34 #include "util/ralloc.h"
35 #include "util/u_math.h"
36 #include "brw_isa_info.h"
37 #include "intel_shader_enums.h"
38
39 #ifdef __cplusplus
40 extern "C" {
41 #endif
42
43 struct ra_regs;
44 struct nir_shader;
45 struct shader_info;
46
47 struct nir_shader_compiler_options;
48 typedef struct nir_shader nir_shader;
49
50 struct brw_compiler {
51 const struct intel_device_info *devinfo;
52
53 /* This lock must be taken if the compiler is to be modified in any way,
54 * including adding something to the ralloc child list.
55 */
56 mtx_t mutex;
57
58 struct brw_isa_info isa;
59
60 struct {
61 struct ra_regs *regs;
62
63 /**
64 * Array of the ra classes for the unaligned contiguous register
65 * block sizes used, indexed by register size.
66 */
67 struct ra_class *classes[16];
68 } fs_reg_set;
69
70 void (*shader_debug_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
71 void (*shader_perf_log)(void *, unsigned *id, const char *str, ...) PRINTFLIKE(3, 4);
72
73 bool use_tcs_multi_patch;
74 struct nir_shader_compiler_options *nir_options[MESA_ALL_SHADER_STAGES];
75
76 /**
77 * Apply workarounds for SIN and COS output range problems.
78 * This can negatively impact performance.
79 */
80 bool precise_trig;
81
82 /**
83 * Is 3DSTATE_CONSTANT_*'s Constant Buffer 0 relative to Dynamic State
84 * Base Address? (If not, it's a normal GPU address.)
85 */
86 bool constant_buffer_0_is_relative;
87
88 /**
89 * Whether or not the driver supports NIR shader constants. This controls
90 * whether nir_opt_large_constants will be run.
91 */
92 bool supports_shader_constants;
93
94 /**
95 * Whether indirect UBO loads should use the sampler or go through the
96 * data/constant cache. For the sampler, UBO surface states have to be set
97 * up with VK_FORMAT_R32G32B32A32_FLOAT whereas if it's going through the
98 * constant or data cache, UBOs must use VK_FORMAT_RAW.
99 */
100 bool indirect_ubos_use_sampler;
101
102 /**
103 * Gfx12.5+ has a bit in the SEND instruction extending the bindless
104 * surface offset range from 20 to 26 bits, effectively giving us 4Gb of
105 * bindless surface descriptors instead of 64Mb previously.
106 */
107 bool extended_bindless_surface_offset;
108
109 /**
110 * Gfx11+ has a bit in the dword 3 of the sampler message header that
111 * indicates whether the sampler handle is relative to the dynamic state
112 * base address (0) or the bindless sampler base address (1). The driver
113 * can select this.
114 */
115 bool use_bindless_sampler_offset;
116
117 /**
118 * Should DPAS instructions be lowered?
119 *
120 * This will be set for all platforms before Gfx12.5. It may also be set
121 * platforms that support DPAS for testing purposes.
122 */
123 bool lower_dpas;
124
125 /**
126 * Calling the ra_allocate function after each register spill can take
127 * several minutes. This option speeds up shader compilation by spilling
128 * more registers after the ra_allocate failure. Required for
129 * Cyberpunk 2077, which uses a watchdog thread to terminate the process
130 * in case the render thread hasn't responded within 2 minutes.
131 */
132 int spilling_rate;
133
134 struct nir_shader *clc_shader;
135
136 struct {
137 unsigned mue_header_packing;
138 bool mue_compaction;
139 } mesh;
140 };
141
142 #define brw_shader_debug_log(compiler, data, fmt, ... ) do { \
143 static unsigned id = 0; \
144 compiler->shader_debug_log(data, &id, fmt, ##__VA_ARGS__); \
145 } while (0)
146
147 #define brw_shader_perf_log(compiler, data, fmt, ... ) do { \
148 static unsigned id = 0; \
149 compiler->shader_perf_log(data, &id, fmt, ##__VA_ARGS__); \
150 } while (0)
151
152 /**
153 * We use a constant subgroup size of 32. It really only needs to be a
154 * maximum and, since we do SIMD32 for compute shaders in some cases, it
155 * needs to be at least 32. SIMD8 and SIMD16 shaders will still claim a
156 * subgroup size of 32 but will act as if 16 or 24 of those channels are
157 * disabled.
158 */
159 #define BRW_SUBGROUP_SIZE 32
160
161 static inline bool
brw_shader_stage_is_bindless(gl_shader_stage stage)162 brw_shader_stage_is_bindless(gl_shader_stage stage)
163 {
164 return stage >= MESA_SHADER_RAYGEN &&
165 stage <= MESA_SHADER_CALLABLE;
166 }
167
168 static inline bool
brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)169 brw_shader_stage_requires_bindless_resources(gl_shader_stage stage)
170 {
171 return brw_shader_stage_is_bindless(stage) || gl_shader_stage_is_mesh(stage);
172 }
173
174 /**
175 * Program key structures.
176 *
177 * When drawing, we look for the currently bound shaders in the program
178 * cache. This is essentially a hash table lookup, and these are the keys.
179 *
180 * Sometimes OpenGL features specified as state need to be simulated via
181 * shader code, due to a mismatch between the API and the hardware. This
182 * is often referred to as "non-orthagonal state" or "NOS". We store NOS
183 * in the program key so it's considered when searching for a program. If
184 * we haven't seen a particular combination before, we have to recompile a
185 * new specialized version.
186 *
187 * Shader compilation should not look up state in gl_context directly, but
188 * instead use the copy in the program key. This guarantees recompiles will
189 * happen correctly.
190 *
191 * @{
192 */
193
194 enum PACKED gfx6_gather_sampler_wa {
195 WA_SIGN = 1, /* whether we need to sign extend */
196 WA_8BIT = 2, /* if we have an 8bit format needing wa */
197 WA_16BIT = 4, /* if we have a 16bit format needing wa */
198 };
199
200 #define BRW_MAX_SAMPLERS 32
201
202 /* Provide explicit padding for each member, to ensure that the compiler
203 * initializes every bit in the shader cache keys. The keys will be compared
204 * with memcmp.
205 */
206 PRAGMA_DIAGNOSTIC_PUSH
207 PRAGMA_DIAGNOSTIC_ERROR(-Wpadded)
208
209 enum brw_robustness_flags {
210 BRW_ROBUSTNESS_UBO = BITFIELD_BIT(0),
211 BRW_ROBUSTNESS_SSBO = BITFIELD_BIT(1),
212 };
213
214 struct brw_base_prog_key {
215 unsigned program_string_id;
216
217 enum brw_robustness_flags robust_flags:2;
218
219 unsigned padding:22;
220
221 /**
222 * Apply workarounds for SIN and COS input range problems.
223 * This limits input range for SIN and COS to [-2p : 2p] to
224 * avoid precision issues.
225 */
226 bool limit_trig_input_range;
227 };
228
229 /**
230 * OpenGL attribute slots fall in [0, VERT_ATTRIB_MAX - 1] with the range
231 * [VERT_ATTRIB_GENERIC0, VERT_ATTRIB_MAX - 1] reserved for up to 16 user
232 * input vertex attributes. In Vulkan, we expose up to 28 user vertex input
233 * attributes that are mapped to slots also starting at VERT_ATTRIB_GENERIC0.
234 */
235 #define MAX_GL_VERT_ATTRIB VERT_ATTRIB_MAX
236 #define MAX_VK_VERT_ATTRIB (VERT_ATTRIB_GENERIC0 + 28)
237
238 /** The program key for Vertex Shaders. */
239 struct brw_vs_prog_key {
240 struct brw_base_prog_key base;
241 };
242
243 /** The program key for Tessellation Control Shaders. */
244 struct brw_tcs_prog_key
245 {
246 struct brw_base_prog_key base;
247
248 /** A bitfield of per-vertex outputs written. */
249 uint64_t outputs_written;
250
251 enum tess_primitive_mode _tes_primitive_mode;
252
253 /** Number of input vertices, 0 means dynamic */
254 unsigned input_vertices;
255
256 /** A bitfield of per-patch outputs written. */
257 uint32_t patch_outputs_written;
258
259 uint32_t padding;
260 };
261
262 #define BRW_MAX_TCS_INPUT_VERTICES (32)
263
264 static inline uint32_t
brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key * key)265 brw_tcs_prog_key_input_vertices(const struct brw_tcs_prog_key *key)
266 {
267 return key->input_vertices != 0 ?
