• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_generator.cpp
25  *
26  * This file supports generating code from the FS LIR to the actual
27  * native instructions.
28  */
29 
30 #include "brw_eu.h"
31 #include "brw_disasm_info.h"
32 #include "brw_fs.h"
33 #include "brw_cfg.h"
34 #include "dev/intel_debug.h"
35 #include "util/mesa-sha1.h"
36 #include "util/half_float.h"
37 
38 static enum brw_reg_file
brw_file_from_reg(fs_reg * reg)39 brw_file_from_reg(fs_reg *reg)
40 {
41    switch (reg->file) {
42    case ARF:
43       return BRW_ARCHITECTURE_REGISTER_FILE;
44    case FIXED_GRF:
45    case VGRF:
46       return BRW_GENERAL_REGISTER_FILE;
47    case IMM:
48       return BRW_IMMEDIATE_VALUE;
49    case BAD_FILE:
50    case ATTR:
51    case UNIFORM:
52       unreachable("not reached");
53    }
54    return BRW_ARCHITECTURE_REGISTER_FILE;
55 }
56 
57 static struct brw_reg
brw_reg_from_fs_reg(const struct intel_device_info * devinfo,fs_inst * inst,fs_reg * reg,bool compressed)58 brw_reg_from_fs_reg(const struct intel_device_info *devinfo, fs_inst *inst,
59                     fs_reg *reg, bool compressed)
60 {
61    struct brw_reg brw_reg;
62 
63    switch (reg->file) {
64    case VGRF:
65       if (reg->stride == 0) {
66          brw_reg = brw_vec1_reg(brw_file_from_reg(reg), reg->nr, 0);
67       } else {
68          /* From the Haswell PRM:
69           *
70           *  "VertStride must be used to cross GRF register boundaries. This
71           *   rule implies that elements within a 'Width' cannot cross GRF
72           *   boundaries."
73           *
74           * The maximum width value that could satisfy this restriction is:
75           */
76          const unsigned reg_width = REG_SIZE / (reg->stride * type_sz(reg->type));
77 
78          /* Because the hardware can only split source regions at a whole
79           * multiple of width during decompression (i.e. vertically), clamp
80           * the value obtained above to the physical execution size of a
81           * single decompressed chunk of the instruction:
82           */
83          const unsigned phys_width = compressed ? inst->exec_size / 2 :
84                                      inst->exec_size;
85 
86          const unsigned max_hw_width = 16;
87 
88          /* XXX - The equation above is strictly speaking not correct on
89           *       hardware that supports unbalanced GRF writes -- On Gfx9+
90           *       each decompressed chunk of the instruction may have a
91           *       different execution size when the number of components
92           *       written to each destination GRF is not the same.
93           */
94          if (reg->stride > 4) {
95             assert(reg != &inst->dst);
96             assert(reg->stride * type_sz(reg->type) <= REG_SIZE);
97             brw_reg = brw_vecn_reg(1, brw_file_from_reg(reg), reg->nr, 0);
98             brw_reg = stride(brw_reg, reg->stride, 1, 0);
99          } else {
100             const unsigned width = MIN3(reg_width, phys_width, max_hw_width);
101             brw_reg = brw_vecn_reg(width, brw_file_from_reg(reg), reg->nr, 0);
102             brw_reg = stride(brw_reg, width * reg->stride, width, reg->stride);
103          }
104       }
105 
106       brw_reg = retype(brw_reg, reg->type);
107       brw_reg = byte_offset(brw_reg, reg->offset);
108       brw_reg.abs = reg->abs;
109       brw_reg.negate = reg->negate;
110       break;
111    case ARF:
112    case FIXED_GRF:
113    case IMM:
114       assert(reg->offset == 0);
115       brw_reg = reg->as_brw_reg();
116       break;
117    case BAD_FILE:
118       /* Probably unused. */
119       brw_reg = brw_null_reg();
120       break;
121    case ATTR:
122    case UNIFORM:
123       unreachable("not reached");
124    }
125 
126    return brw_reg;
127 }
128 
fs_generator(const struct brw_compiler * compiler,const struct brw_compile_params * params,struct brw_stage_prog_data * prog_data,gl_shader_stage stage)129 fs_generator::fs_generator(const struct brw_compiler *compiler,
130                            const struct brw_compile_params *params,
131                            struct brw_stage_prog_data *prog_data,
132                            gl_shader_stage stage)
133 
134    : compiler(compiler), params(params),
135      devinfo(compiler->devinfo),
136      prog_data(prog_data), dispatch_width(0),
137      debug_flag(false),
138      shader_name(NULL), stage(stage), mem_ctx(params->mem_ctx)
139 {
140    p = rzalloc(mem_ctx, struct brw_codegen);
141    brw_init_codegen(&compiler->isa, p, mem_ctx);
142 }
143 
~fs_generator()144 fs_generator::~fs_generator()
145 {
146 }
147 
148 class ip_record : public exec_node {
149 public:
150    DECLARE_RALLOC_CXX_OPERATORS(ip_record)
151 
ip_record(int ip)152    ip_record(int ip)
153    {
154       this->ip = ip;
155    }
156 
157    int ip;
158 };
159 
160 bool
patch_halt_jumps()161 fs_generator::patch_halt_jumps()
162 {
163    if (this->discard_halt_patches.is_empty())
164       return false;
165 
166    int scale = brw_jump_scale(p->devinfo);
167 
168    /* There is a somewhat strange undocumented requirement of using
169     * HALT, according to the simulator.  If some channel has HALTed to
170     * a particular UIP, then by the end of the program, every channel
171     * must have HALTed to that UIP.  Furthermore, the tracking is a
172     * stack, so you can't do the final halt of a UIP after starting
173     * halting to a new UIP.
174     *
175     * Symptoms of not emitting this instruction on actual hardware
176     * included GPU hangs and sparkly rendering on the piglit discard
177     * tests.
178     */
179    brw_inst *last_halt = brw_HALT(p);
180    brw_inst_set_uip(p->devinfo, last_halt, 1 * scale);
181    brw_inst_set_jip(p->devinfo, last_halt, 1 * scale);
182 
183    int ip = p->nr_insn;
184 
185    foreach_in_list(ip_record, patch_ip, &discard_halt_patches) {
186       brw_inst *patch = &p->store[patch_ip->ip];
187 
188       assert(brw_inst_opcode(p->isa, patch) == BRW_OPCODE_HALT);
189       /* HALT takes a half-instruction distance from the pre-incremented IP. */
190       brw_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale);
191    }
192 
193    this->discard_halt_patches.make_empty();
194 
195    return true;
196 }
197 
198 void
generate_send(fs_inst * inst,struct brw_reg dst,struct brw_reg desc,struct brw_reg ex_desc,struct brw_reg payload,struct brw_reg payload2)199 fs_generator::generate_send(fs_inst *inst,
200                             struct brw_reg dst,
201                             struct brw_reg desc,
202                             struct brw_reg ex_desc,
203                             struct brw_reg payload,
204                             struct brw_reg payload2)
205 {
206    const bool dst_is_null = dst.file == BRW_ARCHITECTURE_REGISTER_FILE &&
207                             dst.nr == BRW_ARF_NULL;
208    const unsigned rlen = dst_is_null ? 0 : inst->size_written / REG_SIZE;
209 
210    uint32_t desc_imm = inst->desc |
211       brw_message_desc(devinfo, inst->mlen, rlen, inst->header_size);
212 
213    uint32_t ex_desc_imm = inst->ex_desc |
214       brw_message_ex_desc(devinfo, inst->ex_mlen);
215 
216    if (ex_desc.file != BRW_IMMEDIATE_VALUE || ex_desc.ud || ex_desc_imm ||
217        inst->send_ex_desc_scratch) {
218       /* If we have any sort of extended descriptor, then we need SENDS.  This
219        * also covers the dual-payload case because ex_mlen goes in ex_desc.
