1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "isl/isl.h"
25
26 #include "brw_nir.h"
27 #include "compiler/nir/nir_builder.h"
28 #include "compiler/nir/nir_format_convert.h"
29
30 static nir_def *
_load_image_param(nir_builder * b,nir_deref_instr * deref,unsigned offset)31 _load_image_param(nir_builder *b, nir_deref_instr *deref, unsigned offset)
32 {
33 nir_intrinsic_instr *load =
34 nir_intrinsic_instr_create(b->shader,
35 nir_intrinsic_image_deref_load_param_intel);
36 load->src[0] = nir_src_for_ssa(&deref->def);
37 nir_intrinsic_set_base(load, offset / 4);
38
39 switch (offset) {
40 case ISL_IMAGE_PARAM_OFFSET_OFFSET:
41 case ISL_IMAGE_PARAM_SWIZZLING_OFFSET:
42 load->num_components = 2;
43 break;
44 case ISL_IMAGE_PARAM_TILING_OFFSET:
45 case ISL_IMAGE_PARAM_SIZE_OFFSET:
46 load->num_components = 3;
47 break;
48 case ISL_IMAGE_PARAM_STRIDE_OFFSET:
49 load->num_components = 4;
50 break;
51 default:
52 unreachable("Invalid param offset");
53 }
54 nir_def_init(&load->instr, &load->def, load->num_components, 32);
55
56 nir_builder_instr_insert(b, &load->instr);
57 return &load->def;
58 }
59
60 #define load_image_param(b, d, o) \
61 _load_image_param(b, d, ISL_IMAGE_PARAM_##o##_OFFSET)
62
63 static nir_def *
image_coord_is_in_bounds(nir_builder * b,nir_deref_instr * deref,nir_def * coord)64 image_coord_is_in_bounds(nir_builder *b, nir_deref_instr *deref,
65 nir_def *coord)
66 {
67 nir_def *size = load_image_param(b, deref, SIZE);
68 nir_def *cmp = nir_ilt(b, coord, size);
69
70 unsigned coord_comps = glsl_get_sampler_coordinate_components(deref->type);
71 nir_def *in_bounds = nir_imm_true(b);
72 for (unsigned i = 0; i < coord_comps; i++)
73 in_bounds = nir_iand(b, in_bounds, nir_channel(b, cmp, i));
74
75 return in_bounds;
76 }
77
78 /** Calculate the offset in memory of the texel given by \p coord.
79 *
80 * This is meant to be used with untyped surface messages to access a tiled
81 * surface, what involves taking into account the tiling and swizzling modes
82 * of the surface manually so it will hopefully not happen very often.
83 *
84 * The tiling algorithm implemented here matches either the X or Y tiling
85 * layouts supported by the hardware depending on the tiling coefficients
86 * passed to the program as uniforms. See Volume 1 Part 2 Section 4.5
87 * "Address Tiling Function" of the IVB PRM for an in-depth explanation of
88 * the hardware tiling format.
89 */
90 static nir_def *
image_address(nir_builder * b,const struct intel_device_info * devinfo,nir_deref_instr * deref,nir_def * coord)91 image_address(nir_builder *b, const struct intel_device_info *devinfo,
92 nir_deref_instr *deref, nir_def *coord)
93 {
94 if (glsl_get_sampler_dim(deref->type) == GLSL_SAMPLER_DIM_1D &&
95 glsl_sampler_type_is_array(deref->type)) {
96 /* It's easier if 1D arrays are treated like 2D arrays */
97 coord = nir_vec3(b, nir_channel(b, coord, 0),
98 nir_imm_int(b, 0),
99 nir_channel(b, coord, 1));
100 } else {
101 unsigned dims = glsl_get_sampler_coordinate_components(deref->type);
102 coord = nir_trim_vector(b, coord, dims);
103 }
104
105 nir_def *offset = load_image_param(b, deref, OFFSET);
106 nir_def *tiling = load_image_param(b, deref, TILING);
107 nir_def *stride = load_image_param(b, deref, STRIDE);
108
109 /* Shift the coordinates by the fixed surface offset. It may be non-zero
110 * if the image is a single slice of a higher-dimensional surface, or if a
111 * non-zero mipmap level of the surface is bound to the pipeline. The
112 * offset needs to be applied here rather than at surface state set-up time
113 * because the desired slice-level may start mid-tile, so simply shifting
114 * the surface base address wouldn't give a well-formed tiled surface in
115 * the general case.
