• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_fs_builder.h"
31 #include "brw_cfg.h"
32 #include "util/set.h"
33 #include "util/register_allocate.h"
34 
35 using namespace brw;
36 
37 #define REG_CLASS_COUNT 20
38 
39 static void
assign_reg(const struct intel_device_info * devinfo,unsigned * reg_hw_locations,fs_reg * reg)40 assign_reg(const struct intel_device_info *devinfo,
41            unsigned *reg_hw_locations, fs_reg *reg)
42 {
43    if (reg->file == VGRF) {
44       reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
45       reg->offset %= REG_SIZE;
46    }
47 }
48 
49 void
assign_regs_trivial()50 fs_visitor::assign_regs_trivial()
51 {
52    unsigned hw_reg_mapping[this->alloc.count + 1];
53    unsigned i;
54    int reg_width = dispatch_width / 8;
55 
56    /* Note that compressed instructions require alignment to 2 registers. */
57    hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
58    for (i = 1; i <= this->alloc.count; i++) {
59       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
60                            DIV_ROUND_UP(this->alloc.sizes[i - 1],
61                                         reg_unit(devinfo)));
62    }
63    this->grf_used = hw_reg_mapping[this->alloc.count];
64 
65    foreach_block_and_inst(block, fs_inst, inst, cfg) {
66       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
67       for (i = 0; i < inst->sources; i++) {
68          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
69       }
70    }
71 
72    if (this->grf_used >= BRW_MAX_GRF) {
73       fail("Ran out of regs on trivial allocator (%d/%d)\n",
74 	   this->grf_used, BRW_MAX_GRF);
75    } else {
76       this->alloc.count = this->grf_used;
77    }
78 
79 }
80 
81 void
brw_fs_alloc_reg_sets(struct brw_compiler * compiler)82 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
83 {
84    const struct intel_device_info *devinfo = compiler->devinfo;
85    int base_reg_count = BRW_MAX_GRF;
86 
87    /* The registers used to make up almost all values handled in the compiler
88     * are a scalar value occupying a single register (or 2 registers in the
89     * case of SIMD16, which is handled by dividing base_reg_count by 2 and
90     * multiplying allocated register numbers by 2).  Things that were
91     * aggregates of scalar values at the GLSL level were split to scalar
92     * values by split_virtual_grfs().
93     *
94     * However, texture SEND messages return a series of contiguous registers
95     * to write into.  We currently always ask for 4 registers, but we may
96     * convert that to use less some day.
97     *
98     * Additionally, on gfx5 we need aligned pairs of registers for the PLN
99     * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16
100     * texturing.
101     */
102    assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo));
103    int class_sizes[REG_CLASS_COUNT];
104    for (unsigned i = 0; i < REG_CLASS_COUNT; i++)
105       class_sizes[i] = i + 1;
106 
107    struct ra_regs *regs = ra_alloc_reg_set(compiler, BRW_MAX_GRF, false);
108    ra_set_allocate_round_robin(regs);
109    struct ra_class **classes = ralloc_array(compiler, struct ra_class *,
110                                             REG_CLASS_COUNT);
111 
112    /* Now, make the register classes for each size of contiguous register
113     * allocation we might need to make.
114     */
115    for (int i = 0; i < REG_CLASS_COUNT; i++) {
116       classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]);
117 
118       for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++)
119          ra_class_add_reg(classes[i], reg);
120    }
121 
122    ra_set_finalize(regs, NULL);
123 
124    compiler->fs_reg_set.regs = regs;
125    for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_set.classes); i++)
126       compiler->fs_reg_set.classes[i] = NULL;
127    for (int i = 0; i < REG_CLASS_COUNT; i++)
128       compiler->fs_reg_set.classes[class_sizes[i] - 1] = classes[i];
129 }
130 
131 static int
count_to_loop_end(const bblock_t * block)132 count_to_loop_end(const bblock_t *block)
133 {
134    if (block->end()->opcode == BRW_OPCODE_WHILE)
135       return block->end_ip;
136 
137    int depth = 1;
138    /* Skip the first block, since we don't want to count the do the calling
139     * function found.
140     */
141    for (block = block->next();
142         depth > 0;
143         block = block->next()) {
144       if (block->start()->opcode == BRW_OPCODE_DO)
145          depth++;
146       if (block->end()->opcode == BRW_OPCODE_WHILE) {
147          depth--;
148          if (depth == 0)
149             return block->end_ip;
150       }
151    }
152    unreachable("not reached");
153 }
154 
calculate_payload_ranges(unsigned payload_node_count,int * payload_last_use_ip) const155 void fs_visitor::calculate_payload_ranges(unsigned payload_node_count,
156                                           int *payload_last_use_ip) const
157 {
158    int loop_depth = 0;
159    int loop_end_ip = 0;
160 
161    for (unsigned i = 0; i < payload_node_count; i++)
162       payload_last_use_ip[i] = -1;
163 
164    int ip = 0;
165    foreach_block_and_inst(block, fs_inst, inst, cfg) {
166       switch (inst->opcode) {
167       case BRW_OPCODE_DO:
168          loop_depth++;
169 
170          /* Since payload regs are deffed only at the start of the shader
171           * execution, any uses of the payload within a loop mean the live
172           * interval extends to the end of the outermost loop.  Find the ip of
173           * the end now.
