• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "elk_eu.h"
29 #include "elk_fs.h"
30 #include "elk_fs_live_variables.h"
31 #include "elk_vec4.h"
32 #include "elk_cfg.h"
33 #include "elk_shader.h"
34 #include <new>
35 
36 using namespace elk;
37 
38 /** @file elk_fs_schedule_instructions.cpp
39  *
40  * List scheduling of FS instructions.
41  *
42  * The basic model of the list scheduler is to take a basic block,
43  * compute a DAG of the dependencies (RAW ordering with latency, WAW
44  * ordering with latency, WAR ordering), and make a list of the DAG heads.
45  * Heuristically pick a DAG head, then put all the children that are
46  * now DAG heads into the list of things to schedule.
47  *
48  * The heuristic is the important part.  We're trying to be cheap,
49  * since actually computing the optimal scheduling is NP complete.
50  * What we do is track a "current clock".  When we schedule a node, we
51  * update the earliest-unblocked clock time of its children, and
52  * increment the clock.  Then, when trying to schedule, we just pick
53  * the earliest-unblocked instruction to schedule.
54  *
55  * Note that often there will be many things which could execute
56  * immediately, and there are a range of heuristic options to choose
57  * from in picking among those.
58  */
59 
60 static bool debug = false;
61 
62 class elk_instruction_scheduler;
63 struct elk_schedule_node_child;
64 
65 class elk_schedule_node : public exec_node
66 {
67 public:
68    void set_latency_gfx4();
69    void set_latency_gfx7(const struct elk_isa_info *isa);
70 
71    elk_backend_instruction *inst;
72    elk_schedule_node_child *children;
73    int children_count;
74    int children_cap;
75    int initial_parent_count;
76    int initial_unblocked_time;
77    int latency;
78 
79    /**
80     * This is the sum of the instruction's latency plus the maximum delay of
81     * its children, or just the issue_time if it's a leaf node.
82     */
83    int delay;
84 
85    /**
86     * Preferred exit node among the (direct or indirect) successors of this
87     * node.  Among the scheduler nodes blocked by this node, this will be the
88     * one that may cause earliest program termination, or NULL if none of the
89     * successors is an exit node.
90     */
91    elk_schedule_node *exit;
92 
93    /**
94     * How many cycles this instruction takes to issue.
95     *
96     * Instructions in gen hardware are handled one simd4 vector at a time,
97     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
98     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
99     */
100    int issue_time;
101 
102    /* Temporary data used during the scheduling process. */
103    struct {
104       int parent_count;
105       int unblocked_time;
106 
107       /**
108        * Which iteration of pushing groups of children onto the candidates list
109        * this node was a part of.
110        */
111       unsigned cand_generation;
112    } tmp;
113 };
114 
115 struct elk_schedule_node_child {
116    elk_schedule_node *n;
117    int effective_latency;
118 };
119 
120 static inline void
reset_node_tmp(elk_schedule_node * n)121 reset_node_tmp(elk_schedule_node *n)
122 {
123    n->tmp.parent_count = n->initial_parent_count;
124    n->tmp.unblocked_time = n->initial_unblocked_time;
125    n->tmp.cand_generation = 0;
126 }
127 
128 /**
129  * Lower bound of the scheduling time after which one of the instructions
130  * blocked by this node may lead to program termination.
131  *
132  * exit_unblocked_time() determines a strict partial ordering relation '«' on
133  * the set of scheduler nodes as follows:
134  *
135  *   n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
136  *
137  * which can be used to heuristically order nodes according to how early they
138  * can unblock an exit node and lead to program termination.
139  */
140 static inline int
exit_tmp_unblocked_time(const elk_schedule_node * n)141 exit_tmp_unblocked_time(const elk_schedule_node *n)
142 {
143    return n->exit ? n->exit->tmp.unblocked_time : INT_MAX;
144 }
145 
146 static inline int
exit_initial_unblocked_time(const elk_schedule_node * n)147 exit_initial_unblocked_time(const elk_schedule_node *n)
148 {
149    return n->exit ? n->exit->initial_unblocked_time : INT_MAX;
150 }
151 
152 void
set_latency_gfx4()153 elk_schedule_node::set_latency_gfx4()
154 {
155    int chans = 8;
156    int math_latency = 22;
157 
158    switch (inst->opcode) {
159    case ELK_SHADER_OPCODE_RCP:
160       this->latency = 1 * chans * math_latency;
161       break;
162    case ELK_SHADER_OPCODE_RSQ:
163       this->latency = 2 * chans * math_latency;
164       break;
165    case ELK_SHADER_OPCODE_INT_QUOTIENT:
166    case ELK_SHADER_OPCODE_SQRT:
167    case ELK_SHADER_OPCODE_LOG2:
168       /* full precision log.  partial is 2. */
169       this->latency = 3 * chans * math_latency;
170       break;
171    case ELK_SHADER_OPCODE_INT_REMAINDER:
172    case ELK_SHADER_OPCODE_EXP2:
173       /* full precision.  partial is 3, same throughput. */
174       this->latency = 4 * chans * math_latency;
175       break;
176    case ELK_SHADER_OPCODE_POW:
177       this->latency = 8 * chans * math_latency;
178       break;
179    case ELK_SHADER_OPCODE_SIN:
180    case ELK_SHADER_OPCODE_COS:
181       /* minimum latency, max is 12 rounds. */
182       this->latency = 5 * chans * math_latency;
183       break;
184    default:
185       this->latency = 2;
186       break;
187    }
188 }
189 
190 void
set_latency_gfx7(const struct elk_isa_info * isa)191 elk_schedule_node::set_latency_gfx7(const struct elk_isa_info *isa)
192 {
193    const bool is_haswell = isa->devinfo->verx10 == 75;
194 
195    switch (inst->opcode) {
196    case ELK_OPCODE_MAD:
197       /* 2 cycles
198        *  (since the last two src operands are in different register banks):
199        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
200        *
201        * 3 cycles on IVB, 4 on HSW
202        *  (since the last two src operands are in the same register bank):
203        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
204        *
205        * 18 cycles on IVB, 16 on HSW
206        *  (since the last two src operands are in different register banks):
207        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
208        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
209        *
210        * 20 cycles on IVB, 18 on HSW
211        *  (since the last two src operands are in the same register bank):
212        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
213        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
214        */
215 
216       /* Our register allocator doesn't know about register banks, so use the
217        * higher latency.
218        */
219       latency = is_haswell ? 16 : 18;
220       break;
221 
222    case ELK_OPCODE_LRP:
223       /* 2 cycles
224        *  (since the last two src operands are in different register banks):
225        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
226        *
227        * 3 cycles on IVB, 4 on HSW
228        *  (since the last two src operands are in the same register bank):
229        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
230        *
231        * 16 cycles on IVB, 14 on HSW
232        *  (since the last two src operands are in different register banks):
233        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
234        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
235        *
236        * 16 cycles
237        *  (since the last two src operands are in the same register bank):
238        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
239        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
240        */
241 
242       /* Our register allocator doesn't know about register banks, so use the
243        * higher latency.
244        */
245       latency = 14;
246       break;
247 
248    case ELK_SHADER_OPCODE_RCP:
249    case ELK_SHADER_OPCODE_RSQ:
250    case ELK_SHADER_OPCODE_SQRT:
251    case ELK_SHADER_OPCODE_LOG2:
252    case ELK_SHADER_OPCODE_EXP2:
253    case ELK_SHADER_OPCODE_SIN:
254    case ELK_SHADER_OPCODE_COS:
255       /* 2 cycles:
256        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
257        *
258        * 18 cycles:
259        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
260        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
261        *
262        * Same for exp2, log2, rsq, sqrt, sin, cos.
263        */
264       latency = is_haswell ? 14 : 16;
265       break;
266 
267    case ELK_SHADER_OPCODE_POW:
268       /* 2 cycles:
269        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
270        *
271        * 26 cycles:
272        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
273        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
274        */
275       latency = is_haswell ? 22 : 24;
276       break;
277 
278    case ELK_SHADER_OPCODE_TEX:
279    case ELK_SHADER_OPCODE_TXD:
280    case ELK_SHADER_OPCODE_TXF:
281    case ELK_SHADER_OPCODE_TXF_LZ:
282    case ELK_SHADER_OPCODE_TXL:
283    case ELK_SHADER_OPCODE_TXL_LZ:
284       /* 18 cycles:
285        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
286        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
287        * send(8) g4<1>UW    g114<8,8,1>F
288        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
289        *
290        * 697 +/-49 cycles (min 610, n=26):
291        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
292        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
293        * send(8) g4<1>UW    g114<8,8,1>F
294        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
295        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
296        *
297        * So the latency on our first texture load of the batchbuffer takes
298        * ~700 cycles, since the caches are cold at that point.