116 */
117 nir_def *xypos = (coord->num_components == 1) ?
118 nir_vec2(b, coord, nir_imm_int(b, 0)) :
119 nir_trim_vector(b, coord, 2);
120 xypos = nir_iadd(b, xypos, offset);
121
122 /* The layout of 3-D textures in memory is sort-of like a tiling
123 * format. At each miplevel, the slices are arranged in rows of
124 * 2^level slices per row. The slice row is stored in tmp.y and
125 * the slice within the row is stored in tmp.x.
126 *
127 * The layout of 2-D array textures and cubemaps is much simpler:
128 * Depending on whether the ARYSPC_LOD0 layout is in use it will be
129 * stored in memory as an array of slices, each one being a 2-D
130 * arrangement of miplevels, or as a 2D arrangement of miplevels,
131 * each one being an array of slices. In either case the separation
132 * between slices of the same LOD is equal to the qpitch value
133 * provided as stride.w.
134 *
135 * This code can be made to handle either 2D arrays and 3D textures
136 * by passing in the miplevel as tile.z for 3-D textures and 0 in
137 * tile.z for 2-D array textures.
138 *
139 * See Volume 1 Part 1 of the Gfx7 PRM, sections 6.18.4.7 "Surface
140 * Arrays" and 6.18.6 "3D Surfaces" for a more extensive discussion
141 * of the hardware 3D texture and 2D array layouts.
142 */
143 if (coord->num_components > 2) {
144 /* Decompose z into a major (tmp.y) and a minor (tmp.x)
145 * index.
146 */
147 nir_def *z = nir_channel(b, coord, 2);
148 nir_def *z_x = nir_ubfe(b, z, nir_imm_int(b, 0),
149 nir_channel(b, tiling, 2));
150 nir_def *z_y = nir_ushr(b, z, nir_channel(b, tiling, 2));
151
152 /* Take into account the horizontal (tmp.x) and vertical (tmp.y)
153 * slice offset.
154 */
155 xypos = nir_iadd(b, xypos, nir_imul(b, nir_vec2(b, z_x, z_y),
156 nir_channels(b, stride, 0xc)));
157 }
158
159 nir_def *addr;
160 if (coord->num_components > 1) {
161 /* Calculate the major/minor x and y indices. In order to
162 * accommodate both X and Y tiling, the Y-major tiling format is
163 * treated as being a bunch of narrow X-tiles placed next to each
164 * other. This means that the tile width for Y-tiling is actually
165 * the width of one sub-column of the Y-major tile where each 4K
166 * tile has 8 512B sub-columns.
167 *
168 * The major Y value is the row of tiles in which the pixel lives.
169 * The major X value is the tile sub-column in which the pixel
170 * lives; for X tiling, this is the same as the tile column, for Y
171 * tiling, each tile has 8 sub-columns. The minor X and Y indices
172 * are the position within the sub-column.
173 */
174
175 /* Calculate the minor x and y indices. */
176 nir_def *minor = nir_ubfe(b, xypos, nir_imm_int(b, 0),
177 nir_trim_vector(b, tiling, 2));
178 nir_def *major = nir_ushr(b, xypos, nir_trim_vector(b, tiling, 2));
179
180 /* Calculate the texel index from the start of the tile row and the
181 * vertical coordinate of the row.