220        */
221       brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2,
222                                       desc, desc_imm, ex_desc, ex_desc_imm,
223                                       inst->send_ex_desc_scratch,
224                                       inst->send_ex_bso, inst->eot);
225       if (inst->check_tdr)
226          brw_inst_set_opcode(p->isa, brw_last_inst,
227                              devinfo->ver >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC);
228    } else {
229       brw_send_indirect_message(p, inst->sfid, dst, payload, desc, desc_imm,
230                                    inst->eot);
231       if (inst->check_tdr)
232          brw_inst_set_opcode(p->isa, brw_last_inst, BRW_OPCODE_SENDC);
233    }
234 }
235 
236 void
generate_fb_read(fs_inst * inst,struct brw_reg dst,struct brw_reg payload)237 fs_generator::generate_fb_read(fs_inst *inst, struct brw_reg dst,
238                                struct brw_reg payload)
239 {
240    assert(inst->size_written % REG_SIZE == 0);
241    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
242    /* We assume that render targets start at binding table index 0. */
243    const unsigned surf_index = inst->target;
244 
245    gfx9_fb_READ(p, dst, payload, surf_index,
246                 inst->header_size, inst->size_written / REG_SIZE,
247                 prog_data->persample_dispatch);
248 }
249 
250 void
generate_mov_indirect(fs_inst * inst,struct brw_reg dst,struct brw_reg reg,struct brw_reg indirect_byte_offset)251 fs_generator::generate_mov_indirect(fs_inst *inst,
252                                     struct brw_reg dst,
253                                     struct brw_reg reg,
254                                     struct brw_reg indirect_byte_offset)
255 {
256    assert(indirect_byte_offset.type == BRW_REGISTER_TYPE_UD);
257    assert(indirect_byte_offset.file == BRW_GENERAL_REGISTER_FILE);
258    assert(!reg.abs && !reg.negate);
259 
260    /* Gen12.5 adds the following region restriction:
261     *
262     *    "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float
263     *    and Quad-Word data must not be used."
264     *
265     * We require the source and destination types to match so stomp to an
266     * unsigned integer type.
267     */
268    assert(reg.type == dst.type);
269    reg.type = dst.type = brw_reg_type_from_bit_size(type_sz(reg.type) * 8,
270                                                     BRW_REGISTER_TYPE_UD);
271 
272    unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr;
273 
274    if (indirect_byte_offset.file == BRW_IMMEDIATE_VALUE) {
275       imm_byte_offset += indirect_byte_offset.ud;
276 
277       reg.nr = imm_byte_offset / REG_SIZE;
278       reg.subnr = imm_byte_offset % REG_SIZE;
279       if (type_sz(reg.type) > 4 && !devinfo->has_64bit_float) {
280          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
281                     subscript(reg, BRW_REGISTER_TYPE_D, 0));
282          brw_set_default_swsb(p, tgl_swsb_null());
283          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
284                     subscript(reg, BRW_REGISTER_TYPE_D, 1));
285       } else {
286          brw_MOV(p, dst, reg);
287       }
288    } else {
289       /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
290       struct brw_reg addr = vec8(brw_address_reg(0));
291 
292       /* Whether we can use destination dependency control without running the
293        * risk of a hang if an instruction gets shot down.
294        */
295       const bool use_dep_ctrl = !inst->predicate &&
296                                 inst->exec_size == dispatch_width;
297       brw_inst *insn;
298 
299       /* The destination stride of an instruction (in bytes) must be greater
300        * than or equal to the size of the rest of the instruction.  Since the
301        * address register is of type UW, we can't use a D-type instruction.
302        * In order to get around this, re retype to UW and use a stride.
303        */
304       indirect_byte_offset =
305          retype(spread(indirect_byte_offset, 2), BRW_REGISTER_TYPE_UW);
306 
307       /* There are a number of reasons why we don't use the base offset here.
308        * One reason is that the field is only 9 bits which means we can only
309        * use it to access the first 16 GRFs.  Also, from the Haswell PRM
310        * section "Register Region Restrictions":
311        *
312        *    "The lower bits of the AddressImmediate must not overflow to
313        *    change the register address.  The lower 5 bits of Address
314        *    Immediate when added to lower 5 bits of address register gives
315        *    the sub-register offset. The upper bits of Address Immediate
316        *    when added to upper bits of address register gives the register
317        *    address. Any overflow from sub-register offset is dropped."
318        *
319        * Since the indirect may cause us to cross a register boundary, this
320        * makes the base offset almost useless.  We could try and do something
321        * clever where we use a actual base offset if base_offset % 32 == 0 but
322        * that would mean we were generating different code depending on the
323        * base offset.  Instead, for the sake of consistency, we'll just do the
324        * add ourselves.  This restriction is only listed in the Haswell PRM
325        * but empirical testing indicates that it applies on all older
326        * generations and is lifted on Broadwell.
327        *
328        * In the end, while base_offset is nice to look at in the generated
329        * code, using it saves us 0 instructions and would require quite a bit
330        * of case-by-case work.  It's just not worth it.
331        *
332        * Due to a hardware bug some platforms (particularly Gfx11+) seem to
333        * require the address components of all channels to be valid whether or
334        * not they're active, which causes issues if we use VxH addressing
335        * under non-uniform control-flow.  We can easily work around that by
336        * initializing the whole address register with a pipelined NoMask MOV
337        * instruction.
338        */
339       insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset));
340       brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
341       brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
342       if (devinfo->ver >= 12)
343          brw_set_default_swsb(p, tgl_swsb_null());
344       else
345          brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
346 
347       insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset));
348       if (devinfo->ver >= 12)
349          brw_set_default_swsb(p, tgl_swsb_regdist(1));
350       else
351          brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
352 
353       if (type_sz(reg.type) > 4 &&
354           (intel_device_info_is_9lp(devinfo) ||
355            !devinfo->has_64bit_float || devinfo->verx10 >= 125)) {
356          /* IVB has an issue (which we found empirically) where it reads two
357           * address register components per channel for indirectly addressed
358           * 64-bit sources.
359           *
360           * From the Cherryview PRM Vol 7. "Register Region Restrictions":
361           *
362           *    "When source or destination datatype is 64b or operation is
363           *    integer DWord multiply, indirect addressing must not be used."
364           *
365           * To work around both of these, we do two integer MOVs insead of one
366           * 64-bit MOV.  Because no double value should ever cross a register
367           * boundary, it's safe to use the immediate offset in the indirect
368           * here to handle adding 4 bytes to the offset and avoid the extra
369           * ADD to the register file.
370           */
371          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 0),
372                     retype(brw_VxH_indirect(0, 0), BRW_REGISTER_TYPE_D));
373          brw_set_default_swsb(p, tgl_swsb_null());
374          brw_MOV(p, subscript(dst, BRW_REGISTER_TYPE_D, 1),
375                     retype(brw_VxH_indirect(0, 4), BRW_REGISTER_TYPE_D));
376       } else {
377          struct brw_reg ind_src = brw_VxH_indirect(0, 0);
378 
379          brw_MOV(p, dst, retype(ind_src, reg.type));
380       }
381    }
382 }
383 
384 void
generate_shuffle(fs_inst * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg idx)385 fs_generator::generate_shuffle(fs_inst *inst,
386                                struct brw_reg dst,
387                                struct brw_reg src,
388                                struct brw_reg idx)
389 {
390    assert(src.file == BRW_GENERAL_REGISTER_FILE);
391    assert(!src.abs && !src.negate);
392 
393    /* Ivy bridge has some strange behavior that makes this a real pain to
394     * implement for 64-bit values so we just don't bother.
395     */
396    assert(devinfo->has_64bit_float || type_sz(src.type) <= 4);
397 
398    /* Gen12.5 adds the following region restriction:
399     *
400     *    "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float
401     *    and Quad-Word data must not be used."
402     *
403     * We require the source and destination types to match so stomp to an
404     * unsigned integer type.
405     */
406    assert(src.type == dst.type);
407    src.type = dst.type = brw_reg_type_from_bit_size(type_sz(src.type) * 8,
408                                                     BRW_REGISTER_TYPE_UD);
409 
410    /* Because we're using the address register, we're limited to 8-wide
411     * execution on gfx7.  On gfx8, we're limited to 16-wide by the address
412     * register file and 8-wide for 64-bit types.  We could try and make this
413     * instruction splittable higher up in the compiler but that gets weird
414     * because it reads all of the channels regardless of execution size.  It's
415     * easier just to split it here.
416     */
417    const unsigned lower_width =
418       element_sz(src) > 4 || element_sz(dst) > 4 ? 8 :
419       MIN2(16, inst->exec_size);
420 
421    brw_set_default_exec_size(p, cvt(lower_width) - 1);
422    for (unsigned group = 0; group < inst->exec_size; group += lower_width) {
423       brw_set_default_group(p, group);
424 
425       if ((src.vstride == 0 && src.hstride == 0) ||
426           idx.file == BRW_IMMEDIATE_VALUE) {
427          /* Trivial, the source is already uniform or the index is a constant.
428           * We will typically not get here if the optimizer is doing its job,
429           * but asserting would be mean.