174           */
175          if (loop_depth == 1)
176             loop_end_ip = count_to_loop_end(block);
177          break;
178       case BRW_OPCODE_WHILE:
179          loop_depth--;
180          break;
181       default:
182          break;
183       }
184 
185       int use_ip;
186       if (loop_depth > 0)
187          use_ip = loop_end_ip;
188       else
189          use_ip = ip;
190 
191       /* Note that UNIFORM args have been turned into FIXED_GRF by
192        * assign_curbe_setup(), and interpolation uses fixed hardware regs from
193        * the start (see interp_reg()).
194        */
195       for (int i = 0; i < inst->sources; i++) {
196          if (inst->src[i].file == FIXED_GRF) {
197             unsigned reg_nr = inst->src[i].nr;
198             if (reg_nr / reg_unit(devinfo) >= payload_node_count)
199                continue;
200 
201             for (unsigned j = reg_nr / reg_unit(devinfo);
202                  j < DIV_ROUND_UP(reg_nr + regs_read(inst, i),
203                                   reg_unit(devinfo));
204                  j++) {
205                payload_last_use_ip[j] = use_ip;
206                assert(j < payload_node_count);
207             }
208          }
209       }
210 
211       if (inst->dst.file == FIXED_GRF) {
212          unsigned reg_nr = inst->dst.nr;
213          if (reg_nr / reg_unit(devinfo) < payload_node_count) {
214             for (unsigned j = reg_nr / reg_unit(devinfo);
215                  j < DIV_ROUND_UP(reg_nr + regs_written(inst),
216                                   reg_unit(devinfo));
217                  j++) {
218                payload_last_use_ip[j] = use_ip;
219                assert(j < payload_node_count);
220             }
221          }
222       }
223 
224       /* Special case instructions which have extra implied registers used. */
225       switch (inst->opcode) {
226       case CS_OPCODE_CS_TERMINATE:
227          payload_last_use_ip[0] = use_ip;
228          break;
229 
230       default:
231          if (inst->eot) {
232             /* We could omit this for the !inst->header_present case, except
233              * that the simulator apparently incorrectly reads from g0/g1
234              * instead of sideband.  It also really freaks out driver
235              * developers to see g0 used in unusual places, so just always
236              * reserve it.
237              */
238             payload_last_use_ip[0] = use_ip;
239             payload_last_use_ip[1] = use_ip;
240          }
241          break;
242       }
243 
244       ip++;
245    }
246 }
247 
248 class fs_reg_alloc {
249 public:
fs_reg_alloc(fs_visitor * fs)250    fs_reg_alloc(fs_visitor *fs):
251       fs(fs), devinfo(fs->devinfo), compiler(fs->compiler),
252       live(fs->live_analysis.require()), g(NULL),
253       have_spill_costs(false)
254    {
255       mem_ctx = ralloc_context(NULL);
256 
257       /* Stash the number of instructions so we can sanity check that our
258        * counts still match liveness.
259        */
260       live_instr_count = fs->cfg->last_block()->end_ip + 1;
261 
262       spill_insts = _mesa_pointer_set_create(mem_ctx);
263 
264       /* Most of this allocation was written for a reg_width of 1
265        * (dispatch_width == 8).  In extending to SIMD16, the code was
266        * left in place and it was converted to have the hardware
267        * registers it's allocating be contiguous physical pairs of regs
268        * for reg_width == 2.
269        */
270       int reg_width = fs->dispatch_width / 8;
271       payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width);
272 
273       /* Get payload IP information */
274       payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count);
275 
276       node_count = 0;
277       first_payload_node = 0;
278       scratch_header_node = 0;
279       grf127_send_hack_node = 0;
280       first_vgrf_node = 0;
281       last_vgrf_node = 0;
282       first_spill_node = 0;
283 
284       spill_vgrf_ip = NULL;
285       spill_vgrf_ip_alloc = 0;
286       spill_node_count = 0;
287    }
288 
~fs_reg_alloc()289    ~fs_reg_alloc()
290    {
291       ralloc_free(mem_ctx);
292    }
293 
294    bool assign_regs(bool allow_spilling, bool spill_all);
295 
296 private:
297    void setup_live_interference(unsigned node,
298                                 int node_start_ip, int node_end_ip);
299    void setup_inst_interference(const fs_inst *inst);
300 
301    void build_interference_graph(bool allow_spilling);
302    void discard_interference_graph();
303 
304    fs_reg build_lane_offsets(const fs_builder &bld,
305                              uint32_t spill_offset, int ip);
306    fs_reg build_single_offset(const fs_builder &bld,
307                               uint32_t spill_offset, int ip);
308 
309    void emit_unspill(const fs_builder &bld, struct shader_stats *stats,
310                      fs_reg dst, uint32_t spill_offset, unsigned count, int ip);
311    void emit_spill(const fs_builder &bld, struct shader_stats *stats,
312                    fs_reg src, uint32_t spill_offset, unsigned count, int ip);
313 
314    void set_spill_costs();
315    int choose_spill_reg();
316    fs_reg alloc_scratch_header();
317    fs_reg alloc_spill_reg(unsigned size, int ip);
318    void spill_reg(unsigned spill_reg);
319 
320    void *mem_ctx;
321    fs_visitor *fs;
322    const intel_device_info *devinfo;
323    const brw_compiler *compiler;
324    const fs_live_variables &live;
325    int live_instr_count;
326 
327    set *spill_insts;
328 
329    ra_graph *g;
330    bool have_spill_costs;
331 
332    int payload_node_count;
333    int *payload_last_use_ip;
334 
335    int node_count;
336    int first_payload_node;
337    int scratch_header_node;
338    int grf127_send_hack_node;
339    int first_vgrf_node;
340    int last_vgrf_node;
341    int first_spill_node;
342 
343    int *spill_vgrf_ip;
344    int spill_vgrf_ip_alloc;
345    int spill_node_count;
346 
347    fs_reg scratch_header;
348 };
349 
350 namespace {
351    /**
352     * Maximum spill block size we expect to encounter in 32B units.