182 * Equivalent to:
183 * tmp.x = (major.x << tile.y << tile.x) +
184 * (minor.y << tile.x) + minor.x
185 * tmp.y = major.y << tile.y
186 */
187 nir_def *idx_x, *idx_y;
188 idx_x = nir_ishl(b, nir_channel(b, major, 0), nir_channel(b, tiling, 1));
189 idx_x = nir_iadd(b, idx_x, nir_channel(b, minor, 1));
190 idx_x = nir_ishl(b, idx_x, nir_channel(b, tiling, 0));
191 idx_x = nir_iadd(b, idx_x, nir_channel(b, minor, 0));
192 idx_y = nir_ishl(b, nir_channel(b, major, 1), nir_channel(b, tiling, 1));
193
194 /* Add it to the start of the tile row. */
195 nir_def *idx;
196 idx = nir_imul(b, idx_y, nir_channel(b, stride, 1));
197 idx = nir_iadd(b, idx, idx_x);
198
199 /* Multiply by the Bpp value. */
200 addr = nir_imul(b, idx, nir_channel(b, stride, 0));
201 } else {
202 /* Multiply by the Bpp/stride value. Note that the addr.y may be
203 * non-zero even if the image is one-dimensional because a vertical
204 * offset may have been applied above to select a non-zero slice or
205 * level of a higher-dimensional texture.
206 */
207 nir_def *idx;
208 idx = nir_imul(b, nir_channel(b, xypos, 1), nir_channel(b, stride, 1));
209 idx = nir_iadd(b, nir_channel(b, xypos, 0), idx);
210 addr = nir_imul(b, idx, nir_channel(b, stride, 0));
211 }
212
213 return addr;
214 }
215
216 struct format_info {
217 const struct isl_format_layout *fmtl;
218 unsigned chans;
219 unsigned bits[4];
220 };
221
222 static struct format_info
get_format_info(enum isl_format fmt)223 get_format_info(enum isl_format fmt)
224 {
225 const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
226
227 return (struct format_info) {
228 .fmtl = fmtl,
229 .chans = isl_format_get_num_channels(fmt),
230 .bits = {
231 fmtl->channels.r.bits,
232 fmtl->channels.g.bits,
233 fmtl->channels.b.bits,
234 fmtl->channels.a.bits
235 },
236 };
237 }
238
239 static nir_def *
convert_color_for_load(nir_builder * b,const struct intel_device_info * devinfo,nir_def * color,enum isl_format image_fmt,enum isl_format lower_fmt,unsigned dest_components)240 convert_color_for_load(nir_builder *b, const struct intel_device_info *devinfo,
241 nir_def *color,
242 enum isl_format image_fmt, enum isl_format lower_fmt,
243 unsigned dest_components)
244 {
245 if (image_fmt == lower_fmt)
246 goto expand_vec;
247
248 if (image_fmt == ISL_FORMAT_R11G11B10_FLOAT) {
249 assert(lower_fmt == ISL_FORMAT_R32_UINT);
250 color = nir_format_unpack_11f11f10f(b, color);
251 goto expand_vec;
252 }
253
254 struct format_info image = get_format_info(image_fmt);
255 struct format_info lower = get_format_info(lower_fmt);
256
257 const bool needs_sign_extension =
258 isl_format_has_snorm_channel(image_fmt) ||
259 isl_format_has_sint_channel(image_fmt);
260
261 /* We only check the red channel to detect if we need to pack/unpack */
262 assert(image.bits[0] != lower.bits[0] ||
263 memcmp(image.bits, lower.bits, sizeof(image.bits)) == 0);
264
265 if (image.bits[0] != lower.bits[0] && lower_fmt == ISL_FORMAT_R32_UINT) {
266 if (needs_sign_extension)
267 color = nir_format_unpack_sint(b, color, image.bits, image.chans);
268 else
269 color = nir_format_unpack_uint(b, color, image.bits, image.chans);
270 } else {
271 /* All these formats are homogeneous */
272 for (unsigned i = 1; i < image.chans; i++)
273 assert(image.bits[i] == image.bits[0]);
274
275 if (image.bits[0] != lower.bits[0]) {
276 color = nir_format_bitcast_uvec_unmasked(b, color, lower.bits[0],
277 image.bits[0]);
278 }
279
280 if (needs_sign_extension)
281 color = nir_format_sign_extend_ivec(b, color, image.bits);
282 }
283
284 switch (image.fmtl->channels.r.type) {
285 case ISL_UNORM:
