1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file elk_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35 #include "util/bitset.h"
36 #include "util/u_math.h"
37 #include "util/rb_tree.h"
38 #include "elk_fs.h"
39 #include "elk_fs_live_variables.h"
40 #include "elk_cfg.h"
41 #include "elk_eu.h"
42
43 using namespace elk;
44
45 namespace { /* avoid conflict with opt_copy_propagation_elements */
46 struct acp_entry {
47 struct rb_node by_dst;
48 struct rb_node by_src;
49 elk_fs_reg dst;
50 elk_fs_reg src;
51 unsigned global_idx;
52 unsigned size_written;
53 unsigned size_read;
54 enum elk_opcode opcode;
55 bool is_partial_write;
56 bool force_writemask_all;
57 };
58
59 /**
60 * Compare two acp_entry::src.nr
61 *
62 * This is intended to be used as the comparison function for rb_tree.
63 */
64 static int
cmp_entry_dst_entry_dst(const struct rb_node * a_node,const struct rb_node * b_node)65 cmp_entry_dst_entry_dst(const struct rb_node *a_node, const struct rb_node *b_node)
66 {
67 const struct acp_entry *a_entry =
68 rb_node_data(struct acp_entry, a_node, by_dst);
69
70 const struct acp_entry *b_entry =
71 rb_node_data(struct acp_entry, b_node, by_dst);
72
73 return a_entry->dst.nr - b_entry->dst.nr;
74 }
75
76 static int
cmp_entry_dst_nr(const struct rb_node * a_node,const void * b_key)77 cmp_entry_dst_nr(const struct rb_node *a_node, const void *b_key)
78 {
79 const struct acp_entry *a_entry =
80 rb_node_data(struct acp_entry, a_node, by_dst);
81
82 return a_entry->dst.nr - (uintptr_t) b_key;
83 }
84
85 static int
cmp_entry_src_entry_src(const struct rb_node * a_node,const struct rb_node * b_node)86 cmp_entry_src_entry_src(const struct rb_node *a_node, const struct rb_node *b_node)
87 {
88 const struct acp_entry *a_entry =
89 rb_node_data(struct acp_entry, a_node, by_src);
90
91 const struct acp_entry *b_entry =
92 rb_node_data(struct acp_entry, b_node, by_src);
93
94 return a_entry->src.nr - b_entry->src.nr;
95 }
96
97 /**
98 * Compare an acp_entry::src.nr with a raw nr.
99 *
100 * This is intended to be used as the comparison function for rb_tree.
101 */
102 static int
cmp_entry_src_nr(const struct rb_node * a_node,const void * b_key)103 cmp_entry_src_nr(const struct rb_node *a_node, const void *b_key)
104 {
105 const struct acp_entry *a_entry =
106 rb_node_data(struct acp_entry, a_node, by_src);
107
108 return a_entry->src.nr - (uintptr_t) b_key;
109 }
110
111 class acp_forward_iterator {
112 public:
acp_forward_iterator(struct rb_node * n,unsigned offset)113 acp_forward_iterator(struct rb_node *n, unsigned offset)
114 : curr(n), next(nullptr), offset(offset)
115 {
116 next = rb_node_next_or_null(curr);
117 }
118
operator ++()119 acp_forward_iterator &operator++()
120 {
121 curr = next;
122 next = rb_node_next_or_null(curr);
123
124 return *this;
125 }
126
operator !=(const acp_forward_iterator & other) const127 bool operator!=(const acp_forward_iterator &other) const
128 {
129 return curr != other.curr;
130 }
131
operator *() const132 struct acp_entry *operator*() const
133 {
134 /* This open-codes part of rb_node_data. */
135 return curr != NULL ? (struct acp_entry *)(((char *)curr) - offset)
136 : NULL;
137 }
138
139 private:
140 struct rb_node *curr;
141 struct rb_node *next;
142 unsigned offset;
143 };
144
145 struct acp {
146 struct rb_tree by_dst;
147 struct rb_tree by_src;
148
acp__anoncae3908a0111::acp149 acp()
150 {
151 rb_tree_init(&by_dst);
152 rb_tree_init(&by_src);
153 }
154
begin__anoncae3908a0111::acp155 acp_forward_iterator begin()
156 {
157 return acp_forward_iterator(rb_tree_first(&by_src),
158 rb_tree_offsetof(struct acp_entry, by_src, 0));
159 }
160
end__anoncae3908a0111::acp161 const acp_forward_iterator end() const
162 {
163 return acp_forward_iterator(nullptr, 0);
164 }
165
length__anoncae3908a0111::acp166 unsigned length()
167 {
168 unsigned l = 0;
169
170 for (rb_node *iter = rb_tree_first(&by_src);
171 iter != NULL; iter = rb_node_next(iter))
172 l++;
173
174 return l;
175 }
176
add__anoncae3908a0111::acp177 void add(acp_entry *entry)
178 {
179 rb_tree_insert(&by_dst, &entry->by_dst, cmp_entry_dst_entry_dst);
180 rb_tree_insert(&by_src, &entry->by_src, cmp_entry_src_entry_src);
181 }
182
remove__anoncae3908a0111::acp183 void remove(acp_entry *entry)
184 {
185 rb_tree_remove(&by_dst, &entry->by_dst);
186 rb_tree_remove(&by_src, &entry->by_src);
187 }
188
find_by_src__anoncae3908a0111::acp189 acp_forward_iterator find_by_src(unsigned nr)
190 {
191 struct rb_node *rbn = rb_tree_search(&by_src,
192 (void *)(uintptr_t) nr,
193 cmp_entry_src_nr);
194
195 return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
196 by_src, rbn));
197 }
198
find_by_dst__anoncae3908a0111::acp199 acp_forward_iterator find_by_dst(unsigned nr)
200 {
201 struct rb_node *rbn = rb_tree_search(&by_dst,
202 (void *)(uintptr_t) nr,
203 cmp_entry_dst_nr);
204
205 return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry,
206 by_dst, rbn));
207 }
208 };
209
210 struct block_data {
211 /**
212 * Which entries in the fs_copy_prop_dataflow acp table are live at the
213 * start of this block. This is the useful output of the analysis, since
214 * it lets us plug those into the local copy propagation on the second
215 * pass.
216 */
217 BITSET_WORD *livein;
218
219 /**
220 * Which entries in the fs_copy_prop_dataflow acp table are live at the end
221 * of this block. This is done in initial setup from the per-block acps
222 * returned by the first local copy prop pass.
223 */
224 BITSET_WORD *liveout;
225
226 /**
227 * Which entries in the fs_copy_prop_dataflow acp table are generated by
228 * instructions in this block which reach the end of the block without
229 * being killed.
230 */
231 BITSET_WORD *copy;
232
233 /**
234 * Which entries in the fs_copy_prop_dataflow acp table are killed over the
235 * course of this block.
