• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_fs_live_variables.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33 #include <new>
34 
35 using namespace brw;
36 
37 /** @file brw_fs_schedule_instructions.cpp
38  *
39  * List scheduling of FS instructions.
40  *
41  * The basic model of the list scheduler is to take a basic block,
42  * compute a DAG of the dependencies (RAW ordering with latency, WAW
43  * ordering with latency, WAR ordering), and make a list of the DAG heads.
44  * Heuristically pick a DAG head, then put all the children that are
45  * now DAG heads into the list of things to schedule.
46  *
47  * The heuristic is the important part.  We're trying to be cheap,
48  * since actually computing the optimal scheduling is NP complete.
49  * What we do is track a "current clock".  When we schedule a node, we
50  * update the earliest-unblocked clock time of its children, and
51  * increment the clock.  Then, when trying to schedule, we just pick
52  * the earliest-unblocked instruction to schedule.
53  *
54  * Note that often there will be many things which could execute
55  * immediately, and there are a range of heuristic options to choose
56  * from in picking among those.
57  */
58 
59 static bool debug = false;
60 
61 class instruction_scheduler;
62 struct schedule_node_child;
63 
64 class schedule_node : public exec_node
65 {
66 public:
67    void set_latency(const struct brw_isa_info *isa);
68 
69    backend_instruction *inst;
70    schedule_node_child *children;
71    int children_count;
72    int children_cap;
73    int initial_parent_count;
74    int initial_unblocked_time;
75    int latency;
76 
77    /**
78     * This is the sum of the instruction's latency plus the maximum delay of
79     * its children, or just the issue_time if it's a leaf node.
80     */
81    int delay;
82 
83    /**
84     * Preferred exit node among the (direct or indirect) successors of this
85     * node.  Among the scheduler nodes blocked by this node, this will be the
86     * one that may cause earliest program termination, or NULL if none of the
87     * successors is an exit node.
88     */
89    schedule_node *exit;
90 
91    /**
92     * How many cycles this instruction takes to issue.
93     *
94     * Instructions in gen hardware are handled one simd4 vector at a time,
95     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
96     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
97     */
98    int issue_time;
99 
100    /* Temporary data used during the scheduling process. */
101    struct {
102       int parent_count;
103       int unblocked_time;
104 
105       /**
106        * Which iteration of pushing groups of children onto the candidates list
107        * this node was a part of.
108        */
109       unsigned cand_generation;
110    } tmp;
111 };
112 
113 struct schedule_node_child {
114    schedule_node *n;
115    int effective_latency;
116 };
117 
118 static inline void
reset_node_tmp(schedule_node * n)119 reset_node_tmp(schedule_node *n)
120 {
121    n->tmp.parent_count = n->initial_parent_count;
122    n->tmp.unblocked_time = n->initial_unblocked_time;
123    n->tmp.cand_generation = 0;
124 }
125 
126 /**
127  * Lower bound of the scheduling time after which one of the instructions
128  * blocked by this node may lead to program termination.
129  *
130  * exit_unblocked_time() determines a strict partial ordering relation '«' on
131  * the set of scheduler nodes as follows:
132  *
133  *   n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
134  *
135  * which can be used to heuristically order nodes according to how early they
136  * can unblock an exit node and lead to program termination.
137  */
138 static inline int
exit_tmp_unblocked_time(const schedule_node * n)139 exit_tmp_unblocked_time(const schedule_node *n)
140 {
141    return n->exit ? n->exit->tmp.unblocked_time : INT_MAX;
142 }
143 
144 static inline int
exit_initial_unblocked_time(const schedule_node * n)145 exit_initial_unblocked_time(const schedule_node *n)
146 {
147    return n->exit ? n->exit->initial_unblocked_time : INT_MAX;
148 }
149 
150 void
set_latency(const struct brw_isa_info * isa)151 schedule_node::set_latency(const struct brw_isa_info *isa)
152 {
153    switch (inst->opcode) {
154    case BRW_OPCODE_MAD:
155       /* 2 cycles
156        *  (since the last two src operands are in different register banks):
157        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
158        *
159        * 3 cycles on IVB, 4 on HSW
160        *  (since the last two src operands are in the same register bank):
161        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
162        *
163        * 18 cycles on IVB, 16 on HSW
164        *  (since the last two src operands are in different register banks):
165        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
166        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
167        *
168        * 20 cycles on IVB, 18 on HSW
169        *  (since the last two src operands are in the same register bank):
170        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
171        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
172        */
173 
174       /* Our register allocator doesn't know about register banks, so use the
175        * higher latency.
176        */
177       latency = 18;
178       break;
179 
180    case BRW_OPCODE_LRP:
181       /* 2 cycles
182        *  (since the last two src operands are in different register banks):
183        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
184        *
185        * 3 cycles on IVB, 4 on HSW
186        *  (since the last two src operands are in the same register bank):
187        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
188        *
189        * 16 cycles on IVB, 14 on HSW
190        *  (since the last two src operands are in different register banks):
191        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
192        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
193        *
194        * 16 cycles
195        *  (since the last two src operands are in the same register bank):
196        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
197        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
198        */
199 
200       /* Our register allocator doesn't know about register banks, so use the
201        * higher latency.
202        */
203       latency = 14;
204       break;
205 
206    case SHADER_OPCODE_RCP:
207    case SHADER_OPCODE_RSQ:
208    case SHADER_OPCODE_SQRT:
209    case SHADER_OPCODE_LOG2:
210    case SHADER_OPCODE_EXP2:
211    case SHADER_OPCODE_SIN:
212    case SHADER_OPCODE_COS:
213       /* 2 cycles:
214        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
215        *
216        * 18 cycles:
217        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
218        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
219        *
220        * Same for exp2, log2, rsq, sqrt, sin, cos.
221        */
222       latency = 16;
223       break;
224 
225    case SHADER_OPCODE_POW:
226       /* 2 cycles:
227        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
228        *
229        * 26 cycles:
230        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
231        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
232        */
233       latency = 24;
234       break;
235 
236    case SHADER_OPCODE_TEX:
237    case SHADER_OPCODE_TXD:
238    case SHADER_OPCODE_TXF:
239    case SHADER_OPCODE_TXF_LZ:
240    case SHADER_OPCODE_TXL:
241    case SHADER_OPCODE_TXL_LZ:
242       /* 18 cycles:
243        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
244        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
245        * send(8) g4<1>UW    g114<8,8,1>F
246        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
247        *
248        * 697 +/-49 cycles (min 610, n=26):
249        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
250        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
251        * send(8) g4<1>UW    g114<8,8,1>F
252        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
253        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
254        *
255        * So the latency on our first texture load of the batchbuffer takes
256        * ~700 cycles, since the caches are cold at that point.