286 assert(isl_format_has_uint_channel(lower_fmt));
287 color = nir_format_unorm_to_float(b, color, image.bits);
288 break;
289
290 case ISL_SNORM:
291 assert(isl_format_has_uint_channel(lower_fmt));
292 color = nir_format_snorm_to_float(b, color, image.bits);
293 break;
294
295 case ISL_SFLOAT:
296 if (image.bits[0] == 16)
297 color = nir_unpack_half_2x16_split_x(b, color);
298 break;
299
300 case ISL_UINT:
301 case ISL_SINT:
302 break;
303
304 default:
305 unreachable("Invalid image channel type");
306 }
307
308 expand_vec:
309 assert(dest_components == 1 || dest_components == 4);
310 assert(color->num_components <= dest_components);
311 if (color->num_components == dest_components)
312 return color;
313
314 nir_def *comps[4];
315 for (unsigned i = 0; i < color->num_components; i++)
316 comps[i] = nir_channel(b, color, i);
317
318 for (unsigned i = color->num_components; i < 3; i++)
319 comps[i] = nir_imm_int(b, 0);
320
321 if (color->num_components < 4) {
322 if (isl_format_has_int_channel(image_fmt))
323 comps[3] = nir_imm_int(b, 1);
324 else
325 comps[3] = nir_imm_float(b, 1);
326 }
327
328 return nir_vec(b, comps, dest_components);
329 }
330
331 static bool
lower_image_load_instr(nir_builder * b,const struct intel_device_info * devinfo,nir_intrinsic_instr * intrin,bool sparse)332 lower_image_load_instr(nir_builder *b,
333 const struct intel_device_info *devinfo,
334 nir_intrinsic_instr *intrin,
335 bool sparse)
336 {
337 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
338 nir_variable *var = nir_deref_instr_get_variable(deref);
339
340 if (var->data.image.format == PIPE_FORMAT_NONE)
341 return false;
342
343 const enum isl_format image_fmt =
344 isl_format_for_pipe_format(var->data.image.format);
345
346 if (isl_has_matching_typed_storage_image_format(devinfo, image_fmt)) {
347 const enum isl_format lower_fmt =
348 isl_lower_storage_image_format(devinfo, image_fmt);
349 const unsigned dest_components =
350 sparse ? (intrin->num_components - 1) : intrin->num_components;
351
352 /* Use an undef to hold the uses of the load while we do the color
353 * conversion.
354 */
355 nir_def *placeholder = nir_undef(b, 4, 32);
356 nir_def_rewrite_uses(&intrin->def, placeholder);
357
358 intrin->num_components = isl_format_get_num_channels(lower_fmt);
359 intrin->def.num_components = intrin->num_components;
360
361 b->cursor = nir_after_instr(&intrin->instr);
362
363 nir_def *color = convert_color_for_load(b, devinfo,
364 &intrin->def,
365 image_fmt, lower_fmt,
366 dest_components);
367
368 if (sparse) {
369 /* Put the sparse component back on the original instruction */
370 intrin->num_components++;
371 intrin->def.num_components = intrin->num_components;
372
373 /* Carry over the sparse component without modifying it with the
374 * converted color.
375 */
376 nir_def *sparse_color[NIR_MAX_VEC_COMPONENTS];
377 for (unsigned i = 0; i < dest_components; i++)
378 sparse_color[i] = nir_channel(b, color, i);
379 sparse_color[dest_components] =
380 nir_channel(b, &intrin->def, intrin->num_components - 1);
381 color = nir_vec(b, sparse_color, dest_components + 1);
382 }
383
384 nir_def_rewrite_uses(placeholder, color);
385 nir_instr_remove(placeholder->parent_instr);
386 } else {
387 /* This code part is only useful prior to Gfx9, we do not have plans to
388 * enable sparse there.
389 */
390 assert(!sparse);
391
392 const struct isl_format_layout *image_fmtl =
393 isl_format_get_layout(image_fmt);
394 /* We have a matching typed format for everything 32b and below */
395 assert(image_fmtl->bpb == 64 || image_fmtl->bpb == 128);
396 enum isl_format raw_fmt = (image_fmtl->bpb == 64) ?