236 */
237 BITSET_WORD *kill;
238
239 /**
240 * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
241 * have a fully uninitialized destination at the end of this block.
242 */
243 BITSET_WORD *undef;
244
245 /**
246 * Which entries in the fs_copy_prop_dataflow acp table can the
247 * start of this block be reached from. Note that this is a weaker
248 * condition than livein.
249 */
250 BITSET_WORD *reachin;
251
252 /**
253 * Which entries in the fs_copy_prop_dataflow acp table are
254 * overwritten by an instruction with channel masks inconsistent
255 * with the copy instruction (e.g. due to force_writemask_all).
256 * Such an overwrite can cause the copy entry to become invalid
257 * even if the copy instruction is subsequently re-executed for any
258 * given channel i, since the execution of the overwrite for
259 * channel i may corrupt other channels j!=i inactive for the
260 * subsequent copy.
261 */
262 BITSET_WORD *exec_mismatch;
263 };
264
265 class fs_copy_prop_dataflow
266 {
267 public:
268 fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg,
269 const fs_live_variables &live,
270 struct acp *out_acp);
271
272 void setup_initial_values();
273 void run();
274
275 void dump_block_data() const UNUSED;
276
277 elk_cfg_t *cfg;
278 const fs_live_variables &live;
279
280 acp_entry **acp;
281 int num_acp;
282 int bitset_words;
283
284 struct block_data *bd;
285 };
286 } /* anonymous namespace */
287
fs_copy_prop_dataflow(linear_ctx * lin_ctx,elk_cfg_t * cfg,const fs_live_variables & live,struct acp * out_acp)288 fs_copy_prop_dataflow::fs_copy_prop_dataflow(linear_ctx *lin_ctx, elk_cfg_t *cfg,
289 const fs_live_variables &live,
290 struct acp *out_acp)
291 : cfg(cfg), live(live)
292 {
293 bd = linear_zalloc_array(lin_ctx, struct block_data, cfg->num_blocks);
294
295 num_acp = 0;
296 foreach_block (block, cfg)
297 num_acp += out_acp[block->num].length();
298
299 bitset_words = BITSET_WORDS(num_acp);
300
301 foreach_block (block, cfg) {
302 bd[block->num].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
303 bd[block->num].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
304 bd[block->num].copy = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
305 bd[block->num].kill = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
306 bd[block->num].undef = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
307 bd[block->num].reachin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
308 bd[block->num].exec_mismatch = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
309 }
310
311 acp = linear_zalloc_array(lin_ctx, struct acp_entry *, num_acp);
312
313 int next_acp = 0;
314 foreach_block (block, cfg) {
315 for (auto iter = out_acp[block->num].begin();
316 iter != out_acp[block->num].end(); ++iter) {
317 acp[next_acp] = *iter;
318
319 (*iter)->global_idx = next_acp;
320
321 /* opt_copy_propagation_local populates out_acp with copies created
322 * in a block which are still live at the end of the block. This
323 * is exactly what we want in the COPY set.
324 */
325 BITSET_SET(bd[block->num].copy, next_acp);
326
327 next_acp++;
328 }
329 }
330
331 assert(next_acp == num_acp);
332
333 setup_initial_values();
334 run();
335 }
336
337 /**
338 * Like reg_offset, but register must be VGRF or FIXED_GRF.
339 */
340 static inline unsigned
grf_reg_offset(const elk_fs_reg & r)341 grf_reg_offset(const elk_fs_reg &r)
342 {
343 return (r.file == VGRF ? 0 : r.nr) * REG_SIZE +
344 r.offset +
345 (r.file == FIXED_GRF ? r.subnr : 0);
346 }
347
348 /**
349 * Like regions_overlap, but register must be VGRF or FIXED_GRF.
350 */
351 static inline bool
grf_regions_overlap(const elk_fs_reg & r,unsigned dr,const elk_fs_reg & s,unsigned ds)352 grf_regions_overlap(const elk_fs_reg &r, unsigned dr, const elk_fs_reg &s, unsigned ds)
353 {
354 return reg_space(r) == reg_space(s) &&
355 !(grf_reg_offset(r) + dr <= grf_reg_offset(s) ||
356 grf_reg_offset(s) + ds <= grf_reg_offset(r));
357 }
358
359 /**
360 * Set up initial values for each of the data flow sets, prior to running
361 * the fixed-point algorithm.
362 */
363 void
setup_initial_values()364 fs_copy_prop_dataflow::setup_initial_values()
365 {
366 /* Initialize the COPY and KILL sets. */
367 {
368 struct acp acp_table;
369
370 /* First, get all the KILLs for instructions which overwrite ACP
371 * destinations.
372 */
373 for (int i = 0; i < num_acp; i++)
374 acp_table.add(acp[i]);
375
376 foreach_block (block, cfg) {
377 foreach_inst_in_block(elk_fs_inst, inst, block) {
378 if (inst->dst.file != VGRF &&
379 inst->dst.file != FIXED_GRF)
380 continue;
381
382 for (auto iter = acp_table.find_by_src(inst->dst.nr);
383 iter != acp_table.end() && (*iter)->src.nr == inst->dst.nr;
384 ++iter) {
385 if (grf_regions_overlap(inst->dst, inst->size_written,
386 (*iter)->src, (*iter)->size_read)) {
387 BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
388 if (inst->force_writemask_all && !(*iter)->force_writemask_all)
389 BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
390 }
391 }
392
393 if (inst->dst.file != VGRF)
394 continue;
395
396 for (auto iter = acp_table.find_by_dst(inst->dst.nr);
397 iter != acp_table.end() && (*iter)->dst.nr == inst->dst.nr;
398 ++iter) {
399 if (grf_regions_overlap(inst->dst, inst->size_written,
400 (*iter)->dst, (*iter)->size_written)) {
401 BITSET_SET(bd[block->num].kill, (*iter)->global_idx);
402 if (inst->force_writemask_all && !(*iter)->force_writemask_all)
403 BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx);
404 }
405 }
406 }
407 }
408 }
409
410 /* Populate the initial values for the livein and liveout sets. For the
411 * block at the start of the program, livein = 0 and liveout = copy.
412 * For the others, set liveout and livein to ~0 (the universal set).
413 */
414 foreach_block (block, cfg) {
415 if (block->parents.is_empty()) {
416 for (int i = 0; i < bitset_words; i++) {
417 bd[block->num].livein[i] = 0u;
418 bd[block->num].liveout[i] = bd[block->num].copy[i];
419 }
420 } else {
421 for (int i = 0; i < bitset_words; i++) {
422 bd[block->num].liveout[i] = ~0u;
423 bd[block->num].livein[i] = ~0u;
424 }
425 }
426 }
427
428 /* Initialize the undef set. */
429 foreach_block (block, cfg) {
430 for (int i = 0; i < num_acp; i++) {
431 BITSET_SET(bd[block->num].undef, i);
432 for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
433 if (BITSET_TEST(live.block_data[block->num].defout,
434 live.var_from_reg(byte_offset(acp[i]->dst, off))))
435 BITSET_CLEAR(bd[block->num].undef, i);
436 }
437 }
438 }
439 }
440
441 /**
442 * Walk the set of instructions in the block, marking which entries in the acp
443 * are killed by the block.