257        *
258        * 840 +/- 92 cycles (min 720, n=25):
259        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
260        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
261        * send(8) g4<1>UW    g114<8,8,1>F
262        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
263        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
264        * send(8) g4<1>UW    g114<8,8,1>F
265        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
266        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
267        *
268        * On the second load, it takes just an extra ~140 cycles, and after
269        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
270        *
271        * 683 +/- 49 cycles (min = 602, n=47):
272        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
273        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
274        * send(8) g4<1>UW    g114<8,8,1>F
275        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
276        * send(8) g50<1>UW   g114<8,8,1>F
277        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
278        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
279        *
280        * The unit appears to be pipelined, since this matches up with the
281        * cache-cold case, despite there being two loads here.  If you replace
282        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
283        *
284        * So, take some number between the cache-hot 140 cycles and the
285        * cache-cold 700 cycles.  No particular tuning was done on this.
286        *
287        * I haven't done significant testing of the non-TEX opcodes.  TXL at
288        * least looked about the same as TEX.
289        */
290       latency = 200;
291       break;
292 
293    case SHADER_OPCODE_TXS:
294       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
295        * cycles (n=15):
296        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
297        * send(8)  g6<1>UW    g114<8,8,1>F
298        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
299        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
300        *
301        *
302        * Two loads was 535 +/- 30 cycles (n=19):
303        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
304        * send(16)  g6<1>UW    g114<8,8,1>F
305        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
306        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
307        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
308        * send(16)  g8<1>UW    g114<8,8,1>F
309        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
310        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
311        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
312        *
313        * Since the only caches that should matter are just the
314        * instruction/state cache containing the surface state, assume that we
315        * always have hot caches.
316        */
317       latency = 100;
318       break;
319 
320    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
321       /* testing using varying-index pull constants:
322        *
323        * 16 cycles:
324        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
325        * send(8) g4<1>F  g4<8,8,1>D
326        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
327        *
328        * ~480 cycles:
329        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
330        * send(8) g4<1>F  g4<8,8,1>D
331        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
332        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
333        *
334        * ~620 cycles:
335        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
336        * send(8) g4<1>F  g4<8,8,1>D
337        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
338        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
339        * send(8) g4<1>F  g4<8,8,1>D
340        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
341        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
342        *
343        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
344        * about 460.  We expect to mostly be cache hot, so pick something more
345        * in that direction.
346        */
347       latency = 200;
348       break;
349 
350    case SHADER_OPCODE_SEND:
351       switch (inst->sfid) {
352       case BRW_SFID_SAMPLER: {
353          unsigned msg_type = (inst->desc >> 12) & 0x1f;
354          switch (msg_type) {
355          case GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
356          case GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
357             /* See also SHADER_OPCODE_TXS */
358             latency = 100;
359             break;
360 
361          default:
362             /* See also SHADER_OPCODE_TEX */
363             latency = 200;
364             break;
365          }
366          break;
367       }
368 
369       case GFX6_SFID_DATAPORT_CONSTANT_CACHE:
370          /* See FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD */
371          latency = 200;
372          break;
373 
374       case GFX6_SFID_DATAPORT_RENDER_CACHE:
375          switch (brw_fb_desc_msg_type(isa->devinfo, inst->desc)) {
376          case GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE:
377          case GFX7_DATAPORT_RC_TYPED_SURFACE_READ:
378             /* See also SHADER_OPCODE_TYPED_SURFACE_READ */
379             latency = 600;
380             break;
381 
382          case GFX7_DATAPORT_RC_TYPED_ATOMIC_OP:
383             /* See also SHADER_OPCODE_TYPED_ATOMIC */
384             latency = 14000;
385             break;
386 
387          case GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
388             /* completely fabricated number */
389             latency = 600;
390             break;
391 
392          default:
393             unreachable("Unknown render cache message");
394          }
395          break;
396 
397       case GFX7_SFID_DATAPORT_DATA_CACHE:
398          switch ((inst->desc >> 14) & 0x1f) {
399          case BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ:
400          case GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ:
401          case GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE:
402             /* We have no data for this but assume it's a little faster than
403              * untyped surface read/write.
404              */
405             latency = 200;
406             break;
407 
408          case GFX7_DATAPORT_DC_DWORD_SCATTERED_READ:
409          case GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
410          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
411          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
412             /* We have no data for this but assume it's roughly the same as
413              * untyped surface read/write.
414              */
415             latency = 300;
416             break;
417 
418          case GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ:
419          case GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
420             /* Test code:
421              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
422              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
423              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
424              *   send(8)   g4<1>UD         g112<8,8,1>UD
425              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
426              *   .
427              *   . [repeats 8 times]
428              *   .
429              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
430              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
431              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
432              *   send(8)   g4<1>UD         g112<8,8,1>UD
433              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
434              *
435              * Running it 100 times as fragment shader on a 128x128 quad
436              * gives an average latency of 583 cycles per surface read,
437              * standard deviation 0.9%.
438              */
439             latency = 600;
440             break;
441 
442          case GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
443             /* Test code:
444              *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
445              *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
446              *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
447              *   send(8)   g4<1>ud         g112<8,8,1>ud
448              *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
449              *
450              * Running it 100 times as fragment shader on a 128x128 quad
451              * gives an average latency of 13867 cycles per atomic op,
452              * standard deviation 3%.  Note that this is a rather
453              * pessimistic estimate, the actual latency in cases with few
454              * collisions between threads and favorable pipelining has been
455              * seen to be reduced by a factor of 100.