268 key->input_vertices : BRW_MAX_TCS_INPUT_VERTICES;
269 }
270
271 /** The program key for Tessellation Evaluation Shaders. */
272 struct brw_tes_prog_key
273 {
274 struct brw_base_prog_key base;
275
276 /** A bitfield of per-vertex inputs read. */
277 uint64_t inputs_read;
278
279 /** A bitfield of per-patch inputs read. */
280 uint32_t patch_inputs_read;
281
282 uint32_t padding;
283 };
284
285 /** The program key for Geometry Shaders. */
286 struct brw_gs_prog_key
287 {
288 struct brw_base_prog_key base;
289 };
290
291 struct brw_task_prog_key
292 {
293 struct brw_base_prog_key base;
294 };
295
296 struct brw_mesh_prog_key
297 {
298 struct brw_base_prog_key base;
299
300 bool compact_mue:1;
301 unsigned padding:31;
302 };
303
304 enum brw_sometimes {
305 BRW_NEVER = 0,
306 BRW_SOMETIMES,
307 BRW_ALWAYS
308 };
309
310 static inline enum brw_sometimes
brw_sometimes_invert(enum brw_sometimes x)311 brw_sometimes_invert(enum brw_sometimes x)
312 {
313 return (enum brw_sometimes)((int)BRW_ALWAYS - (int)x);
314 }
315
316 /** The program key for Fragment/Pixel Shaders. */
317 struct brw_wm_prog_key {
318 struct brw_base_prog_key base;
319
320 uint64_t input_slots_valid;
321 uint8_t color_outputs_valid;
322
323 /* Some collection of BRW_WM_IZ_* */
324 bool flat_shade:1;
325 unsigned nr_color_regions:5;
326 bool alpha_test_replicate_alpha:1;
327 enum brw_sometimes alpha_to_coverage:2;
328 bool clamp_fragment_color:1;
329
330 bool force_dual_color_blend:1;
331
332 /** Whether or inputs are interpolated at sample rate by default
333 *
334 * This corresponds to the sample shading API bit in Vulkan or OpenGL which
335 * controls how inputs with no interpolation qualifier are interpolated.
336 * This is distinct from the way that using gl_SampleID or similar requires
337 * us to run per-sample. Even when running per-sample due to gl_SampleID,
338 * we may still interpolate unqualified inputs at the pixel center.
339 */
340 enum brw_sometimes persample_interp:2;
341
342 /* Whether or not we are running on a multisampled framebuffer */
343 enum brw_sometimes multisample_fbo:2;
344
345 enum brw_sometimes line_aa:2;
346
347 /* Whether the preceding shader stage is mesh */
348 enum brw_sometimes mesh_input:2;
349
350 bool coherent_fb_fetch:1;
351 bool ignore_sample_mask_out:1;
352 bool coarse_pixel:1;
353
354 uint64_t padding:34;
355 };
356
357 struct brw_cs_prog_key {
358 struct brw_base_prog_key base;
359 };
360
361 struct brw_bs_prog_key {
362 struct brw_base_prog_key base;
363
364 /* Represents enum enum brw_rt_ray_flags values given at pipeline creation
365 * to be combined with ray_flags handed to the traceRayEXT() calls by the
366 * shader.
367 */
368 uint32_t pipeline_ray_flags;
369 };
370
371 /* brw_any_prog_key is any of the keys that map to an API stage */
372 union brw_any_prog_key {
373 struct brw_base_prog_key base;
374 struct brw_vs_prog_key vs;
375 struct brw_tcs_prog_key tcs;
376 struct brw_tes_prog_key tes;
377 struct brw_gs_prog_key gs;
378 struct brw_wm_prog_key wm;
379 struct brw_cs_prog_key cs;
380 struct brw_bs_prog_key bs;
381 struct brw_task_prog_key task;
382 struct brw_mesh_prog_key mesh;
383 };
384
385 PRAGMA_DIAGNOSTIC_POP
386
387 /** Max number of render targets in a shader */
388 #define BRW_MAX_DRAW_BUFFERS 8
389
390 struct brw_ubo_range
391 {
392 uint16_t block;
393
394 /* In units of 32-byte registers */
395 uint8_t start;
396 uint8_t length;
397 };
398
399 /* We reserve the first 2^16 values for builtins */
400 #define BRW_PARAM_IS_BUILTIN(param) (((param) & 0xffff0000) == 0)
401
402 enum brw_param_builtin {
403 BRW_PARAM_BUILTIN_ZERO,
404
405 BRW_PARAM_BUILTIN_CLIP_PLANE_0_X,
406 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Y,
407 BRW_PARAM_BUILTIN_CLIP_PLANE_0_Z,
408 BRW_PARAM_BUILTIN_CLIP_PLANE_0_W,
409 BRW_PARAM_BUILTIN_CLIP_PLANE_1_X,
410 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Y,
411 BRW_PARAM_BUILTIN_CLIP_PLANE_1_Z,
412 BRW_PARAM_BUILTIN_CLIP_PLANE_1_W,
413 BRW_PARAM_BUILTIN_CLIP_PLANE_2_X,
414 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Y,
415 BRW_PARAM_BUILTIN_CLIP_PLANE_2_Z,
416 BRW_PARAM_BUILTIN_CLIP_PLANE_2_W,
417 BRW_PARAM_BUILTIN_CLIP_PLANE_3_X,
418 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Y,
419 BRW_PARAM_BUILTIN_CLIP_PLANE_3_Z,
420 BRW_PARAM_BUILTIN_CLIP_PLANE_3_W,
421 BRW_PARAM_BUILTIN_CLIP_PLANE_4_X,
422 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Y,
423 BRW_PARAM_BUILTIN_CLIP_PLANE_4_Z,
424 BRW_PARAM_BUILTIN_CLIP_PLANE_4_W,
425 BRW_PARAM_BUILTIN_CLIP_PLANE_5_X,
426 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Y,
427 BRW_PARAM_BUILTIN_CLIP_PLANE_5_Z,
428 BRW_PARAM_BUILTIN_CLIP_PLANE_5_W,
429 BRW_PARAM_BUILTIN_CLIP_PLANE_6_X,
430 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Y,
431 BRW_PARAM_BUILTIN_CLIP_PLANE_6_Z,
432 BRW_PARAM_BUILTIN_CLIP_PLANE_6_W,
433 BRW_PARAM_BUILTIN_CLIP_PLANE_7_X,
434 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Y,
435 BRW_PARAM_BUILTIN_CLIP_PLANE_7_Z,
436 BRW_PARAM_BUILTIN_CLIP_PLANE_7_W,
437
438 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X,
439 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Y,
440 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_Z,
441 BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W,
442 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X,
443 BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y,
444
445 BRW_PARAM_BUILTIN_PATCH_VERTICES_IN,
446
447 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_X,
448 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Y,
449 BRW_PARAM_BUILTIN_BASE_WORK_GROUP_ID_Z,
450 BRW_PARAM_BUILTIN_SUBGROUP_ID,
451 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X,
452 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Y,
453 BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_Z,
454 BRW_PARAM_BUILTIN_WORK_DIM,
455 };
456
457 #define BRW_PARAM_BUILTIN_CLIP_PLANE(idx, comp) \
458 (BRW_PARAM_BUILTIN_CLIP_PLANE_0_X + ((idx) << 2) + (comp))
459
460 #define BRW_PARAM_BUILTIN_IS_CLIP_PLANE(param) \
461 ((param) >= BRW_PARAM_BUILTIN_CLIP_PLANE_0_X && \
462 (param) <= BRW_PARAM_BUILTIN_CLIP_PLANE_7_W)
463
464 #define BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(param) \
465 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) >> 2)
466
467 #define BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(param) \
468 (((param) - BRW_PARAM_BUILTIN_CLIP_PLANE_0_X) & 0x3)
469
470 enum brw_shader_reloc_id {
471 BRW_SHADER_RELOC_CONST_DATA_ADDR_LOW,
472 BRW_SHADER_RELOC_CONST_DATA_ADDR_HIGH,
473 BRW_SHADER_RELOC_SHADER_START_OFFSET,
474 BRW_SHADER_RELOC_RESUME_SBT_ADDR_LOW,
475 BRW_SHADER_RELOC_RESUME_SBT_ADDR_HIGH,
476 BRW_SHADER_RELOC_DESCRIPTORS_ADDR_HIGH,
477 };
478
479 enum brw_shader_reloc_type {
480 /** An arbitrary 32-bit value */
481 BRW_SHADER_RELOC_TYPE_U32,
482 /** A MOV instruction with an immediate source */
483 BRW_SHADER_RELOC_TYPE_MOV_IMM,
484 };
485
486 /** Represents a code relocation
487 *
488 * Relocatable constants are immediates in the code which we want to be able
489 * to replace post-compile with the actual value.