397 ISL_FORMAT_R32G32_UINT :
398 ISL_FORMAT_R32G32B32A32_UINT;
399 const unsigned dest_components = intrin->num_components;
400
401 b->cursor = nir_instr_remove(&intrin->instr);
402
403 nir_def *coord = intrin->src[1].ssa;
404
405 nir_def *do_load = image_coord_is_in_bounds(b, deref, coord);
406 nir_push_if(b, do_load);
407
408 nir_def *addr = image_address(b, devinfo, deref, coord);
409 nir_def *load =
410 nir_image_deref_load_raw_intel(b, image_fmtl->bpb / 32, 32,
411 &deref->def, addr);
412
413 nir_push_else(b, NULL);
414
415 nir_def *zero = nir_imm_zero(b, load->num_components, 32);
416
417 nir_pop_if(b, NULL);
418
419 nir_def *value = nir_if_phi(b, load, zero);
420
421 nir_def *color = convert_color_for_load(b, devinfo, value,
422 image_fmt, raw_fmt,
423 dest_components);
424
425 nir_def_rewrite_uses(&intrin->def, color);
426 }
427
428 return true;
429 }
430
431 static nir_def *
convert_color_for_store(nir_builder * b,const struct intel_device_info * devinfo,nir_def * color,enum isl_format image_fmt,enum isl_format lower_fmt)432 convert_color_for_store(nir_builder *b, const struct intel_device_info *devinfo,
433 nir_def *color,
434 enum isl_format image_fmt, enum isl_format lower_fmt)
435 {
436 struct format_info image = get_format_info(image_fmt);
437 struct format_info lower = get_format_info(lower_fmt);
438
439 color = nir_trim_vector(b, color, image.chans);
440
441 if (image_fmt == lower_fmt)
442 return color;
443
444 if (image_fmt == ISL_FORMAT_R11G11B10_FLOAT) {
445 assert(lower_fmt == ISL_FORMAT_R32_UINT);
446 return nir_format_pack_11f11f10f(b, color);
447 }
448
449 switch (image.fmtl->channels.r.type) {
450 case ISL_UNORM:
451 assert(isl_format_has_uint_channel(lower_fmt));
452 color = nir_format_float_to_unorm(b, color, image.bits);
453 break;
454
455 case ISL_SNORM:
456 assert(isl_format_has_uint_channel(lower_fmt));
457 color = nir_format_float_to_snorm(b, color, image.bits);
458 break;
459
460 case ISL_SFLOAT:
461 if (image.bits[0] == 16)
462 color = nir_format_float_to_half(b, color);
463 break;
464
465 case ISL_UINT:
466 color = nir_format_clamp_uint(b, color, image.bits);
467 break;
468
469 case ISL_SINT:
470 color = nir_format_clamp_sint(b, color, image.bits);
471 break;
472
473 default:
474 unreachable("Invalid image channel type");
475 }
476
477 if (image.bits[0] < 32 &&
478 (isl_format_has_snorm_channel(image_fmt) ||
479 isl_format_has_sint_channel(image_fmt)))
480 color = nir_format_mask_uvec(b, color, image.bits);
481
482 if (image.bits[0] != lower.bits[0] && lower_fmt == ISL_FORMAT_R32_UINT) {
483 color = nir_format_pack_uint(b, color, image.bits, image.chans);
484 } else {
485 /* All these formats are homogeneous */
486 for (unsigned i = 1; i < image.chans; i++)
487 assert(image.bits[i] == image.bits[0]);
488
489 if (image.bits[0] != lower.bits[0]) {
490 color = nir_format_bitcast_uvec_unmasked(b, color, image.bits[0],
491 lower.bits[0]);
492 }
493 }
494
495 return color;
496 }
497
498 static bool
lower_image_store_instr(nir_builder * b,const struct intel_device_info * devinfo,nir_intrinsic_instr * intrin)499 lower_image_store_instr(nir_builder *b,
500 const struct intel_device_info *devinfo,
501 nir_intrinsic_instr *intrin)
502 {
503 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
504 nir_variable *var = nir_deref_instr_get_variable(deref);
505
506 /* For write-only surfaces, we trust that the hardware can just do the
507 * conversion for us.