456              */
457             latency = 14000;
458             break;
459 
460          default:
461             unreachable("Unknown data cache message");
462          }
463          break;
464 
465       case HSW_SFID_DATAPORT_DATA_CACHE_1:
466          switch (brw_dp_desc_msg_type(isa->devinfo, inst->desc)) {
467          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
468          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
469          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
470          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
471          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
472          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
473          case GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
474          case GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
475          case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ:
476          case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE:
477             /* See also GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ */
478             latency = 300;
479             break;
480 
481          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
482          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
483          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
484          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
485          case GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
486          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
487          case GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
488          case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP:
489          case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP:
490             /* See also GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
491             latency = 14000;
492             break;
493 
494          default:
495             unreachable("Unknown data cache message");
496          }
497          break;
498 
499       case GFX7_SFID_PIXEL_INTERPOLATOR:
500          latency = 50; /* TODO */
501          break;
502 
503       case GFX12_SFID_UGM:
504       case GFX12_SFID_TGM:
505       case GFX12_SFID_SLM:
506          switch (lsc_msg_desc_opcode(isa->devinfo, inst->desc)) {
507          case LSC_OP_LOAD:
508          case LSC_OP_STORE:
509          case LSC_OP_LOAD_CMASK:
510          case LSC_OP_STORE_CMASK:
511             latency = 300;
512             break;
513          case LSC_OP_FENCE:
514          case LSC_OP_ATOMIC_INC:
515          case LSC_OP_ATOMIC_DEC:
516          case LSC_OP_ATOMIC_LOAD:
517          case LSC_OP_ATOMIC_STORE:
518          case LSC_OP_ATOMIC_ADD:
519          case LSC_OP_ATOMIC_SUB:
520          case LSC_OP_ATOMIC_MIN:
521          case LSC_OP_ATOMIC_MAX:
522          case LSC_OP_ATOMIC_UMIN:
523          case LSC_OP_ATOMIC_UMAX:
524          case LSC_OP_ATOMIC_CMPXCHG:
525          case LSC_OP_ATOMIC_FADD:
526          case LSC_OP_ATOMIC_FSUB:
527          case LSC_OP_ATOMIC_FMIN:
528          case LSC_OP_ATOMIC_FMAX:
529          case LSC_OP_ATOMIC_FCMPXCHG:
530          case LSC_OP_ATOMIC_AND:
531          case LSC_OP_ATOMIC_OR:
532          case LSC_OP_ATOMIC_XOR:
533             latency = 1400;
534             break;
535          default:
536             unreachable("unsupported new data port message instruction");
537          }
538          break;
539 
540       case GEN_RT_SFID_BINDLESS_THREAD_DISPATCH:
541       case GEN_RT_SFID_RAY_TRACE_ACCELERATOR:
542          /* TODO.
543           *
544           * We'll assume for the moment that this is pretty quick as it
545           * doesn't actually return any data.
546           */
547          latency = 200;
548          break;
549 
550       case BRW_SFID_URB:
551          latency = 200;
552          break;
553 
554       default:
555          unreachable("Unknown SFID");
556       }
557       break;
558 
559    case BRW_OPCODE_DPAS:
560       switch (inst->rcount) {
561       case 1:
562          latency = 21;
563          break;
564       case 2:
565          latency = 22;
566          break;
567       case 8:
568       default:
569          latency = 32;
570          break;
571       }
572       break;
573 
574    default:
575       /* 2 cycles:
576        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
577        *
578        * 16 cycles:
579        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
580        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
581        */
582       latency = 14;
583       break;
584    }
585 }
586 
587 class instruction_scheduler {
588 public:
instruction_scheduler(void * mem_ctx,const backend_shader * s,int grf_count,int grf_write_scale,bool post_reg_alloc)589    instruction_scheduler(void *mem_ctx, const backend_shader *s, int grf_count,
590                          int grf_write_scale, bool post_reg_alloc):
591       bs(s)
592    {
593       this->mem_ctx = mem_ctx;
594       this->lin_ctx = linear_context(this->mem_ctx);
595       this->grf_count = grf_count;
596       this->post_reg_alloc = post_reg_alloc;
597 
598       this->last_grf_write = linear_zalloc_array(lin_ctx, schedule_node *, grf_count * grf_write_scale);
599 
600       this->nodes_len = s->cfg->last_block()->end_ip + 1;
601       this->nodes = linear_zalloc_array(lin_ctx, schedule_node, this->nodes_len);
602 
603       const struct brw_isa_info *isa = &bs->compiler->isa;
604 
605       schedule_node *n = nodes;
606       foreach_block_and_inst(block, backend_instruction, inst, s->cfg) {
607          n->inst = inst;
608 
609          if (!post_reg_alloc)
610             n->latency = 1;
611          else
612             n->set_latency(isa);
613 
614          n++;
615       }
616       assert(n == nodes + nodes_len);
617 
618       current.block = NULL;
619       current.start = NULL;
620       current.end = NULL;
621       current.len = 0;
622       current.time = 0;
623       current.cand_generation = 0;
624       current.available.make_empty();
625    }
626 
627    void add_barrier_deps(schedule_node *n);
628    void add_cross_lane_deps(schedule_node *n);
629    void add_dep(schedule_node *before, schedule_node *after, int latency);
630    void add_dep(schedule_node *before, schedule_node *after);
631 
632    void set_current_block(bblock_t *block);
633    void compute_delays();
634    void compute_exits();
635 
636    void schedule(schedule_node *chosen);
637    void update_children(schedule_node *chosen);
638 
639    void *mem_ctx;
640    linear_ctx *lin_ctx;
641 
642    schedule_node *nodes;
643    int nodes_len;
644 
645    /* Current block being processed. */
646    struct {
647       bblock_t *block;
648 
649       /* Range of nodes in the block.  End will point to first node
650        * address after the block, i.e. the range is [start, end).
651        */
652       schedule_node *start;
653       schedule_node *end;
654       int len;
655 
656       int scheduled;
657 
658       unsigned cand_generation;
659       int time;
660       exec_list available;
661    } current;
662 
663    bool post_reg_alloc;
664    int grf_count;
665    const backend_shader *bs;
666 
667    /**
668     * Last instruction to have written the grf (or a channel in the grf, for the
669     * scalar backend)
670     */
671    schedule_node **last_grf_write;
672 };
673 
674 class fs_instruction_scheduler : public instruction_scheduler
675 {
676 public:
677    fs_instruction_scheduler(void *mem_ctx, const fs_visitor *v, int grf_count, int hw_reg_count,
678                             int block_count, bool post_reg_alloc);
679    void calculate_deps();
680    bool is_compressed(const fs_inst *inst);
681    schedule_node *choose_instruction_to_schedule();
682    int calculate_issue_time(backend_instruction *inst);
683 
684    void count_reads_remaining(backend_instruction *inst);
685    void setup_liveness(cfg_t *cfg);
686    void update_register_pressure(backend_instruction *inst);
687    int get_register_pressure_benefit(backend_instruction *inst);
688    void clear_last_grf_write();
689 
690    void schedule_instructions();
691    void run(instruction_scheduler_mode mode);
692 
693    const fs_visitor *v;
694    unsigned hw_reg_count;
695    int reg_pressure;
696    instruction_scheduler_mode mode;
697 
698    /*
699     * The register pressure at the beginning of each basic block.
700     */
701 
702    int *reg_pressure_in;
703 
704    /*
705     * The virtual GRF's whose range overlaps the beginning of each basic block.
706     */
707 
708    BITSET_WORD **livein;
709 
710    /*
711     * The virtual GRF's whose range overlaps the end of each basic block.
712     */
713 
714    BITSET_WORD **liveout;
715 
716    /*
717     * The hardware GRF's whose range overlaps the end of each basic block.
718     */
719 
720    BITSET_WORD **hw_liveout;
721 
722    /*
723     * Whether we've scheduled a write for this virtual GRF yet.