299        *
300        * 840 +/- 92 cycles (min 720, n=25):
301        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
302        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
303        * send(8) g4<1>UW    g114<8,8,1>F
304        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
305        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
306        * send(8) g4<1>UW    g114<8,8,1>F
307        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
308        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
309        *
310        * On the second load, it takes just an extra ~140 cycles, and after
311        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
312        *
313        * 683 +/- 49 cycles (min = 602, n=47):
314        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
315        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
316        * send(8) g4<1>UW    g114<8,8,1>F
317        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
318        * send(8) g50<1>UW   g114<8,8,1>F
319        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
320        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
321        *
322        * The unit appears to be pipelined, since this matches up with the
323        * cache-cold case, despite there being two loads here.  If you replace
324        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
325        *
326        * So, take some number between the cache-hot 140 cycles and the
327        * cache-cold 700 cycles.  No particular tuning was done on this.
328        *
329        * I haven't done significant testing of the non-TEX opcodes.  TXL at
330        * least looked about the same as TEX.
331        */
332       latency = 200;
333       break;
334 
335    case ELK_SHADER_OPCODE_TXS:
336       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
337        * cycles (n=15):
338        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
339        * send(8)  g6<1>UW    g114<8,8,1>F
340        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
341        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
342        *
343        *
344        * Two loads was 535 +/- 30 cycles (n=19):
345        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
346        * send(16)  g6<1>UW    g114<8,8,1>F
347        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
348        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
349        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
350        * send(16)  g8<1>UW    g114<8,8,1>F
351        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
352        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
353        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
354        *
355        * Since the only caches that should matter are just the
356        * instruction/state cache containing the surface state, assume that we
357        * always have hot caches.
358        */
359       latency = 100;
360       break;
361 
362    case ELK_FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
363    case ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
364    case ELK_VS_OPCODE_PULL_CONSTANT_LOAD:
365       /* testing using varying-index pull constants:
366        *
367        * 16 cycles:
368        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
369        * send(8) g4<1>F  g4<8,8,1>D
370        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
371        *
372        * ~480 cycles:
373        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
374        * send(8) g4<1>F  g4<8,8,1>D
375        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
376        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
377        *
378        * ~620 cycles:
379        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
380        * send(8) g4<1>F  g4<8,8,1>D
381        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
382        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
383        * send(8) g4<1>F  g4<8,8,1>D
384        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
385        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
386        *
387        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
388        * about 460.  We expect to mostly be cache hot, so pick something more
389        * in that direction.
390        */
391       latency = 200;
392       break;
393 
394    case ELK_SHADER_OPCODE_GFX7_SCRATCH_READ:
395       /* Testing a load from offset 0, that had been previously written:
396        *
397        * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
398        * mov(8)  null      g114<8,8,1>F { align1 WE_normal 1Q };
399        *
400        * The cycles spent seemed to be grouped around 40-50 (as low as 38),
401        * then around 140.  Presumably this is cache hit vs miss.
402        */
403       latency = 50;
404       break;
405 
406    case ELK_VEC4_OPCODE_UNTYPED_ATOMIC:
407       /* See GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
408       latency = 14000;
409       break;
410 
411    case ELK_VEC4_OPCODE_UNTYPED_SURFACE_READ:
412    case ELK_VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
413       /* See also GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ */
414       latency = is_haswell ? 300 : 600;
415       break;
416 
417    case ELK_SHADER_OPCODE_SEND:
418       switch (inst->sfid) {
419       case ELK_SFID_SAMPLER: {
420          unsigned msg_type = (inst->desc >> 12) & 0x1f;
421          switch (msg_type) {
422          case GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO:
423          case GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO:
424             /* See also ELK_SHADER_OPCODE_TXS */
425             latency = 100;
426             break;
427 
428          default:
429             /* See also ELK_SHADER_OPCODE_TEX */
430             latency = 200;
431             break;
432          }
433          break;
434       }
435 
436       case GFX6_SFID_DATAPORT_CONSTANT_CACHE:
437          /* See ELK_FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD */
438          latency = 200;
439          break;
440 
441       case GFX6_SFID_DATAPORT_RENDER_CACHE:
442          switch (elk_fb_desc_msg_type(isa->devinfo, inst->desc)) {
443          case GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE:
444          case GFX7_DATAPORT_RC_TYPED_SURFACE_READ:
445             /* See also ELK_SHADER_OPCODE_TYPED_SURFACE_READ */
446             assert(!is_haswell);
447             latency = 600;
448             break;
449 
450          case GFX7_DATAPORT_RC_TYPED_ATOMIC_OP:
451             /* See also ELK_SHADER_OPCODE_TYPED_ATOMIC */
452             assert(!is_haswell);
453             latency = 14000;
454             break;
455 
456          case GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE:
457             /* completely fabricated number */
458             latency = 600;
459             break;
460 
461          default:
462             unreachable("Unknown render cache message");
463          }
464          break;
465 
466       case GFX7_SFID_DATAPORT_DATA_CACHE:
467          switch ((inst->desc >> 14) & 0x1f) {
468          case ELK_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ:
469          case GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ:
470          case GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE:
471             /* We have no data for this but assume it's a little faster than
472              * untyped surface read/write.
473              */
474             latency = 200;
475             break;
476 
477          case GFX7_DATAPORT_DC_DWORD_SCATTERED_READ:
478          case GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE:
479          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ:
480          case HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE:
481             /* We have no data for this but assume it's roughly the same as
482              * untyped surface read/write.
483              */
484             latency = 300;
485             break;
486 
487          case GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ:
488          case GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE:
489             /* Test code:
490              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
491              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
492              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
493              *   send(8)   g4<1>UD         g112<8,8,1>UD
494              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
495              *   .
496              *   . [repeats 8 times]
497              *   .
498              *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
499              *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
500              *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
501              *   send(8)   g4<1>UD         g112<8,8,1>UD
502              *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
503              *
504              * Running it 100 times as fragment shader on a 128x128 quad
505              * gives an average latency of 583 cycles per surface read,
506              * standard deviation 0.9%.
507              */
508             assert(!is_haswell);
509             latency = 600;
510             break;
511 
512          case GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP:
513             /* Test code:
514              *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
515              *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
516              *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
517              *   send(8)   g4<1>ud         g112<8,8,1>ud
518              *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
519              *
520              * Running it 100 times as fragment shader on a 128x128 quad
521              * gives an average latency of 13867 cycles per atomic op,
522              * standard deviation 3%.  Note that this is a rather
523              * pessimistic estimate, the actual latency in cases with few
524              * collisions between threads and favorable pipelining has been
525              * seen to be reduced by a factor of 100.
526              */
527             assert(!is_haswell);
528             latency = 14000;
529             break;
530 
531          default:
532             unreachable("Unknown data cache message");
533          }
534          break;
535 
536       case HSW_SFID_DATAPORT_DATA_CACHE_1:
537          switch (elk_dp_desc_msg_type(isa->devinfo, inst->desc)) {
538          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ:
539          case HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE:
540          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ:
541          case HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE:
542          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE:
543          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ:
544          case GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE:
545          case GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ:
546          case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ:
547          case GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE:
548             /* See also GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ */
549             latency = 300;
550             break;
551 
552          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP:
553          case HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2:
554          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2:
555          case HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP:
556          case GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP:
557          case GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP:
558          case GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP:
559          case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP:
560          case GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP:
561             /* See also GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP */
562             latency = 14000;
563             break;
564 
565          default:
566             unreachable("Unknown data cache message");
567          }
568          break;
569 
570       case GFX7_SFID_PIXEL_INTERPOLATOR:
571          latency = 50; /* TODO */
572          break;
573 
574       case GFX12_SFID_UGM:
575       case GFX12_SFID_TGM:
576       case GFX12_SFID_SLM:
577          switch (lsc_msg_desc_opcode(isa->devinfo, inst->desc)) {
578          case LSC_OP_LOAD:
579          case LSC_OP_STORE:
580          case LSC_OP_LOAD_CMASK:
581          case LSC_OP_STORE_CMASK:
582             latency = 300;
583             break;
584          case LSC_OP_FENCE:
585          case LSC_OP_ATOMIC_INC:
586          case LSC_OP_ATOMIC_DEC:
587          case LSC_OP_ATOMIC_LOAD:
588          case LSC_OP_ATOMIC_STORE:
589          case LSC_OP_ATOMIC_ADD:
590          case LSC_OP_ATOMIC_SUB:
591          case LSC_OP_ATOMIC_MIN:
592          case LSC_OP_ATOMIC_MAX:
593          case LSC_OP_ATOMIC_UMIN:
594          case LSC_OP_ATOMIC_UMAX:
595          case LSC_OP_ATOMIC_CMPXCHG:
596          case LSC_OP_ATOMIC_FADD:
597          case LSC_OP_ATOMIC_FSUB:
598          case LSC_OP_ATOMIC_FMIN:
599          case LSC_OP_ATOMIC_FMAX:
600          case LSC_OP_ATOMIC_FCMPXCHG:
601          case LSC_OP_ATOMIC_AND:
602          case LSC_OP_ATOMIC_OR:
603          case LSC_OP_ATOMIC_XOR:
604             latency = 1400;
605             break;
606          default:
607             unreachable("unsupported new data port message instruction");
608          }
609          break;
610 
611       case ELK_SFID_URB:
612          latency = 200;
613          break;
614 
615       default:
616          unreachable("Unknown SFID");
617       }
618       break;
619 
620    case ELK_OPCODE_DPAS:
621       switch (inst->rcount) {
622       case 1:
623          latency = 21;
624          break;
625       case 2:
626          latency = 22;
627          break;
628       case 8:
629       default:
630          latency = 32;
631          break;
632       }
633       break;
634 
635    default:
636       /* 2 cycles:
637        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
638        *
639        * 16 cycles:
640        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
641        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
642        */
643       latency = 14;
644       break;
645    }
646 }
647 
648 class elk_instruction_scheduler {
649 public:
elk_instruction_scheduler(void * mem_ctx,const elk_backend_shader * s,int grf_count,int grf_write_scale,bool post_reg_alloc)650    elk_instruction_scheduler(void *mem_ctx, const elk_backend_shader *s, int grf_count,
651                          int grf_write_scale, bool post_reg_alloc):
652       bs(s)
653    {
654       this->mem_ctx = mem_ctx;
655       this->lin_ctx = linear_context(this->mem_ctx);
656       this->grf_count = grf_count;
657       this->post_reg_alloc = post_reg_alloc;
658 
659       this->last_grf_write = linear_zalloc_array(lin_ctx, elk_schedule_node *, grf_count * grf_write_scale);
660 
661       this->nodes_len = s->cfg->last_block()->end_ip + 1;
662       this->nodes = linear_zalloc_array(lin_ctx, elk_schedule_node, this->nodes_len);
663 
664       const struct intel_device_info *devinfo = bs->devinfo;
665       const struct elk_isa_info *isa = &bs->compiler->isa;
666 
667       elk_schedule_node *n = nodes;
668       foreach_block_and_inst(block, elk_backend_instruction, inst, s->cfg) {
669          n->inst = inst;
670 
671          /* We can't measure Gfx6 timings directly but expect them to be much
672           * closer to Gfx7 than Gfx4.