353     *
354     * This is somewhat arbitrary and doesn't necessarily limit the maximum
355     * variable size that can be spilled -- A higher value will allow a
356     * variable of a given size to be spilled more efficiently with a smaller
357     * number of scratch messages, but will increase the likelihood of a
358     * collision between the MRFs reserved for spilling and other MRFs used by
359     * the program (and possibly increase GRF register pressure on platforms
360     * without hardware MRFs), what could cause register allocation to fail.
361     *
362     * For the moment reserve just enough space so a register of 32 bit
363     * component type and natural region width can be spilled without splitting
364     * into multiple (force_writemask_all) scratch messages.
365     */
366    unsigned
spill_max_size(const backend_shader * s)367    spill_max_size(const backend_shader *s)
368    {
369       /* LSC is limited to SIMD16 sends */
370       if (s->devinfo->has_lsc)
371          return 2;
372 
373       /* FINISHME - On Gfx7+ it should be possible to avoid this limit
374        *            altogether by spilling directly from the temporary GRF
375        *            allocated to hold the result of the instruction (and the
376        *            scratch write header).
377        */
378       /* FINISHME - The shader's dispatch width probably belongs in
379        *            backend_shader (or some nonexistent fs_shader class?)
380        *            rather than in the visitor class.
381        */
382       return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
383    }
384 }
385 
386 void
setup_live_interference(unsigned node,int node_start_ip,int node_end_ip)387 fs_reg_alloc::setup_live_interference(unsigned node,
388                                       int node_start_ip, int node_end_ip)
389 {
390    /* Mark any virtual grf that is live between the start of the program and
391     * the last use of a payload node interfering with that payload node.
392     */
393    for (int i = 0; i < payload_node_count; i++) {
394       if (payload_last_use_ip[i] == -1)
395          continue;
396 
397       /* Note that we use a <= comparison, unlike vgrfs_interfere(),
398        * in order to not have to worry about the uniform issue described in
399        * calculate_live_intervals().
400        */
401       if (node_start_ip <= payload_last_use_ip[i])
402          ra_add_node_interference(g, node, first_payload_node + i);
403    }
404 
405    /* Everything interferes with the scratch header */
406    if (scratch_header_node >= 0)
407       ra_add_node_interference(g, node, scratch_header_node);
408 
409    /* Add interference with every vgrf whose live range intersects this
410     * node's.  We only need to look at nodes below this one as the reflexivity
411     * of interference will take care of the rest.
412     */
413    for (unsigned n2 = first_vgrf_node;
414         n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) {
415       unsigned vgrf = n2 - first_vgrf_node;
416       if (!(node_end_ip <= live.vgrf_start[vgrf] ||
417             live.vgrf_end[vgrf] <= node_start_ip))
418          ra_add_node_interference(g, node, n2);
419    }
420 }
421 
422 void
setup_inst_interference(const fs_inst * inst)423 fs_reg_alloc::setup_inst_interference(const fs_inst *inst)
424 {
425    /* Certain instructions can't safely use the same register for their
426     * sources and destination.  Add interference.
427     */
428    if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
429       for (unsigned i = 0; i < inst->sources; i++) {
430          if (inst->src[i].file == VGRF) {
431             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
432                                         first_vgrf_node + inst->src[i].nr);
433          }
434       }
435    }
436 
437    /* A compressed instruction is actually two instructions executed
438     * simultaneously.  On most platforms, it ok to have the source and
439     * destination registers be the same.  In this case, each instruction
440     * over-writes its own source and there's no problem.  The real problem
441     * here is if the source and destination registers are off by one.  Then
442     * you can end up in a scenario where the first instruction over-writes the
443     * source of the second instruction.  Since the compiler doesn't know about
444     * this level of granularity, we simply make the source and destination
445     * interfere.
446     */
447    if (inst->dst.component_size(inst->exec_size) > REG_SIZE &&
448        inst->dst.file == VGRF) {
449       for (int i = 0; i < inst->sources; ++i) {
450          if (inst->src[i].file == VGRF) {
451             ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
452                                         first_vgrf_node + inst->src[i].nr);
453          }
454       }
455    }
456 
457    if (grf127_send_hack_node >= 0) {
458       /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference",
459        * subsection "EUISA Instructions", Send Message (page 990):
460        *
461        * "r127 must not be used for return address when there is a src and
462        * dest overlap in send instruction."
463        *
464        * We are avoiding using grf127 as part of the destination of send
465        * messages adding a node interference to the grf127_send_hack_node.
466        * This node has a fixed assignment to grf127.
467        *
468        * We don't apply it to SIMD16 instructions because previous code avoids
469        * any register overlap between sources and destination.
470        */
471       if (inst->exec_size < 16 && inst->is_send_from_grf() &&
472           inst->dst.file == VGRF)
473          ra_add_node_interference(g, first_vgrf_node + inst->dst.nr,
474                                      grf127_send_hack_node);
475    }
476 
477    /* From the Skylake PRM Vol. 2a docs for sends:
478     *
479     *    "It is required that the second block of GRFs does not overlap with
480     *    the first block."
481     *
482     * Normally, this is taken care of by fixup_sends_duplicate_payload() but
483     * in the case where one of the registers is an undefined value, the
484     * register allocator may decide that they don't interfere even though
485     * they're used as sources in the same instruction.  We also need to add
486     * interference here.