724     */
725 
726    bool *written;
727 
728    /*
729     * How many reads we haven't scheduled for this virtual GRF yet.
730     */
731 
732    int *reads_remaining;
733 
734    /*
735     * How many reads we haven't scheduled for this hardware GRF yet.
736     */
737 
738    int *hw_reads_remaining;
739 
740 };
741 
fs_instruction_scheduler(void * mem_ctx,const fs_visitor * v,int grf_count,int hw_reg_count,int block_count,bool post_reg_alloc)742 fs_instruction_scheduler::fs_instruction_scheduler(void *mem_ctx, const fs_visitor *v,
743                                                    int grf_count, int hw_reg_count,
744                                                    int block_count, bool post_reg_alloc)
745    : instruction_scheduler(mem_ctx, v, grf_count, /* grf_write_scale */ 16,
746                            post_reg_alloc),
747      v(v)
748 {
749    this->hw_reg_count = hw_reg_count;
750    this->mode = SCHEDULE_NONE;
751    this->reg_pressure = 0;
752 
753    if (!post_reg_alloc) {
754       this->reg_pressure_in = linear_zalloc_array(lin_ctx, int, block_count);
755 
756       this->livein = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
757       for (int i = 0; i < block_count; i++)
758          this->livein[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
759                                          BITSET_WORDS(grf_count));
760 
761       this->liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
762       for (int i = 0; i < block_count; i++)
763          this->liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
764                                           BITSET_WORDS(grf_count));
765 
766       this->hw_liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
767       for (int i = 0; i < block_count; i++)
768          this->hw_liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
769                                              BITSET_WORDS(hw_reg_count));
770 
771       setup_liveness(v->cfg);
772 
773       this->written = linear_alloc_array(lin_ctx, bool, grf_count);
774 
775       this->reads_remaining = linear_alloc_array(lin_ctx, int, grf_count);
776 
777       this->hw_reads_remaining = linear_alloc_array(lin_ctx, int, hw_reg_count);
778    } else {
779       this->reg_pressure_in = NULL;
780       this->livein = NULL;
781       this->liveout = NULL;
782       this->hw_liveout = NULL;
783       this->written = NULL;
784       this->reads_remaining = NULL;
785       this->hw_reads_remaining = NULL;
786    }
787 
788    foreach_block(block, v->cfg) {
789       set_current_block(block);
790 
791       for (schedule_node *n = current.start; n < current.end; n++)
792          n->issue_time = calculate_issue_time(n->inst);
793 
794       calculate_deps();
795       compute_delays();
796       compute_exits();
797    }
798 }
799 
800 static bool
is_src_duplicate(fs_inst * inst,int src)801 is_src_duplicate(fs_inst *inst, int src)
802 {
803    for (int i = 0; i < src; i++)
804      if (inst->src[i].equals(inst->src[src]))
805        return true;
806 
807   return false;
808 }
809 
810 void
count_reads_remaining(backend_instruction * be)811 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
812 {
813    assert(reads_remaining);
814 
815    fs_inst *inst = (fs_inst *)be;
816 
817    for (int i = 0; i < inst->sources; i++) {
818       if (is_src_duplicate(inst, i))
819          continue;
820 
821       if (inst->src[i].file == VGRF) {
822          reads_remaining[inst->src[i].nr]++;
823       } else if (inst->src[i].file == FIXED_GRF) {
824          if (inst->src[i].nr >= hw_reg_count)
825             continue;
826 
827          for (unsigned j = 0; j < regs_read(inst, i); j++)
828             hw_reads_remaining[inst->src[i].nr + j]++;
829       }
830    }
831 }
832 
833 void
setup_liveness(cfg_t * cfg)834 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
835 {
836    const fs_live_variables &live = v->live_analysis.require();
837 
838    /* First, compute liveness on a per-GRF level using the in/out sets from
839     * liveness calculation.
840     */
841    for (int block = 0; block < cfg->num_blocks; block++) {
842       for (int i = 0; i < live.num_vars; i++) {
843          if (BITSET_TEST(live.block_data[block].livein, i)) {
844             int vgrf = live.vgrf_from_var[i];
845             if (!BITSET_TEST(livein[block], vgrf)) {
846                reg_pressure_in[block] += v->alloc.sizes[vgrf];
847                BITSET_SET(livein[block], vgrf);
848             }
849          }
850 
851          if (BITSET_TEST(live.block_data[block].liveout, i))
852             BITSET_SET(liveout[block], live.vgrf_from_var[i]);
853       }
854    }
855 
856    /* Now, extend the live in/live out sets for when a range crosses a block
857     * boundary, which matches what our register allocator/interference code
858     * does to account for force_writemask_all and incompatible exec_mask's.