508 */
509 if (var->data.access & ACCESS_NON_READABLE)
510 return false;
511
512 if (var->data.image.format == PIPE_FORMAT_NONE)
513 return false;
514
515 const enum isl_format image_fmt =
516 isl_format_for_pipe_format(var->data.image.format);
517
518 if (isl_has_matching_typed_storage_image_format(devinfo, image_fmt)) {
519 const enum isl_format lower_fmt =
520 isl_lower_storage_image_format(devinfo, image_fmt);
521
522 /* Color conversion goes before the store */
523 b->cursor = nir_before_instr(&intrin->instr);
524
525 nir_def *color = convert_color_for_store(b, devinfo,
526 intrin->src[3].ssa,
527 image_fmt, lower_fmt);
528 intrin->num_components = isl_format_get_num_channels(lower_fmt);
529 nir_src_rewrite(&intrin->src[3], color);
530 } else {
531 const struct isl_format_layout *image_fmtl =
532 isl_format_get_layout(image_fmt);
533 /* We have a matching typed format for everything 32b and below */
534 assert(image_fmtl->bpb == 64 || image_fmtl->bpb == 128);
535 enum isl_format raw_fmt = (image_fmtl->bpb == 64) ?
536 ISL_FORMAT_R32G32_UINT :
537 ISL_FORMAT_R32G32B32A32_UINT;
538
539 b->cursor = nir_instr_remove(&intrin->instr);
540
541 nir_def *coord = intrin->src[1].ssa;
542
543 nir_def *do_store = image_coord_is_in_bounds(b, deref, coord);
544 nir_push_if(b, do_store);
545
546 nir_def *addr = image_address(b, devinfo, deref, coord);
547 nir_def *color = convert_color_for_store(b, devinfo,
548 intrin->src[3].ssa,
549 image_fmt, raw_fmt);
550
551 nir_intrinsic_instr *store =
552 nir_intrinsic_instr_create(b->shader,
553 nir_intrinsic_image_deref_store_raw_intel);
554 store->src[0] = nir_src_for_ssa(&deref->def);
555 store->src[1] = nir_src_for_ssa(addr);
556 store->src[2] = nir_src_for_ssa(color);
557 store->num_components = image_fmtl->bpb / 32;
558 nir_builder_instr_insert(b, &store->instr);
559
560 nir_pop_if(b, NULL);
561 }
562
563 return true;
564 }
565
566 static bool
brw_nir_lower_storage_image_instr(nir_builder * b,nir_instr * instr,void * cb_data)567 brw_nir_lower_storage_image_instr(nir_builder *b,
568 nir_instr *instr,
569 void *cb_data)
570 {
571 if (instr->type != nir_instr_type_intrinsic)
572 return false;
573 const struct brw_nir_lower_storage_image_opts *opts = cb_data;
574
575 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
576 switch (intrin->intrinsic) {
577 case nir_intrinsic_image_deref_load:
578 if (opts->lower_loads)
579 return lower_image_load_instr(b, opts->devinfo, intrin, false);
580 return false;
581
582 case nir_intrinsic_image_deref_sparse_load:
583 if (opts->lower_loads)
584 return lower_image_load_instr(b, opts->devinfo, intrin, true);
585 return false;
586
587 case nir_intrinsic_image_deref_store:
588 if (opts->lower_stores)
589 return lower_image_store_instr(b, opts->devinfo, intrin);
590 return false;
591
592 default:
593 /* Nothing to do */
594 return false;
595 }
596 }
597
598 bool
brw_nir_lower_storage_image(nir_shader * shader,const struct brw_nir_lower_storage_image_opts * opts)599 brw_nir_lower_storage_image(nir_shader *shader,
600 const struct brw_nir_lower_storage_image_opts *opts)
601 {
602 bool progress = false;
603
604 const nir_lower_image_options image_options = {
605 .lower_cube_size = true,
606 .lower_image_samples_to_one = true,
607 };
608
609 progress |= nir_lower_image(shader, &image_options);
610
611 progress |= nir_shader_instructions_pass(shader,
612 brw_nir_lower_storage_image_instr,
613 nir_metadata_none,
614 (void *)opts);
615
616 return progress;
617 }
618