444 */
445 void
run()446 fs_copy_prop_dataflow::run()
447 {
448 bool progress;
449
450 do {
451 progress = false;
452
453 foreach_block (block, cfg) {
454 if (block->parents.is_empty())
455 continue;
456
457 for (int i = 0; i < bitset_words; i++) {
458 const BITSET_WORD old_liveout = bd[block->num].liveout[i];
459 const BITSET_WORD old_reachin = bd[block->num].reachin[i];
460 BITSET_WORD livein_from_any_block = 0;
461
462 /* Update livein for this block. If a copy is live out of all
463 * parent blocks, it's live coming in to this block.
464 */
465 bd[block->num].livein[i] = ~0u;
466 foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) {
467 elk_bblock_t *parent = parent_link->block;
468 /* Consider ACP entries with a known-undefined destination to
469 * be available from the parent. This is valid because we're
470 * free to set the undefined variable equal to the source of
471 * the ACP entry without breaking the application's
472 * expectations, since the variable is undefined.
473 */
474 bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
475 bd[parent->num].undef[i]);
476 livein_from_any_block |= bd[parent->num].liveout[i];
477
478 /* Update reachin for this block. If the end of any
479 * parent block is reachable from the copy, the start
480 * of this block is reachable from it as well.
481 */
482 bd[block->num].reachin[i] |= (bd[parent->num].reachin[i] |
483 bd[parent->num].copy[i]);
484 }
485
486 /* Limit to the set of ACP entries that can possibly be available
487 * at the start of the block, since propagating from a variable
488 * which is guaranteed to be undefined (rather than potentially
489 * undefined for some dynamic control-flow paths) doesn't seem
490 * particularly useful.
491 */
492 bd[block->num].livein[i] &= livein_from_any_block;
493
494 /* Update liveout for this block. */
495 bd[block->num].liveout[i] =
496 bd[block->num].copy[i] | (bd[block->num].livein[i] &
497 ~bd[block->num].kill[i]);
498
499 if (old_liveout != bd[block->num].liveout[i] ||
500 old_reachin != bd[block->num].reachin[i])
501 progress = true;
502 }
503 }
504 } while (progress);
505
506 /* Perform a second fixed-point pass in order to propagate the
507 * exec_mismatch bitsets. Note that this requires an accurate
508 * value of the reachin bitsets as input, which isn't available
509 * until the end of the first propagation pass, so this loop cannot
510 * be folded into the previous one.
511 */
512 do {
513 progress = false;
514
515 foreach_block (block, cfg) {
516 for (int i = 0; i < bitset_words; i++) {
517 const BITSET_WORD old_exec_mismatch = bd[block->num].exec_mismatch[i];
518
519 /* Update exec_mismatch for this block. If the end of a
520 * parent block is reachable by an overwrite with
521 * inconsistent execution masking, the start of this block
522 * is reachable by such an overwrite as well.
523 */
524 foreach_list_typed(elk_bblock_link, parent_link, link, &block->parents) {
525 elk_bblock_t *parent = parent_link->block;
526 bd[block->num].exec_mismatch[i] |= (bd[parent->num].exec_mismatch[i] &
527 bd[parent->num].reachin[i]);
528 }
529
530 /* Only consider overwrites with inconsistent execution
531 * masking if they are reachable from the copy, since
532 * overwrites unreachable from a copy are harmless to that
533 * copy.
534 */
535 bd[block->num].exec_mismatch[i] &= bd[block->num].reachin[i];
536 if (old_exec_mismatch != bd[block->num].exec_mismatch[i])
537 progress = true;
538 }
539 }
540 } while (progress);
541 }
542
543 void
dump_block_data() const544 fs_copy_prop_dataflow::dump_block_data() const
545 {
546 foreach_block (block, cfg) {
547 fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
548 block->start_ip, block->end_ip);
549 foreach_list_typed(elk_bblock_link, link, link, &block->parents) {
550 elk_bblock_t *parent = link->block;
551 fprintf(stderr, "%d ", parent->num);
552 }
553 fprintf(stderr, "):\n");
554 fprintf(stderr, " livein = 0x");
555 for (int i = 0; i < bitset_words; i++)
556 fprintf(stderr, "%08x", bd[block->num].livein[i]);
557 fprintf(stderr, ", liveout = 0x");
558 for (int i = 0; i < bitset_words; i++)
559 fprintf(stderr, "%08x", bd[block->num].liveout[i]);
560 fprintf(stderr, ",\n copy = 0x");
561 for (int i = 0; i < bitset_words; i++)
562 fprintf(stderr, "%08x", bd[block->num].copy[i]);
563 fprintf(stderr, ", kill = 0x");
564 for (int i = 0; i < bitset_words; i++)
565 fprintf(stderr, "%08x", bd[block->num].kill[i]);
566 fprintf(stderr, "\n");
567 }
568 }
569
570 static bool
is_logic_op(enum elk_opcode opcode)571 is_logic_op(enum elk_opcode opcode)
572 {
573 return (opcode == ELK_OPCODE_AND ||
574 opcode == ELK_OPCODE_OR ||
575 opcode == ELK_OPCODE_XOR ||
576 opcode == ELK_OPCODE_NOT);
577 }
578
579 static bool
can_take_stride(elk_fs_inst * inst,elk_reg_type dst_type,unsigned arg,unsigned stride,const struct elk_compiler * compiler)580 can_take_stride(elk_fs_inst *inst, elk_reg_type dst_type,
581 unsigned arg, unsigned stride,
582 const struct elk_compiler *compiler)
583 {
584 const struct intel_device_info *devinfo = compiler->devinfo;
585
586 if (stride > 4)
587 return false;
588
589 /* Bail if the channels of the source need to be aligned to the byte offset
590 * of the corresponding channel of the destination, and the provided stride
591 * would break this restriction.
592 */
593 if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
594 !(type_sz(inst->src[arg].type) * stride ==
595 type_sz(dst_type) * inst->dst.stride ||
596 stride == 0))
597 return false;
598
599 /* 3-source instructions can only be Align16, which restricts what strides
600 * they can take. They can only take a stride of 1 (the usual case), or 0
601 * with a special "repctrl" bit. But the repctrl bit doesn't work for
602 * 64-bit datatypes, so if the source type is 64-bit then only a stride of
603 * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
604 * 944:
605 *
606 * This is applicable to 32b datatypes and 16b datatype. 64b datatypes
607 * cannot use the replicate control.