859     */
860    for (int block = 0; block < cfg->num_blocks - 1; block++) {
861       for (int i = 0; i < grf_count; i++) {
862          if (live.vgrf_start[i] <= cfg->blocks[block]->end_ip &&
863              live.vgrf_end[i] >= cfg->blocks[block + 1]->start_ip) {
864             if (!BITSET_TEST(livein[block + 1], i)) {
865                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
866                 BITSET_SET(livein[block + 1], i);
867             }
868 
869             BITSET_SET(liveout[block], i);
870          }
871       }
872    }
873 
874    int payload_last_use_ip[hw_reg_count];
875    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
876 
877    for (unsigned i = 0; i < hw_reg_count; i++) {
878       if (payload_last_use_ip[i] == -1)
879          continue;
880 
881       for (int block = 0; block < cfg->num_blocks; block++) {
882          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
883             reg_pressure_in[block]++;
884 
885          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
886             BITSET_SET(hw_liveout[block], i);
887       }
888    }
889 }
890 
891 void
update_register_pressure(backend_instruction * be)892 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
893 {
894    assert(reads_remaining);
895 
896    fs_inst *inst = (fs_inst *)be;
897 
898    if (inst->dst.file == VGRF) {
899       written[inst->dst.nr] = true;
900    }
901 
902    for (int i = 0; i < inst->sources; i++) {
903       if (is_src_duplicate(inst, i))
904           continue;
905 
906       if (inst->src[i].file == VGRF) {
907          reads_remaining[inst->src[i].nr]--;
908       } else if (inst->src[i].file == FIXED_GRF &&
909                  inst->src[i].nr < hw_reg_count) {
910          for (unsigned off = 0; off < regs_read(inst, i); off++)
911             hw_reads_remaining[inst->src[i].nr + off]--;
912       }
913    }
914 }
915 
916 int
get_register_pressure_benefit(backend_instruction * be)917 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
918 {
919    fs_inst *inst = (fs_inst *)be;
920    int benefit = 0;
921    const int block_idx = current.block->num;
922 
923    if (inst->dst.file == VGRF) {
924       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
925           !written[inst->dst.nr])
926          benefit -= v->alloc.sizes[inst->dst.nr];
927    }
928 
929    for (int i = 0; i < inst->sources; i++) {
930       if (is_src_duplicate(inst, i))
931          continue;
932 
933       if (inst->src[i].file == VGRF &&
934           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
935           reads_remaining[inst->src[i].nr] == 1)
936          benefit += v->alloc.sizes[inst->src[i].nr];
937 
938       if (inst->src[i].file == FIXED_GRF &&
939           inst->src[i].nr < hw_reg_count) {
940          for (unsigned off = 0; off < regs_read(inst, i); off++) {
941             int reg = inst->src[i].nr + off;
942             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
943                 hw_reads_remaining[reg] == 1) {
944                benefit++;
945             }
946          }
947       }
948    }
949 
950    return benefit;
951 }
952 
953 void
set_current_block(bblock_t * block)954 instruction_scheduler::set_current_block(bblock_t *block)
955 {
956    current.block = block;
957    current.start = nodes + block->start_ip;
958    current.len = block->end_ip - block->start_ip + 1;
959    current.end = current.start + current.len;
960    current.time = 0;
961    current.scheduled = 0;
962    current.cand_generation = 1;
963 }
964 
965 /** Computation of the delay member of each node. */
966 void
compute_delays()967 instruction_scheduler::compute_delays()
968 {
969    for (schedule_node *n = current.end - 1; n >= current.start; n--) {
970       if (!n->children_count) {
971          n->delay = n->issue_time;
972       } else {
973          for (int i = 0; i < n->children_count; i++) {
974             assert(n->children[i].n->delay);
975             n->delay = MAX2(n->delay, n->latency + n->children[i].n->delay);
976          }
977       }
978    }
979 }
980 
981 void
compute_exits()982 instruction_scheduler::compute_exits()
983 {
984    /* Calculate a lower bound of the scheduling time of each node in the
985     * graph.  This is analogous to the node's critical path but calculated
986     * from the top instead of from the bottom of the block.
987     */
988    for (schedule_node *n = current.start; n < current.end; n++) {
989       for (int i = 0; i < n->children_count; i++) {
990          schedule_node_child *child = &n->children[i];
991          child->n->initial_unblocked_time =
992             MAX2(child->n->initial_unblocked_time,
993                  n->initial_unblocked_time + n->issue_time + child->effective_latency);
994       }
995    }
996 
997    /* Calculate the exit of each node by induction based on the exit nodes of
998     * its children.  The preferred exit of a node is the one among the exit
999     * nodes of its children which can be unblocked first according to the
1000     * optimistic unblocked time estimate calculated above.
1001     */
1002    for (schedule_node *n = current.end - 1; n >= current.start; n--) {
1003       n->exit = (n->inst->opcode == BRW_OPCODE_HALT ? n : NULL);
1004 
1005       for (int i = 0; i < n->children_count; i++) {
1006          if (exit_initial_unblocked_time(n->children[i].n) < exit_initial_unblocked_time(n))
1007             n->exit = n->children[i].n->exit;
1008       }
1009    }
1010 }
1011 
1012 /**
1013  * Add a dependency between two instruction nodes.
1014  *
1015  * The @after node will be scheduled after @before.  We will try to
1016  * schedule it @latency cycles after @before, but no guarantees there.
1017  */
1018 void
add_dep(schedule_node * before,schedule_node * after,int latency)1019 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
1020                                int latency)
1021 {
1022    if (!before || !after)
1023       return;
1024 
1025    assert(before != after);
1026 
1027    for (int i = 0; i < before->children_count; i++) {
1028       schedule_node_child *child = &before->children[i];
1029       if (child->n == after) {
1030          child->effective_latency = MAX2(child->effective_latency, latency);
1031          return;
1032       }
1033    }
1034 
1035    if (before->children_cap <= before->children_count) {
1036       if (before->children_cap < 16)
1037          before->children_cap = 16;
1038       else
1039          before->children_cap *= 2;
1040 
1041       before->children = reralloc(mem_ctx, before->children,
1042                                   schedule_node_child,
1043                                   before->children_cap);
1044    }
1045 
1046    schedule_node_child *child = &before->children[before->children_count];
1047    child->n = after;
1048    child->effective_latency = latency;
1049    before->children_count++;
1050    after->initial_parent_count++;
1051 }
1052 
1053 void
add_dep(schedule_node * before,schedule_node * after)1054 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
1055 {
1056    if (!before)
1057       return;
1058 
1059    add_dep(before, after, before->latency);
1060 }
1061 
1062 static bool
is_scheduling_barrier(const backend_instruction * inst)1063 is_scheduling_barrier(const backend_instruction *inst)
1064 {
1065    return inst->opcode == SHADER_OPCODE_HALT_TARGET ||
1066           inst->is_control_flow() ||
1067           inst->has_side_effects();
1068 }
1069 
1070 static bool
has_cross_lane_access(const fs_inst * inst)1071 has_cross_lane_access(const fs_inst *inst)
1072 {
1073    /* FINISHME:
1074     *
1075     * This function is likely incomplete in terms of identify cross lane
1076     * accesses.
1077     */
1078    if (inst->opcode == SHADER_OPCODE_BROADCAST ||
1079        inst->opcode == SHADER_OPCODE_READ_SR_REG ||
1080        inst->opcode == SHADER_OPCODE_CLUSTER_BROADCAST ||
1081        inst->opcode == SHADER_OPCODE_SHUFFLE ||
1082        inst->opcode == FS_OPCODE_LOAD_LIVE_CHANNELS ||
1083        inst->opcode == SHADER_OPCODE_LOAD_LIVE_CHANNELS ||
1084        inst->opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
1085        inst->opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL)
1086       return true;
1087 
1088    for (unsigned s = 0; s < inst->sources; s++) {
1089       if (inst->src[s].file == VGRF) {
1090          if (inst->src[s].stride == 0)
1091             return true;
1092       }
1093    }
1094 
1095    return false;
1096 }
1097 
1098 /**
1099  * Sometimes we really want this node to execute after everything that
1100  * was before it and before everything that followed it.  This adds
1101  * the deps to do so.
1102  */
1103 void
add_barrier_deps(schedule_node * n)1104 instruction_scheduler::add_barrier_deps(schedule_node *n)
1105 {
1106    for (schedule_node *prev = n - 1; prev >= current.start; prev--) {
1107       add_dep(prev, n, 0);
1108       if (is_scheduling_barrier(prev->inst))
1109          break;
1110    }
1111 
1112    for (schedule_node *next = n + 1; next < current.end; next++) {
1113       add_dep(n, next, 0);
1114       if (is_scheduling_barrier(next->inst))
1115          break;
1116    }
1117 }
1118 
1119 /**
1120  * Because some instructions like HALT can disable lanes, scheduling prior to
1121  * a cross lane access should not be allowed, otherwise we could end up with
1122  * later instructions accessing uninitialized data.