487     */
488    if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
489        inst->src[2].file == VGRF && inst->src[3].file == VGRF &&
490        inst->src[2].nr != inst->src[3].nr)
491       ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr,
492                                   first_vgrf_node + inst->src[3].nr);
493 
494    /* When we do send-from-GRF for FB writes, we need to ensure that the last
495     * write instruction sends from a high register.  This is because the
496     * vertex fetcher wants to start filling the low payload registers while
497     * the pixel data port is still working on writing out the memory.  If we
498     * don't do this, we get rendering artifacts.
499     *
500     * We could just do "something high".  Instead, we just pick the highest
501     * register that works.
502     */
503    if (inst->eot) {
504       const int vgrf = inst->opcode == SHADER_OPCODE_SEND ?
505                        inst->src[2].nr : inst->src[0].nr;
506       const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
507       int reg = BRW_MAX_GRF - size;
508 
509       if (grf127_send_hack_node >= 0) {
510          /* Avoid r127 which might be unusable if the node was previously
511           * written by a SIMD8 SEND message with source/destination overlap.
512           */
513          reg--;
514       }
515 
516       ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
517 
518       if (inst->ex_mlen > 0) {
519          const int vgrf = inst->src[3].nr;
520          reg -= DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo));
521          ra_set_node_reg(g, first_vgrf_node + vgrf, reg);
522       }
523    }
524 }
525 
526 void
build_interference_graph(bool allow_spilling)527 fs_reg_alloc::build_interference_graph(bool allow_spilling)
528 {
529    /* Compute the RA node layout */
530    node_count = 0;
531    first_payload_node = node_count;
532    node_count += payload_node_count;
533 
534    grf127_send_hack_node = node_count;
535    node_count++;
536 
537    first_vgrf_node = node_count;
538    node_count += fs->alloc.count;
539    last_vgrf_node = node_count - 1;
540    if (devinfo->verx10 < 125 && allow_spilling) {
541       scratch_header_node = node_count++;
542    } else {
543       scratch_header_node = -1;
544    }
545    first_spill_node = node_count;
546 
547    fs->calculate_payload_ranges(payload_node_count,
548                                 payload_last_use_ip);
549 
550    assert(g == NULL);
551    g = ra_alloc_interference_graph(compiler->fs_reg_set.regs, node_count);
552    ralloc_steal(mem_ctx, g);
553 
554    /* Set up the payload nodes */
555    for (int i = 0; i < payload_node_count; i++)
556       ra_set_node_reg(g, first_payload_node + i, i);
557 
558    if (grf127_send_hack_node >= 0)
559       ra_set_node_reg(g, grf127_send_hack_node, 127);
560 
561    /* Specify the classes of each virtual register. */
562    for (unsigned i = 0; i < fs->alloc.count; i++) {
563       unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo));
564 
565       assert(size <= ARRAY_SIZE(compiler->fs_reg_set.classes) &&
566              "Register allocation relies on split_virtual_grfs()");
567 
568       ra_set_node_class(g, first_vgrf_node + i,
569                         compiler->fs_reg_set.classes[size - 1]);
570    }
571 
572    /* Add interference based on the live range of the register */
573    for (unsigned i = 0; i < fs->alloc.count; i++) {
574       setup_live_interference(first_vgrf_node + i,
575                               live.vgrf_start[i],
576                               live.vgrf_end[i]);
577    }
578 
579    /* Add interference based on the instructions in which a register is used.
580     */
581    foreach_block_and_inst(block, fs_inst, inst, fs->cfg)
582       setup_inst_interference(inst);
583 }
584 
585 void
discard_interference_graph()586 fs_reg_alloc::discard_interference_graph()
587 {
588    ralloc_free(g);
589    g = NULL;
590    have_spill_costs = false;
591 }
592 
593 fs_reg
build_single_offset(const fs_builder & bld,uint32_t spill_offset,int ip)594 fs_reg_alloc::build_single_offset(const fs_builder &bld, uint32_t spill_offset, int ip)
595 {
596    fs_reg offset = retype(alloc_spill_reg(1, ip), BRW_REGISTER_TYPE_UD);
597    fs_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset));
598    _mesa_set_add(spill_insts, inst);
599    return offset;
600 }
601 
602 fs_reg
build_lane_offsets(const fs_builder & bld,uint32_t spill_offset,int ip)603 fs_reg_alloc::build_lane_offsets(const fs_builder &bld, uint32_t spill_offset, int ip)
604 {
605    /* LSC messages are limited to SIMD16 */
606    assert(bld.dispatch_width() <= 16);
607 
608    const fs_builder ubld = bld.exec_all();
609    const unsigned reg_count = ubld.dispatch_width() / 8;
610 
611    fs_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_REGISTER_TYPE_UD);
612    fs_inst *inst;
613 
614    /* Build an offset per lane in SIMD8 */
615    inst = ubld.group(8, 0).MOV(retype(offset, BRW_REGISTER_TYPE_UW),
616                                brw_imm_uv(0x76543210));
617    _mesa_set_add(spill_insts, inst);
618    inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_REGISTER_TYPE_UW));
619    _mesa_set_add(spill_insts, inst);
620 
621    /* Build offsets in the upper 8 lanes of SIMD16 */
622    if (ubld.dispatch_width() > 8) {
623       inst = ubld.group(8, 0).ADD(
624          byte_offset(offset, REG_SIZE),
625          byte_offset(offset, 0),
626          brw_imm_ud(8));
627       _mesa_set_add(spill_insts, inst);
628    }
629 
630    /* Make the offset a dword */
631    inst = ubld.SHL(offset, offset, brw_imm_ud(2));
632    _mesa_set_add(spill_insts, inst);
633 
634    /* Add the base offset */
635    inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset));
636    _mesa_set_add(spill_insts, inst);
637 
638    return offset;
639 }
640 
641 void
emit_unspill(const fs_builder & bld,struct shader_stats * stats,fs_reg dst,uint32_t spill_offset,unsigned count,int ip)642 fs_reg_alloc::emit_unspill(const fs_builder &bld,
643                            struct shader_stats *stats,
644                            fs_reg dst,
645                            uint32_t spill_offset, unsigned count, int ip)
646 {
647    const intel_device_info *devinfo = bld.shader->devinfo;
648    const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
649                              REG_SIZE;
650    assert(count % reg_size == 0);
651 
652    for (unsigned i = 0; i < count / reg_size; i++) {
653       ++stats->fill_count;
654 
655       fs_inst *unspill_inst;
656       if (devinfo->verx10 >= 125) {
657          /* LSC is limited to SIMD16 load/store but we can load more using
658           * transpose messages.