608 */
609 if (inst->elk_is_3src(compiler)) {
610 if (type_sz(inst->src[arg].type) > 4)
611 return stride == 1;
612 else
613 return stride == 1 || stride == 0;
614 }
615
616 /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
617 * page 391 ("Extended Math Function"):
618 *
619 * The following restrictions apply for align1 mode: Scalar source is
620 * supported. Source and destination horizontal stride must be the
621 * same.
622 *
623 * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
624 * 134 ("Extended Math Function"):
625 *
626 * Scalar source is supported. Source and destination horizontal stride
627 * must be 1.
628 *
629 * and similar language exists for IVB and SNB. Pre-SNB, math instructions
630 * are sends, so the sources are moved to MRF's and there are no
631 * restrictions.
632 */
633 if (inst->is_math()) {
634 if (devinfo->ver == 6 || devinfo->ver == 7) {
635 assert(inst->dst.stride == 1);
636 return stride == 1 || stride == 0;
637 } else if (devinfo->ver >= 8) {
638 return stride == inst->dst.stride || stride == 0;
639 }
640 }
641
642 return true;
643 }
644
645 static bool
instruction_requires_packed_data(elk_fs_inst * inst)646 instruction_requires_packed_data(elk_fs_inst *inst)
647 {
648 switch (inst->opcode) {
649 case ELK_FS_OPCODE_DDX_FINE:
650 case ELK_FS_OPCODE_DDX_COARSE:
651 case ELK_FS_OPCODE_DDY_FINE:
652 case ELK_FS_OPCODE_DDY_COARSE:
653 case ELK_SHADER_OPCODE_QUAD_SWIZZLE:
654 return true;
655 default:
656 return false;
657 }
658 }
659
660 static bool
try_copy_propagate(const elk_compiler * compiler,elk_fs_inst * inst,acp_entry * entry,int arg,const elk::simple_allocator & alloc,uint8_t max_polygons)661 try_copy_propagate(const elk_compiler *compiler, elk_fs_inst *inst,
662 acp_entry *entry, int arg,
663 const elk::simple_allocator &alloc,
664 uint8_t max_polygons)
665 {
666 if (inst->src[arg].file != VGRF)
667 return false;
668
669 const struct intel_device_info *devinfo = compiler->devinfo;
670
671 assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
672 entry->src.file == ATTR || entry->src.file == FIXED_GRF);
673
674 /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a
675 * good chance that we'll be able to eliminate the latter through register
676 * coalescing. If only part of the sources of the second LOAD_PAYLOAD can
677 * be simplified through copy propagation we would be making register
678 * coalescing impossible, ending up with unnecessary copies in the program.
679 * This is also the case for is_multi_copy_payload() copies that can only
680 * be coalesced when the instruction is lowered into a sequence of MOVs.
681 *
682 * Worse -- In cases where the ACP entry was the result of CSE combining
683 * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD
684 * into the second would undo the work of CSE, leading to an infinite
685 * optimization loop. Avoid this by detecting LOAD_PAYLOAD copies from CSE
686 * temporaries which should match is_coalescing_payload().
687 */
688 if (entry->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD &&
689 (is_coalescing_payload(alloc, inst) || is_multi_copy_payload(inst)))
690 return false;
691
692 assert(entry->dst.file == VGRF);
693 if (inst->src[arg].nr != entry->dst.nr)
694 return false;
695
696 /* Bail if inst is reading a range that isn't contained in the range
697 * that entry is writing.
698 */
699 if (!region_contained_in(inst->src[arg], inst->size_read(arg),
700 entry->dst, entry->size_written))
701 return false;
702
703 /* Send messages with EOT set are restricted to use g112-g127 (and we
704 * sometimes need g127 for other purposes), so avoid copy propagating
705 * anything that would make it impossible to satisfy that restriction.
706 */
707 if (inst->eot) {
708 /* Avoid propagating a FIXED_GRF register, as that's already pinned. */
709 if (entry->src.file == FIXED_GRF)
710 return false;
711
712 /* We might be propagating from a large register, while the SEND only
713 * is reading a portion of it (say the .A channel in an RGBA value).
714 * We need to pin both split SEND sources in g112-g126/127, so only
715 * allow this if the registers aren't too large.
716 */
717 if (inst->opcode == ELK_SHADER_OPCODE_SEND && entry->src.file == VGRF) {
718 int other_src = arg == 2 ? 3 : 2;
719 unsigned other_size = inst->src[other_src].file == VGRF ?
720 alloc.sizes[inst->src[other_src].nr] :
721 inst->size_read(other_src);
722 unsigned prop_src_size = alloc.sizes[entry->src.nr];
723 if (other_size + prop_src_size > 15)
724 return false;
725 }
726 }
727
728 /* Avoid propagating odd-numbered FIXED_GRF registers into the first source
729 * of a LINTERP instruction on platforms where the PLN instruction has
730 * register alignment restrictions.
731 */
732 if (devinfo->has_pln && devinfo->ver <= 6 &&
733 entry->src.file == FIXED_GRF && (entry->src.nr & 1) &&
734 inst->opcode == ELK_FS_OPCODE_LINTERP && arg == 0)
735 return false;
736
737 /* we can't generally copy-propagate UD negations because we
738 * can end up accessing the resulting values as signed integers
739 * instead. See also resolve_ud_negate() and comment in
740 * elk_fs_generator::generate_code.
741 */
742 if (entry->src.type == ELK_REGISTER_TYPE_UD &&
743 entry->src.negate)
744 return false;
745
746 bool has_source_modifiers = entry->src.abs || entry->src.negate;
747
748 if (has_source_modifiers && !inst->can_do_source_mods(devinfo))
749 return false;
750
751 /* Reject cases that would violate register regioning restrictions. */
752 if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) &&
753 ((devinfo->ver == 6 && inst->is_math()) ||
754 inst->is_send_from_grf() ||
755 inst->uses_indirect_addressing())) {
756 return false;
757 }
758
759 if (has_source_modifiers &&
760 inst->opcode == ELK_SHADER_OPCODE_GFX4_SCRATCH_WRITE)
761 return false;
762
763 /* Some instructions implemented in the generator backend, such as
764 * derivatives, assume that their operands are packed so we can't
765 * generally propagate strided regions to them.
766 */
767 const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 :
768 entry->src.stride);
769 if (instruction_requires_packed_data(inst) && entry_stride != 1)
770 return false;
771
772 const elk_reg_type dst_type = (has_source_modifiers &&
773 entry->dst.type != inst->src[arg].type) ?
774 entry->dst.type : inst->dst.type;
775
776 /* Bail if the result of composing both strides would exceed the
777 * hardware limit.