673           */
674          if (!post_reg_alloc)
675             n->latency = 1;
676          else if (devinfo->ver >= 6)
677             n->set_latency_gfx7(isa);
678          else
679             n->set_latency_gfx4();
680 
681          n++;
682       }
683       assert(n == nodes + nodes_len);
684 
685       current.block = NULL;
686       current.start = NULL;
687       current.end = NULL;
688       current.len = 0;
689       current.time = 0;
690       current.cand_generation = 0;
691       current.available.make_empty();
692    }
693 
694    void add_barrier_deps(elk_schedule_node *n);
695    void add_cross_lane_deps(elk_schedule_node *n);
696    void add_dep(elk_schedule_node *before, elk_schedule_node *after, int latency);
697    void add_dep(elk_schedule_node *before, elk_schedule_node *after);
698 
699    void set_current_block(elk_bblock_t *block);
700    void compute_delays();
701    void compute_exits();
702 
703    void schedule(elk_schedule_node *chosen);
704    void update_children(elk_schedule_node *chosen);
705 
706    void *mem_ctx;
707    linear_ctx *lin_ctx;
708 
709    elk_schedule_node *nodes;
710    int nodes_len;
711 
712    /* Current block being processed. */
713    struct {
714       elk_bblock_t *block;
715 
716       /* Range of nodes in the block.  End will point to first node
717        * address after the block, i.e. the range is [start, end).
718        */
719       elk_schedule_node *start;
720       elk_schedule_node *end;
721       int len;
722 
723       int scheduled;
724 
725       unsigned cand_generation;
726       int time;
727       exec_list available;
728    } current;
729 
730    bool post_reg_alloc;
731    int grf_count;
732    const elk_backend_shader *bs;
733 
734    /**
735     * Last instruction to have written the grf (or a channel in the grf, for the
736     * scalar backend)
737     */
738    elk_schedule_node **last_grf_write;
739 };
740 
741 class elk_fs_instruction_scheduler : public elk_instruction_scheduler
742 {
743 public:
744    elk_fs_instruction_scheduler(void *mem_ctx, const elk_fs_visitor *v, int grf_count, int hw_reg_count,
745                             int block_count, bool post_reg_alloc);
746    void calculate_deps();
747    bool is_compressed(const elk_fs_inst *inst);
748    elk_schedule_node *choose_instruction_to_schedule();
749    int calculate_issue_time(elk_backend_instruction *inst);
750 
751    void count_reads_remaining(elk_backend_instruction *inst);
752    void setup_liveness(elk_cfg_t *cfg);
753    void update_register_pressure(elk_backend_instruction *inst);
754    int get_register_pressure_benefit(elk_backend_instruction *inst);
755    void clear_last_grf_write();
756 
757    void schedule_instructions();
758    void run(instruction_scheduler_mode mode);
759 
760    const elk_fs_visitor *v;
761    unsigned hw_reg_count;
762    int reg_pressure;
763    instruction_scheduler_mode mode;
764 
765    /*
766     * The register pressure at the beginning of each basic block.
767     */
768 
769    int *reg_pressure_in;
770 
771    /*
772     * The virtual GRF's whose range overlaps the beginning of each basic block.
773     */
774 
775    BITSET_WORD **livein;
776 
777    /*
778     * The virtual GRF's whose range overlaps the end of each basic block.
779     */
780 
781    BITSET_WORD **liveout;
782 
783    /*
784     * The hardware GRF's whose range overlaps the end of each basic block.
785     */
786 
787    BITSET_WORD **hw_liveout;
788 
789    /*
790     * Whether we've scheduled a write for this virtual GRF yet.
791     */
792 
793    bool *written;
794 
795    /*
796     * How many reads we haven't scheduled for this virtual GRF yet.
797     */
798 
799    int *reads_remaining;
800 
801    /*
802     * How many reads we haven't scheduled for this hardware GRF yet.
803     */
804 
805    int *hw_reads_remaining;
806 
807 };
808 
elk_fs_instruction_scheduler(void * mem_ctx,const elk_fs_visitor * v,int grf_count,int hw_reg_count,int block_count,bool post_reg_alloc)809 elk_fs_instruction_scheduler::elk_fs_instruction_scheduler(void *mem_ctx, const elk_fs_visitor *v,
810                                                    int grf_count, int hw_reg_count,
811                                                    int block_count, bool post_reg_alloc)
812    : elk_instruction_scheduler(mem_ctx, v, grf_count, /* grf_write_scale */ 16,
813                            post_reg_alloc),
814      v(v)
815 {
816    this->hw_reg_count = hw_reg_count;
817    this->mode = SCHEDULE_NONE;
818    this->reg_pressure = 0;
819 
820    if (!post_reg_alloc) {
821       this->reg_pressure_in = linear_zalloc_array(lin_ctx, int, block_count);
822 
823       this->livein = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
824       for (int i = 0; i < block_count; i++)
825          this->livein[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
826                                          BITSET_WORDS(grf_count));
827 
828       this->liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
829       for (int i = 0; i < block_count; i++)
830          this->liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
831                                           BITSET_WORDS(grf_count));
832 
833       this->hw_liveout = linear_alloc_array(lin_ctx, BITSET_WORD *, block_count);
834       for (int i = 0; i < block_count; i++)
835          this->hw_liveout[i] = linear_zalloc_array(lin_ctx, BITSET_WORD,
836                                              BITSET_WORDS(hw_reg_count));
837 
838       setup_liveness(v->cfg);
839 
840       this->written = linear_alloc_array(lin_ctx, bool, grf_count);
841 
842       this->reads_remaining = linear_alloc_array(lin_ctx, int, grf_count);
843 
844       this->hw_reads_remaining = linear_alloc_array(lin_ctx, int, hw_reg_count);
845    } else {
846       this->reg_pressure_in = NULL;
847       this->livein = NULL;
848       this->liveout = NULL;
849       this->hw_liveout = NULL;
850       this->written = NULL;
851       this->reads_remaining = NULL;
852       this->hw_reads_remaining = NULL;
853    }
854 
855    foreach_block(block, v->cfg) {
856       set_current_block(block);
857 
858       for (elk_schedule_node *n = current.start; n < current.end; n++)
859          n->issue_time = calculate_issue_time(n->inst);
860 
861       calculate_deps();
862       compute_delays();
863       compute_exits();
864    }
865 }
866 
867 static bool
is_src_duplicate(elk_fs_inst * inst,int src)868 is_src_duplicate(elk_fs_inst *inst, int src)
869 {
870    for (int i = 0; i < src; i++)
871      if (inst->src[i].equals(inst->src[src]))
872        return true;
873 
874   return false;
875 }
876 
877 void
count_reads_remaining(elk_backend_instruction * be)878 elk_fs_instruction_scheduler::count_reads_remaining(elk_backend_instruction *be)
879 {
880    assert(reads_remaining);
881 
882    elk_fs_inst *inst = (elk_fs_inst *)be;
883 
884    for (int i = 0; i < inst->sources; i++) {
885       if (is_src_duplicate(inst, i))
886          continue;
887 
888       if (inst->src[i].file == VGRF) {
889          reads_remaining[inst->src[i].nr]++;
890       } else if (inst->src[i].file == FIXED_GRF) {
891          if (inst->src[i].nr >= hw_reg_count)
892             continue;
893 
894          for (unsigned j = 0; j < regs_read(inst, i); j++)
895             hw_reads_remaining[inst->src[i].nr + j]++;
896       }
897    }
898 }
899 
900 void
setup_liveness(elk_cfg_t * cfg)901 elk_fs_instruction_scheduler::setup_liveness(elk_cfg_t *cfg)
902 {
903    const fs_live_variables &live = v->live_analysis.require();
904 
905    /* First, compute liveness on a per-GRF level using the in/out sets from
906     * liveness calculation.