430           */
431          const unsigned i = idx.file == BRW_IMMEDIATE_VALUE ? idx.ud : 0;
432          struct brw_reg group_src = stride(suboffset(src, i), 0, 1, 0);
433          struct brw_reg group_dst = suboffset(dst, group << (dst.hstride - 1));
434          brw_MOV(p, group_dst, group_src);
435       } else {
436          /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */
437          struct brw_reg addr = vec8(brw_address_reg(0));
438 
439          struct brw_reg group_idx = suboffset(idx, group);
440 
441          if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) {
442             /* Things get grumpy if the register is too wide. */
443             group_idx.width--;
444             group_idx.vstride--;
445          }
446 
447          assert(type_sz(group_idx.type) <= 4);
448          if (type_sz(group_idx.type) == 4) {
449             /* The destination stride of an instruction (in bytes) must be
450              * greater than or equal to the size of the rest of the
451              * instruction.  Since the address register is of type UW, we
452              * can't use a D-type instruction.  In order to get around this,
453              * re retype to UW and use a stride.
454              */
455             group_idx = retype(spread(group_idx, 2), BRW_REGISTER_TYPE_W);
456          }
457 
458          uint32_t src_start_offset = src.nr * REG_SIZE + src.subnr;
459 
460          /* From the Haswell PRM:
461           *
462           *    "When a sequence of NoDDChk and NoDDClr are used, the last
463           *    instruction that completes the scoreboard clear must have a
464           *    non-zero execution mask. This means, if any kind of predication
465           *    can change the execution mask or channel enable of the last
466           *    instruction, the optimization must be avoided.  This is to
467           *    avoid instructions being shot down the pipeline when no writes
468           *    are required."
469           *
470           * Whenever predication is enabled or the instructions being emitted
471           * aren't the full width, it's possible that it will be run with zero
472           * channels enabled so we can't use dependency control without
473           * running the risk of a hang if an instruction gets shot down.
474           */
475          const bool use_dep_ctrl = !inst->predicate &&
476                                    lower_width == dispatch_width;
477          brw_inst *insn;
478 
479          /* Due to a hardware bug some platforms (particularly Gfx11+) seem
480           * to require the address components of all channels to be valid
481           * whether or not they're active, which causes issues if we use VxH
482           * addressing under non-uniform control-flow.  We can easily work
483           * around that by initializing the whole address register with a
484           * pipelined NoMask MOV instruction.
485           */
486          insn = brw_MOV(p, addr, brw_imm_uw(src_start_offset));
487          brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
488          brw_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE);
489          if (devinfo->ver >= 12)
490             brw_set_default_swsb(p, tgl_swsb_null());
491          else
492             brw_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl);
493 
494          /* Take into account the component size and horizontal stride. */
495          assert(src.vstride == src.hstride + src.width);
496          insn = brw_SHL(p, addr, group_idx,
497                         brw_imm_uw(util_logbase2(type_sz(src.type)) +
498                                    src.hstride - 1));
499          if (devinfo->ver >= 12)
500             brw_set_default_swsb(p, tgl_swsb_regdist(1));
501          else
502             brw_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl);
503 
504          /* Add on the register start offset */
505          brw_ADD(p, addr, addr, brw_imm_uw(src_start_offset));
506          brw_MOV(p, suboffset(dst, group << (dst.hstride - 1)),
507                  retype(brw_VxH_indirect(0, 0), src.type));
508       }
509 
510       brw_set_default_swsb(p, tgl_swsb_null());
511    }
512 }
513 
514 void
generate_quad_swizzle(const fs_inst * inst,struct brw_reg dst,struct brw_reg src,unsigned swiz)515 fs_generator::generate_quad_swizzle(const fs_inst *inst,
516                                     struct brw_reg dst, struct brw_reg src,
517                                     unsigned swiz)
518 {
519    /* Requires a quad. */
520    assert(inst->exec_size >= 4);
521 
522    if (src.file == BRW_IMMEDIATE_VALUE ||
523        has_scalar_region(src)) {
524       /* The value is uniform across all channels */
525       brw_MOV(p, dst, src);
526 
527    } else if (devinfo->ver < 11 && type_sz(src.type) == 4) {
528       /* This only works on 8-wide 32-bit values */
529       assert(inst->exec_size == 8);
530       assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
531       assert(src.vstride == src.width + 1);
532       brw_set_default_access_mode(p, BRW_ALIGN_16);
533       struct brw_reg swiz_src = stride(src, 4, 4, 1);
534       swiz_src.swizzle = swiz;
535       brw_MOV(p, dst, swiz_src);
536 
537    } else {
538       assert(src.hstride == BRW_HORIZONTAL_STRIDE_1);
539       assert(src.vstride == src.width + 1);
540       const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0));
541 
542       switch (swiz) {
543       case BRW_SWIZZLE_XXXX:
544       case BRW_SWIZZLE_YYYY:
545       case BRW_SWIZZLE_ZZZZ:
546       case BRW_SWIZZLE_WWWW:
547          brw_MOV(p, dst, stride(src_0, 4, 4, 0));
548          break;
549 
550       case BRW_SWIZZLE_XXZZ:
551       case BRW_SWIZZLE_YYWW:
552          brw_MOV(p, dst, stride(src_0, 2, 2, 0));
553          break;
554 
555       case BRW_SWIZZLE_XYXY:
556       case BRW_SWIZZLE_ZWZW:
557          assert(inst->exec_size == 4);
558          brw_MOV(p, dst, stride(src_0, 0, 2, 1));
559          break;
560 
561       default:
562          assert(inst->force_writemask_all);
563          brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1);
564 
565          for (unsigned c = 0; c < 4; c++) {
566             brw_inst *insn = brw_MOV(
567                p, stride(suboffset(dst, c),
568                          4 * inst->dst.stride, 1, 4 * inst->dst.stride),
569                stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0));
570 
571             if (devinfo->ver < 12) {
572                brw_inst_set_no_dd_clear(devinfo, insn, c < 3);
573                brw_inst_set_no_dd_check(devinfo, insn, c > 0);
574             }
575 
576             brw_set_default_swsb(p, tgl_swsb_null());
577          }
578 
579          break;
580       }
581    }
582 }
583 
584 void
generate_cs_terminate(fs_inst * inst,struct brw_reg payload)585 fs_generator::generate_cs_terminate(fs_inst *inst, struct brw_reg payload)
586 {
587    struct brw_inst *insn;
588 
589    insn = brw_next_insn(p, BRW_OPCODE_SEND);
590 
591    brw_set_dest(p, insn, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW));
592    brw_set_src0(p, insn, retype(payload, BRW_REGISTER_TYPE_UW));
593    if (devinfo->ver < 12)
594       brw_set_src1(p, insn, brw_imm_ud(0u));
595 
596    /* For XeHP and newer send a message to the message gateway to terminate a
597     * compute shader. For older devices, a message is sent to the thread
598     * spawner.
599     */
600    if (devinfo->verx10 >= 125)
601       brw_inst_set_sfid(devinfo, insn, BRW_SFID_MESSAGE_GATEWAY);
602    else
603       brw_inst_set_sfid(devinfo, insn, BRW_SFID_THREAD_SPAWNER);
604    brw_inst_set_mlen(devinfo, insn, 1);
605    brw_inst_set_rlen(devinfo, insn, 0);
606    brw_inst_set_eot(devinfo, insn, inst->eot);
607    brw_inst_set_header_present(devinfo, insn, false);
608 
609    brw_inst_set_ts_opcode(devinfo, insn, 0); /* Dereference resource */
610 
611    if (devinfo->ver < 11) {
612       brw_inst_set_ts_request_type(devinfo, insn, 0); /* Root thread */
613 
614       /* Note that even though the thread has a URB resource associated with it,
615        * we set the "do not dereference URB" bit, because the URB resource is
616        * managed by the fixed-function unit, so it will free it automatically.