778 */
779 if (!can_take_stride(inst, dst_type, arg,
780 entry_stride * inst->src[arg].stride,
781 compiler))
782 return false;
783
784 /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU:
785 * EU Overview
786 * Register Region Restrictions
787 * Special Requirements for Handling Double Precision Data Types :
788 *
789 * "When source or destination datatype is 64b or operation is integer
790 * DWord multiply, regioning in Align1 must follow these rules:
791 *
792 * 1. Source and Destination horizontal stride must be aligned to the
793 * same qword.
794 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
795 * 3. Source and Destination offset must be the same, except the case
796 * of scalar source."
797 *
798 * Most of this is already checked in can_take_stride(), we're only left
799 * with checking 3.
800 */
801 if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) &&
802 entry_stride != 0 &&
803 (reg_offset(inst->dst) % REG_SIZE) != (reg_offset(entry->src) % REG_SIZE))
804 return false;
805
806 /* The <8;8,0> regions used for FS attributes in multipolygon
807 * dispatch mode could violate regioning restrictions, don't copy
808 * propagate them in such cases.
809 */
810 if (entry->src.file == ATTR && max_polygons > 1 &&
811 (has_dst_aligned_region_restriction(devinfo, inst, dst_type) ||
812 instruction_requires_packed_data(inst) ||
813 (inst->elk_is_3src(compiler) && arg == 2) ||
814 entry->dst.type != inst->src[arg].type))
815 return false;
816
817 /* Bail if the source FIXED_GRF region of the copy cannot be trivially
818 * composed with the source region of the instruction -- E.g. because the
819 * copy uses some extended stride greater than 4 not supported natively by
820 * the hardware as a horizontal stride, or because instruction compression
821 * could require us to use a vertical stride shorter than a GRF.
822 */
823 if (entry->src.file == FIXED_GRF &&
824 (inst->src[arg].stride > 4 ||
825 inst->dst.component_size(inst->exec_size) >
826 inst->src[arg].component_size(inst->exec_size)))
827 return false;
828
829 /* Bail if the instruction type is larger than the execution type of the
830 * copy, what implies that each channel is reading multiple channels of the
831 * destination of the copy, and simply replacing the sources would give a
832 * program with different semantics.
833 */
834 if ((type_sz(entry->dst.type) < type_sz(inst->src[arg].type) ||
835 entry->is_partial_write) &&
836 inst->opcode != ELK_OPCODE_MOV) {
837 return false;
838 }
839
840 /* Bail if the result of composing both strides cannot be expressed
841 * as another stride. This avoids, for example, trying to transform
842 * this:
843 *
844 * MOV (8) rX<1>UD rY<0;1,0>UD
845 * FOO (8) ... rX<8;8,1>UW
846 *
847 * into this:
848 *
849 * FOO (8) ... rY<0;1,0>UW
850 *
851 * Which would have different semantics.
852 */
853 if (entry_stride != 1 &&
854 (inst->src[arg].stride *
855 type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
856 return false;
857
858 /* Since semantics of source modifiers are type-dependent we need to
859 * ensure that the meaning of the instruction remains the same if we
860 * change the type. If the sizes of the types are different the new
861 * instruction will read a different amount of data than the original
862 * and the semantics will always be different.
863 */
864 if (has_source_modifiers &&
865 entry->dst.type != inst->src[arg].type &&
866 (!inst->can_change_types() ||
867 type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
868 return false;
869
870 if (devinfo->ver >= 8 && (entry->src.negate || entry->src.abs) &&
871 is_logic_op(inst->opcode)) {
872 return false;
873 }
874
875 /* Save the offset of inst->src[arg] relative to entry->dst for it to be
876 * applied later.
877 */
878 const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;
879
880 /* Fold the copy into the instruction consuming it. */
881 inst->src[arg].file = entry->src.file;
882 inst->src[arg].nr = entry->src.nr;
883 inst->src[arg].subnr = entry->src.subnr;
884 inst->src[arg].offset = entry->src.offset;
885
886 /* Compose the strides of both regions. */
887 if (entry->src.file == FIXED_GRF) {
888 if (inst->src[arg].stride) {
889 const unsigned orig_width = 1 << entry->src.width;
890 const unsigned reg_width = REG_SIZE / (type_sz(inst->src[arg].type) *
891 inst->src[arg].stride);
892 inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1;
893 inst->src[arg].hstride = cvt(inst->src[arg].stride);
894 inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width;
895 } else {
896 inst->src[arg].vstride = inst->src[arg].hstride =
897 inst->src[arg].width = 0;
898 }
899
900 inst->src[arg].stride = 1;
901
902 /* Hopefully no Align16 around here... */
903 assert(entry->src.swizzle == ELK_SWIZZLE_XYZW);
904 inst->src[arg].swizzle = entry->src.swizzle;
905 } else {
906 inst->src[arg].stride *= entry->src.stride;
907 }
908
909 /* Compute the first component of the copy that the instruction is
910 * reading, and the base byte offset within that component.
911 */
912 assert((entry->dst.offset % REG_SIZE == 0 || inst->opcode == ELK_OPCODE_MOV) &&
913 entry->dst.stride == 1);
914 const unsigned component = rel_offset / type_sz(entry->dst.type);
915 const unsigned suboffset = rel_offset % type_sz(entry->dst.type);
916
917 /* Calculate the byte offset at the origin of the copy of the given
918 * component and suboffset.
919 */
920 inst->src[arg] = byte_offset(inst->src[arg],
921 component * entry_stride * type_sz(entry->src.type) + suboffset);
922
923 if (has_source_modifiers) {
924 if (entry->dst.type != inst->src[arg].type) {
925 /* We are propagating source modifiers from a MOV with a different
926 * type. If we got here, then we can just change the source and
927 * destination types of the instruction and keep going.
928 */
929 for (int i = 0; i < inst->sources; i++) {
930 inst->src[i].type = entry->dst.type;
931 }
932 inst->dst.type = entry->dst.type;
933 }
934
935 if (!inst->src[arg].abs) {
936 inst->src[arg].abs = entry->src.abs;
937 inst->src[arg].negate ^= entry->src.negate;
938 }
939 }
940
941 return true;
942 }
943
944
945 static bool
try_constant_propagate(const elk_compiler * compiler,elk_fs_inst * inst,acp_entry * entry,int arg)946 try_constant_propagate(const elk_compiler *compiler, elk_fs_inst *inst,
947 acp_entry *entry, int arg)
948 {
949 const struct intel_device_info *devinfo = compiler->devinfo;
950 bool progress = false;
951
952 if (type_sz(entry->src.type) > 4)
953 return false;
954
955 if (inst->src[arg].file != VGRF)
956 return false;
957
958 assert(entry->dst.file == VGRF);
959 if (inst->src[arg].nr != entry->dst.nr)
960 return false;
961
962 /* Bail if inst is reading a range that isn't contained in the range
963 * that entry is writing.