907     */
908    for (int block = 0; block < cfg->num_blocks; block++) {
909       for (int i = 0; i < live.num_vars; i++) {
910          if (BITSET_TEST(live.block_data[block].livein, i)) {
911             int vgrf = live.vgrf_from_var[i];
912             if (!BITSET_TEST(livein[block], vgrf)) {
913                reg_pressure_in[block] += v->alloc.sizes[vgrf];
914                BITSET_SET(livein[block], vgrf);
915             }
916          }
917 
918          if (BITSET_TEST(live.block_data[block].liveout, i))
919             BITSET_SET(liveout[block], live.vgrf_from_var[i]);
920       }
921    }
922 
923    /* Now, extend the live in/live out sets for when a range crosses a block
924     * boundary, which matches what our register allocator/interference code
925     * does to account for force_writemask_all and incompatible exec_mask's.
926     */
927    for (int block = 0; block < cfg->num_blocks - 1; block++) {
928       for (int i = 0; i < grf_count; i++) {
929          if (live.vgrf_start[i] <= cfg->blocks[block]->end_ip &&
930              live.vgrf_end[i] >= cfg->blocks[block + 1]->start_ip) {
931             if (!BITSET_TEST(livein[block + 1], i)) {
932                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
933                 BITSET_SET(livein[block + 1], i);
934             }
935 
936             BITSET_SET(liveout[block], i);
937          }
938       }
939    }
940 
941    int payload_last_use_ip[hw_reg_count];
942    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
943 
944    for (unsigned i = 0; i < hw_reg_count; i++) {
945       if (payload_last_use_ip[i] == -1)
946          continue;
947 
948       for (int block = 0; block < cfg->num_blocks; block++) {
949          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
950             reg_pressure_in[block]++;
951 
952          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
953             BITSET_SET(hw_liveout[block], i);
954       }
955    }
956 }
957 
958 void
update_register_pressure(elk_backend_instruction * be)959 elk_fs_instruction_scheduler::update_register_pressure(elk_backend_instruction *be)
960 {
961    assert(reads_remaining);
962 
963    elk_fs_inst *inst = (elk_fs_inst *)be;
964 
965    if (inst->dst.file == VGRF) {
966       written[inst->dst.nr] = true;
967    }
968 
969    for (int i = 0; i < inst->sources; i++) {
970       if (is_src_duplicate(inst, i))
971           continue;
972 
973       if (inst->src[i].file == VGRF) {
974          reads_remaining[inst->src[i].nr]--;
975       } else if (inst->src[i].file == FIXED_GRF &&
976                  inst->src[i].nr < hw_reg_count) {
977          for (unsigned off = 0; off < regs_read(inst, i); off++)
978             hw_reads_remaining[inst->src[i].nr + off]--;
979       }
980    }
981 }
982 
983 int
get_register_pressure_benefit(elk_backend_instruction * be)984 elk_fs_instruction_scheduler::get_register_pressure_benefit(elk_backend_instruction *be)
985 {
986    elk_fs_inst *inst = (elk_fs_inst *)be;
987    int benefit = 0;
988    const int block_idx = current.block->num;
989 
990    if (inst->dst.file == VGRF) {
991       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
992           !written[inst->dst.nr])
993          benefit -= v->alloc.sizes[inst->dst.nr];
994    }
995 
996    for (int i = 0; i < inst->sources; i++) {
997       if (is_src_duplicate(inst, i))
998          continue;
999 
1000       if (inst->src[i].file == VGRF &&
1001           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
1002           reads_remaining[inst->src[i].nr] == 1)
1003          benefit += v->alloc.sizes[inst->src[i].nr];
1004 
1005       if (inst->src[i].file == FIXED_GRF &&
1006           inst->src[i].nr < hw_reg_count) {
1007          for (unsigned off = 0; off < regs_read(inst, i); off++) {
1008             int reg = inst->src[i].nr + off;
1009             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
1010                 hw_reads_remaining[reg] == 1) {
1011                benefit++;
1012             }
1013          }
1014       }
1015    }
1016 
1017    return benefit;
1018 }
1019 
1020 class elk_vec4_instruction_scheduler : public elk_instruction_scheduler
1021 {
1022 public:
1023    elk_vec4_instruction_scheduler(void *mem_ctx, const vec4_visitor *v, int grf_count);
1024    void calculate_deps();
1025    elk_schedule_node *choose_instruction_to_schedule();
1026    const vec4_visitor *v;
1027 
1028    void run();
1029 };
1030 
elk_vec4_instruction_scheduler(void * mem_ctx,const vec4_visitor * v,int grf_count)1031 elk_vec4_instruction_scheduler::elk_vec4_instruction_scheduler(void *mem_ctx, const vec4_visitor *v,
1032                                                        int grf_count)
1033    : elk_instruction_scheduler(mem_ctx, v, grf_count, /* grf_write_scale */ 1,
1034                            /* post_reg_alloc */ true),
1035      v(v)
1036 {
1037 }
1038 
1039 void
set_current_block(elk_bblock_t * block)1040 elk_instruction_scheduler::set_current_block(elk_bblock_t *block)
1041 {
1042    current.block = block;
1043    current.start = nodes + block->start_ip;
1044    current.len = block->end_ip - block->start_ip + 1;
1045    current.end = current.start + current.len;
1046    current.time = 0;
1047    current.scheduled = 0;
1048    current.cand_generation = 1;
1049 }
1050 
1051 /** Computation of the delay member of each node. */
1052 void
compute_delays()1053 elk_instruction_scheduler::compute_delays()
1054 {
1055    for (elk_schedule_node *n = current.end - 1; n >= current.start; n--) {
1056       if (!n->children_count) {
1057          n->delay = n->issue_time;
1058       } else {
1059          for (int i = 0; i < n->children_count; i++) {
1060             assert(n->children[i].n->delay);
1061             n->delay = MAX2(n->delay, n->latency + n->children[i].n->delay);
1062          }
1063       }
1064    }
1065 }
1066 
1067 void
compute_exits()1068 elk_instruction_scheduler::compute_exits()
1069 {
1070    /* Calculate a lower bound of the scheduling time of each node in the
1071     * graph.  This is analogous to the node's critical path but calculated
1072     * from the top instead of from the bottom of the block.
1073     */
1074    for (elk_schedule_node *n = current.start; n < current.end; n++) {
1075       for (int i = 0; i < n->children_count; i++) {
1076          elk_schedule_node_child *child = &n->children[i];
1077          child->n->initial_unblocked_time =
1078             MAX2(child->n->initial_unblocked_time,
1079                  n->initial_unblocked_time + n->issue_time + child->effective_latency);
1080       }
1081    }
1082 
1083    /* Calculate the exit of each node by induction based on the exit nodes of
1084     * its children.  The preferred exit of a node is the one among the exit
1085     * nodes of its children which can be unblocked first according to the
1086     * optimistic unblocked time estimate calculated above.
1087     */
1088    for (elk_schedule_node *n = current.end - 1; n >= current.start; n--) {
1089       n->exit = (n->inst->opcode == ELK_OPCODE_HALT ? n : NULL);
1090 
1091       for (int i = 0; i < n->children_count; i++) {
1092          if (exit_initial_unblocked_time(n->children[i].n) < exit_initial_unblocked_time(n))
1093             n->exit = n->children[i].n->exit;
1094       }
1095    }
1096 }
1097 
1098 /**
1099  * Add a dependency between two instruction nodes.
1100  *
1101  * The @after node will be scheduled after @before.  We will try to
1102  * schedule it @latency cycles after @before, but no guarantees there.