490 */
491 struct brw_shader_reloc {
492 /** The 32-bit ID of the relocatable constant */
493 uint32_t id;
494
495 /** Type of this relocation */
496 enum brw_shader_reloc_type type;
497
498 /** The offset in the shader to the relocated value
499 *
500 * For MOV_IMM relocs, this is an offset to the MOV instruction. This
501 * allows us to do some sanity checking while we update the value.
502 */
503 uint32_t offset;
504
505 /** Value to be added to the relocated value before it is written */
506 uint32_t delta;
507 };
508
509 /** A value to write to a relocation */
510 struct brw_shader_reloc_value {
511 /** The 32-bit ID of the relocatable constant */
512 uint32_t id;
513
514 /** The value with which to replace the relocated immediate */
515 uint32_t value;
516 };
517
518 struct brw_stage_prog_data {
519 struct brw_ubo_range ubo_ranges[4];
520
521 unsigned nr_params; /**< number of float params/constants */
522
523 gl_shader_stage stage;
524
525 /* zero_push_reg is a bitfield which indicates what push registers (if any)
526 * should be zeroed by SW at the start of the shader. The corresponding
527 * push_reg_mask_param specifies the param index (in 32-bit units) where
528 * the actual runtime 64-bit mask will be pushed. The shader will zero
529 * push reg i if
530 *
531 * reg_used & zero_push_reg & ~*push_reg_mask_param & (1ull << i)
532 *
533 * If this field is set, brw_compiler::compact_params must be false.
534 */
535 uint64_t zero_push_reg;
536 unsigned push_reg_mask_param;
537
538 unsigned curb_read_length;
539 unsigned total_scratch;
540 unsigned total_shared;
541
542 unsigned program_size;
543
544 unsigned const_data_size;
545 unsigned const_data_offset;
546
547 unsigned num_relocs;
548 const struct brw_shader_reloc *relocs;
549
550 /** Does this program pull from any UBO or other constant buffers? */
551 bool has_ubo_pull;
552
553 /** How many ray queries objects in this shader. */
554 unsigned ray_queries;
555
556 /**
557 * Register where the thread expects to find input data from the URB
558 * (typically uniforms, followed by vertex or fragment attributes).
559 */
560 unsigned dispatch_grf_start_reg;
561
562 bool use_alt_mode; /**< Use ALT floating point mode? Otherwise, IEEE. */
563
564 /* 32-bit identifiers for all push/pull parameters. These can be anything
565 * the driver wishes them to be; the core of the back-end compiler simply
566 * re-arranges them. The one restriction is that the bottom 2^16 values
567 * are reserved for builtins defined in the brw_param_builtin enum defined
568 * above.
569 */
570 uint32_t *param;
571
572 /* Whether shader uses atomic operations. */
573 bool uses_atomic_load_store;
574 };
575
576 static inline uint32_t *
brw_stage_prog_data_add_params(struct brw_stage_prog_data * prog_data,unsigned nr_new_params)577 brw_stage_prog_data_add_params(struct brw_stage_prog_data *prog_data,
578 unsigned nr_new_params)
579 {
580 unsigned old_nr_params = prog_data->nr_params;
581 prog_data->nr_params += nr_new_params;
582 prog_data->param = reralloc(ralloc_parent(prog_data->param),
583 prog_data->param, uint32_t,
584 prog_data->nr_params);
585 return prog_data->param + old_nr_params;
586 }
587
588 enum brw_barycentric_mode {
589 BRW_BARYCENTRIC_PERSPECTIVE_PIXEL = 0,
590 BRW_BARYCENTRIC_PERSPECTIVE_CENTROID = 1,
591 BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE = 2,
592 BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL = 3,
593 BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID = 4,
594 BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE = 5,
595 BRW_BARYCENTRIC_MODE_COUNT = 6
596 };
597 #define BRW_BARYCENTRIC_PERSPECTIVE_BITS \
598 ((1 << BRW_BARYCENTRIC_PERSPECTIVE_PIXEL) | \
599 (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID) | \
600 (1 << BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE))
601 #define BRW_BARYCENTRIC_NONPERSPECTIVE_BITS \
602 ((1 << BRW_BARYCENTRIC_NONPERSPECTIVE_PIXEL) | \
603 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID) | \
604 (1 << BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))
605
606 enum brw_pixel_shader_computed_depth_mode {
607 BRW_PSCDEPTH_OFF = 0, /* PS does not compute depth */
608 BRW_PSCDEPTH_ON = 1, /* PS computes depth; no guarantee about value */
609 BRW_PSCDEPTH_ON_GE = 2, /* PS guarantees output depth >= source depth */
610 BRW_PSCDEPTH_ON_LE = 3, /* PS guarantees output depth <= source depth */
611 };
612
613 /* Data about a particular attempt to compile a program. Note that
614 * there can be many of these, each in a different GL state
615 * corresponding to a different brw_wm_prog_key struct, with different
616 * compiled programs.
617 */
618 struct brw_wm_prog_data {
619 struct brw_stage_prog_data base;
620
621 unsigned num_per_primitive_inputs;
622 unsigned num_varying_inputs;
623
624 uint8_t reg_blocks_8;
625 uint8_t reg_blocks_16;
626 uint8_t reg_blocks_32;
627
628 uint8_t dispatch_grf_start_reg_16;
629 uint8_t dispatch_grf_start_reg_32;
630 uint32_t prog_offset_16;
631 uint32_t prog_offset_32;
632
633 struct {
634 /** @{
635 * surface indices the WM-specific surfaces
636 */
637 uint32_t render_target_read_start;
638 /** @} */
639 } binding_table;
640
641 uint8_t color_outputs_written;
642 uint8_t computed_depth_mode;
643
644 /**
645 * Number of polygons handled in parallel by the multi-polygon PS
646 * kernel.
647 */
648 uint8_t max_polygons;
649
650 /**
651 * Dispatch width of the multi-polygon PS kernel, or 0 if no
652 * multi-polygon kernel was built.
653 */
654 uint8_t dispatch_multi;
655
656 bool computed_stencil;
657 bool early_fragment_tests;
658 bool post_depth_coverage;
659 bool inner_coverage;
660 bool dispatch_8;
661 bool dispatch_16;
662 bool dispatch_32;
663 bool dual_src_blend;
664 bool uses_pos_offset;
665 bool uses_omask;
666 bool uses_kill;
667 bool uses_src_depth;
668 bool uses_src_w;
669 bool uses_depth_w_coefficients;
670 bool uses_sample_mask;
671 bool uses_vmask;
672 bool has_side_effects;
673 bool pulls_bary;
674
675 bool contains_flat_varying;
676 bool contains_noperspective_varying;
677
678 /** True if the shader wants sample shading
679 *
680 * This corresponds to whether or not a gl_SampleId, gl_SamplePosition, or
681 * a sample-qualified input are used in the shader. It is independent of
682 * GL_MIN_SAMPLE_SHADING_VALUE in GL or minSampleShading in Vulkan.