964 */
965 if (!region_contained_in(inst->src[arg], inst->size_read(arg),
966 entry->dst, entry->size_written))
967 return false;
968
969 /* If the size of the use type is larger than the size of the entry
970 * type, the entry doesn't contain all of the data that the user is
971 * trying to use.
972 */
973 if (type_sz(inst->src[arg].type) > type_sz(entry->dst.type))
974 return false;
975
976 elk_fs_reg val = entry->src;
977
978 /* If the size of the use type is smaller than the size of the entry,
979 * clamp the value to the range of the use type. This enables constant
980 * copy propagation in cases like
981 *
982 *
983 * mov(8) g12<1>UD 0x0000000cUD
984 * ...
985 * mul(8) g47<1>D g86<8,8,1>D g12<16,8,2>W
986 */
987 if (type_sz(inst->src[arg].type) < type_sz(entry->dst.type)) {
988 if (type_sz(inst->src[arg].type) != 2 || type_sz(entry->dst.type) != 4)
989 return false;
990
991 assert(inst->src[arg].subnr == 0 || inst->src[arg].subnr == 2);
992
993 /* When subnr is 0, we want the lower 16-bits, and when it's 2, we
994 * want the upper 16-bits. No other values of subnr are valid for a
995 * UD source.
996 */
997 const uint16_t v = inst->src[arg].subnr == 2 ? val.ud >> 16 : val.ud;
998
999 val.ud = v | (uint32_t(v) << 16);
1000 }
1001
1002 val.type = inst->src[arg].type;
1003
1004 if (inst->src[arg].abs) {
1005 if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
1006 !elk_abs_immediate(val.type, &val.as_elk_reg())) {
1007 return false;
1008 }
1009 }
1010
1011 if (inst->src[arg].negate) {
1012 if ((devinfo->ver >= 8 && is_logic_op(inst->opcode)) ||
1013 !elk_negate_immediate(val.type, &val.as_elk_reg())) {
1014 return false;
1015 }
1016 }
1017
1018 switch (inst->opcode) {
1019 case ELK_OPCODE_MOV:
1020 case ELK_SHADER_OPCODE_LOAD_PAYLOAD:
1021 case ELK_FS_OPCODE_PACK:
1022 inst->src[arg] = val;
1023 progress = true;
1024 break;
1025
1026 case ELK_SHADER_OPCODE_POW:
1027 /* Allow constant propagation into src1 (except on Gen 6 which
1028 * doesn't support scalar source math), and let constant combining
1029 * promote the constant on Gen < 8.
1030 */
1031 if (devinfo->ver == 6)
1032 break;
1033
1034 if (arg == 1) {
1035 inst->src[arg] = val;
1036 progress = true;
1037 }
1038 break;
1039
1040 case ELK_OPCODE_SUBB:
1041 if (arg == 1) {
1042 inst->src[arg] = val;
1043 progress = true;
1044 }
1045 break;
1046
1047 case ELK_OPCODE_MACH:
1048 case ELK_OPCODE_MUL:
1049 case ELK_SHADER_OPCODE_MULH:
1050 case ELK_OPCODE_ADD:
1051 case ELK_OPCODE_XOR:
1052 case ELK_OPCODE_ADDC:
1053 if (arg == 1) {
1054 inst->src[arg] = val;
1055 progress = true;
1056 } else if (arg == 0 && inst->src[1].file != IMM) {
1057 /* Don't copy propagate the constant in situations like
1058 *
1059 * mov(8) g8<1>D 0x7fffffffD
1060 * mul(8) g16<1>D g8<8,8,1>D g15<16,8,2>W
1061 *
1062 * On platforms that only have a 32x16 multiplier, this will
1063 * result in lowering the multiply to
1064 *
1065 * mul(8) g15<1>D g14<8,8,1>D 0xffffUW
1066 * mul(8) g16<1>D g14<8,8,1>D 0x7fffUW
1067 * add(8) g15.1<2>UW g15.1<16,8,2>UW g16<16,8,2>UW
1068 *
1069 * On Gfx8 and Gfx9, which have the full 32x32 multiplier, it
1070 * results in
1071 *
1072 * mul(8) g16<1>D g15<16,8,2>W 0x7fffffffD
1073 *
1074 * Volume 2a of the Skylake PRM says:
1075 *
1076 * When multiplying a DW and any lower precision integer, the
1077 * DW operand must on src0.
1078 */
1079 if (inst->opcode == ELK_OPCODE_MUL &&
1080 type_sz(inst->src[1].type) < 4 &&
1081 type_sz(val.type) == 4)
1082 break;
1083
1084 /* Fit this constant in by commuting the operands.
1085 * Exception: we can't do this for 32-bit integer MUL/MACH
1086 * because it's asymmetric.
1087 *
1088 * The BSpec says for Broadwell that
1089 *
1090 * "When multiplying DW x DW, the dst cannot be accumulator."
1091 *
1092 * Integer MUL with a non-accumulator destination will be lowered
1093 * by lower_integer_multiplication(), so don't restrict it.
1094 */
1095 if (((inst->opcode == ELK_OPCODE_MUL &&
1096 inst->dst.is_accumulator()) ||
1097 inst->opcode == ELK_OPCODE_MACH) &&
1098 (inst->src[1].type == ELK_REGISTER_TYPE_D ||
1099 inst->src[1].type == ELK_REGISTER_TYPE_UD))
1100 break;
1101 inst->src[0] = inst->src[1];
1102 inst->src[1] = val;
1103 progress = true;
1104 }
1105 break;
1106
1107 case ELK_OPCODE_ADD3:
1108 /* add3 can have a single imm16 source. Proceed if the source type is
1109 * already W or UW or the value can be coerced to one of those types.
1110 */
1111 if (val.type == ELK_REGISTER_TYPE_W || val.type == ELK_REGISTER_TYPE_UW)
1112 ; /* Nothing to do. */
1113 else if (val.ud <= 0xffff)
1114 val = elk_imm_uw(val.ud);
1115 else if (val.d >= -0x8000 && val.d <= 0x7fff)
1116 val = elk_imm_w(val.d);
1117 else
1118 break;
1119
1120 if (arg == 2) {
1121 inst->src[arg] = val;
1122 progress = true;
1123 } else if (inst->src[2].file != IMM) {
1124 inst->src[arg] = inst->src[2];
1125 inst->src[2] = val;
1126 progress = true;
1127 }
1128
1129 break;
1130
1131 case ELK_OPCODE_CMP:
1132 case ELK_OPCODE_IF:
1133 if (arg == 1) {
1134 inst->src[arg] = val;
1135 progress = true;
1136 } else if (arg == 0 && inst->src[1].file != IMM) {
1137 enum elk_conditional_mod new_cmod;
1138
1139 new_cmod = elk_swap_cmod(inst->conditional_mod);
1140 if (new_cmod != ELK_CONDITIONAL_NONE) {
1141 /* Fit this constant in by swapping the operands and
1142 * flipping the test
1143 */
1144 inst->src[0] = inst->src[1];
1145 inst->src[1] = val;
1146 inst->conditional_mod = new_cmod;
1147 progress = true;
1148 }
1149 }
1150 break;
1151
1152 case ELK_OPCODE_SEL:
1153 if (arg == 1) {
1154 inst->src[arg] = val;
1155 progress = true;
1156 } else if (arg == 0) {
1157 if (inst->src[1].file != IMM &&
1158 (inst->conditional_mod == ELK_CONDITIONAL_NONE ||
1159 /* Only GE and L are commutative. */
1160 inst->conditional_mod == ELK_CONDITIONAL_GE ||
1161 inst->conditional_mod == ELK_CONDITIONAL_L)) {
1162 inst->src[0] = inst->src[1];
1163 inst->src[1] = val;
1164
1165 /* If this was predicated, flipping operands means
1166 * we also need to flip the predicate.