1103  */
1104 void
add_dep(elk_schedule_node * before,elk_schedule_node * after,int latency)1105 elk_instruction_scheduler::add_dep(elk_schedule_node *before, elk_schedule_node *after,
1106                                int latency)
1107 {
1108    if (!before || !after)
1109       return;
1110 
1111    assert(before != after);
1112 
1113    for (int i = 0; i < before->children_count; i++) {
1114       elk_schedule_node_child *child = &before->children[i];
1115       if (child->n == after) {
1116          child->effective_latency = MAX2(child->effective_latency, latency);
1117          return;
1118       }
1119    }
1120 
1121    if (before->children_cap <= before->children_count) {
1122       if (before->children_cap < 16)
1123          before->children_cap = 16;
1124       else
1125          before->children_cap *= 2;
1126 
1127       before->children = reralloc(mem_ctx, before->children,
1128                                   elk_schedule_node_child,
1129                                   before->children_cap);
1130    }
1131 
1132    elk_schedule_node_child *child = &before->children[before->children_count];
1133    child->n = after;
1134    child->effective_latency = latency;
1135    before->children_count++;
1136    after->initial_parent_count++;
1137 }
1138 
1139 void
add_dep(elk_schedule_node * before,elk_schedule_node * after)1140 elk_instruction_scheduler::add_dep(elk_schedule_node *before, elk_schedule_node *after)
1141 {
1142    if (!before)
1143       return;
1144 
1145    add_dep(before, after, before->latency);
1146 }
1147 
1148 static bool
is_scheduling_barrier(const elk_backend_instruction * inst)1149 is_scheduling_barrier(const elk_backend_instruction *inst)
1150 {
1151    return inst->opcode == ELK_SHADER_OPCODE_HALT_TARGET ||
1152           inst->is_control_flow() ||
1153           inst->has_side_effects();
1154 }
1155 
1156 static bool
has_cross_lane_access(const elk_fs_inst * inst)1157 has_cross_lane_access(const elk_fs_inst *inst)
1158 {
1159    /* FINISHME:
1160     *
1161     * This function is likely incomplete in terms of identify cross lane
1162     * accesses.
1163     */
1164    if (inst->opcode == ELK_SHADER_OPCODE_BROADCAST ||
1165        inst->opcode == ELK_SHADER_OPCODE_READ_SR_REG ||
1166        inst->opcode == ELK_SHADER_OPCODE_CLUSTER_BROADCAST ||
1167        inst->opcode == ELK_SHADER_OPCODE_SHUFFLE ||
1168        inst->opcode == ELK_FS_OPCODE_LOAD_LIVE_CHANNELS ||
1169        inst->opcode == ELK_SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
1170        inst->opcode == ELK_SHADER_OPCODE_FIND_LIVE_CHANNEL)
1171       return true;
1172 
1173    for (unsigned s = 0; s < inst->sources; s++) {
1174       if (inst->src[s].file == VGRF) {
1175          if (inst->src[s].stride == 0)
1176             return true;
1177       }
1178    }
1179 
1180    return false;
1181 }
1182 
1183 /**
1184  * Sometimes we really want this node to execute after everything that
1185  * was before it and before everything that followed it.  This adds
1186  * the deps to do so.
1187  */
1188 void
add_barrier_deps(elk_schedule_node * n)1189 elk_instruction_scheduler::add_barrier_deps(elk_schedule_node *n)
1190 {
1191    for (elk_schedule_node *prev = n - 1; prev >= current.start; prev--) {
1192       add_dep(prev, n, 0);
1193       if (is_scheduling_barrier(prev->inst))
1194          break;
1195    }
1196 
1197    for (elk_schedule_node *next = n + 1; next < current.end; next++) {
1198       add_dep(n, next, 0);
1199       if (is_scheduling_barrier(next->inst))
1200          break;
1201    }
1202 }
1203 
1204 /**
1205  * Because some instructions like HALT can disable lanes, scheduling prior to
1206  * a cross lane access should not be allowed, otherwise we could end up with
1207  * later instructions accessing uninitialized data.
1208  */
1209 void
add_cross_lane_deps(elk_schedule_node * n)1210 elk_instruction_scheduler::add_cross_lane_deps(elk_schedule_node *n)
1211 {
1212    for (elk_schedule_node *prev = n - 1; prev >= current.start; prev--) {
1213       if (has_cross_lane_access((elk_fs_inst*)prev->inst))
1214          add_dep(prev, n, 0);
1215    }
1216 }
1217 
1218 /* instruction scheduling needs to be aware of when an MRF write
1219  * actually writes 2 MRFs.
1220  */
1221 bool
is_compressed(const elk_fs_inst * inst)1222 elk_fs_instruction_scheduler::is_compressed(const elk_fs_inst *inst)
1223 {
1224    return inst->exec_size == 16;
1225 }
1226 
1227 /* Clears last_grf_write to be ready to start calculating deps for a block
1228  * again.
1229  *
1230  * Since pre-ra grf_count scales with instructions, and instructions scale with
1231  * BBs, we don't want to memset all of last_grf_write per block or you'll end up
1232  * O(n^2) with number of blocks.  For shaders using softfp64, we get a *lot* of
1233  * blocks.
1234  *
1235  * We don't bother being careful for post-ra, since then grf_count doesn't scale
1236  * with instructions.
1237  */
1238 void
clear_last_grf_write()1239 elk_fs_instruction_scheduler::clear_last_grf_write()
1240 {
1241    if (!post_reg_alloc) {
1242       for (elk_schedule_node *n = current.start; n < current.end; n++) {
1243          elk_fs_inst *inst = (elk_fs_inst *)n->inst;
1244 
1245          if (inst->dst.file == VGRF) {
1246             /* Don't bother being careful with regs_written(), quicker to just clear 2 cachelines. */
1247             memset(&last_grf_write[inst->dst.nr * 16], 0, sizeof(*last_grf_write) * 16);
1248          }
1249       }
1250    } else {
1251       memset(last_grf_write, 0, sizeof(*last_grf_write) * grf_count * 16);
1252    }
1253 }
1254 
1255 void
calculate_deps()1256 elk_fs_instruction_scheduler::calculate_deps()
1257 {
1258    /* Pre-register-allocation, this tracks the last write per VGRF offset.
1259     * After register allocation, reg_offsets are gone and we track individual
1260     * GRF registers.
1261     */
1262    elk_schedule_node *last_mrf_write[ELK_MAX_MRF(v->devinfo->ver)];
1263    elk_schedule_node *last_conditional_mod[8] = {};
1264    elk_schedule_node *last_accumulator_write = NULL;
1265    /* Fixed HW registers are assumed to be separate from the virtual
1266     * GRFs, so they can be tracked separately.  We don't really write
1267     * to fixed GRFs much, so don't bother tracking them on a more
1268     * granular level.
1269     */
1270    elk_schedule_node *last_fixed_grf_write = NULL;
1271 
1272    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1273 
1274    /* top-to-bottom dependencies: RAW and WAW. */
1275    for (elk_schedule_node *n = current.start; n < current.end; n++) {
1276       elk_fs_inst *inst = (elk_fs_inst *)n->inst;
1277 
1278       if (is_scheduling_barrier(inst))
1279          add_barrier_deps(n);
1280 
1281       if (inst->opcode == ELK_OPCODE_HALT ||
1282           inst->opcode == ELK_SHADER_OPCODE_HALT_TARGET)
1283           add_cross_lane_deps(n);
1284 
1285       /* read-after-write deps. */
1286       for (int i = 0; i < inst->sources; i++) {
1287          if (inst->src[i].file == VGRF) {
1288             if (post_reg_alloc) {
1289                for (unsigned r = 0; r < regs_read(inst, i); r++)
1290                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1291             } else {
1292                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1293                   add_dep(last_grf_write[inst->src[i].nr * 16 +
1294                                          inst->src[i].offset / REG_SIZE + r], n);
1295                }
1296             }
1297          } else if (inst->src[i].file == FIXED_GRF) {
1298             if (post_reg_alloc) {
1299                for (unsigned r = 0; r < regs_read(inst, i); r++)
1300                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1301             } else {
1302                add_dep(last_fixed_grf_write, n);
1303             }
1304          } else if (inst->src[i].is_accumulator()) {
1305             add_dep(last_accumulator_write, n);
1306          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1307             add_barrier_deps(n);
1308          }
1309       }
1310 
1311       if (inst->base_mrf != -1) {
1312          for (int i = 0; i < inst->mlen; i++) {
1313             /* It looks like the MRF regs are released in the send
1314              * instruction once it's sent, not when the result comes
1315              * back.