683 */
684 bool sample_shading;
685
686 /** Should this shader be dispatched per-sample */
687 enum brw_sometimes persample_dispatch;
688
689 /**
690 * Shader is ran at the coarse pixel shading dispatch rate (3DSTATE_CPS).
691 */
692 enum brw_sometimes coarse_pixel_dispatch;
693
694 /**
695 * Shader writes the SampleMask and this is AND-ed with the API's
696 * SampleMask to generate a new coverage mask.
697 */
698 enum brw_sometimes alpha_to_coverage;
699
700 unsigned msaa_flags_param;
701
702 /**
703 * Mask of which interpolation modes are required by the fragment shader.
704 * Those interpolations are delivered as part of the thread payload. Used
705 * in hardware setup on gfx6+.
706 */
707 uint32_t barycentric_interp_modes;
708
709 /**
710 * Whether nonperspective interpolation modes are used by the
711 * barycentric_interp_modes or fragment shader through interpolator messages.
712 */
713 bool uses_nonperspective_interp_modes;
714
715 /**
716 * Mask of which FS inputs are marked flat by the shader source. This is
717 * needed for setting up 3DSTATE_SF/SBE.
718 */
719 uint32_t flat_inputs;
720
721 /**
722 * The FS inputs
723 */
724 uint64_t inputs;
725
726 /* Mapping of VUE slots to interpolation modes.
727 * Used by the Gfx4-5 clip/sf/wm stages.
728 */
729 unsigned char interp_mode[65]; /* BRW_VARYING_SLOT_COUNT */
730
731 /**
732 * Map from gl_varying_slot to the position within the FS setup data
733 * payload where the varying's attribute vertex deltas should be delivered.
734 * For varying slots that are not used by the FS, the value is -1.
735 */
736 int urb_setup[VARYING_SLOT_MAX];
737 int urb_setup_channel[VARYING_SLOT_MAX];
738
739 /**
740 * Cache structure into the urb_setup array above that contains the
741 * attribute numbers of active varyings out of urb_setup.
742 * The actual count is stored in urb_setup_attribs_count.
743 */
744 uint8_t urb_setup_attribs[VARYING_SLOT_MAX];
745 uint8_t urb_setup_attribs_count;
746 };
747
748 #ifdef GFX_VERx10
749
750 #if GFX_VERx10 >= 200
751
752 /** Returns the SIMD width corresponding to a given KSP index
753 *
754 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
755 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
756 * kernel start pointer (KSP) indices that is based on what dispatch widths
757 * are enabled. This function provides, effectively, the reverse mapping.
758 *
759 * If the given KSP is enabled, a SIMD width of 8, 16, or 32 is
760 * returned. Note that for a multipolygon dispatch kernel 8 is always
761 * returned, since multipolygon kernels use the "_8" fields from
762 * brw_wm_prog_data regardless of their SIMD width. If the KSP is
763 * invalid, 0 is returned.
764 */
765 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool enabled,unsigned width_sel)766 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool enabled, unsigned width_sel)
767 {
768 assert(ksp_idx < 2);
769 return !enabled ? 0 :
770 width_sel ? 32 :
771 16;
772 }
773
774 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
775 (ksp_idx == 0 && (wm_state).Kernel0MaximumPolysperThread ? 8 : \
776 ksp_idx == 0 ? brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel0Enable, \
777 (wm_state).Kernel0SIMDWidth): \
778 brw_fs_simd_width_for_ksp(ksp_idx, (wm_state).Kernel1Enable, \
779 (wm_state).Kernel1SIMDWidth))
780
781 #else
782
783 /** Returns the SIMD width corresponding to a given KSP index
784 *
785 * The "Variable Pixel Dispatch" table in the PRM (which can be found, for
786 * example in Vol. 7 of the SKL PRM) has a mapping from dispatch widths to
787 * kernel start pointer (KSP) indices that is based on what dispatch widths
788 * are enabled. This function provides, effectively, the reverse mapping.
789 *
790 * If the given KSP is valid with respect to the SIMD8/16/32 enables, a SIMD
791 * width of 8, 16, or 32 is returned. If the KSP is invalid, 0 is returned.
792 */
793 static inline unsigned
brw_fs_simd_width_for_ksp(unsigned ksp_idx,bool simd8_enabled,bool simd16_enabled,bool simd32_enabled)794 brw_fs_simd_width_for_ksp(unsigned ksp_idx, bool simd8_enabled,
795 bool simd16_enabled, bool simd32_enabled)
796 {
797 /* This function strictly ignores contiguous dispatch */
798 switch (ksp_idx) {
799 case 0:
800 return simd8_enabled ? 8 :
801 (simd16_enabled && !simd32_enabled) ? 16 :
802 (simd32_enabled && !simd16_enabled) ? 32 : 0;
803 case 1:
804 return (simd32_enabled && (simd16_enabled || simd8_enabled)) ? 32 : 0;
805 case 2:
806 return (simd16_enabled && (simd32_enabled || simd8_enabled)) ? 16 : 0;
807 default:
808 unreachable("Invalid KSP index");
809 }
810 }
811
812 #define brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx) \
813 brw_fs_simd_width_for_ksp((ksp_idx), (wm_state)._8PixelDispatchEnable, \
814 (wm_state)._16PixelDispatchEnable, \
815 (wm_state)._32PixelDispatchEnable)
816
817 #endif
818
819 #endif
820
821 #define brw_wm_state_has_ksp(wm_state, ksp_idx) \
822 (brw_wm_state_simd_width_for_ksp((wm_state), (ksp_idx)) != 0)
823
824 static inline uint32_t
_brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data * prog_data,unsigned simd_width)825 _brw_wm_prog_data_prog_offset(const struct brw_wm_prog_data *prog_data,
826 unsigned simd_width)
827 {
828 switch (simd_width) {
829 case 8: return 0;
830 case 16: return prog_data->prog_offset_16;
831 case 32: return prog_data->prog_offset_32;
832 default: return 0;
833 }
834 }
835
836 #define brw_wm_prog_data_prog_offset(prog_data, wm_state, ksp_idx) \
837 _brw_wm_prog_data_prog_offset(prog_data, \
838 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
839
840 static inline uint8_t
_brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data * prog_data,unsigned simd_width)841 _brw_wm_prog_data_dispatch_grf_start_reg(const struct brw_wm_prog_data *prog_data,
842 unsigned simd_width)
843 {
844 switch (simd_width) {
845 case 8: return prog_data->base.dispatch_grf_start_reg;
846 case 16: return prog_data->dispatch_grf_start_reg_16;
847 case 32: return prog_data->dispatch_grf_start_reg_32;
848 default: return 0;
849 }
850 }
851
852 #define brw_wm_prog_data_dispatch_grf_start_reg(prog_data, wm_state, ksp_idx) \
853 _brw_wm_prog_data_dispatch_grf_start_reg(prog_data, \
854 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
855
856 static inline uint8_t
_brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data * prog_data,unsigned simd_width)857 _brw_wm_prog_data_reg_blocks(const struct brw_wm_prog_data *prog_data,
858 unsigned simd_width)
859 {
860 switch (simd_width) {
861 case 8: return prog_data->reg_blocks_8;
862 case 16: return prog_data->reg_blocks_16;
863 case 32: return prog_data->reg_blocks_32;
864 default: return 0;
865 }
866 }
867
868 #define brw_wm_prog_data_reg_blocks(prog_data, wm_state, ksp_idx) \
869 _brw_wm_prog_data_reg_blocks(prog_data, \
870 brw_wm_state_simd_width_for_ksp(wm_state, ksp_idx))
871
872 static inline bool
brw_wm_prog_data_is_persample(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)873 brw_wm_prog_data_is_persample(const struct brw_wm_prog_data *prog_data,
874 enum intel_msaa_flags pushed_msaa_flags)
875 {
876 if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) {
877 if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_MULTISAMPLE_FBO))
878 return false;
879
880 if (prog_data->sample_shading)
881 assert(pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH);
882
883 if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH)
884 assert(prog_data->persample_dispatch != BRW_NEVER);
885 else
886 assert(prog_data->persample_dispatch != BRW_ALWAYS);
887
888 return (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) != 0;
889 }
890
891 assert(prog_data->persample_dispatch == BRW_ALWAYS ||
892 prog_data->persample_dispatch == BRW_NEVER);
893
894 return prog_data->persample_dispatch;
895 }
896
897 static inline uint32_t
wm_prog_data_barycentric_modes(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)898 wm_prog_data_barycentric_modes(const struct brw_wm_prog_data *prog_data,
899 enum intel_msaa_flags pushed_msaa_flags)
900 {
901 uint32_t modes = prog_data->barycentric_interp_modes;
902
903 /* In the non dynamic case, we can just return the computed modes from
904 * compilation time.