659           */
660          const bool use_transpose = bld.dispatch_width() > 16;
661          const fs_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld;
662          fs_reg offset;
663          if (use_transpose) {
664             offset = build_single_offset(ubld, spill_offset, ip);
665          } else {
666             offset = build_lane_offsets(ubld, spill_offset, ip);
667          }
668          /* We leave the extended descriptor empty and flag the instruction to
669           * ask the generated to insert the extended descriptor in the address
670           * register. That way we don't need to burn an additional register
671           * for register allocation spill/fill.
672           */
673          fs_reg srcs[] = {
674             brw_imm_ud(0), /* desc */
675             brw_imm_ud(0), /* ex_desc */
676             offset,        /* payload */
677             fs_reg(),      /* payload2 */
678          };
679 
680          unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst,
681                                   srcs, ARRAY_SIZE(srcs));
682          unspill_inst->sfid = GFX12_SFID_UGM;
683          unspill_inst->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
684                                            unspill_inst->exec_size,
685                                            LSC_ADDR_SURFTYPE_SS,
686                                            LSC_ADDR_SIZE_A32,
687                                            1 /* num_coordinates */,
688                                            LSC_DATA_SIZE_D32,
689                                            use_transpose ? reg_size * 8 : 1 /* num_channels */,
690                                            use_transpose,
691                                            LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS),
692                                            true /* has_dest */);
693          unspill_inst->header_size = 0;
694          unspill_inst->mlen =
695             lsc_msg_desc_src0_len(devinfo, unspill_inst->desc);
696          unspill_inst->ex_mlen = 0;
697          unspill_inst->size_written =
698             lsc_msg_desc_dest_len(devinfo, unspill_inst->desc) * REG_SIZE;
699          unspill_inst->send_has_side_effects = false;
700          unspill_inst->send_is_volatile = true;
701          unspill_inst->send_ex_desc_scratch = true;
702       } else {
703          fs_reg header = this->scratch_header;
704          fs_builder ubld = bld.exec_all().group(1, 0);
705          assert(spill_offset % 16 == 0);
706          unspill_inst = ubld.MOV(component(header, 2),
707                                  brw_imm_ud(spill_offset / 16));
708          _mesa_set_add(spill_insts, unspill_inst);
709 
710          const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
711          const fs_reg ex_desc = brw_imm_ud(0);
712 
713          fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header };
714          unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst,
715                                  srcs, ARRAY_SIZE(srcs));
716          unspill_inst->mlen = 1;
717          unspill_inst->header_size = 1;
718          unspill_inst->size_written = reg_size * REG_SIZE;
719          unspill_inst->send_has_side_effects = false;
720          unspill_inst->send_is_volatile = true;
721          unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
722          unspill_inst->desc =
723             brw_dp_desc(devinfo, bti,
724                         BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ,
725                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
726       }
727       _mesa_set_add(spill_insts, unspill_inst);
728 
729       dst.offset += reg_size * REG_SIZE;
730       spill_offset += reg_size * REG_SIZE;
731    }
732 }
733 
734 void
emit_spill(const fs_builder & bld,struct shader_stats * stats,fs_reg src,uint32_t spill_offset,unsigned count,int ip)735 fs_reg_alloc::emit_spill(const fs_builder &bld,
736                          struct shader_stats *stats,
737                          fs_reg src,
738                          uint32_t spill_offset, unsigned count, int ip)
739 {
740    const intel_device_info *devinfo = bld.shader->devinfo;
741    const unsigned reg_size = src.component_size(bld.dispatch_width()) /
742                              REG_SIZE;
743    assert(count % reg_size == 0);
744 
745    for (unsigned i = 0; i < count / reg_size; i++) {
746       ++stats->spill_count;
747 
748       fs_inst *spill_inst;
749       if (devinfo->verx10 >= 125) {
750          fs_reg offset = build_lane_offsets(bld, spill_offset, ip);
751          /* We leave the extended descriptor empty and flag the instruction
752           * relocate the extended descriptor. That way the surface offset is
753           * directly put into the instruction and we don't need to use a
754           * register to hold it.