1316              */
1317             add_dep(last_mrf_write[inst->base_mrf + i], n);
1318          }
1319       }
1320 
1321       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1322          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1323 
1324          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1325             if (mask & (1 << i))
1326                add_dep(last_conditional_mod[i], n);
1327          }
1328       }
1329 
1330       if (inst->reads_accumulator_implicitly()) {
1331          add_dep(last_accumulator_write, n);
1332       }
1333 
1334       /* write-after-write deps. */
1335       if (inst->dst.file == VGRF) {
1336          if (post_reg_alloc) {
1337             for (unsigned r = 0; r < regs_written(inst); r++) {
1338                add_dep(last_grf_write[inst->dst.nr + r], n);
1339                last_grf_write[inst->dst.nr + r] = n;
1340             }
1341          } else {
1342             for (unsigned r = 0; r < regs_written(inst); r++) {
1343                add_dep(last_grf_write[inst->dst.nr * 16 +
1344                                       inst->dst.offset / REG_SIZE + r], n);
1345                last_grf_write[inst->dst.nr * 16 +
1346                               inst->dst.offset / REG_SIZE + r] = n;
1347             }
1348          }
1349       } else if (inst->dst.file == MRF) {
1350          int reg = inst->dst.nr & ~ELK_MRF_COMPR4;
1351 
1352          add_dep(last_mrf_write[reg], n);
1353          last_mrf_write[reg] = n;
1354          if (is_compressed(inst)) {
1355             if (inst->dst.nr & ELK_MRF_COMPR4)
1356                reg += 4;
1357             else
1358                reg++;
1359             add_dep(last_mrf_write[reg], n);
1360             last_mrf_write[reg] = n;
1361          }
1362       } else if (inst->dst.file == FIXED_GRF) {
1363          if (post_reg_alloc) {
1364             for (unsigned r = 0; r < regs_written(inst); r++) {
1365                add_dep(last_grf_write[inst->dst.nr + r], n);
1366                last_grf_write[inst->dst.nr + r] = n;
1367             }
1368          } else {
1369             add_dep(last_fixed_grf_write, n);
1370             last_fixed_grf_write = n;
1371          }
1372       } else if (inst->dst.is_accumulator()) {
1373          add_dep(last_accumulator_write, n);
1374          last_accumulator_write = n;
1375       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1376          add_barrier_deps(n);
1377       }
1378 
1379       if (inst->mlen > 0 && inst->base_mrf != -1) {
1380          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1381             add_dep(last_mrf_write[inst->base_mrf + i], n);
1382             last_mrf_write[inst->base_mrf + i] = n;
1383          }
1384       }
1385 
1386       if (const unsigned mask = inst->flags_written(v->devinfo)) {
1387          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1388 
1389          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1390             if (mask & (1 << i)) {
1391                add_dep(last_conditional_mod[i], n, 0);
1392                last_conditional_mod[i] = n;
1393             }
1394          }
1395       }
1396 
1397       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1398           !inst->dst.is_accumulator()) {
1399          add_dep(last_accumulator_write, n);
1400          last_accumulator_write = n;
1401       }
1402    }
1403 
1404    clear_last_grf_write();
1405 
1406    /* bottom-to-top dependencies: WAR */
1407    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1408    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1409    last_accumulator_write = NULL;
1410    last_fixed_grf_write = NULL;
1411 
1412    for (elk_schedule_node *n = current.end - 1; n >= current.start; n--) {
1413       elk_fs_inst *inst = (elk_fs_inst *)n->inst;
1414 
1415       /* write-after-read deps. */
1416       for (int i = 0; i < inst->sources; i++) {
1417          if (inst->src[i].file == VGRF) {
1418             if (post_reg_alloc) {
1419                for (unsigned r = 0; r < regs_read(inst, i); r++)
1420                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1421             } else {
1422                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1423                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1424                                             inst->src[i].offset / REG_SIZE + r], 0);
1425                }
1426             }
1427          } else if (inst->src[i].file == FIXED_GRF) {
1428             if (post_reg_alloc) {
1429                for (unsigned r = 0; r < regs_read(inst, i); r++)
1430                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1431             } else {
1432                add_dep(n, last_fixed_grf_write, 0);
1433             }
1434          } else if (inst->src[i].is_accumulator()) {
1435             add_dep(n, last_accumulator_write, 0);
1436          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1437             add_barrier_deps(n);
1438          }
1439       }
1440 
1441       if (inst->base_mrf != -1) {
1442          for (int i = 0; i < inst->mlen; i++) {
1443             /* It looks like the MRF regs are released in the send
1444              * instruction once it's sent, not when the result comes
1445              * back.
1446              */
1447             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1448          }
1449       }
1450 
1451       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1452          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1453 
1454          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1455             if (mask & (1 << i))
1456                add_dep(n, last_conditional_mod[i]);
1457          }
1458       }
1459 
1460       if (inst->reads_accumulator_implicitly()) {
1461          add_dep(n, last_accumulator_write);
1462       }
1463 
1464       /* Update the things this instruction wrote, so earlier reads
1465        * can mark this as WAR dependency.
1466        */
1467       if (inst->dst.file == VGRF) {
1468          if (post_reg_alloc) {
1469             for (unsigned r = 0; r < regs_written(inst); r++)
1470                last_grf_write[inst->dst.nr + r] = n;
1471          } else {
1472             for (unsigned r = 0; r < regs_written(inst); r++) {
1473                last_grf_write[inst->dst.nr * 16 +
1474                               inst->dst.offset / REG_SIZE + r] = n;
1475             }
1476          }
1477       } else if (inst->dst.file == MRF) {
1478          int reg = inst->dst.nr & ~ELK_MRF_COMPR4;
1479 
1480          last_mrf_write[reg] = n;
1481 
1482          if (is_compressed(inst)) {
1483             if (inst->dst.nr & ELK_MRF_COMPR4)
1484                reg += 4;
1485             else
1486                reg++;
1487 
1488             last_mrf_write[reg] = n;
1489          }
1490       } else if (inst->dst.file == FIXED_GRF) {
1491          if (post_reg_alloc) {
1492             for (unsigned r = 0; r < regs_written(inst); r++)
1493                last_grf_write[inst->dst.nr + r] = n;
1494          } else {
1495             last_fixed_grf_write = n;
1496          }
1497       } else if (inst->dst.is_accumulator()) {
1498          last_accumulator_write = n;
1499       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1500          add_barrier_deps(n);
1501       }
1502 
1503       if (inst->mlen > 0 && inst->base_mrf != -1) {
1504          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1505             last_mrf_write[inst->base_mrf + i] = n;
1506          }
1507       }
1508 
1509       if (const unsigned mask = inst->flags_written(v->devinfo)) {
1510          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1511 
1512          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1513             if (mask & (1 << i))
1514                last_conditional_mod[i] = n;
1515          }
1516       }
1517 
1518       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1519          last_accumulator_write = n;
1520       }
1521    }
1522 
1523    clear_last_grf_write();
1524 }
1525 
1526 void
calculate_deps()1527 elk_vec4_instruction_scheduler::calculate_deps()
1528 {
1529    elk_schedule_node *last_mrf_write[ELK_MAX_MRF(v->devinfo->ver)];
1530    elk_schedule_node *last_conditional_mod = NULL;
1531    elk_schedule_node *last_accumulator_write = NULL;
1532    /* Fixed HW registers are assumed to be separate from the virtual
1533     * GRFs, so they can be tracked separately.  We don't really write
1534     * to fixed GRFs much, so don't bother tracking them on a more
1535     * granular level.
1536     */
1537    elk_schedule_node *last_fixed_grf_write = NULL;
1538 
1539    memset(last_grf_write, 0, grf_count * sizeof(*last_grf_write));
1540    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1541 
1542    /* top-to-bottom dependencies: RAW and WAW. */
1543    for (elk_schedule_node *n = current.start; n < current.end; n++) {
1544       vec4_instruction *inst = (vec4_instruction *)n->inst;
1545 
1546       if (is_scheduling_barrier(inst))
1547          add_barrier_deps(n);
1548 
1549       /* read-after-write deps. */
1550       for (int i = 0; i < 3; i++) {
1551          if (inst->src[i].file == VGRF) {
1552             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1553                add_dep(last_grf_write[inst->src[i].nr + j], n);
1554          } else if (inst->src[i].file == FIXED_GRF) {
1555             add_dep(last_fixed_grf_write, n);
1556          } else if (inst->src[i].is_accumulator()) {
1557             assert(last_accumulator_write);
1558             add_dep(last_accumulator_write, n);
1559          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1560             add_barrier_deps(n);
1561          }
1562       }
1563 
1564       if (inst->reads_g0_implicitly())
1565          add_dep(last_fixed_grf_write, n);
1566 
1567       if (!inst->is_send_from_grf()) {
1568          for (int i = 0; i < inst->mlen; i++) {
1569             /* It looks like the MRF regs are released in the send
1570              * instruction once it's sent, not when the result comes
1571              * back.