905 */
906 if (!(pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC))
907 return modes;
908
909 if (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_INTERP) {
910 assert(prog_data->persample_dispatch == BRW_ALWAYS ||
911 (pushed_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH));
912
913 /* Making dynamic per-sample interpolation work is a bit tricky. The
914 * hardware will hang if SAMPLE is requested but per-sample dispatch is
915 * not enabled. This means we can't preemptively add SAMPLE to the
916 * barycentrics bitfield. Instead, we have to add it late and only
917 * on-demand. Annoyingly, changing the number of barycentrics requested
918 * changes the whole PS shader payload so we very much don't want to do
919 * that. Instead, if the dynamic per-sample interpolation flag is set,
920 * we check to see if SAMPLE was requested and, if not, replace the
921 * highest barycentric bit in the [non]perspective grouping (CENTROID,
922 * if it exists, else PIXEL) with SAMPLE. The shader will stomp all the
923 * barycentrics in the shader with SAMPLE so it really doesn't matter
924 * which one we replace. The important thing is that we keep the number
925 * of barycentrics in each [non]perspective grouping the same.
926 */
927 if ((modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) &&
928 !(modes & BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE))) {
929 int sample_mode =
930 util_last_bit(modes & BRW_BARYCENTRIC_PERSPECTIVE_BITS) - 1;
931 assert(modes & BITFIELD_BIT(sample_mode));
932
933 modes &= ~BITFIELD_BIT(sample_mode);
934 modes |= BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE);
935 }
936
937 if ((modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) &&
938 !(modes & BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE))) {
939 int sample_mode =
940 util_last_bit(modes & BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) - 1;
941 assert(modes & BITFIELD_BIT(sample_mode));
942
943 modes &= ~BITFIELD_BIT(sample_mode);
944 modes |= BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE);
945 }
946 } else {
947 /* If we're not using per-sample interpolation, we need to disable the
948 * per-sample bits.
949 *
950 * SKL PRMs, Volume 2a: Command Reference: Instructions,
951 * 3DSTATE_WM:Barycentric Interpolation Mode:
952
953 * "MSDISPMODE_PERSAMPLE is required in order to select Perspective
954 * Sample or Non-perspective Sample barycentric coordinates."
955 */
956 modes &= ~(BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE) |
957 BITFIELD_BIT(BRW_BARYCENTRIC_NONPERSPECTIVE_SAMPLE));
958 }
959
960 return modes;
961 }
962
963 static inline bool
brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data * prog_data,enum intel_msaa_flags pushed_msaa_flags)964 brw_wm_prog_data_is_coarse(const struct brw_wm_prog_data *prog_data,
965 enum intel_msaa_flags pushed_msaa_flags)
966 {
967 if (pushed_msaa_flags & INTEL_MSAA_FLAG_ENABLE_DYNAMIC) {
968 if (pushed_msaa_flags & INTEL_MSAA_FLAG_COARSE_RT_WRITES)
969 assert(prog_data->coarse_pixel_dispatch != BRW_NEVER);
970 else
971 assert(prog_data->coarse_pixel_dispatch != BRW_ALWAYS);
972
973 return pushed_msaa_flags & INTEL_MSAA_FLAG_COARSE_RT_WRITES;
974 }
975
976 assert(prog_data->coarse_pixel_dispatch == BRW_ALWAYS ||
977 prog_data->coarse_pixel_dispatch == BRW_NEVER);
978
979 return prog_data->coarse_pixel_dispatch;
980 }
981
982 struct brw_push_const_block {
983 unsigned dwords; /* Dword count, not reg aligned */
984 unsigned regs;
985 unsigned size; /* Bytes, register aligned */
986 };
987
988 struct brw_cs_prog_data {
989 struct brw_stage_prog_data base;
990
991 unsigned local_size[3];
992
993 /* Program offsets for the 8/16/32 SIMD variants. Multiple variants are
994 * kept when using variable group size, and the right one can only be
995 * decided at dispatch time.
996 */
997 unsigned prog_offset[3];
998
999 /* Bitmask indicating which program offsets are valid. */
1000 unsigned prog_mask;
1001
1002 /* Bitmask indicating which programs have spilled. */
1003 unsigned prog_spilled;
1004
1005 bool uses_barrier;
1006 bool uses_num_work_groups;
1007 bool uses_inline_data;
1008 bool uses_btd_stack_ids;
1009 bool uses_systolic;
1010 uint8_t generate_local_id;
1011 enum intel_compute_walk_order walk_order;
1012
1013 struct {
1014 struct brw_push_const_block cross_thread;
1015 struct brw_push_const_block per_thread;
1016 } push;
1017
1018 struct {
1019 /** @{
1020 * surface indices the CS-specific surfaces
1021 */
1022 uint32_t work_groups_start;
1023 /** @} */
1024 } binding_table;
1025 };
1026
1027 static inline uint32_t
brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data * prog_data,unsigned dispatch_width)1028 brw_cs_prog_data_prog_offset(const struct brw_cs_prog_data *prog_data,
1029 unsigned dispatch_width)
1030 {
1031 assert(dispatch_width == 8 ||
1032 dispatch_width == 16 ||
1033 dispatch_width == 32);
1034 const unsigned index = dispatch_width / 16;
1035 assert(prog_data->prog_mask & (1 << index));
1036 return prog_data->prog_offset[index];
1037 }
1038
1039 struct brw_bs_prog_data {
1040 struct brw_stage_prog_data base;
1041
1042 /** SIMD size of the root shader */
1043 uint8_t simd_size;
1044
1045 /** Maximum stack size of all shaders */
1046 uint32_t max_stack_size;
1047
1048 /** Offset into the shader where the resume SBT is located */
1049 uint32_t resume_sbt_offset;
1050
1051 /** Number of resume shaders */
1052 uint32_t num_resume_shaders;
1053 };
1054
1055 /**
1056 * Enum representing the i965-specific vertex results that don't correspond
1057 * exactly to any element of gl_varying_slot. The values of this enum are
1058 * assigned such that they don't conflict with gl_varying_slot.
1059 */
1060 typedef enum
1061 {
1062 BRW_VARYING_SLOT_PAD = VARYING_SLOT_MAX,
1063 BRW_VARYING_SLOT_COUNT
1064 } brw_varying_slot;
1065
1066 /**
1067 * Bitmask indicating which fragment shader inputs represent varyings (and
1068 * hence have to be delivered to the fragment shader by the SF/SBE stage).
1069 */
1070 #define BRW_FS_VARYING_INPUT_MASK \
1071 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
1072 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
1073
1074 void brw_print_vue_map(FILE *fp, const struct intel_vue_map *vue_map,
1075 gl_shader_stage stage);
1076
1077 /**
1078 * Convert a VUE slot number into a byte offset within the VUE.
1079 */
brw_vue_slot_to_offset(unsigned slot)1080 static inline unsigned brw_vue_slot_to_offset(unsigned slot)
1081 {
1082 return 16*slot;
1083 }
1084
1085 /**
1086 * Convert a vertex output (brw_varying_slot) into a byte offset within the
1087 * VUE.