617        */
618       brw_inst_set_ts_resource_select(devinfo, insn, 1); /* Do not dereference URB */
619    }
620 
621    brw_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE);
622 }
623 
624 void
generate_barrier(fs_inst *,struct brw_reg src)625 fs_generator::generate_barrier(fs_inst *, struct brw_reg src)
626 {
627    brw_barrier(p, src);
628    if (devinfo->ver >= 12) {
629       brw_set_default_swsb(p, tgl_swsb_null());
630       brw_SYNC(p, TGL_SYNC_BAR);
631    } else {
632       brw_WAIT(p);
633    }
634 }
635 
636 bool
generate_linterp(fs_inst * inst,struct brw_reg dst,struct brw_reg * src)637 fs_generator::generate_linterp(fs_inst *inst,
638                                struct brw_reg dst, struct brw_reg *src)
639 {
640    /* PLN reads:
641     *                      /   in SIMD16   \
642     *    -----------------------------------
643     *   | src1+0 | src1+1 | src1+2 | src1+3 |
644     *   |-----------------------------------|
645     *   |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)|
646     *    -----------------------------------
647     */
648    struct brw_reg delta_x = src[0];
649    struct brw_reg interp = src[1];
650 
651    /* nir_lower_interpolation() will do the lowering to MAD instructions for
652     * us on gfx11+
653     */
654    assert(devinfo->ver < 11);
655    assert(devinfo->has_pln);
656 
657    brw_PLN(p, dst, interp, delta_x);
658    return false;
659 }
660 
661 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
662  * looking like:
663  *
664  * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
665  *
666  * Ideally, we want to produce:
667  *
668  *           DDX                     DDY
669  * dst: (ss0.tr - ss0.tl)     (ss0.tl - ss0.bl)
670  *      (ss0.tr - ss0.tl)     (ss0.tr - ss0.br)
671  *      (ss0.br - ss0.bl)     (ss0.tl - ss0.bl)
672  *      (ss0.br - ss0.bl)     (ss0.tr - ss0.br)
673  *      (ss1.tr - ss1.tl)     (ss1.tl - ss1.bl)
674  *      (ss1.tr - ss1.tl)     (ss1.tr - ss1.br)
675  *      (ss1.br - ss1.bl)     (ss1.tl - ss1.bl)
676  *      (ss1.br - ss1.bl)     (ss1.tr - ss1.br)
677  *
678  * and add another set of two more subspans if in 16-pixel dispatch mode.
679  *
680  * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
681  * for each pair, and vertstride = 2 jumps us 2 elements after processing a
682  * pair.  But the ideal approximation may impose a huge performance cost on
683  * sample_d.  On at least Haswell, sample_d instruction does some
684  * optimizations if the same LOD is used for all pixels in the subspan.
685  *
686  * For DDY, we need to use ALIGN16 mode since it's capable of doing the
687  * appropriate swizzling.
688  */
689 void
generate_ddx(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)690 fs_generator::generate_ddx(const fs_inst *inst,
691                            struct brw_reg dst, struct brw_reg src)
692 {
693    unsigned vstride, width;
694 
695    if (inst->opcode == FS_OPCODE_DDX_FINE) {
696       /* produce accurate derivatives */
697       vstride = BRW_VERTICAL_STRIDE_2;
698       width = BRW_WIDTH_2;
699    } else {
700       /* replicate the derivative at the top-left pixel to other pixels */
701       vstride = BRW_VERTICAL_STRIDE_4;
702       width = BRW_WIDTH_4;
703    }
704 
705    struct brw_reg src0 = byte_offset(src, type_sz(src.type));;
706    struct brw_reg src1 = src;
707 
708    src0.vstride = vstride;
709    src0.width   = width;
710    src0.hstride = BRW_HORIZONTAL_STRIDE_0;
711    src1.vstride = vstride;
712    src1.width   = width;
713    src1.hstride = BRW_HORIZONTAL_STRIDE_0;
714 
715    brw_ADD(p, dst, src0, negate(src1));
716 }
717 
718 /* The negate_value boolean is used to negate the derivative computation for
719  * FBOs, since they place the origin at the upper left instead of the lower
720  * left.
721  */
722 void
generate_ddy(const fs_inst * inst,struct brw_reg dst,struct brw_reg src)723 fs_generator::generate_ddy(const fs_inst *inst,
724                            struct brw_reg dst, struct brw_reg src)
725 {
726    const uint32_t type_size = type_sz(src.type);
727 
728    if (inst->opcode == FS_OPCODE_DDY_FINE) {
729       /* produce accurate derivatives.
730        *
731        * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU)
732        * "Register Region Restrictions", Section "1. Special Restrictions":
733        *
734        *    "In Align16 mode, the channel selects and channel enables apply to
735        *     a pair of half-floats, because these parameters are defined for
736        *     DWord elements ONLY. This is applicable when both source and
737        *     destination are half-floats."
738        *
739        * So for half-float operations we use the Gfx11+ Align1 path. CHV
740        * inherits its FP16 hardware from SKL, so it is not affected.
741        */
742       if (devinfo->ver >= 11) {
743          src = stride(src, 0, 2, 1);
744 
745          brw_push_insn_state(p);
746          brw_set_default_exec_size(p, BRW_EXECUTE_4);
747          for (uint32_t g = 0; g < inst->exec_size; g += 4) {
748             brw_set_default_group(p, inst->group + g);
749             brw_ADD(p, byte_offset(dst, g * type_size),
750                        negate(byte_offset(src,  g * type_size)),
751                        byte_offset(src, (g + 2) * type_size));
752             brw_set_default_swsb(p, tgl_swsb_null());
753          }
754          brw_pop_insn_state(p);
755       } else {
756          struct brw_reg src0 = stride(src, 4, 4, 1);
757          struct brw_reg src1 = stride(src, 4, 4, 1);
758          src0.swizzle = BRW_SWIZZLE_XYXY;
759          src1.swizzle = BRW_SWIZZLE_ZWZW;
760 
761          brw_push_insn_state(p);
762          brw_set_default_access_mode(p, BRW_ALIGN_16);
763          brw_ADD(p, dst, negate(src0), src1);
764          brw_pop_insn_state(p);
765       }
766    } else {
767       /* replicate the derivative at the top-left pixel to other pixels */
768       struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size);
769       struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size);
770 
771       brw_ADD(p, dst, negate(src0), src1);
772    }
773 }
774 
775 void
generate_halt(fs_inst *)776 fs_generator::generate_halt(fs_inst *)
777 {
778    /* This HALT will be patched up at FB write time to point UIP at the end of
779     * the program, and at brw_uip_jip() JIP will be set to the end of the
780     * current block (or the program).
781     */
782    this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn));
783    brw_HALT(p);
784 }
785 
786 /* The A32 messages take a buffer base address in header.5:[31:0] (See
787  * MH1_A32_PSM for typed messages or MH_A32_GO for byte/dword scattered
788  * and OWord block messages in the SKL PRM Vol. 2d for more details.)
789  * Unfortunately, there are a number of subtle differences:
790  *
791  * For the block read/write messages:
792  *
793  *   - We always stomp header.2 to fill in the actual scratch address (in
794  *     units of OWORDs) so we don't care what's in there.
795  *
796  *   - They rely on per-thread scratch space value in header.3[3:0] to do
797  *     bounds checking so that needs to be valid.  The upper bits of
798  *     header.3 are ignored, though, so we can copy all of g0.3.
799  *
800  *   - They ignore header.5[9:0] and assumes the address is 1KB aligned.
801  *
802  *
803  * For the byte/dword scattered read/write messages:
804  *
805  *   - We want header.2 to be zero because that gets added to the per-channel
806  *     offset in the non-header portion of the message.
807  *
808  *   - Contrary to what the docs claim, they don't do any bounds checking so
809  *     the value of header.3[3:0] doesn't matter.
810  *
811  *   - They consider all of header.5 for the base address and header.5[9:0]
812  *     are not ignored.  This means that we can't copy g0.5 verbatim because
813  *     g0.5[9:0] contains the FFTID on most platforms.  Instead, we have to
814  *     use an AND to mask off the bottom 10 bits.
815  *
816  *
817  * For block messages, just copying g0 gives a valid header because all the
818  * garbage gets ignored except for header.2 which we stomp as part of message
819  * setup.  For byte/dword scattered messages, we can just zero out the header
820  * and copy over the bits we need from g0.5.  This opcode, however, tries to
821  * satisfy the requirements of both by starting with 0 and filling out the
822  * information required by either set of opcodes.