1572              */
1573             add_dep(last_mrf_write[inst->base_mrf + i], n);
1574          }
1575       }
1576 
1577       if (inst->reads_flag()) {
1578          assert(last_conditional_mod);
1579          add_dep(last_conditional_mod, n);
1580       }
1581 
1582       if (inst->reads_accumulator_implicitly()) {
1583          assert(last_accumulator_write);
1584          add_dep(last_accumulator_write, n);
1585       }
1586 
1587       /* write-after-write deps. */
1588       if (inst->dst.file == VGRF) {
1589          for (unsigned j = 0; j < regs_written(inst); ++j) {
1590             add_dep(last_grf_write[inst->dst.nr + j], n);
1591             last_grf_write[inst->dst.nr + j] = n;
1592          }
1593       } else if (inst->dst.file == MRF) {
1594          add_dep(last_mrf_write[inst->dst.nr], n);
1595          last_mrf_write[inst->dst.nr] = n;
1596      } else if (inst->dst.file == FIXED_GRF) {
1597          add_dep(last_fixed_grf_write, n);
1598          last_fixed_grf_write = n;
1599       } else if (inst->dst.is_accumulator()) {
1600          add_dep(last_accumulator_write, n);
1601          last_accumulator_write = n;
1602       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1603          add_barrier_deps(n);
1604       }
1605 
1606       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1607          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1608             add_dep(last_mrf_write[inst->base_mrf + i], n);
1609             last_mrf_write[inst->base_mrf + i] = n;
1610          }
1611       }
1612 
1613       if (inst->writes_flag(v->devinfo)) {
1614          add_dep(last_conditional_mod, n, 0);
1615          last_conditional_mod = n;
1616       }
1617 
1618       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1619           !inst->dst.is_accumulator()) {
1620          add_dep(last_accumulator_write, n);
1621          last_accumulator_write = n;
1622       }
1623    }
1624 
1625    /* bottom-to-top dependencies: WAR */
1626    memset(last_grf_write, 0, grf_count * sizeof(*last_grf_write));
1627    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1628    last_conditional_mod = NULL;
1629    last_accumulator_write = NULL;
1630    last_fixed_grf_write = NULL;
1631 
1632    for (elk_schedule_node *n = current.end - 1; n >= current.start; n--) {
1633       vec4_instruction *inst = (vec4_instruction *)n->inst;
1634 
1635       /* write-after-read deps. */
1636       for (int i = 0; i < 3; i++) {
1637          if (inst->src[i].file == VGRF) {
1638             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1639                add_dep(n, last_grf_write[inst->src[i].nr + j]);
1640          } else if (inst->src[i].file == FIXED_GRF) {
1641             add_dep(n, last_fixed_grf_write);
1642          } else if (inst->src[i].is_accumulator()) {
1643             add_dep(n, last_accumulator_write);
1644          } else if (inst->src[i].file == ARF && !inst->src[i].is_null()) {
1645             add_barrier_deps(n);
1646          }
1647       }
1648 
1649       if (!inst->is_send_from_grf()) {
1650          for (int i = 0; i < inst->mlen; i++) {
1651             /* It looks like the MRF regs are released in the send
1652              * instruction once it's sent, not when the result comes
1653              * back.
1654              */
1655             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1656          }
1657       }
1658 
1659       if (inst->reads_flag()) {
1660          add_dep(n, last_conditional_mod);
1661       }
1662 
1663       if (inst->reads_accumulator_implicitly()) {
1664          add_dep(n, last_accumulator_write);
1665       }
1666 
1667       /* Update the things this instruction wrote, so earlier reads
1668        * can mark this as WAR dependency.
1669        */
1670       if (inst->dst.file == VGRF) {
1671          for (unsigned j = 0; j < regs_written(inst); ++j)
1672             last_grf_write[inst->dst.nr + j] = n;
1673       } else if (inst->dst.file == MRF) {
1674          last_mrf_write[inst->dst.nr] = n;
1675       } else if (inst->dst.file == FIXED_GRF) {
1676          last_fixed_grf_write = n;
1677       } else if (inst->dst.is_accumulator()) {
1678          last_accumulator_write = n;
1679       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1680          add_barrier_deps(n);
1681       }
1682 
1683       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1684          for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
1685             last_mrf_write[inst->base_mrf + i] = n;
1686          }
1687       }
1688 
1689       if (inst->writes_flag(v->devinfo)) {
1690          last_conditional_mod = n;
1691       }
1692 
1693       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1694          last_accumulator_write = n;
1695       }
1696    }
1697 }
1698 
1699 elk_schedule_node *
choose_instruction_to_schedule()1700 elk_fs_instruction_scheduler::choose_instruction_to_schedule()
1701 {
1702    elk_schedule_node *chosen = NULL;
1703 
1704    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1705       int chosen_time = 0;
1706 
1707       /* Of the instructions ready to execute or the closest to being ready,
1708        * choose the one most likely to unblock an early program exit, or
1709        * otherwise the oldest one.
1710        */
1711       foreach_in_list(elk_schedule_node, n, &current.available) {
1712          if (!chosen ||
1713              exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen) ||
1714              (exit_tmp_unblocked_time(n) == exit_tmp_unblocked_time(chosen) &&
1715               n->tmp.unblocked_time < chosen_time)) {
1716             chosen = n;
1717             chosen_time = n->tmp.unblocked_time;
1718          }
1719       }
1720    } else {
1721       int chosen_register_pressure_benefit = 0;
1722 
1723       /* Before register allocation, we don't care about the latencies of
1724        * instructions.  All we care about is reducing live intervals of
1725        * variables so that we can avoid register spilling, or get SIMD16
1726        * shaders which naturally do a better job of hiding instruction
1727        * latency.
1728        */
1729       foreach_in_list(elk_schedule_node, n, &current.available) {
1730          elk_fs_inst *inst = (elk_fs_inst *)n->inst;
1731 
1732          if (!chosen) {
1733             chosen = n;
1734             chosen_register_pressure_benefit =
1735                   get_register_pressure_benefit(chosen->inst);
1736             continue;
1737          }
1738 
1739          /* Most important: If we can definitely reduce register pressure, do
1740           * so immediately.
1741           */
1742          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1743 
1744          if (register_pressure_benefit > 0 &&
1745              register_pressure_benefit > chosen_register_pressure_benefit) {
1746             chosen = n;
1747             chosen_register_pressure_benefit = register_pressure_benefit;
1748             continue;
1749          } else if (chosen_register_pressure_benefit > 0 &&
1750                     (register_pressure_benefit <
1751                      chosen_register_pressure_benefit)) {
1752             continue;
1753          }
1754 
1755          if (mode == SCHEDULE_PRE_LIFO) {
1756             /* Prefer instructions that recently became available for
1757              * scheduling.  These are the things that are most likely to
1758              * (eventually) make a variable dead and reduce register pressure.
1759              * Typical register pressure estimates don't work for us because
1760              * most of our pressure comes from texturing, where no single
1761              * instruction to schedule will make a vec4 value dead.
1762              */
1763             if (n->tmp.cand_generation > chosen->tmp.cand_generation) {
1764                chosen = n;
1765                chosen_register_pressure_benefit = register_pressure_benefit;
1766                continue;
1767             } else if (n->tmp.cand_generation < chosen->tmp.cand_generation) {
1768                continue;
1769             }
1770 
1771             /* On MRF-using chips, prefer non-SEND instructions.  If we don't
1772              * do this, then because we prefer instructions that just became
1773              * candidates, we'll end up in a pattern of scheduling a SEND,
1774              * then the MRFs for the next SEND, then the next SEND, then the
1775              * MRFs, etc., without ever consuming the results of a send.
1776              */
1777             if (v->devinfo->ver < 7) {
1778                elk_fs_inst *chosen_inst = (elk_fs_inst *)chosen->inst;
1779 
1780                /* We use size_written > 4 * exec_size as our test for the kind
1781                 * of send instruction to avoid -- only sends generate many
1782                 * regs, and a single-result send is probably actually reducing
1783                 * register pressure.
1784                 */
1785                if (inst->size_written <= 4 * inst->exec_size &&
1786                    chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1787                   chosen = n;
1788                   chosen_register_pressure_benefit = register_pressure_benefit;
1789                   continue;
1790                } else if (inst->size_written > chosen_inst->size_written) {
1791                   continue;
1792                }
1793             }
1794          }
1795 
1796          /* For instructions pushed on the cands list at the same time, prefer
1797           * the one with the highest delay to the end of the program.  This is
1798           * most likely to have its values able to be consumed first (such as
1799           * for a large tree of lowered ubo loads, which appear reversed in
1800           * the instruction stream with respect to when they can be consumed).
1801           */
1802          if (n->delay > chosen->delay) {
1803             chosen = n;
1804             chosen_register_pressure_benefit = register_pressure_benefit;
1805             continue;
1806          } else if (n->delay < chosen->delay) {
1807             continue;
1808          }
1809 
1810          /* Prefer the node most likely to unblock an early program exit.
1811           */
1812          if (exit_tmp_unblocked_time(n) < exit_tmp_unblocked_time(chosen)) {
1813             chosen = n;
1814             chosen_register_pressure_benefit = register_pressure_benefit;
1815             continue;
1816          } else if (exit_tmp_unblocked_time(n) > exit_tmp_unblocked_time(chosen)) {
1817             continue;
1818          }
1819 
1820          /* If all other metrics are equal, we prefer the first instruction in
1821           * the list (program execution).
1822           */
1823       }
1824    }
1825 
1826    return chosen;
1827 }
1828 
1829 elk_schedule_node *
choose_instruction_to_schedule()1830 elk_vec4_instruction_scheduler::choose_instruction_to_schedule()
1831 {
1832    elk_schedule_node *chosen = NULL;
1833    int chosen_time = 0;
1834 
1835    /* Of the instructions ready to execute or the closest to being ready,
1836     * choose the oldest one.