1088 */
1089 static inline unsigned
brw_varying_to_offset(const struct intel_vue_map * vue_map,unsigned varying)1090 brw_varying_to_offset(const struct intel_vue_map *vue_map, unsigned varying)
1091 {
1092 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
1093 }
1094
1095 void brw_compute_vue_map(const struct intel_device_info *devinfo,
1096 struct intel_vue_map *vue_map,
1097 uint64_t slots_valid,
1098 bool separate_shader,
1099 uint32_t pos_slots);
1100
1101 void brw_compute_tess_vue_map(struct intel_vue_map *const vue_map,
1102 uint64_t slots_valid,
1103 uint32_t is_patch);
1104
1105 struct brw_vue_prog_data {
1106 struct brw_stage_prog_data base;
1107 struct intel_vue_map vue_map;
1108
1109 /** Should the hardware deliver input VUE handles for URB pull loads? */
1110 bool include_vue_handles;
1111
1112 unsigned urb_read_length;
1113 unsigned total_grf;
1114
1115 uint32_t clip_distance_mask;
1116 uint32_t cull_distance_mask;
1117
1118 /* Used for calculating urb partitions. In the VS, this is the size of the
1119 * URB entry used for both input and output to the thread. In the GS, this
1120 * is the size of the URB entry used for output.
1121 */
1122 unsigned urb_entry_size;
1123
1124 enum intel_shader_dispatch_mode dispatch_mode;
1125 };
1126
1127 struct brw_vs_prog_data {
1128 struct brw_vue_prog_data base;
1129
1130 uint64_t inputs_read;
1131 uint64_t double_inputs_read;
1132
1133 unsigned nr_attribute_slots;
1134
1135 bool uses_vertexid;
1136 bool uses_instanceid;
1137 bool uses_is_indexed_draw;
1138 bool uses_firstvertex;
1139 bool uses_baseinstance;
1140 bool uses_drawid;
1141 };
1142
1143 struct brw_tcs_prog_data
1144 {
1145 struct brw_vue_prog_data base;
1146
1147 /** Should the non-SINGLE_PATCH payload provide primitive ID? */
1148 bool include_primitive_id;
1149
1150 /** Number vertices in output patch */
1151 int instances;
1152
1153 /** Track patch count threshold */
1154 int patch_count_threshold;
1155 };
1156
1157
1158 struct brw_tes_prog_data
1159 {
1160 struct brw_vue_prog_data base;
1161
1162 enum intel_tess_partitioning partitioning;
1163 enum intel_tess_output_topology output_topology;
1164 enum intel_tess_domain domain;
1165 bool include_primitive_id;
1166 };
1167
1168 struct brw_gs_prog_data
1169 {
1170 struct brw_vue_prog_data base;
1171
1172 unsigned vertices_in;
1173
1174 /**
1175 * Size of an output vertex, measured in HWORDS (32 bytes).
1176 */
1177 unsigned output_vertex_size_hwords;
1178
1179 unsigned output_topology;
1180
1181 /**
1182 * Size of the control data (cut bits or StreamID bits), in hwords (32
1183 * bytes). 0 if there is no control data.
1184 */
1185 unsigned control_data_header_size_hwords;
1186
1187 /**
1188 * Format of the control data (either GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
1189 * if the control data is StreamID bits, or
1190 * GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
1191 * Ignored if control_data_header_size is 0.
1192 */
1193 unsigned control_data_format;
1194
1195 bool include_primitive_id;
1196
1197 /**
1198 * The number of vertices emitted, if constant - otherwise -1.
1199 */
1200 int static_vertex_count;
1201
1202 int invocations;
1203 };
1204
1205 struct brw_tue_map {
1206 uint32_t size_dw;
1207
1208 uint32_t per_task_data_start_dw;
1209 };
1210
1211 struct brw_mue_map {
1212 int32_t start_dw[VARYING_SLOT_MAX];
1213 uint32_t len_dw[VARYING_SLOT_MAX];
1214 uint32_t per_primitive_indices_dw;
1215
1216 uint32_t size_dw;
1217
1218 uint32_t max_primitives;
1219 uint32_t per_primitive_start_dw;
1220 uint32_t per_primitive_header_size_dw;
1221 uint32_t per_primitive_data_size_dw;
1222 uint32_t per_primitive_pitch_dw;
1223 bool user_data_in_primitive_header;
1224
1225 uint32_t max_vertices;
1226 uint32_t per_vertex_start_dw;
1227 uint32_t per_vertex_header_size_dw;
1228 uint32_t per_vertex_data_size_dw;
1229 uint32_t per_vertex_pitch_dw;
1230 bool user_data_in_vertex_header;
1231 };
1232
1233 struct brw_task_prog_data {
1234 struct brw_cs_prog_data base;
1235 struct brw_tue_map map;
1236 bool uses_drawid;
1237 };
1238
1239 enum brw_mesh_index_format {
1240 BRW_INDEX_FORMAT_U32,
1241 BRW_INDEX_FORMAT_U888X,
1242 };
1243
1244 struct brw_mesh_prog_data {
1245 struct brw_cs_prog_data base;
1246 struct brw_mue_map map;
1247
1248 uint32_t clip_distance_mask;
1249 uint32_t cull_distance_mask;
1250 uint16_t primitive_type;
1251
1252 enum brw_mesh_index_format index_format;
1253
1254 bool uses_drawid;
1255 };
1256
1257 /* brw_any_prog_data is prog_data for any stage that maps to an API stage */
1258 union brw_any_prog_data {
1259 struct brw_stage_prog_data base;
1260 struct brw_vue_prog_data vue;
1261 struct brw_vs_prog_data vs;
1262 struct brw_tcs_prog_data tcs;
1263 struct brw_tes_prog_data tes;
1264 struct brw_gs_prog_data gs;
1265 struct brw_wm_prog_data wm;
1266 struct brw_cs_prog_data cs;
1267 struct brw_bs_prog_data bs;
1268 struct brw_task_prog_data task;
1269 struct brw_mesh_prog_data mesh;
1270 };
1271
1272 #define DEFINE_PROG_DATA_DOWNCAST(STAGE, CHECK) \
1273 static inline struct brw_##STAGE##_prog_data * \
1274 brw_##STAGE##_prog_data(struct brw_stage_prog_data *prog_data) \
1275 { \
1276 if (prog_data) \
1277 assert(CHECK); \
1278 return (struct brw_##STAGE##_prog_data *) prog_data; \
1279 } \
1280 static inline const struct brw_##STAGE##_prog_data * \
1281 brw_##STAGE##_prog_data_const(const struct brw_stage_prog_data *prog_data) \
1282 { \
1283 if (prog_data) \
1284 assert(CHECK); \
1285 return (const struct brw_##STAGE##_prog_data *) prog_data; \
1286 }
1287
1288 DEFINE_PROG_DATA_DOWNCAST(vs, prog_data->stage == MESA_SHADER_VERTEX)
1289 DEFINE_PROG_DATA_DOWNCAST(tcs, prog_data->stage == MESA_SHADER_TESS_CTRL)
1290 DEFINE_PROG_DATA_DOWNCAST(tes, prog_data->stage == MESA_SHADER_TESS_EVAL)
1291 DEFINE_PROG_DATA_DOWNCAST(gs, prog_data->stage == MESA_SHADER_GEOMETRY)
1292 DEFINE_PROG_DATA_DOWNCAST(wm, prog_data->stage == MESA_SHADER_FRAGMENT)
1293 DEFINE_PROG_DATA_DOWNCAST(cs, gl_shader_stage_uses_workgroup(prog_data->stage))
1294 DEFINE_PROG_DATA_DOWNCAST(bs, brw_shader_stage_is_bindless(prog_data->stage))
1295
1296 DEFINE_PROG_DATA_DOWNCAST(vue, prog_data->stage == MESA_SHADER_VERTEX ||
1297 prog_data->stage == MESA_SHADER_TESS_CTRL ||
1298 prog_data->stage == MESA_SHADER_TESS_EVAL ||
1299 prog_data->stage == MESA_SHADER_GEOMETRY)
1300
1301 DEFINE_PROG_DATA_DOWNCAST(task, prog_data->stage == MESA_SHADER_TASK)
1302 DEFINE_PROG_DATA_DOWNCAST(mesh, prog_data->stage == MESA_SHADER_MESH)
1303
1304 #undef DEFINE_PROG_DATA_DOWNCAST
1305
1306 struct brw_compile_stats {
1307 uint32_t dispatch_width; /**< 0 for vec4 */
1308 uint32_t max_polygons;
1309 uint32_t max_dispatch_width;
1310 uint32_t instructions;
1311 uint32_t sends;
1312 uint32_t loops;
1313 uint32_t cycles;
1314 uint32_t spills;
1315 uint32_t fills;
1316 uint32_t max_live_registers;
1317 };
1318
1319 /** @} */
1320
1321 struct brw_compiler *
1322 brw_compiler_create(void *mem_ctx, const struct intel_device_info *devinfo);
1323
1324 /**
1325 * Returns a compiler configuration for use with disk shader cache
1326 *
1327 * This value only needs to change for settings that can cause different
1328 * program generation between two runs on the same hardware.