1123  */
1124 void
add_cross_lane_deps(schedule_node * n)1125 instruction_scheduler::add_cross_lane_deps(schedule_node *n)
1126 {
1127    for (schedule_node *prev = n - 1; prev >= current.start; prev--) {
1128       if (has_cross_lane_access((fs_inst*)prev->inst))
1129          add_dep(prev, n, 0);
1130    }
1131 }
1132 
1133 /* instruction scheduling needs to be aware of when an MRF write
1134  * actually writes 2 MRFs.
1135  */
1136 bool
is_compressed(const fs_inst * inst)1137 fs_instruction_scheduler::is_compressed(const fs_inst *inst)
1138 {
1139    return inst->exec_size == 16;
1140 }
1141 
1142 /* Clears last_grf_write to be ready to start calculating deps for a block
1143  * again.
1144  *
1145  * Since pre-ra grf_count scales with instructions, and instructions scale with
1146  * BBs, we don't want to memset all of last_grf_write per block or you'll end up
1147  * O(n^2) with number of blocks.  For shaders using softfp64, we get a *lot* of
1148  * blocks.
1149  *
1150  * We don't bother being careful for post-ra, since then grf_count doesn't scale
1151  * with instructions.
1152  */
1153 void
clear_last_grf_write()1154 fs_instruction_scheduler::clear_last_grf_write()
1155 {
1156    if (!post_reg_alloc) {
1157       for (schedule_node *n = current.start; n < current.end; n++) {
1158          fs_inst *inst = (fs_inst *)n->inst;
1159 
1160          if (inst->dst.file == VGRF) {
1161             /* Don't bother being careful with regs_written(), quicker to just clear 2 cachelines. */
1162             memset(&last_grf_write[inst->dst.nr * 16], 0, sizeof(*last_grf_write) * 16);
1163          }
1164       }
1165    } else {
1166       memset(last_grf_write, 0, sizeof(*last_grf_write) * grf_count * 16);
1167    }
1168 }
1169 
1170 void
calculate_deps()1171 fs_instruction_scheduler::calculate_deps()
1172 {
1173    /* Pre-register-allocation, this tracks the last write per VGRF offset.
1174     * After register allocation, reg_offsets are gone and we track individual
1175     * GRF registers.
1176     */
1177    schedule_node *last_conditional_mod[8] = {};
1178    schedule_node *last_accumulator_write = NULL;
1179    /* Fixed HW registers are assumed to be separate from the virtual
1180     * GRFs, so they can be tracked separately.  We don't really write
1181     * to fixed GRFs much, so don't bother tracking them on a more
1182     * granular level.
1183     */
1184    schedule_node *last_fixed_grf_write = NULL;
1185 
1186    /* top-to-bottom dependencies: RAW and WAW. */
1187    for (schedule_node *n = current.start; n < current.end; n++) {
1188       fs_inst *inst = (fs_inst *)n->inst;
1189 
1190       if (is_scheduling_barrier(inst))
1191          add_barrier_deps(n);
1192 
1193       if (inst->opcode == BRW_OPCODE_HALT ||
1194           inst->opcode == SHADER_OPCODE_HALT_TARGET)
1195           add_cross_lane_deps(n);
1196 
1197       /* read-after-write deps. */
1198       for (int i = 0; i < inst->sources; i++) {
1199          if (inst->src[i].file == VGRF) {
1200             if (post_reg_alloc) {
1201                for (unsigned r = 0; r < regs_read(inst, i); r++)
1202                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1203             } else {
1204                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1205                   add_dep(last_grf_write[inst->src[i].nr * 16 +
1206                                          inst->src[i].offset / REG_SIZE + r], n);
1207                }
1208             }
1209          } else if (inst->src[i].file == FIXED_GRF) {
1210             if (post_reg_alloc) {
1211                for (unsigned r = 0; r < regs_read(inst, i); r++)
1212                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1213             } else {
1214                add_dep(last_fixed_grf_write, n);
1215             }
1216          } else if (inst->src[i].is_accumulator()) {
1217             add_dep(last_accumulator_write, n);
1218          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1219             add_barrier_deps(n);
1220          }
1221       }
1222 
1223       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1224          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1225 
1226          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1227             if (mask & (1 << i))
1228                add_dep(last_conditional_mod[i], n);
1229          }
1230       }
1231 
1232       if (inst->reads_accumulator_implicitly()) {
1233          add_dep(last_accumulator_write, n);
1234       }
1235 
1236       /* write-after-write deps. */
1237       if (inst->dst.file == VGRF) {
1238          if (post_reg_alloc) {
1239             for (unsigned r = 0; r < regs_written(inst); r++) {
1240                add_dep(last_grf_write[inst->dst.nr + r], n);
1241                last_grf_write[inst->dst.nr + r] = n;
1242             }
1243          } else {
1244             for (unsigned r = 0; r < regs_written(inst); r++) {
1245                add_dep(last_grf_write[inst->dst.nr * 16 +
1246                                       inst->dst.offset / REG_SIZE + r], n);
1247                last_grf_write[inst->dst.nr * 16 +
1248                               inst->dst.offset / REG_SIZE + r] = n;
1249             }
1250          }
1251       } else if (inst->dst.file == FIXED_GRF) {
1252          if (post_reg_alloc) {
1253             for (unsigned r = 0; r < regs_written(inst); r++) {
1254                add_dep(last_grf_write[inst->dst.nr + r], n);
1255                last_grf_write[inst->dst.nr + r] = n;
1256             }
1257          } else {
1258             add_dep(last_fixed_grf_write, n);
1259             last_fixed_grf_write = n;
1260          }
1261       } else if (inst->dst.is_accumulator()) {
1262          add_dep(last_accumulator_write, n);
1263          last_accumulator_write = n;
1264       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1265          add_barrier_deps(n);
1266       }
1267 
1268       if (const unsigned mask = inst->flags_written(v->devinfo)) {
1269          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1270 
1271          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1272             if (mask & (1 << i)) {
1273                add_dep(last_conditional_mod[i], n, 0);
1274                last_conditional_mod[i] = n;
1275             }
1276          }
1277       }
1278 
1279       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1280           !inst->dst.is_accumulator()) {
1281          add_dep(last_accumulator_write, n);
1282          last_accumulator_write = n;
1283       }
1284    }
1285 
1286    clear_last_grf_write();
1287 
1288    /* bottom-to-top dependencies: WAR */
1289    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1290    last_accumulator_write = NULL;
1291    last_fixed_grf_write = NULL;
1292 
1293    for (schedule_node *n = current.end - 1; n >= current.start; n--) {
1294       fs_inst *inst = (fs_inst *)n->inst;
1295 
1296       /* write-after-read deps. */
1297       for (int i = 0; i < inst->sources; i++) {
1298          if (inst->src[i].file == VGRF) {
1299             if (post_reg_alloc) {
1300                for (unsigned r = 0; r < regs_read(inst, i); r++)
1301                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1302             } else {
1303                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1304                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1305                                             inst->src[i].offset / REG_SIZE + r], 0);
1306                }
1307             }
1308          } else if (inst->src[i].file == FIXED_GRF) {
1309             if (post_reg_alloc) {
1310                for (unsigned r = 0; r < regs_read(inst, i); r++)
1311                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1312             } else {
1313                add_dep(n, last_fixed_grf_write, 0);
1314             }
1315          } else if (inst->src[i].is_accumulator()) {
1316             add_dep(n, last_accumulator_write, 0);
1317          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1318             add_barrier_deps(n);
1319          }
1320       }
1321 
1322       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1323          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1324 
1325          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1326             if (mask & (1 << i))
1327                add_dep(n, last_conditional_mod[i]);
1328          }
1329       }
1330 
1331       if (inst->reads_accumulator_implicitly()) {
1332          add_dep(n, last_accumulator_write);
1333       }
1334 
1335       /* Update the things this instruction wrote, so earlier reads
1336        * can mark this as WAR dependency.