823  */
824 void
generate_scratch_header(fs_inst * inst,struct brw_reg dst)825 fs_generator::generate_scratch_header(fs_inst *inst, struct brw_reg dst)
826 {
827    assert(inst->exec_size == 8 && inst->force_writemask_all);
828    assert(dst.file == BRW_GENERAL_REGISTER_FILE);
829 
830    dst.type = BRW_REGISTER_TYPE_UD;
831 
832    brw_inst *insn = brw_MOV(p, dst, brw_imm_ud(0));
833    if (devinfo->ver >= 12)
834       brw_set_default_swsb(p, tgl_swsb_null());
835    else
836       brw_inst_set_no_dd_clear(p->devinfo, insn, true);
837 
838    /* Copy the per-thread scratch space size from g0.3[3:0] */
839    brw_set_default_exec_size(p, BRW_EXECUTE_1);
840    insn = brw_AND(p, suboffset(dst, 3),
841                      retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
842                      brw_imm_ud(INTEL_MASK(3, 0)));
843    if (devinfo->ver < 12) {
844       brw_inst_set_no_dd_clear(p->devinfo, insn, true);
845       brw_inst_set_no_dd_check(p->devinfo, insn, true);
846    }
847 
848    /* Copy the scratch base address from g0.5[31:10] */
849    insn = brw_AND(p, suboffset(dst, 5),
850                      retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
851                      brw_imm_ud(INTEL_MASK(31, 10)));
852    if (devinfo->ver < 12)
853       brw_inst_set_no_dd_check(p->devinfo, insn, true);
854 }
855 
856 void
enable_debug(const char * shader_name)857 fs_generator::enable_debug(const char *shader_name)
858 {
859    debug_flag = true;
860    this->shader_name = shader_name;
861 }
862 
863 static gfx12_systolic_depth
translate_systolic_depth(unsigned d)864 translate_systolic_depth(unsigned d)
865 {
866    /* Could also return (ffs(d) - 1) & 3. */
867    switch (d) {
868    case 2:  return BRW_SYSTOLIC_DEPTH_2;
869    case 4:  return BRW_SYSTOLIC_DEPTH_4;
870    case 8:  return BRW_SYSTOLIC_DEPTH_8;
871    case 16: return BRW_SYSTOLIC_DEPTH_16;
872    default: unreachable("Invalid systolic depth.");
873    }
874 }
875 
876 int
generate_code(const cfg_t * cfg,int dispatch_width,struct shader_stats shader_stats,const brw::performance & perf,struct brw_compile_stats * stats,unsigned max_polygons)877 fs_generator::generate_code(const cfg_t *cfg, int dispatch_width,
878                             struct shader_stats shader_stats,
879                             const brw::performance &perf,
880                             struct brw_compile_stats *stats,
881                             unsigned max_polygons)
882 {
883    /* align to 64 byte boundary. */
884    brw_realign(p, 64);
885 
886    this->dispatch_width = dispatch_width;
887 
888    int start_offset = p->next_insn_offset;
889 
890    int loop_count = 0, send_count = 0, nop_count = 0, sync_nop_count = 0;
891    bool is_accum_used = false;
892 
893    struct disasm_info *disasm_info = disasm_initialize(p->isa, cfg);
894 
895    foreach_block_and_inst (block, fs_inst, inst, cfg) {
896       if (inst->opcode == SHADER_OPCODE_UNDEF)
897          continue;
898 
899       struct brw_reg src[4], dst;
900       unsigned int last_insn_offset = p->next_insn_offset;
901       bool multiple_instructions_emitted = false;
902       tgl_swsb swsb = inst->sched;
903 
904       /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the
905        * "Register Region Restrictions" section: for BDW, SKL:
906        *
907        *    "A POW/FDIV operation must not be followed by an instruction
908        *     that requires two destination registers."
909        *
910        * The documentation is often lacking annotations for Atom parts,
911        * and empirically this affects CHV as well.
912        */
913       if (devinfo->ver <= 9 &&
914           p->nr_insn > 1 &&
915           brw_inst_opcode(p->isa, brw_last_inst) == BRW_OPCODE_MATH &&
916           brw_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW &&
917           inst->dst.component_size(inst->exec_size) > REG_SIZE) {
918          brw_NOP(p);
919          last_insn_offset = p->next_insn_offset;
920 
921          /* In order to avoid spurious instruction count differences when the
922           * instruction schedule changes, keep track of the number of inserted
923           * NOPs.
924           */
925          nop_count++;
926       }
927 
928       /* Wa_14010017096:
929        *
930        * Clear accumulator register before end of thread.
931        */
932       if (inst->eot && is_accum_used &&
933           intel_needs_workaround(devinfo, 14010017096)) {
934          brw_set_default_exec_size(p, BRW_EXECUTE_16);
935          brw_set_default_group(p, 0);
936          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
937          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
938          brw_set_default_flag_reg(p, 0, 0);
939          brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
940          brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f));
941          last_insn_offset = p->next_insn_offset;
942          swsb = tgl_swsb_dst_dep(swsb, 1);
943       }
944 
945       if (!is_accum_used && !inst->eot) {
946          is_accum_used = inst->writes_accumulator_implicitly(devinfo) ||
947                          inst->dst.is_accumulator();
948       }
949 
950       /* Wa_14013672992:
951        *
952        * Always use @1 SWSB for EOT.
953        */
954       if (inst->eot && intel_needs_workaround(devinfo, 14013672992)) {
955          if (tgl_swsb_src_dep(swsb).mode) {
956             brw_set_default_exec_size(p, BRW_EXECUTE_1);
957             brw_set_default_mask_control(p, BRW_MASK_DISABLE);
958             brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
959             brw_set_default_flag_reg(p, 0, 0);
960             brw_set_default_swsb(p, tgl_swsb_src_dep(swsb));
961             brw_SYNC(p, TGL_SYNC_NOP);
962             last_insn_offset = p->next_insn_offset;
963          }
964 
965          swsb = tgl_swsb_dst_dep(swsb, 1);
966       }
967 
968       if (unlikely(debug_flag))
969          disasm_annotate(disasm_info, inst, p->next_insn_offset);
970 
971       /* If the instruction writes to more than one register, it needs to be
972        * explicitly marked as compressed on Gen <= 5.  On Gen >= 6 the
973        * hardware figures out by itself what the right compression mode is,
974        * but we still need to know whether the instruction is compressed to
975        * set up the source register regions appropriately.
976        *
977        * XXX - This is wrong for instructions that write a single register but
978        *       read more than one which should strictly speaking be treated as
979        *       compressed.  For instructions that don't write any registers it
980        *       relies on the destination being a null register of the correct
981        *       type and regioning so the instruction is considered compressed
982        *       or not accordingly.
983        */
984       const bool compressed =
985            inst->dst.component_size(inst->exec_size) > REG_SIZE;
986 
987       if (devinfo->ver >= 20 && inst->group % 8 != 0) {
988          assert(inst->force_writemask_all);
989          assert(!inst->predicate && !inst->conditional_mod);
990          assert(!inst->writes_accumulator_implicitly(devinfo) &&
991                 !inst->reads_accumulator_implicitly());
992          assert(inst->opcode != SHADER_OPCODE_SEL_EXEC);
993          brw_set_default_group(p, 0);
994       } else {
995          brw_set_default_group(p, inst->group);
996       }
997 
998       for (unsigned int i = 0; i < inst->sources; i++) {
999          src[i] = brw_reg_from_fs_reg(devinfo, inst,
1000                                       &inst->src[i], compressed);
1001 	 /* The accumulator result appears to get used for the
1002 	  * conditional modifier generation.  When negating a UD
1003 	  * value, there is a 33rd bit generated for the sign in the
1004 	  * accumulator value, so now you can't check, for example,
1005 	  * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
1006 	  */
1007 	 assert(!inst->conditional_mod ||
1008 		inst->src[i].type != BRW_REGISTER_TYPE_UD ||
1009 		!inst->src[i].negate);
1010       }
1011       dst = brw_reg_from_fs_reg(devinfo, inst,
1012                                 &inst->dst, compressed);
1013 
1014       brw_set_default_access_mode(p, BRW_ALIGN_1);
1015       brw_set_default_predicate_control(p, inst->predicate);
1016       brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1017       /* On gfx7 and above, hardware automatically adds the group onto the
1018        * flag subregister number.