1329 *
1330 * For example, it doesn't need to be different for gen 8 and gen 9 hardware,
1331 * but it does need to be different if INTEL_DEBUG=nocompact is or isn't used.
1332 */
1333 uint64_t
1334 brw_get_compiler_config_value(const struct brw_compiler *compiler);
1335
1336 /* Provides a string sha1 hash of all device information fields that could
1337 * affect shader compilation.
1338 */
1339 void
1340 brw_device_sha1(char *hex, const struct intel_device_info *devinfo);
1341
1342 /* For callers computing their own UUID or hash. Hashes all device
1343 * information fields that could affect shader compilation into the provided
1344 * sha1_ctx.
1345 */
1346 void
1347 brw_device_sha1_update(struct mesa_sha1 *sha1_ctx,
1348 const struct intel_device_info *devinfo);
1349
1350 unsigned
1351 brw_prog_data_size(gl_shader_stage stage);
1352
1353 unsigned
1354 brw_prog_key_size(gl_shader_stage stage);
1355
1356 struct brw_compile_params {
1357 void *mem_ctx;
1358
1359 nir_shader *nir;
1360
1361 struct brw_compile_stats *stats;
1362
1363 void *log_data;
1364
1365 char *error_str;
1366
1367 uint64_t debug_flag;
1368
1369 uint32_t source_hash;
1370 };
1371
1372 /**
1373 * Parameters for compiling a vertex shader.
1374 *
1375 * Some of these will be modified during the shader compilation.
1376 */
1377 struct brw_compile_vs_params {
1378 struct brw_compile_params base;
1379
1380 const struct brw_vs_prog_key *key;
1381 struct brw_vs_prog_data *prog_data;
1382 };
1383
1384 /**
1385 * Compile a vertex shader.
1386 *
1387 * Returns the final assembly and updates the parameters structure.
1388 */
1389 const unsigned *
1390 brw_compile_vs(const struct brw_compiler *compiler,
1391 struct brw_compile_vs_params *params);
1392
1393 /**
1394 * Parameters for compiling a tessellation control shader.
1395 *
1396 * Some of these will be modified during the shader compilation.
1397 */
1398 struct brw_compile_tcs_params {
1399 struct brw_compile_params base;
1400
1401 const struct brw_tcs_prog_key *key;
1402 struct brw_tcs_prog_data *prog_data;
1403 };
1404
1405 /**
1406 * Compile a tessellation control shader.
1407 *
1408 * Returns the final assembly and updates the parameters structure.
1409 */
1410 const unsigned *
1411 brw_compile_tcs(const struct brw_compiler *compiler,
1412 struct brw_compile_tcs_params *params);
1413
1414 /**
1415 * Parameters for compiling a tessellation evaluation shader.
1416 *
1417 * Some of these will be modified during the shader compilation.
1418 */
1419 struct brw_compile_tes_params {
1420 struct brw_compile_params base;
1421
1422 const struct brw_tes_prog_key *key;
1423 struct brw_tes_prog_data *prog_data;
1424 const struct intel_vue_map *input_vue_map;
1425 };
1426
1427 /**
1428 * Compile a tessellation evaluation shader.
1429 *
1430 * Returns the final assembly and updates the parameters structure.
1431 */
1432 const unsigned *
1433 brw_compile_tes(const struct brw_compiler *compiler,
1434 struct brw_compile_tes_params *params);
1435
1436 /**
1437 * Parameters for compiling a geometry shader.
1438 *
1439 * Some of these will be modified during the shader compilation.
1440 */
1441 struct brw_compile_gs_params {
1442 struct brw_compile_params base;
1443
1444 const struct brw_gs_prog_key *key;
1445 struct brw_gs_prog_data *prog_data;
1446 };
1447
1448 /**
1449 * Compile a geometry shader.
1450 *
1451 * Returns the final assembly and updates the parameters structure.
1452 */
1453 const unsigned *
1454 brw_compile_gs(const struct brw_compiler *compiler,
1455 struct brw_compile_gs_params *params);
1456
1457 struct brw_compile_task_params {
1458 struct brw_compile_params base;
1459
1460 const struct brw_task_prog_key *key;
1461 struct brw_task_prog_data *prog_data;
1462 };
1463
1464 const unsigned *
1465 brw_compile_task(const struct brw_compiler *compiler,
1466 struct brw_compile_task_params *params);
1467
1468 struct brw_compile_mesh_params {
1469 struct brw_compile_params base;
1470
1471 const struct brw_mesh_prog_key *key;
1472 struct brw_mesh_prog_data *prog_data;
1473 const struct brw_tue_map *tue_map;
1474 };
1475
1476 const unsigned *
1477 brw_compile_mesh(const struct brw_compiler *compiler,
1478 struct brw_compile_mesh_params *params);
1479
1480 /**
1481 * Parameters for compiling a fragment shader.
1482 *
1483 * Some of these will be modified during the shader compilation.
1484 */
1485 struct brw_compile_fs_params {
1486 struct brw_compile_params base;
1487
1488 const struct brw_wm_prog_key *key;
1489 struct brw_wm_prog_data *prog_data;
1490
1491 const struct intel_vue_map *vue_map;
1492 const struct brw_mue_map *mue_map;
1493
1494 bool allow_spilling;
1495 bool use_rep_send;
1496 uint8_t max_polygons;
1497 };
1498
1499 /**
1500 * Compile a fragment shader.
1501 *
1502 * Returns the final assembly and updates the parameters structure.
1503 */
1504 const unsigned *
1505 brw_compile_fs(const struct brw_compiler *compiler,
1506 struct brw_compile_fs_params *params);
1507
1508 /**
1509 * Parameters for compiling a compute shader.
1510 *
1511 * Some of these will be modified during the shader compilation.
1512 */
1513 struct brw_compile_cs_params {
1514 struct brw_compile_params base;
1515
1516 const struct brw_cs_prog_key *key;
1517 struct brw_cs_prog_data *prog_data;
1518 };
1519
1520 /**
1521 * Compile a compute shader.
1522 *
1523 * Returns the final assembly and updates the parameters structure.
1524 */
1525 const unsigned *
1526 brw_compile_cs(const struct brw_compiler *compiler,
1527 struct brw_compile_cs_params *params);
1528
1529 /**
1530 * Parameters for compiling a Bindless shader.
1531 *
1532 * Some of these will be modified during the shader compilation.
1533 */
1534 struct brw_compile_bs_params {
1535 struct brw_compile_params base;
1536
1537 const struct brw_bs_prog_key *key;
1538 struct brw_bs_prog_data *prog_data;
1539
1540 unsigned num_resume_shaders;
1541 struct nir_shader **resume_shaders;
1542 };
1543
1544 /**
1545 * Compile a Bindless shader.
1546 *
1547 * Returns the final assembly and updates the parameters structure.
1548 */
1549 const unsigned *
1550 brw_compile_bs(const struct brw_compiler *compiler,
1551 struct brw_compile_bs_params *params);
1552
1553 void brw_debug_key_recompile(const struct brw_compiler *c, void *log,
1554 gl_shader_stage stage,
1555 const struct brw_base_prog_key *old_key,
1556 const struct brw_base_prog_key *key);
1557
1558 /* Shared Local Memory Size is specified as powers of two,
1559 * and also have a Gen-dependent minimum value if not zero.