1337        */
1338       if (inst->dst.file == VGRF) {
1339          if (post_reg_alloc) {
1340             for (unsigned r = 0; r < regs_written(inst); r++)
1341                last_grf_write[inst->dst.nr + r] = n;
1342          } else {
1343             for (unsigned r = 0; r < regs_written(inst); r++) {
1344                last_grf_write[inst->dst.nr * 16 +
1345                               inst->dst.offset / REG_SIZE + r] = n;
1346             }
1347          }
1348       } else if (inst->dst.file == FIXED_GRF) {
1349          if (post_reg_alloc) {
1350             for (unsigned r = 0; r < regs_written(inst); r++)
1351                last_grf_write[inst->dst.nr + r] = n;
1352          } else {
1353             last_fixed_grf_write = n;
1354          }
1355       } else if (inst->dst.is_accumulator()) {
1356          last_accumulator_write = n;
1357       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1358          add_barrier_deps(n);
1359       }
1360 
1361       if (const unsigned mask = inst->flags_written(v->devinfo)) {
1362          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1363 
1364          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1365             if (mask & (1 << i))
1366                last_conditional_mod[i] = n;
1367          }
1368       }
1369 
1370       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1371          last_accumulator_write = n;
1372       }
1373    }
1374 
1375    clear_last_grf_write();
1376 }
1377 
1378 schedule_node *
choose_instruction_to_schedule()1379 fs_instruction_scheduler::choose_instruction_to_schedule()
1380 {
1381    schedule_node *chosen = NULL;
1382 
1383    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1384       int chosen_time = 0;
1385 
1386       /* Of the instructions ready to execute or the closest to being ready,
1387        * choose the one most likely to unblock an early program exit, or
1388        * otherwise the oldest one.
1389        */
1390       foreach_in_list(schedule_node, n, &current.available) {
1391          if (!chosen ||
1392              exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen) ||
1393              (exit_tmp_unblocked_time(n) == exit_tmp_unblocked_time(chosen) &&
1394               n->tmp.unblocked_time < chosen_time)) {
1395             chosen = n;
1396             chosen_time = n->tmp.unblocked_time;
1397          }
1398       }
1399    } else {
1400       int chosen_register_pressure_benefit = 0;
1401 
1402       /* Before register allocation, we don't care about the latencies of
1403        * instructions.  All we care about is reducing live intervals of
1404        * variables so that we can avoid register spilling, or get SIMD16
1405        * shaders which naturally do a better job of hiding instruction
1406        * latency.
1407        */
1408       foreach_in_list(schedule_node, n, &current.available) {
1409          if (!chosen) {
1410             chosen = n;
1411             chosen_register_pressure_benefit =
1412                   get_register_pressure_benefit(chosen->inst);
1413             continue;
1414          }
1415 
1416          /* Most important: If we can definitely reduce register pressure, do
1417           * so immediately.
1418           */
1419          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1420 
1421          if (register_pressure_benefit > 0 &&
1422              register_pressure_benefit > chosen_register_pressure_benefit) {
1423             chosen = n;
1424             chosen_register_pressure_benefit = register_pressure_benefit;
1425             continue;
1426          } else if (chosen_register_pressure_benefit > 0 &&
1427                     (register_pressure_benefit <
1428                      chosen_register_pressure_benefit)) {
1429             continue;
1430          }
1431 
1432          if (mode == SCHEDULE_PRE_LIFO) {
1433             /* Prefer instructions that recently became available for
1434              * scheduling.  These are the things that are most likely to
1435              * (eventually) make a variable dead and reduce register pressure.
1436              * Typical register pressure estimates don't work for us because
1437              * most of our pressure comes from texturing, where no single
1438              * instruction to schedule will make a vec4 value dead.
1439              */
1440             if (n->tmp.cand_generation > chosen->tmp.cand_generation) {
1441                chosen = n;
1442                chosen_register_pressure_benefit = register_pressure_benefit;
1443                continue;
1444             } else if (n->tmp.cand_generation < chosen->tmp.cand_generation) {
1445                continue;
1446             }
1447          }
1448 
1449          /* For instructions pushed on the cands list at the same time, prefer
1450           * the one with the highest delay to the end of the program.  This is
1451           * most likely to have its values able to be consumed first (such as
1452           * for a large tree of lowered ubo loads, which appear reversed in
1453           * the instruction stream with respect to when they can be consumed).
1454           */
1455          if (n->delay > chosen->delay) {
1456             chosen = n;
1457             chosen_register_pressure_benefit = register_pressure_benefit;
1458             continue;
1459          } else if (n->delay < chosen->delay) {
1460             continue;
1461          }
1462 
1463          /* Prefer the node most likely to unblock an early program exit.
1464           */
1465          if (exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen)) {
1466             chosen = n;
1467             chosen_register_pressure_benefit = register_pressure_benefit;
1468             continue;
1469          } else if (exit_tmp_unblocked_time(n) > exit_tmp_unblocked_time(chosen)) {
1470             continue;
1471          }
1472 
1473          /* If all other metrics are equal, we prefer the first instruction in
1474           * the list (program execution).