1019        */
1020       const unsigned flag_subreg = inst->flag_subreg;
1021       brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2);
1022       brw_set_default_saturate(p, inst->saturate);
1023       brw_set_default_mask_control(p, inst->force_writemask_all);
1024       if (devinfo->ver >= 20 && inst->writes_accumulator) {
1025          assert(inst->dst.is_accumulator() ||
1026                 inst->opcode == BRW_OPCODE_ADDC ||
1027                 inst->opcode == BRW_OPCODE_MACH ||
1028                 inst->opcode == BRW_OPCODE_SUBB);
1029       } else {
1030          brw_set_default_acc_write_control(p, inst->writes_accumulator);
1031       }
1032       brw_set_default_swsb(p, swsb);
1033 
1034       unsigned exec_size = inst->exec_size;
1035 
1036       brw_set_default_exec_size(p, cvt(exec_size) - 1);
1037 
1038       assert(inst->force_writemask_all || inst->exec_size >= 4);
1039       assert(inst->force_writemask_all || inst->group % inst->exec_size == 0);
1040       assert(inst->mlen <= BRW_MAX_MSG_LENGTH * reg_unit(devinfo));
1041 
1042       switch (inst->opcode) {
1043       case BRW_OPCODE_SYNC:
1044          assert(src[0].file == BRW_IMMEDIATE_VALUE);
1045          brw_SYNC(p, tgl_sync_function(src[0].ud));
1046 
1047          if (tgl_sync_function(src[0].ud) == TGL_SYNC_NOP)
1048             ++sync_nop_count;
1049 
1050          break;
1051       case BRW_OPCODE_MOV:
1052 	 brw_MOV(p, dst, src[0]);
1053 	 break;
1054       case BRW_OPCODE_ADD:
1055 	 brw_ADD(p, dst, src[0], src[1]);
1056 	 break;
1057       case BRW_OPCODE_MUL:
1058 	 brw_MUL(p, dst, src[0], src[1]);
1059 	 break;
1060       case BRW_OPCODE_AVG:
1061 	 brw_AVG(p, dst, src[0], src[1]);
1062 	 break;
1063       case BRW_OPCODE_MACH:
1064 	 brw_MACH(p, dst, src[0], src[1]);
1065 	 break;
1066 
1067       case BRW_OPCODE_DP4A:
1068          assert(devinfo->ver >= 12);
1069          brw_DP4A(p, dst, src[0], src[1], src[2]);
1070          break;
1071 
1072       case BRW_OPCODE_LINE:
1073          brw_LINE(p, dst, src[0], src[1]);
1074          break;
1075 
1076       case BRW_OPCODE_DPAS:
1077          assert(devinfo->verx10 >= 125);
1078          brw_DPAS(p, translate_systolic_depth(inst->sdepth), inst->rcount,
1079                   dst, src[0], src[1], src[2]);
1080          break;
1081 
1082       case BRW_OPCODE_MAD:
1083          if (devinfo->ver < 10)
1084             brw_set_default_access_mode(p, BRW_ALIGN_16);
1085          brw_MAD(p, dst, src[0], src[1], src[2]);
1086 	 break;
1087 
1088       case BRW_OPCODE_LRP:
1089          assert(devinfo->ver <= 10);
1090          if (devinfo->ver < 10)
1091             brw_set_default_access_mode(p, BRW_ALIGN_16);
1092          brw_LRP(p, dst, src[0], src[1], src[2]);
1093 	 break;
1094 
1095       case BRW_OPCODE_ADD3:
1096          assert(devinfo->verx10 >= 125);
1097          brw_ADD3(p, dst, src[0], src[1], src[2]);
1098          break;
1099 
1100       case BRW_OPCODE_FRC:
1101 	 brw_FRC(p, dst, src[0]);
1102 	 break;
1103       case BRW_OPCODE_RNDD:
1104 	 brw_RNDD(p, dst, src[0]);
1105 	 break;
1106       case BRW_OPCODE_RNDE:
1107 	 brw_RNDE(p, dst, src[0]);
1108 	 break;
1109       case BRW_OPCODE_RNDZ:
1110 	 brw_RNDZ(p, dst, src[0]);
1111 	 break;
1112 
1113       case BRW_OPCODE_AND:
1114 	 brw_AND(p, dst, src[0], src[1]);
1115 	 break;
1116       case BRW_OPCODE_OR:
1117 	 brw_OR(p, dst, src[0], src[1]);
1118 	 break;
1119       case BRW_OPCODE_XOR:
1120 	 brw_XOR(p, dst, src[0], src[1]);
1121 	 break;
1122       case BRW_OPCODE_NOT:
1123 	 brw_NOT(p, dst, src[0]);
1124 	 break;
1125       case BRW_OPCODE_ASR:
1126 	 brw_ASR(p, dst, src[0], src[1]);
1127 	 break;
1128       case BRW_OPCODE_SHR:
1129 	 brw_SHR(p, dst, src[0], src[1]);
1130 	 break;
1131       case BRW_OPCODE_SHL:
1132 	 brw_SHL(p, dst, src[0], src[1]);
1133 	 break;
1134       case BRW_OPCODE_ROL:
1135 	 assert(devinfo->ver >= 11);
1136 	 assert(src[0].type == dst.type);
1137 	 brw_ROL(p, dst, src[0], src[1]);
1138 	 break;
1139       case BRW_OPCODE_ROR:
1140 	 assert(devinfo->ver >= 11);
1141 	 assert(src[0].type == dst.type);
1142 	 brw_ROR(p, dst, src[0], src[1]);
1143 	 break;
1144       case BRW_OPCODE_CMP:
1145          brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1146 	 break;
1147       case BRW_OPCODE_CMPN:
1148          brw_CMPN(p, dst, inst->conditional_mod, src[0], src[1]);
1149          break;
1150       case BRW_OPCODE_SEL:
1151 	 brw_SEL(p, dst, src[0], src[1]);
1152 	 break;
1153       case BRW_OPCODE_CSEL:
1154          if (devinfo->ver < 10)
1155             brw_set_default_access_mode(p, BRW_ALIGN_16);
1156          brw_CSEL(p, dst, src[0], src[1], src[2]);
1157          break;
1158       case BRW_OPCODE_BFREV:
1159          brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1160                    retype(src[0], BRW_REGISTER_TYPE_UD));
1161          break;
1162       case BRW_OPCODE_FBH:
1163          brw_FBH(p, retype(dst, src[0].type), src[0]);
1164          break;
1165       case BRW_OPCODE_FBL:
1166          brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1167                  retype(src[0], BRW_REGISTER_TYPE_UD));
1168          break;
1169       case BRW_OPCODE_LZD:
1170          brw_LZD(p, dst, src[0]);
1171          break;
1172       case BRW_OPCODE_CBIT:
1173          brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1174                   retype(src[0], BRW_REGISTER_TYPE_UD));
1175          break;
1176       case BRW_OPCODE_ADDC:
1177          brw_ADDC(p, dst, src[0], src[1]);
1178          break;
1179       case BRW_OPCODE_SUBB:
1180          brw_SUBB(p, dst, src[0], src[1]);
1181          break;
1182       case BRW_OPCODE_MAC:
1183          brw_MAC(p, dst, src[0], src[1]);
1184          break;
1185 
1186       case BRW_OPCODE_BFE:
1187          if (devinfo->ver < 10)
1188             brw_set_default_access_mode(p, BRW_ALIGN_16);
1189          brw_BFE(p, dst, src[0], src[1], src[2]);
1190          break;
1191 
1192       case BRW_OPCODE_BFI1:
1193          brw_BFI1(p, dst, src[0], src[1]);
1194          break;
1195       case BRW_OPCODE_BFI2:
1196          if (devinfo->ver < 10)
1197             brw_set_default_access_mode(p, BRW_ALIGN_16);
1198          brw_BFI2(p, dst, src[0], src[1], src[2]);
1199          break;
1200 
1201       case BRW_OPCODE_IF:
1202          /* Can't have embedded compare (was only allowed on Gfx6). */
1203          assert(inst->src[0].file == BAD_FILE);
1204          brw_IF(p, brw_get_default_exec_size(p));
1205 	 break;
1206 
1207       case BRW_OPCODE_ELSE:
1208 	 brw_ELSE(p);
1209 	 break;
1210       case BRW_OPCODE_ENDIF:
1211 	 brw_ENDIF(p);
1212 	 break;
1213 
1214       case BRW_OPCODE_DO:
1215 	 brw_DO(p, brw_get_default_exec_size(p));
1216 	 break;
1217 
1218       case BRW_OPCODE_BREAK:
1219 	 brw_BREAK(p);
1220 	 break;
1221       case BRW_OPCODE_CONTINUE:
1222          brw_CONT(p);
1223 	 break;
1224 
1225       case BRW_OPCODE_WHILE:
1226 	 brw_WHILE(p);
1227          loop_count++;
1228 	 break;
1229 
1230       case SHADER_OPCODE_RCP:
1231       case SHADER_OPCODE_RSQ:
1232       case SHADER_OPCODE_SQRT:
1233       case SHADER_OPCODE_EXP2:
1234       case SHADER_OPCODE_LOG2:
1235       case SHADER_OPCODE_SIN:
1236       case SHADER_OPCODE_COS:
1237          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1238          assert(inst->mlen == 0);
1239          gfx6_math(p, dst, brw_math_function(inst->opcode),
1240                    src[0], brw_null_reg());
1241 	 break;
1242       case SHADER_OPCODE_INT_QUOTIENT:
1243       case SHADER_OPCODE_INT_REMAINDER:
1244       case SHADER_OPCODE_POW:
1245          assert(devinfo->verx10 < 125);
1246          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1247          assert(inst->mlen == 0);
1248          assert(inst->opcode == SHADER_OPCODE_POW || inst->exec_size == 8);
1249          gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1250 	 break;
1251       case FS_OPCODE_LINTERP:
1252 	 multiple_instructions_emitted = generate_linterp(inst, dst, src);
1253 	 break;
1254       case FS_OPCODE_PIXEL_X:
1255          assert(src[0].type == BRW_REGISTER_TYPE_UW);