1560 */
1561 static inline uint32_t
intel_calculate_slm_size(unsigned gen,uint32_t bytes)1562 intel_calculate_slm_size(unsigned gen, uint32_t bytes)
1563 {
1564 assert(bytes <= 64 * 1024);
1565 if (bytes > 0)
1566 return MAX2(util_next_power_of_two(bytes), gen >= 9 ? 1024 : 4096);
1567 else
1568 return 0;
1569 }
1570
1571 static inline uint32_t
encode_slm_size(unsigned gen,uint32_t bytes)1572 encode_slm_size(unsigned gen, uint32_t bytes)
1573 {
1574 uint32_t slm_size = 0;
1575
1576 /* Shared Local Memory is specified as powers of two, and encoded in
1577 * INTERFACE_DESCRIPTOR_DATA with the following representations:
1578 *
1579 * Size | 0 kB | 1 kB | 2 kB | 4 kB | 8 kB | 16 kB | 32 kB | 64 kB |
1580 * -------------------------------------------------------------------
1581 * Gfx7-8 | 0 | none | none | 1 | 2 | 4 | 8 | 16 |
1582 * -------------------------------------------------------------------
1583 * Gfx9+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1584 */
1585
1586 if (bytes > 0) {
1587 slm_size = intel_calculate_slm_size(gen, bytes);
1588 assert(util_is_power_of_two_nonzero(slm_size));
1589
1590 if (gen >= 9) {
1591 /* Turn an exponent of 10 (1024 kB) into 1. */
1592 assert(slm_size >= 1024);
1593 slm_size = ffs(slm_size) - 10;
1594 } else {
1595 assert(slm_size >= 4096);
1596 /* Convert to the pre-Gfx9 representation. */
1597 slm_size = slm_size / 4096;
1598 }
1599 }
1600
1601 return slm_size;
1602 }
1603
1604 unsigned
1605 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
1606 unsigned threads);
1607
1608 void
1609 brw_write_shader_relocs(const struct brw_isa_info *isa,
1610 void *program,
1611 const struct brw_stage_prog_data *prog_data,
1612 struct brw_shader_reloc_value *values,
1613 unsigned num_values);
1614
1615 /**
1616 * Get the dispatch information for a shader to be used with GPGPU_WALKER and
1617 * similar instructions.
1618 *
1619 * If override_local_size is not NULL, it must to point to a 3-element that
1620 * will override the value from prog_data->local_size. This is used by
1621 * ARB_compute_variable_group_size, where the size is set only at dispatch
1622 * time (so prog_data is outdated).
1623 */
1624 struct intel_cs_dispatch_info
1625 brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
1626 const struct brw_cs_prog_data *prog_data,
1627 const unsigned *override_local_size);
1628
1629 /**
1630 * Return true if the given shader stage is dispatched contiguously by the
1631 * relevant fixed function starting from channel 0 of the SIMD thread, which
1632 * implies that the dispatch mask of a thread can be assumed to have the form
1633 * '2^n - 1' for some n.
1634 */
1635 static inline bool
brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info * devinfo,gl_shader_stage stage,unsigned max_polygons,const struct brw_stage_prog_data * prog_data)1636 brw_stage_has_packed_dispatch(ASSERTED const struct intel_device_info *devinfo,
1637 gl_shader_stage stage, unsigned max_polygons,
1638 const struct brw_stage_prog_data *prog_data)
1639 {
1640 /* The code below makes assumptions about the hardware's thread dispatch
1641 * behavior that could be proven wrong in future generations -- Make sure
1642 * to do a full test run with brw_fs_test_dispatch_packing() hooked up to
1643 * the NIR front-end before changing this assertion.
1644 */
1645 assert(devinfo->ver <= 12);
1646
1647 switch (stage) {
1648 case MESA_SHADER_FRAGMENT: {
1649 /* The PSD discards subspans coming in with no lit samples, which in the
1650 * per-pixel shading case implies that each subspan will either be fully
1651 * lit (due to the VMask being used to allow derivative computations),
1652 * or not dispatched at all. In per-sample dispatch mode individual
1653 * samples from the same subspan have a fixed relative location within
1654 * the SIMD thread, so dispatch of unlit samples cannot be avoided in
1655 * general and we should return false.
1656 */
1657 const struct brw_wm_prog_data *wm_prog_data =
1658 (const struct brw_wm_prog_data *)prog_data;
1659 return devinfo->verx10 < 125 &&
1660 !wm_prog_data->persample_dispatch &&
1661 wm_prog_data->uses_vmask &&
1662 max_polygons < 2;
1663 }
1664 case MESA_SHADER_COMPUTE:
1665 /* Compute shaders will be spawned with either a fully enabled dispatch
1666 * mask or with whatever bottom/right execution mask was given to the
1667 * GPGPU walker command to be used along the workgroup edges -- In both
1668 * cases the dispatch mask is required to be tightly packed for our
1669 * invocation index calculations to work.
1670 */
1671 return true;
1672 default:
1673 /* Most remaining fixed functions are limited to use a packed dispatch
1674 * mask due to the hardware representation of the dispatch mask as a
1675 * single counter representing the number of enabled channels.
1676 */
1677 return true;
1678 }
1679 }
1680
1681 /**
1682 * Computes the first varying slot in the URB produced by the previous stage
1683 * that is used in the next stage. We do this by testing the varying slots in
1684 * the previous stage's vue map against the inputs read in the next stage.
1685 *
1686 * Note that:
1687 *
1688 * - Each URB offset contains two varying slots and we can only skip a
1689 * full offset if both slots are unused, so the value we return here is always
1690 * rounded down to the closest multiple of two.
1691 *
1692 * - gl_Layer and gl_ViewportIndex don't have their own varying slots, they are
1693 * part of the vue header, so if these are read we can't skip anything.
1694 */
1695 static inline int
brw_compute_first_urb_slot_required(uint64_t inputs_read,const struct intel_vue_map * prev_stage_vue_map)1696 brw_compute_first_urb_slot_required(uint64_t inputs_read,
1697 const struct intel_vue_map *prev_stage_vue_map)
1698 {
1699 if ((inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PRIMITIVE_SHADING_RATE)) == 0) {
1700 for (int i = 0; i < prev_stage_vue_map->num_slots; i++) {
1701 int varying = prev_stage_vue_map->slot_to_varying[i];
1702 if (varying > 0 && (inputs_read & BITFIELD64_BIT(varying)) != 0)
1703 return ROUND_DOWN_TO(i, 2);
1704 }
1705 }
1706
1707 return 0;
1708 }
1709
1710 /* From InlineData in 3DSTATE_TASK_SHADER_DATA and 3DSTATE_MESH_SHADER_DATA. */
1711 #define BRW_TASK_MESH_INLINE_DATA_SIZE_DW 8
1712
1713 /* InlineData[0-1] is used for Vulkan descriptor. */
1714 #define BRW_TASK_MESH_PUSH_CONSTANTS_START_DW 2
1715
1716 #define BRW_TASK_MESH_PUSH_CONSTANTS_SIZE_DW \
1717 (BRW_TASK_MESH_INLINE_DATA_SIZE_DW - BRW_TASK_MESH_PUSH_CONSTANTS_START_DW)
1718
1719 /**
1720 * This enum is used as the base indice of the nir_load_topology_id_intel
1721 * intrinsic. This is used to return different values based on some aspect of
1722 * the topology of the device.
1723 */
1724 enum brw_topology_id
1725 {
1726 /* A value based of the DSS identifier the shader is currently running on.
1727 * Be mindful that the DSS ID can be higher than the total number of DSS on
1728 * the device. This is because of the fusing that can occur on different
1729 * parts.
1730 */
1731 BRW_TOPOLOGY_ID_DSS,
1732
1733 /* A value composed of EU ID, thread ID & SIMD lane ID. */
1734 BRW_TOPOLOGY_ID_EU_THREAD_SIMD,
1735 };
1736
1737 #ifdef __cplusplus
1738 } /* extern "C" */
1739 #endif
1740
1741 #endif /* BRW_COMPILER_H */
1742