1167 */
1168 if (inst->conditional_mod == ELK_CONDITIONAL_NONE) {
1169 inst->predicate_inverse =
1170 !inst->predicate_inverse;
1171 }
1172 } else {
1173 inst->src[0] = val;
1174 }
1175
1176 progress = true;
1177 }
1178 break;
1179
1180 case ELK_FS_OPCODE_FB_WRITE_LOGICAL:
1181 /* The stencil and omask sources of ELK_FS_OPCODE_FB_WRITE_LOGICAL are
1182 * bit-cast using a strided region so they cannot be immediates.
1183 */
1184 if (arg != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
1185 arg != FB_WRITE_LOGICAL_SRC_OMASK) {
1186 inst->src[arg] = val;
1187 progress = true;
1188 }
1189 break;
1190
1191 case ELK_SHADER_OPCODE_INT_QUOTIENT:
1192 case ELK_SHADER_OPCODE_INT_REMAINDER:
1193 /* Allow constant propagation into either source (except on Gen 6
1194 * which doesn't support scalar source math). Constant combining
1195 * promote the src1 constant on Gen < 8, and it will promote the src0
1196 * constant on all platforms.
1197 */
1198 if (devinfo->ver == 6)
1199 break;
1200
1201 FALLTHROUGH;
1202 case ELK_OPCODE_AND:
1203 case ELK_OPCODE_ASR:
1204 case ELK_OPCODE_BFE:
1205 case ELK_OPCODE_BFI1:
1206 case ELK_OPCODE_BFI2:
1207 case ELK_OPCODE_ROL:
1208 case ELK_OPCODE_ROR:
1209 case ELK_OPCODE_SHL:
1210 case ELK_OPCODE_SHR:
1211 case ELK_OPCODE_OR:
1212 case ELK_SHADER_OPCODE_TEX_LOGICAL:
1213 case ELK_SHADER_OPCODE_TXD_LOGICAL:
1214 case ELK_SHADER_OPCODE_TXF_LOGICAL:
1215 case ELK_SHADER_OPCODE_TXL_LOGICAL:
1216 case ELK_SHADER_OPCODE_TXS_LOGICAL:
1217 case ELK_FS_OPCODE_TXB_LOGICAL:
1218 case ELK_SHADER_OPCODE_TXF_CMS_LOGICAL:
1219 case ELK_SHADER_OPCODE_TXF_CMS_W_LOGICAL:
1220 case ELK_SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
1221 case ELK_SHADER_OPCODE_TXF_UMS_LOGICAL:
1222 case ELK_SHADER_OPCODE_TXF_MCS_LOGICAL:
1223 case ELK_SHADER_OPCODE_LOD_LOGICAL:
1224 case ELK_SHADER_OPCODE_TG4_LOGICAL:
1225 case ELK_SHADER_OPCODE_TG4_OFFSET_LOGICAL:
1226 case ELK_SHADER_OPCODE_SAMPLEINFO_LOGICAL:
1227 case ELK_SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
1228 case ELK_SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
1229 case ELK_SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
1230 case ELK_SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
1231 case ELK_SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
1232 case ELK_SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
1233 case ELK_SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
1234 case ELK_SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
1235 case ELK_SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
1236 case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1237 case ELK_SHADER_OPCODE_BROADCAST:
1238 case ELK_OPCODE_MAD:
1239 case ELK_OPCODE_LRP:
1240 case ELK_FS_OPCODE_PACK_HALF_2x16_SPLIT:
1241 case ELK_SHADER_OPCODE_SHUFFLE:
1242 inst->src[arg] = val;
1243 progress = true;
1244 break;
1245
1246 default:
1247 break;
1248 }
1249
1250 return progress;
1251 }
1252
1253 static bool
can_propagate_from(elk_fs_inst * inst)1254 can_propagate_from(elk_fs_inst *inst)
1255 {
1256 return (inst->opcode == ELK_OPCODE_MOV &&
1257 inst->dst.file == VGRF &&
1258 ((inst->src[0].file == VGRF &&
1259 !grf_regions_overlap(inst->dst, inst->size_written,
1260 inst->src[0], inst->size_read(0))) ||
1261 inst->src[0].file == ATTR ||
1262 inst->src[0].file == UNIFORM ||
1263 inst->src[0].file == IMM ||
1264 (inst->src[0].file == FIXED_GRF &&
1265 inst->src[0].is_contiguous())) &&
1266 inst->src[0].type == inst->dst.type &&
1267 !inst->saturate &&
1268 /* Subset of !is_partial_write() conditions. */
1269 !inst->predicate && inst->dst.is_contiguous()) ||
1270 is_identity_payload(FIXED_GRF, inst);
1271 }
1272
1273 /* Walks a basic block and does copy propagation on it using the acp
1274 * list.
1275 */
1276 static bool
opt_copy_propagation_local(const elk_compiler * compiler,linear_ctx * lin_ctx,elk_bblock_t * block,struct acp & acp,const elk::simple_allocator & alloc,uint8_t max_polygons)1277 opt_copy_propagation_local(const elk_compiler *compiler, linear_ctx *lin_ctx,
1278 elk_bblock_t *block, struct acp &acp,
1279 const elk::simple_allocator &alloc,
1280 uint8_t max_polygons)
1281 {
1282 bool progress = false;
1283
1284 foreach_inst_in_block(elk_fs_inst, inst, block) {
1285 /* Try propagating into this instruction. */
1286 bool instruction_progress = false;
1287 for (int i = inst->sources - 1; i >= 0; i--) {
1288 if (inst->src[i].file != VGRF)
1289 continue;
1290
1291 for (auto iter = acp.find_by_dst(inst->src[i].nr);
1292 iter != acp.end() && (*iter)->dst.nr == inst->src[i].nr;
1293 ++iter) {
1294 if ((*iter)->src.file == IMM) {
1295 if (try_constant_propagate(compiler, inst, *iter, i)) {
1296 instruction_progress = true;
1297 break;
1298 }
1299 } else {
1300 if (try_copy_propagate(compiler, inst, *iter, i, alloc,
1301 max_polygons)) {
1302 instruction_progress = true;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 if (instruction_progress) {
1310 progress = true;
1311
1312 /* ADD3 can only have the immediate as src0. */
1313 if (inst->opcode == ELK_OPCODE_ADD3) {
1314 if (inst->src[2].file == IMM) {
1315 const auto src0 = inst->src[0];
1316 inst->src[0] = inst->src[2];
1317 inst->src[2] = src0;
1318 }
1319 }
1320
1321 /* If only one of the sources of a 2-source, commutative instruction (e.g.,
1322 * AND) is immediate, it must be src1. If both are immediate, opt_algebraic
1323 * should fold it away.