755           */
756          fs_reg srcs[] = {
757             brw_imm_ud(0),        /* desc */
758             brw_imm_ud(0),        /* ex_desc */
759             offset,               /* payload */
760             src,                  /* payload2 */
761          };
762          spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
763                                srcs, ARRAY_SIZE(srcs));
764          spill_inst->sfid = GFX12_SFID_UGM;
765          spill_inst->desc = lsc_msg_desc(devinfo, LSC_OP_STORE,
766                                          bld.dispatch_width(),
767                                          LSC_ADDR_SURFTYPE_SS,
768                                          LSC_ADDR_SIZE_A32,
769                                          1 /* num_coordinates */,
770                                          LSC_DATA_SIZE_D32,
771                                          1 /* num_channels */,
772                                          false /* transpose */,
773                                          LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS),
774                                          false /* has_dest */);
775          spill_inst->header_size = 0;
776          spill_inst->mlen = lsc_msg_desc_src0_len(devinfo, spill_inst->desc);
777          spill_inst->ex_mlen = reg_size;
778          spill_inst->size_written = 0;
779          spill_inst->send_has_side_effects = true;
780          spill_inst->send_is_volatile = false;
781          spill_inst->send_ex_desc_scratch = true;
782       } else {
783          fs_reg header = this->scratch_header;
784          fs_builder ubld = bld.exec_all().group(1, 0);
785          assert(spill_offset % 16 == 0);
786          spill_inst = ubld.MOV(component(header, 2),
787                                brw_imm_ud(spill_offset / 16));
788          _mesa_set_add(spill_insts, spill_inst);
789 
790          const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT;
791          const fs_reg ex_desc = brw_imm_ud(0);
792 
793          fs_reg srcs[] = { brw_imm_ud(0), ex_desc, header, src };
794          spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(),
795                                srcs, ARRAY_SIZE(srcs));
796          spill_inst->mlen = 1;
797          spill_inst->ex_mlen = reg_size;
798          spill_inst->size_written = 0;
799          spill_inst->header_size = 1;
800          spill_inst->send_has_side_effects = true;
801          spill_inst->send_is_volatile = false;
802          spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
803          spill_inst->desc =
804             brw_dp_desc(devinfo, bti,
805                         GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE,
806                         BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8));
807       }
808       _mesa_set_add(spill_insts, spill_inst);
809 
810       src.offset += reg_size * REG_SIZE;
811       spill_offset += reg_size * REG_SIZE;
812    }
813 }
814 
815 void
set_spill_costs()816 fs_reg_alloc::set_spill_costs()
817 {
818    float block_scale = 1.0;
819    float spill_costs[fs->alloc.count];
820    bool no_spill[fs->alloc.count];
821 
822    for (unsigned i = 0; i < fs->alloc.count; i++) {
823       spill_costs[i] = 0.0;
824       no_spill[i] = false;
825    }
826 
827    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
828     * spill/unspill we'll have to do, and guess that the insides of
829     * loops run 10 times.
830     */
831    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
832       for (unsigned int i = 0; i < inst->sources; i++) {
833 	 if (inst->src[i].file == VGRF)
834             spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
835       }
836 
837       if (inst->dst.file == VGRF)
838          spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
839 
840       /* Don't spill anything we generated while spilling */
841       if (_mesa_set_search(spill_insts, inst)) {
842          for (unsigned int i = 0; i < inst->sources; i++) {
843 	    if (inst->src[i].file == VGRF)
844                no_spill[inst->src[i].nr] = true;
845          }
846 	 if (inst->dst.file == VGRF)
847             no_spill[inst->dst.nr] = true;
848       }
849 
850       switch (inst->opcode) {
851 
852       case BRW_OPCODE_DO:
853 	 block_scale *= 10;
854 	 break;
855 
856       case BRW_OPCODE_WHILE:
857 	 block_scale /= 10;
858 	 break;
859 
860       case BRW_OPCODE_IF:
861          block_scale *= 0.5;
862          break;
863 
864       case BRW_OPCODE_ENDIF:
865          block_scale /= 0.5;
866          break;
867 
868       default:
869 	 break;
870       }
871    }
872 
873    for (unsigned i = 0; i < fs->alloc.count; i++) {
874       /* Do the no_spill check first.  Registers that are used as spill
875        * temporaries may have been allocated after we calculated liveness so
876        * we shouldn't look their liveness up.  Fortunately, they're always
877        * used in SCRATCH_READ/WRITE instructions so they'll always be flagged
878        * no_spill.
879        */
880       if (no_spill[i])
881          continue;
882 
883       int live_length = live.vgrf_end[i] - live.vgrf_start[i];
884       if (live_length <= 0)
885          continue;
886 
887       /* Divide the cost (in number of spills/fills) by the log of the length
888        * of the live range of the register.  This will encourage spill logic
889        * to spill long-living things before spilling short-lived things where
890        * spilling is less likely to actually do us any good.  We use the log
891        * of the length because it will fall off very quickly and not cause us
892        * to spill medium length registers with more uses.