1475           */
1476       }
1477    }
1478 
1479    return chosen;
1480 }
1481 
1482 int
calculate_issue_time(backend_instruction * inst0)1483 fs_instruction_scheduler::calculate_issue_time(backend_instruction *inst0)
1484 {
1485    const struct brw_isa_info *isa = &v->compiler->isa;
1486    const fs_inst *inst = static_cast<fs_inst *>(inst0);
1487    const unsigned overhead = v->grf_used && has_bank_conflict(isa, inst) ?
1488       DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE) : 0;
1489    if (is_compressed(inst))
1490       return 4 + overhead;
1491    else
1492       return 2 + overhead;
1493 }
1494 
1495 void
schedule(schedule_node * chosen)1496 instruction_scheduler::schedule(schedule_node *chosen)
1497 {
1498    assert(current.scheduled < current.len);
1499    current.scheduled++;
1500 
1501    assert(chosen);
1502    chosen->remove();
1503    current.block->instructions.push_tail(chosen->inst);
1504 
1505    /* If we expected a delay for scheduling, then bump the clock to reflect
1506     * that.  In reality, the hardware will switch to another hyperthread
1507     * and may not return to dispatching our thread for a while even after
1508     * we're unblocked.  After this, we have the time when the chosen
1509     * instruction will start executing.
1510     */
1511    current.time = MAX2(current.time, chosen->tmp.unblocked_time);
1512 
1513    /* Update the clock for how soon an instruction could start after the
1514     * chosen one.
1515     */
1516    current.time += chosen->issue_time;
1517 
1518    if (debug) {
1519       fprintf(stderr, "clock %4d, scheduled: ", current.time);
1520       bs->dump_instruction(chosen->inst);
1521    }
1522 }
1523 
1524 void
update_children(schedule_node * chosen)1525 instruction_scheduler::update_children(schedule_node *chosen)
1526 {
1527    /* Now that we've scheduled a new instruction, some of its
1528     * children can be promoted to the list of instructions ready to
1529     * be scheduled.  Update the children's unblocked time for this
1530     * DAG edge as we do so.
1531     */
1532    for (int i = chosen->children_count - 1; i >= 0; i--) {
1533       schedule_node_child *child = &chosen->children[i];
1534 
1535       child->n->tmp.unblocked_time = MAX2(child->n->tmp.unblocked_time,
1536                                           current.time + child->effective_latency);
1537 
1538       if (debug) {
1539          fprintf(stderr, "\tchild %d, %d parents: ", i, child->n->tmp.parent_count);
1540          bs->dump_instruction(child->n->inst);
1541       }
1542 
1543       child->n->tmp.cand_generation = current.cand_generation;
1544       child->n->tmp.parent_count--;
1545       if (child->n->tmp.parent_count == 0) {
1546          if (debug) {
1547             fprintf(stderr, "\t\tnow available\n");
1548          }
1549          current.available.push_head(child->n);
1550       }
1551    }
1552    current.cand_generation++;
1553 }
1554 
1555 void
schedule_instructions()1556 fs_instruction_scheduler::schedule_instructions()
1557 {
1558    if (!post_reg_alloc)
1559       reg_pressure = reg_pressure_in[current.block->num];
1560 
1561    assert(current.available.is_empty());
1562    for (schedule_node *n = current.start; n < current.end; n++) {
1563       reset_node_tmp(n);
1564 
1565       /* Add DAG heads to the list of available instructions. */
1566       if (n->tmp.parent_count == 0)
1567          current.available.push_tail(n);
1568    }
1569 
1570    current.block->instructions.make_empty();
1571 
1572    while (!current.available.is_empty()) {
1573       schedule_node *chosen = choose_instruction_to_schedule();
1574       schedule(chosen);
1575 
1576       if (!post_reg_alloc) {
1577          reg_pressure -= get_register_pressure_benefit(chosen->inst);
1578          update_register_pressure(chosen->inst);
1579          if (debug)
1580             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1581       }
1582 
1583       update_children(chosen);
1584    }
1585 }
1586 
1587 void
run(instruction_scheduler_mode mode)1588 fs_instruction_scheduler::run(instruction_scheduler_mode mode)
1589 {
1590    this->mode = mode;
1591 
1592    if (debug && !post_reg_alloc) {
1593       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1594               post_reg_alloc);
1595          bs->dump_instructions();
1596    }
1597 
1598    if (!post_reg_alloc) {
1599       memset(reads_remaining, 0, grf_count * sizeof(*reads_remaining));
1600       memset(hw_reads_remaining, 0, hw_reg_count * sizeof(*hw_reads_remaining));
1601       memset(written, 0, grf_count * sizeof(*written));
1602    }
1603 
1604    foreach_block(block, v->cfg) {
1605       set_current_block(block);
1606 
1607       if (!post_reg_alloc) {
1608          for (schedule_node *n = current.start; n < current.end; n++)
1609             count_reads_remaining(n->inst);
1610       }
1611 
1612       schedule_instructions();
1613    }
1614 
1615    if (debug && !post_reg_alloc) {
1616       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1617               post_reg_alloc);
1618       bs->dump_instructions();
1619    }
1620 }
1621 
1622 fs_instruction_scheduler *
prepare_scheduler(void * mem_ctx)1623 fs_visitor::prepare_scheduler(void *mem_ctx)
1624 {
1625    const int grf_count = alloc.count;
1626 
1627    fs_instruction_scheduler *empty = rzalloc(mem_ctx, fs_instruction_scheduler);
1628    return new (empty) fs_instruction_scheduler(mem_ctx, this, grf_count, first_non_payload_grf,
1629                                                cfg->num_blocks, /* post_reg_alloc */ false);
1630 }
1631 
1632 void
schedule_instructions_pre_ra(fs_instruction_scheduler * sched,instruction_scheduler_mode mode)1633 fs_visitor::schedule_instructions_pre_ra(fs_instruction_scheduler *sched,
1634                                          instruction_scheduler_mode mode)
1635 {
1636    if (mode == SCHEDULE_NONE)
1637       return;
1638 
1639    sched->run(mode);
1640 
1641    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1642 }
1643 
1644 void
schedule_instructions_post_ra()1645 fs_visitor::schedule_instructions_post_ra()
1646 {
1647    const bool post_reg_alloc = true;
1648    const int grf_count = reg_unit(devinfo) * grf_used;
1649 
1650    void *mem_ctx = ralloc_context(NULL);
1651 
1652    fs_instruction_scheduler sched(mem_ctx, this, grf_count, first_non_payload_grf,
1653                                   cfg->num_blocks, post_reg_alloc);
1654    sched.run(SCHEDULE_POST);
1655 
1656    ralloc_free(mem_ctx);
1657 
1658    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1659 }
1660