1324 */
1325 if (inst->sources == 2 && inst->is_commutative() &&
1326 inst->src[0].file == IMM && inst->src[1].file != IMM) {
1327 const auto src1 = inst->src[1];
1328 inst->src[1] = inst->src[0];
1329 inst->src[0] = src1;
1330 }
1331 }
1332
1333 /* kill the destination from the ACP */
1334 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1335 for (auto iter = acp.find_by_dst(inst->dst.nr);
1336 iter != acp.end() && (*iter)->dst.nr == inst->dst.nr;
1337 ++iter) {
1338 if (grf_regions_overlap((*iter)->dst, (*iter)->size_written,
1339 inst->dst, inst->size_written))
1340 acp.remove(*iter);
1341 }
1342
1343 for (auto iter = acp.find_by_src(inst->dst.nr);
1344 iter != acp.end() && (*iter)->src.nr == inst->dst.nr;
1345 ++iter) {
1346 /* Make sure we kill the entry if this instruction overwrites
1347 * _any_ of the registers that it reads
1348 */
1349 if (grf_regions_overlap((*iter)->src, (*iter)->size_read,
1350 inst->dst, inst->size_written))
1351 acp.remove(*iter);
1352 }
1353 }
1354
1355 /* If this instruction's source could potentially be folded into the
1356 * operand of another instruction, add it to the ACP.
1357 */
1358 if (can_propagate_from(inst)) {
1359 acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
1360 entry->dst = inst->dst;
1361 entry->src = inst->src[0];
1362 entry->size_written = inst->size_written;
1363 for (unsigned i = 0; i < inst->sources; i++)
1364 entry->size_read += inst->size_read(i);
1365 entry->opcode = inst->opcode;
1366 entry->is_partial_write = inst->is_partial_write();
1367 entry->force_writemask_all = inst->force_writemask_all;
1368 acp.add(entry);
1369 } else if (inst->opcode == ELK_SHADER_OPCODE_LOAD_PAYLOAD &&
1370 inst->dst.file == VGRF) {
1371 int offset = 0;
1372 for (int i = 0; i < inst->sources; i++) {
1373 int effective_width = i < inst->header_size ? 8 : inst->exec_size;
1374 const unsigned size_written = effective_width *
1375 type_sz(inst->src[i].type);
1376 if (inst->src[i].file == VGRF ||
1377 (inst->src[i].file == FIXED_GRF &&
1378 inst->src[i].is_contiguous())) {
1379 const elk_reg_type t = i < inst->header_size ?
1380 ELK_REGISTER_TYPE_UD : inst->src[i].type;
1381 elk_fs_reg dst = byte_offset(retype(inst->dst, t), offset);
1382 if (!dst.equals(inst->src[i])) {
1383 acp_entry *entry = linear_zalloc(lin_ctx, acp_entry);
1384 entry->dst = dst;
1385 entry->src = retype(inst->src[i], t);
1386 entry->size_written = size_written;
1387 entry->size_read = inst->size_read(i);
1388 entry->opcode = inst->opcode;
1389 entry->force_writemask_all = inst->force_writemask_all;
1390 acp.add(entry);
1391 }
1392 }
1393 offset += size_written;
1394 }
1395 }
1396 }
1397
1398 return progress;
1399 }
1400
1401 bool
opt_copy_propagation()1402 elk_fs_visitor::opt_copy_propagation()
1403 {
1404 bool progress = false;
1405 void *copy_prop_ctx = ralloc_context(NULL);
1406 linear_ctx *lin_ctx = linear_context(copy_prop_ctx);
1407 struct acp out_acp[cfg->num_blocks];
1408
1409 const fs_live_variables &live = live_analysis.require();
1410
1411 /* First, walk through each block doing local copy propagation and getting
1412 * the set of copies available at the end of the block.
1413 */
1414 foreach_block (block, cfg) {
1415 progress = opt_copy_propagation_local(compiler, lin_ctx, block,
1416 out_acp[block->num], alloc,
1417 max_polygons) || progress;
1418
1419 /* If the destination of an ACP entry exists only within this block,
1420 * then there's no need to keep it for dataflow analysis. We can delete
1421 * it from the out_acp table and avoid growing the bitsets any bigger
1422 * than we absolutely have to.
1423 *
1424 * Because nothing in opt_copy_propagation_local touches the block
1425 * start/end IPs and opt_copy_propagation_local is incapable of
1426 * extending the live range of an ACP destination beyond the block,
1427 * it's safe to use the liveness information in this way.
1428 */
1429 for (auto iter = out_acp[block->num].begin();
1430 iter != out_acp[block->num].end(); ++iter) {
1431 assert((*iter)->dst.file == VGRF);
1432 if (block->start_ip <= live.vgrf_start[(*iter)->dst.nr] &&
1433 live.vgrf_end[(*iter)->dst.nr] <= block->end_ip) {
1434 out_acp[block->num].remove(*iter);
1435 }
1436 }
1437 }
1438
1439 /* Do dataflow analysis for those available copies. */
1440 fs_copy_prop_dataflow dataflow(lin_ctx, cfg, live, out_acp);
1441
1442 /* Next, re-run local copy propagation, this time with the set of copies
1443 * provided by the dataflow analysis available at the start of a block.
1444 */
1445 foreach_block (block, cfg) {
1446 struct acp in_acp;
1447
1448 for (int i = 0; i < dataflow.num_acp; i++) {
1449 if (BITSET_TEST(dataflow.bd[block->num].livein, i) &&
1450 !BITSET_TEST(dataflow.bd[block->num].exec_mismatch, i)) {
1451 struct acp_entry *entry = dataflow.acp[i];
1452 in_acp.add(entry);
1453 }
1454 }
1455
1456 progress = opt_copy_propagation_local(compiler, lin_ctx, block,
1457 in_acp, alloc, max_polygons) ||
1458 progress;
1459 }
1460
1461 ralloc_free(copy_prop_ctx);
1462
1463 if (progress)
1464 invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
1465 DEPENDENCY_INSTRUCTION_DETAIL);
1466
1467 return progress;
1468 }
1469