893        */
894       float adjusted_cost = spill_costs[i] / logf(live_length);
895       ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost);
896    }
897 
898    have_spill_costs = true;
899 }
900 
901 int
choose_spill_reg()902 fs_reg_alloc::choose_spill_reg()
903 {
904    if (!have_spill_costs)
905       set_spill_costs();
906 
907    int node = ra_get_best_spill_node(g);
908    if (node < 0)
909       return -1;
910 
911    assert(node >= first_vgrf_node);
912    return node - first_vgrf_node;
913 }
914 
915 fs_reg
alloc_scratch_header()916 fs_reg_alloc::alloc_scratch_header()
917 {
918    int vgrf = fs->alloc.allocate(1);
919    assert(first_vgrf_node + vgrf == scratch_header_node);
920    ra_set_node_class(g, scratch_header_node,
921                         compiler->fs_reg_set.classes[0]);
922 
923    setup_live_interference(scratch_header_node, 0, INT_MAX);
924 
925    return fs_reg(VGRF, vgrf, BRW_REGISTER_TYPE_UD);
926 }
927 
928 fs_reg
alloc_spill_reg(unsigned size,int ip)929 fs_reg_alloc::alloc_spill_reg(unsigned size, int ip)
930 {
931    int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo)));
932    int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1;
933    int n = ra_add_node(g, compiler->fs_reg_set.classes[class_idx]);
934    assert(n == first_vgrf_node + vgrf);
935    assert(n == first_spill_node + spill_node_count);
936 
937    setup_live_interference(n, ip - 1, ip + 1);
938 
939    /* Add interference between this spill node and any other spill nodes for
940     * the same instruction.
941     */
942    for (int s = 0; s < spill_node_count; s++) {
943       if (spill_vgrf_ip[s] == ip)
944          ra_add_node_interference(g, n, first_spill_node + s);
945    }
946 
947    /* Add this spill node to the list for next time */
948    if (spill_node_count >= spill_vgrf_ip_alloc) {
949       if (spill_vgrf_ip_alloc == 0)
950          spill_vgrf_ip_alloc = 16;
951       else
952          spill_vgrf_ip_alloc *= 2;
953       spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int,
954                                spill_vgrf_ip_alloc);
955    }
956    spill_vgrf_ip[spill_node_count++] = ip;
957 
958    return fs_reg(VGRF, vgrf);
959 }
960 
961 void
spill_reg(unsigned spill_reg)962 fs_reg_alloc::spill_reg(unsigned spill_reg)
963 {
964    int size = fs->alloc.sizes[spill_reg];
965    unsigned int spill_offset = fs->last_scratch;
966    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
967 
968    /* Spills may use MRFs 13-15 in the SIMD16 case.  Our texturing is done
969     * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
970     * up to m13 (gfx6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
971     * m15 (gfx4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
972     * depth), starting from m1.  In summary: We may not be able to spill in
973     * SIMD16 mode, because we'd stomp the FB writes.
974     */
975    if (!fs->spilled_any_registers) {
976       if (devinfo->verx10 >= 125) {
977          /* We will allocate a register on the fly */
978       } else {
979          this->scratch_header = alloc_scratch_header();
980          fs_builder ubld = fs_builder(fs, 8).exec_all().at(
981             fs->cfg->first_block(), fs->cfg->first_block()->start());
982 
983          fs_inst *inst = ubld.emit(SHADER_OPCODE_SCRATCH_HEADER,
984                                    this->scratch_header);
985          _mesa_set_add(spill_insts, inst);
986       }
987 
988       fs->spilled_any_registers = true;
989    }
990 
991    fs->last_scratch += size * REG_SIZE;
992 
993    /* We're about to replace all uses of this register.  It no longer
994     * conflicts with anything so we can get rid of its interference.
995     */
996    ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0);
997    ra_reset_node_interference(g, first_vgrf_node + spill_reg);
998 
999    /* Generate spill/unspill instructions for the objects being
1000     * spilled.  Right now, we spill or unspill the whole thing to a
1001     * virtual grf of the same size.  For most instructions, though, we
1002     * could just spill/unspill the GRF being accessed.
1003     */
1004    int ip = 0;
1005    foreach_block_and_inst (block, fs_inst, inst, fs->cfg) {
1006       const fs_builder ibld = fs_builder(fs, block, inst);
1007       exec_node *before = inst->prev;
1008       exec_node *after = inst->next;
1009 
1010       for (unsigned int i = 0; i < inst->sources; i++) {
1011 	 if (inst->src[i].file == VGRF &&
1012              inst->src[i].nr == spill_reg) {
1013             int count = regs_read(inst, i);
1014             int subset_spill_offset = spill_offset +
1015                ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
1016             fs_reg unspill_dst = alloc_spill_reg(count, ip);
1017 
1018             inst->src[i].nr = unspill_dst.nr;
1019             inst->src[i].offset %= REG_SIZE;
1020 
1021             /* We read the largest power-of-two divisor of the register count
1022              * (because only POT scratch read blocks are allowed by the
1023              * hardware) up to the maximum supported block size.
1024              */
1025             const unsigned width =
1026                MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
1027 
1028             /* Set exec_all() on unspill messages under the (rather
1029              * pessimistic) assumption that there is no one-to-one
1030              * correspondence between channels of the spilled variable in
1031              * scratch space and the scratch read message, which operates on
1032              * 32 bit channels.  It shouldn't hurt in any case because the
1033              * unspill destination is a block-local temporary.
1034              */
1035             emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats,
1036                          unspill_dst, subset_spill_offset, count, ip);
1037 	 }
1038       }
1039 
1040       if (inst->dst.file == VGRF &&
1041           inst->dst.nr == spill_reg &&
1042           inst->opcode != SHADER_OPCODE_UNDEF) {
1043          int subset_spill_offset = spill_offset +
1044             ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
1045          fs_reg spill_src = alloc_spill_reg(regs_written(inst), ip);
1046 
1047          inst->dst.nr = spill_src.nr;
1048          inst->dst.offset %= REG_SIZE;
1049 
1050          /* If we're immediately spilling the register, we should not use
1051           * destination dependency hints.  Doing so will cause the GPU do
1052           * try to read and write the register at the same time and may
1053           * hang the GPU.