1256          assert(src[1].type == BRW_REGISTER_TYPE_UW);
1257          src[0].subnr = 0 * type_sz(src[0].type);
1258          if (src[1].file == BRW_IMMEDIATE_VALUE) {
1259             assert(src[1].ud == 0);
1260             brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1261          } else {
1262             /* Coarse pixel case */
1263             brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]);
1264          }
1265          break;
1266       case FS_OPCODE_PIXEL_Y:
1267          assert(src[0].type == BRW_REGISTER_TYPE_UW);
1268          assert(src[1].type == BRW_REGISTER_TYPE_UW);
1269          src[0].subnr = 4 * type_sz(src[0].type);
1270          if (src[1].file == BRW_IMMEDIATE_VALUE) {
1271             assert(src[1].ud == 0);
1272             brw_MOV(p, dst, stride(src[0], 8, 4, 1));
1273          } else {
1274             /* Coarse pixel case */
1275             brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]);
1276          }
1277          break;
1278 
1279       case SHADER_OPCODE_SEND:
1280          generate_send(inst, dst, src[0], src[1], src[2],
1281                        inst->ex_mlen > 0 ? src[3] : brw_null_reg());
1282          send_count++;
1283          break;
1284 
1285       case FS_OPCODE_DDX_COARSE:
1286       case FS_OPCODE_DDX_FINE:
1287          generate_ddx(inst, dst, src[0]);
1288          break;
1289       case FS_OPCODE_DDY_COARSE:
1290       case FS_OPCODE_DDY_FINE:
1291          generate_ddy(inst, dst, src[0]);
1292 	 break;
1293 
1294       case SHADER_OPCODE_SCRATCH_HEADER:
1295          generate_scratch_header(inst, dst);
1296          break;
1297 
1298       case SHADER_OPCODE_MOV_INDIRECT:
1299          generate_mov_indirect(inst, dst, src[0], src[1]);
1300          break;
1301 
1302       case SHADER_OPCODE_MOV_RELOC_IMM:
1303          assert(src[0].file == BRW_IMMEDIATE_VALUE);
1304          brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud);
1305          break;
1306 
1307       case FS_OPCODE_FB_READ:
1308          generate_fb_read(inst, dst, src[0]);
1309          send_count++;
1310          break;
1311 
1312       case BRW_OPCODE_HALT:
1313          generate_halt(inst);
1314          break;
1315 
1316       case SHADER_OPCODE_INTERLOCK:
1317       case SHADER_OPCODE_MEMORY_FENCE: {
1318          assert(src[1].file == BRW_IMMEDIATE_VALUE);
1319          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1320 
1321          const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ?
1322             BRW_OPCODE_SENDC : BRW_OPCODE_SEND;
1323 
1324          brw_memory_fence(p, dst, src[0], send_op,
1325                           brw_message_target(inst->sfid),
1326                           inst->desc,
1327                           /* commit_enable */ src[1].ud,
1328                           /* bti */ src[2].ud);
1329          send_count++;
1330          break;
1331       }
1332 
1333       case FS_OPCODE_SCHEDULING_FENCE:
1334          if (inst->sources == 0 && swsb.regdist == 0 &&
1335                                    swsb.mode == TGL_SBID_NULL) {
1336             if (unlikely(debug_flag))
1337                disasm_info->use_tail = true;
1338             break;
1339          }
1340 
1341          if (devinfo->ver >= 12) {
1342             /* Use the available SWSB information to stall.  A single SYNC is
1343              * sufficient since if there were multiple dependencies, the
1344              * scoreboard algorithm already injected other SYNCs before this
1345              * instruction.
1346              */
1347             brw_SYNC(p, TGL_SYNC_NOP);
1348          } else {
1349             for (unsigned i = 0; i < inst->sources; i++) {
1350                /* Emit a MOV to force a stall until the instruction producing the
1351                 * registers finishes.
1352                 */
1353                brw_MOV(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UW),
1354                        retype(src[i], BRW_REGISTER_TYPE_UW));
1355             }
1356 
1357             if (inst->sources > 1)
1358                multiple_instructions_emitted = true;
1359          }
1360 
1361          break;
1362 
1363       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1364       case SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL:
1365       case SHADER_OPCODE_LOAD_LIVE_CHANNELS:
1366          unreachable("Should be lowered by lower_find_live_channel()");
1367          break;
1368 
1369       case FS_OPCODE_LOAD_LIVE_CHANNELS: {
1370          assert(inst->force_writemask_all && inst->group == 0);
1371          assert(inst->dst.file == BAD_FILE);
1372          brw_set_default_exec_size(p, BRW_EXECUTE_1);
1373          brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg),
1374                            BRW_REGISTER_TYPE_UD),
1375                  retype(brw_mask_reg(0), BRW_REGISTER_TYPE_UD));
1376          break;
1377       }
1378       case SHADER_OPCODE_BROADCAST:
1379          assert(inst->force_writemask_all);
1380          brw_broadcast(p, dst, src[0], src[1]);
1381          break;
1382 
1383       case SHADER_OPCODE_SHUFFLE:
1384          generate_shuffle(inst, dst, src[0], src[1]);
1385          break;
1386 
1387       case SHADER_OPCODE_SEL_EXEC:
1388          assert(inst->force_writemask_all);
1389          assert(devinfo->has_64bit_float || type_sz(dst.type) <= 4);
1390          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1391          brw_MOV(p, dst, src[1]);
1392          brw_set_default_mask_control(p, BRW_MASK_ENABLE);
1393          brw_set_default_swsb(p, tgl_swsb_null());
1394          brw_MOV(p, dst, src[0]);
1395          break;
1396 
1397       case SHADER_OPCODE_QUAD_SWIZZLE:
1398          assert(src[1].file == BRW_IMMEDIATE_VALUE);
1399          assert(src[1].type == BRW_REGISTER_TYPE_UD);
1400          generate_quad_swizzle(inst, dst, src[0], src[1].ud);
1401          break;
1402 
1403       case SHADER_OPCODE_CLUSTER_BROADCAST: {
1404          assert((devinfo->platform != INTEL_PLATFORM_CHV &&
1405                  !intel_device_info_is_9lp(devinfo) &&
1406                  devinfo->has_64bit_float) || type_sz(src[0].type) <= 4);
1407          assert(!src[0].negate && !src[0].abs);
1408          assert(src[1].file == BRW_IMMEDIATE_VALUE);
1409          assert(src[1].type == BRW_REGISTER_TYPE_UD);
1410          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1411          assert(src[2].type == BRW_REGISTER_TYPE_UD);
1412          const unsigned component = src[1].ud;
1413          const unsigned cluster_size = src[2].ud;
1414          assert(inst->src[0].file != ARF && inst->src[0].file != FIXED_GRF);
1415          const unsigned s = inst->src[0].stride;
1416          unsigned vstride = cluster_size * s;
1417          unsigned width = cluster_size;
1418 
1419          /* The maximum exec_size is 32, but the maximum width is only 16. */
1420          if (inst->exec_size == width) {
1421             vstride = 0;
1422             width = 1;
1423          }
1424 
1425          struct brw_reg strided = stride(suboffset(src[0], component * s),
1426                                          vstride, width, 0);
1427          brw_MOV(p, dst, strided);
1428          break;
1429       }
1430 
1431       case SHADER_OPCODE_HALT_TARGET:
1432          /* This is the place where the final HALT needs to be inserted if
1433           * we've emitted any discards.  If not, this will emit no code.
1434           */
1435          if (!patch_halt_jumps()) {
1436             if (unlikely(debug_flag)) {
1437                disasm_info->use_tail = true;
1438             }
1439          }
1440          break;
1441 
1442       case CS_OPCODE_CS_TERMINATE:
1443          generate_cs_terminate(inst, src[0]);
1444          send_count++;
1445          break;
1446 
1447       case SHADER_OPCODE_BARRIER:
1448 	 generate_barrier(inst, src[0]);
1449          send_count++;
1450 	 break;
1451 
1452       case SHADER_OPCODE_RND_MODE: {
1453          assert(src[0].file == BRW_IMMEDIATE_VALUE);
1454          /*
1455           * Changes the floating point rounding mode updating the control
1456           * register field defined at cr0.0[5-6] bits.