1837     */
1838    foreach_in_list(elk_schedule_node, n, &current.available) {
1839       if (!chosen || n->tmp.unblocked_time < chosen_time) {
1840          chosen = n;
1841          chosen_time = n->tmp.unblocked_time;
1842       }
1843    }
1844 
1845    return chosen;
1846 }
1847 
1848 int
calculate_issue_time(elk_backend_instruction * inst0)1849 elk_fs_instruction_scheduler::calculate_issue_time(elk_backend_instruction *inst0)
1850 {
1851    const struct elk_isa_info *isa = &v->compiler->isa;
1852    const elk_fs_inst *inst = static_cast<elk_fs_inst *>(inst0);
1853    const unsigned overhead = v->grf_used && elk_has_bank_conflict(isa, inst) ?
1854       DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE) : 0;
1855    if (is_compressed(inst))
1856       return 4 + overhead;
1857    else
1858       return 2 + overhead;
1859 }
1860 
1861 void
schedule(elk_schedule_node * chosen)1862 elk_instruction_scheduler::schedule(elk_schedule_node *chosen)
1863 {
1864    assert(current.scheduled < current.len);
1865    current.scheduled++;
1866 
1867    assert(chosen);
1868    chosen->remove();
1869    current.block->instructions.push_tail(chosen->inst);
1870 
1871    /* If we expected a delay for scheduling, then bump the clock to reflect
1872     * that.  In reality, the hardware will switch to another hyperthread
1873     * and may not return to dispatching our thread for a while even after
1874     * we're unblocked.  After this, we have the time when the chosen
1875     * instruction will start executing.
1876     */
1877    current.time = MAX2(current.time, chosen->tmp.unblocked_time);
1878 
1879    /* Update the clock for how soon an instruction could start after the
1880     * chosen one.
1881     */
1882    current.time += chosen->issue_time;
1883 
1884    if (debug) {
1885       fprintf(stderr, "clock %4d, scheduled: ", current.time);
1886       bs->dump_instruction(chosen->inst);
1887    }
1888 }
1889 
1890 void
update_children(elk_schedule_node * chosen)1891 elk_instruction_scheduler::update_children(elk_schedule_node *chosen)
1892 {
1893    /* Now that we've scheduled a new instruction, some of its
1894     * children can be promoted to the list of instructions ready to
1895     * be scheduled.  Update the children's unblocked time for this
1896     * DAG edge as we do so.
1897     */
1898    for (int i = chosen->children_count - 1; i >= 0; i--) {
1899       elk_schedule_node_child *child = &chosen->children[i];
1900 
1901       child->n->tmp.unblocked_time = MAX2(child->n->tmp.unblocked_time,
1902                                           current.time + child->effective_latency);
1903 
1904       if (debug) {
1905          fprintf(stderr, "\tchild %d, %d parents: ", i, child->n->tmp.parent_count);
1906          bs->dump_instruction(child->n->inst);
1907       }
1908 
1909       child->n->tmp.cand_generation = current.cand_generation;
1910       child->n->tmp.parent_count--;
1911       if (child->n->tmp.parent_count == 0) {
1912          if (debug) {
1913             fprintf(stderr, "\t\tnow available\n");
1914          }
1915          current.available.push_head(child->n);
1916       }
1917    }
1918    current.cand_generation++;
1919 
1920    /* Shared resource: the mathbox.  There's one mathbox per EU on Gfx6+
1921     * but it's more limited pre-gfx6, so if we send something off to it then
1922     * the next math instruction isn't going to make progress until the first
1923     * is done.
1924     */
1925    if (bs->devinfo->ver < 6 && chosen->inst->is_math()) {
1926       foreach_in_list(elk_schedule_node, n, &current.available) {
1927          if (n->inst->is_math())
1928             n->tmp.unblocked_time = MAX2(n->tmp.unblocked_time,
1929                                          current.time + chosen->latency);
1930       }
1931    }
1932 }
1933 
1934 void
schedule_instructions()1935 elk_fs_instruction_scheduler::schedule_instructions()
1936 {
1937    if (!post_reg_alloc)
1938       reg_pressure = reg_pressure_in[current.block->num];
1939 
1940    assert(current.available.is_empty());
1941    for (elk_schedule_node *n = current.start; n < current.end; n++) {
1942       reset_node_tmp(n);
1943 
1944       /* Add DAG heads to the list of available instructions. */
1945       if (n->tmp.parent_count == 0)
1946          current.available.push_tail(n);
1947    }
1948 
1949    current.block->instructions.make_empty();
1950 
1951    while (!current.available.is_empty()) {
1952       elk_schedule_node *chosen = choose_instruction_to_schedule();
1953       schedule(chosen);
1954 
1955       if (!post_reg_alloc) {
1956          reg_pressure -= get_register_pressure_benefit(chosen->inst);
1957          update_register_pressure(chosen->inst);
1958          if (debug)
1959             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1960       }
1961 
1962       update_children(chosen);
1963    }
1964 }
1965 
1966 void
run(instruction_scheduler_mode mode)1967 elk_fs_instruction_scheduler::run(instruction_scheduler_mode mode)
1968 {
1969    this->mode = mode;
1970 
1971    if (debug && !post_reg_alloc) {
1972       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1973               post_reg_alloc);
1974          bs->dump_instructions();
1975    }
1976 
1977    if (!post_reg_alloc) {
1978       memset(reads_remaining, 0, grf_count * sizeof(*reads_remaining));
1979       memset(hw_reads_remaining, 0, hw_reg_count * sizeof(*hw_reads_remaining));
1980       memset(written, 0, grf_count * sizeof(*written));
1981    }
1982 
1983    foreach_block(block, v->cfg) {
1984       set_current_block(block);
1985 
1986       if (!post_reg_alloc) {
1987          for (elk_schedule_node *n = current.start; n < current.end; n++)
1988             count_reads_remaining(n->inst);
1989       }
1990 
1991       schedule_instructions();
1992    }
1993 
1994    if (debug && !post_reg_alloc) {
1995       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1996               post_reg_alloc);
1997       bs->dump_instructions();
1998    }
1999 }
2000 
2001 void
run()2002 elk_vec4_instruction_scheduler::run()
2003 {
2004    foreach_block(block, v->cfg) {
2005       set_current_block(block);
2006 
2007       for (elk_schedule_node *n = current.start; n < current.end; n++) {
2008          /* We always execute as two vec4s in parallel. */
2009          n->issue_time = 2;
2010       }
2011 
2012       calculate_deps();
2013 
2014       compute_delays();
2015       compute_exits();
2016 
2017       assert(current.available.is_empty());
2018       for (elk_schedule_node *n = current.start; n < current.end; n++) {
2019          reset_node_tmp(n);
2020 
2021          /* Add DAG heads to the list of available instructions. */
2022          if (n->tmp.parent_count == 0)
2023             current.available.push_tail(n);
2024       }
2025 
2026       current.block->instructions.make_empty();
2027 
2028       while (!current.available.is_empty()) {
2029          elk_schedule_node *chosen = choose_instruction_to_schedule();
2030          schedule(chosen);
2031          update_children(chosen);
2032       }
2033    }
2034 }
2035 
2036 elk_fs_instruction_scheduler *
prepare_scheduler(void * mem_ctx)2037 elk_fs_visitor::prepare_scheduler(void *mem_ctx)
2038 {
2039    const int grf_count = alloc.count;
2040 
2041    elk_fs_instruction_scheduler *empty = rzalloc(mem_ctx, elk_fs_instruction_scheduler);
2042    return new (empty) elk_fs_instruction_scheduler(mem_ctx, this, grf_count, first_non_payload_grf,
2043                                                cfg->num_blocks, /* post_reg_alloc */ false);
2044 }
2045 
2046 void
schedule_instructions_pre_ra(elk_fs_instruction_scheduler * sched,instruction_scheduler_mode mode)2047 elk_fs_visitor::schedule_instructions_pre_ra(elk_fs_instruction_scheduler *sched,
2048                                          instruction_scheduler_mode mode)
2049 {
2050    if (mode == SCHEDULE_NONE)
2051       return;
2052 
2053    sched->run(mode);
2054 
2055    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2056 }
2057 
2058 void
schedule_instructions_post_ra()2059 elk_fs_visitor::schedule_instructions_post_ra()
2060 {
2061    const bool post_reg_alloc = true;
2062    const int grf_count = reg_unit(devinfo) * grf_used;
2063 
2064    void *mem_ctx = ralloc_context(NULL);
2065 
2066    elk_fs_instruction_scheduler sched(mem_ctx, this, grf_count, first_non_payload_grf,
2067                                   cfg->num_blocks, post_reg_alloc);
2068    sched.run(SCHEDULE_POST);
2069 
2070    ralloc_free(mem_ctx);
2071 
2072    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2073 }
2074 
2075 void
opt_schedule_instructions()2076 vec4_visitor::opt_schedule_instructions()
2077 {
2078    void *mem_ctx = ralloc_context(NULL);
2079 
2080    elk_vec4_instruction_scheduler sched(mem_ctx, this, prog_data->total_grf);
2081    sched.run();
2082 
2083    ralloc_free(mem_ctx);
2084 
2085    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2086 }
2087