1054           */
1055          inst->no_dd_clear = false;
1056          inst->no_dd_check = false;
1057 
1058          /* Calculate the execution width of the scratch messages (which work
1059           * in terms of 32 bit components so we have a fixed number of eight
1060           * channels per spilled register).  We attempt to write one
1061           * exec_size-wide component of the variable at a time without
1062           * exceeding the maximum number of (fake) MRF registers reserved for
1063           * spills.
1064           */
1065          const unsigned width = 8 * reg_unit(devinfo) *
1066             DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size),
1067                               spill_max_size(fs) * REG_SIZE),
1068                          reg_unit(devinfo) * REG_SIZE);
1069 
1070          /* Spills should only write data initialized by the instruction for
1071           * whichever channels are enabled in the execution mask.  If that's
1072           * not possible we'll have to emit a matching unspill before the
1073           * instruction and set force_writemask_all on the spill.
1074           */
1075          const bool per_channel =
1076             inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
1077             inst->exec_size == width;
1078 
1079          /* Builder used to emit the scratch messages. */
1080          const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
1081 
1082 	 /* If our write is going to affect just part of the
1083           * regs_written(inst), then we need to unspill the destination since
1084           * we write back out all of the regs_written().  If the original
1085           * instruction had force_writemask_all set and is not a partial
1086           * write, there should be no need for the unspill since the
1087           * instruction will be overwriting the whole destination in any case.
1088 	  */
1089          if (inst->is_partial_write() ||
1090              (!inst->force_writemask_all && !per_channel))
1091             emit_unspill(ubld, &fs->shader_stats, spill_src,
1092                          subset_spill_offset, regs_written(inst), ip);
1093 
1094          emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src,
1095                     subset_spill_offset, regs_written(inst), ip);
1096       }
1097 
1098       for (fs_inst *inst = (fs_inst *)before->next;
1099            inst != after; inst = (fs_inst *)inst->next)
1100          setup_inst_interference(inst);
1101 
1102       /* We don't advance the ip for scratch read/write instructions
1103        * because we consider them to have the same ip as instruction we're
1104        * spilling around for the purposes of interference.  Also, we're
1105        * inserting spill instructions without re-running liveness analysis
1106        * and we don't want to mess up our IPs.
1107        */
1108       if (!_mesa_set_search(spill_insts, inst))
1109          ip++;
1110    }
1111 
1112    assert(ip == live_instr_count);
1113 }
1114 
1115 bool
assign_regs(bool allow_spilling,bool spill_all)1116 fs_reg_alloc::assign_regs(bool allow_spilling, bool spill_all)
1117 {
1118    build_interference_graph(fs->spilled_any_registers || spill_all);
1119 
1120    unsigned spilled = 0;
1121    while (1) {
1122       /* Debug of register spilling: Go spill everything. */
1123       if (unlikely(spill_all)) {
1124          int reg = choose_spill_reg();
1125          if (reg != -1) {
1126             spill_reg(reg);
1127             continue;
1128          }
1129       }
1130 
1131       if (ra_allocate(g))
1132          break;
1133 
1134       if (!allow_spilling)
1135          return false;
1136 
1137       /* Failed to allocate registers.  Spill some regs, and the caller will
1138        * loop back into here to try again.
1139        */
1140       unsigned nr_spills = 1;
1141       if (compiler->spilling_rate)
1142          nr_spills = MAX2(1, spilled / compiler->spilling_rate);
1143 
1144       for (unsigned j = 0; j < nr_spills; j++) {
1145          int reg = choose_spill_reg();
1146          if (reg == -1) {
1147             if (j == 0)
1148                return false; /* Nothing to spill */
1149             break;
1150          }
1151 
1152          /* If we're going to spill but we've never spilled before, we need
1153           * to re-build the interference graph with MRFs enabled to allow
1154           * spilling.
1155           */
1156          if (!fs->spilled_any_registers) {
1157             discard_interference_graph();
1158             build_interference_graph(true);
1159          }
1160 
1161          spill_reg(reg);
1162          spilled++;
1163       }
1164    }
1165 
1166    if (spilled)
1167       fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
1168 
1169    /* Get the chosen virtual registers for each node, and map virtual
1170     * regs in the register classes back down to real hardware reg
1171     * numbers.
1172     */
1173    unsigned hw_reg_mapping[fs->alloc.count];
1174    fs->grf_used = fs->first_non_payload_grf;
1175    for (unsigned i = 0; i < fs->alloc.count; i++) {
1176       int reg = ra_get_node_reg(g, first_vgrf_node + i);
1177 
1178       hw_reg_mapping[i] = reg;
1179       fs->grf_used = MAX2(fs->grf_used,
1180 			  hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i],
1181                                                            reg_unit(devinfo)));
1182    }
1183 
1184    foreach_block_and_inst(block, fs_inst, inst, fs->cfg) {
1185       assign_reg(devinfo, hw_reg_mapping, &inst->dst);
1186       for (int i = 0; i < inst->sources; i++) {
1187          assign_reg(devinfo, hw_reg_mapping, &inst->src[i]);
1188       }
1189    }
1190 
1191    fs->alloc.count = fs->grf_used;
1192 
1193    return true;
1194 }
1195 
1196 bool
assign_regs(bool allow_spilling,bool spill_all)1197 fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
1198 {
1199    fs_reg_alloc alloc(this);
1200    bool success = alloc.assign_regs(allow_spilling, spill_all);
1201    if (!success && allow_spilling) {
1202       fail("no register to spill:\n");
1203       dump_instructions(NULL);
1204    }
1205    return success;
1206 }
1207