1457           */
1458          enum brw_rnd_mode mode =
1459             (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT);
1460          brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK);
1461       }
1462          break;
1463 
1464       case SHADER_OPCODE_FLOAT_CONTROL_MODE:
1465          assert(src[0].file == BRW_IMMEDIATE_VALUE);
1466          assert(src[1].file == BRW_IMMEDIATE_VALUE);
1467          brw_float_controls_mode(p, src[0].d, src[1].d);
1468          break;
1469 
1470       case SHADER_OPCODE_READ_SR_REG:
1471          if (devinfo->ver >= 12) {
1472             /* There is a SWSB restriction that requires that any time sr0 is
1473              * accessed both the instruction doing the access and the next one
1474              * have SWSB set to RegDist(1).
1475              */
1476             if (brw_get_default_swsb(p).mode != TGL_SBID_NULL)
1477                brw_SYNC(p, TGL_SYNC_NOP);
1478             assert(src[0].file == BRW_IMMEDIATE_VALUE);
1479             brw_set_default_swsb(p, tgl_swsb_regdist(1));
1480             brw_MOV(p, dst, brw_sr0_reg(src[0].ud));
1481             brw_set_default_swsb(p, tgl_swsb_regdist(1));
1482             brw_AND(p, dst, dst, brw_imm_ud(0xffffffff));
1483          } else {
1484             brw_MOV(p, dst, brw_sr0_reg(src[0].ud));
1485          }
1486          break;
1487 
1488       default:
1489          unreachable("Unsupported opcode");
1490 
1491       case SHADER_OPCODE_LOAD_PAYLOAD:
1492          unreachable("Should be lowered by lower_load_payload()");
1493       }
1494 
1495       if (multiple_instructions_emitted)
1496          continue;
1497 
1498       if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
1499          assert(p->next_insn_offset == last_insn_offset + 16 ||
1500                 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
1501                  "emitting more than 1 instruction");
1502 
1503          brw_inst *last = &p->store[last_insn_offset / 16];
1504 
1505          if (inst->conditional_mod)
1506             brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
1507          if (devinfo->ver < 12) {
1508             brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
1509             brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
1510          }
1511       }
1512 
1513       /* When enabled, insert sync NOP after every instruction and make sure
1514        * that current instruction depends on the previous instruction.
1515        */
1516       if (INTEL_DEBUG(DEBUG_SWSB_STALL) && devinfo->ver >= 12) {
1517          brw_set_default_swsb(p, tgl_swsb_regdist(1));
1518          brw_SYNC(p, TGL_SYNC_NOP);
1519       }
1520    }
1521 
1522    brw_set_uip_jip(p, start_offset);
1523 
1524    /* end of program sentinel */
1525    disasm_new_inst_group(disasm_info, p->next_insn_offset);
1526 
1527    /* `send_count` explicitly does not include spills or fills, as we'd
1528     * like to use it as a metric for intentional memory access or other
1529     * shared function use.  Otherwise, subtle changes to scheduling or
1530     * register allocation could cause it to fluctuate wildly - and that
1531     * effect is already counted in spill/fill counts.
1532     */
1533    send_count -= shader_stats.spill_count;
1534    send_count -= shader_stats.fill_count;
1535 
1536 #ifndef NDEBUG
1537    bool validated =
1538 #else
1539    if (unlikely(debug_flag))
1540 #endif
1541       brw_validate_instructions(&compiler->isa, p->store,
1542                                 start_offset,
1543                                 p->next_insn_offset,
1544                                 disasm_info);
1545 
1546    int before_size = p->next_insn_offset - start_offset;
1547    brw_compact_instructions(p, start_offset, disasm_info);
1548    int after_size = p->next_insn_offset - start_offset;
1549 
1550    bool dump_shader_bin = brw_should_dump_shader_bin();
1551    unsigned char sha1[21];
1552    char sha1buf[41];
1553 
1554    if (unlikely(debug_flag || dump_shader_bin)) {
1555       _mesa_sha1_compute(p->store + start_offset / sizeof(brw_inst),
1556                          after_size, sha1);
1557       _mesa_sha1_format(sha1buf, sha1);
1558    }
1559 
1560    if (unlikely(dump_shader_bin))
1561       brw_dump_shader_bin(p->store, start_offset, p->next_insn_offset,
1562                           sha1buf);
1563 
1564    if (unlikely(debug_flag)) {
1565       fprintf(stderr, "Native code for %s (src_hash 0x%08x) (sha1 %s)\n"
1566               "SIMD%d shader: %d instructions. %d loops. %u cycles. "
1567               "%d:%d spills:fills, %u sends, "
1568               "scheduled with mode %s. "
1569               "Promoted %u constants. "
1570               "Compacted %d to %d bytes (%.0f%%)\n",
1571               shader_name, params->source_hash, sha1buf,
1572               dispatch_width, before_size / 16,
1573               loop_count, perf.latency,
1574               shader_stats.spill_count,
1575               shader_stats.fill_count,
1576               send_count,
1577               shader_stats.scheduler_mode,
1578               shader_stats.promoted_constants,
1579               before_size, after_size,
1580               100.0f * (before_size - after_size) / before_size);
1581 
1582       /* overriding the shader makes disasm_info invalid */
1583       if (!brw_try_override_assembly(p, start_offset, sha1buf)) {
1584          dump_assembly(p->store, start_offset, p->next_insn_offset,
1585                        disasm_info, perf.block_latency);
1586       } else {
1587          fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf);
1588       }
1589    }
1590    ralloc_free(disasm_info);
1591 #ifndef NDEBUG
1592    if (!validated && !debug_flag) {
1593       fprintf(stderr,
1594             "Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n");
1595    }
1596 #endif
1597    assert(validated);
1598 
1599    brw_shader_debug_log(compiler, params->log_data,
1600                         "%s SIMD%d shader: %d inst, %d loops, %u cycles, "
1601                         "%d:%d spills:fills, %u sends, "
1602                         "scheduled with mode %s, "
1603                         "Promoted %u constants, "
1604                         "compacted %d to %d bytes.\n",
1605                         _mesa_shader_stage_to_abbrev(stage),
1606                         dispatch_width,
1607                         before_size / 16 - nop_count - sync_nop_count,
1608                         loop_count, perf.latency,
1609                         shader_stats.spill_count,
1610                         shader_stats.fill_count,
1611                         send_count,
1612                         shader_stats.scheduler_mode,
1613                         shader_stats.promoted_constants,
1614                         before_size, after_size);
1615    if (stats) {
1616       stats->dispatch_width = dispatch_width;
1617       stats->max_polygons = max_polygons;
1618       stats->max_dispatch_width = dispatch_width;
1619       stats->instructions = before_size / 16 - nop_count - sync_nop_count;
1620       stats->sends = send_count;
1621       stats->loops = loop_count;
1622       stats->cycles = perf.latency;
1623       stats->spills = shader_stats.spill_count;
1624       stats->fills = shader_stats.fill_count;
1625       stats->max_live_registers = shader_stats.max_register_pressure;
1626    }
1627 
1628    return start_offset;
1629 }
1630 
1631 void
add_const_data(void * data,unsigned size)1632 fs_generator::add_const_data(void *data, unsigned size)
1633 {
1634    assert(prog_data->const_data_size == 0);
1635    if (size > 0) {
1636       prog_data->const_data_size = size;
1637       prog_data->const_data_offset = brw_append_data(p, data, size, 32);
1638    }
1639 }
1640 
1641 void
add_resume_sbt(unsigned num_resume_shaders,uint64_t * sbt)1642 fs_generator::add_resume_sbt(unsigned num_resume_shaders, uint64_t *sbt)
1643 {
1644    assert(brw_shader_stage_is_bindless(stage));
1645    struct brw_bs_prog_data *bs_prog_data = brw_bs_prog_data(prog_data);
1646    if (num_resume_shaders > 0) {
1647       bs_prog_data->resume_sbt_offset =
1648          brw_append_data(p, sbt, num_resume_shaders * sizeof(uint64_t), 32);
1649       for (unsigned i = 0; i < num_resume_shaders; i++) {
1650          size_t offset = bs_prog_data->resume_sbt_offset + i * sizeof(*sbt);
1651          assert(offset <= UINT32_MAX);
1652          brw_add_reloc(p, BRW_SHADER_RELOC_SHADER_START_OFFSET,
1653                        BRW_SHADER_RELOC_TYPE_U32,
1654                        (uint32_t)offset, (uint32_t)sbt[i]);
1655       }
1656    }
1657 }
1658 
1659 const unsigned *
get_assembly()1660 fs_generator::get_assembly()
1661 {
1662    prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs);
1663 
1664    return brw_get_program(p, &prog_data->program_size);
1665 }
1666