• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /**
25  * @file
26  * @brief Intel Surface Layout
27  *
28  * Header Layout
29  * -------------
30  * The header is ordered as:
31  *    - forward declarations
32  *    - macros that may be overridden at compile-time for specific gens
33  *    - enums and constants
34  *    - structs and unions
35  *    - functions
36  */
37 
38 #ifndef ISL_H
39 #define ISL_H
40 
41 #include <assert.h>
42 #include <stdbool.h>
43 #include <stdint.h>
44 
45 #include "drm-uapi/drm_fourcc.h"
46 #include "util/compiler.h"
47 #include "util/macros.h"
48 #include "util/format/u_format.h"
49 
50 #ifdef __cplusplus
51 extern "C" {
52 #endif
53 
54 struct intel_device_info;
55 
56 #ifndef ISL_GFX_VER
57 /**
58  * Get the hardware generation of isl_device.
59  *
60  * You can define this as a compile-time constant in the CFLAGS. For example,
61  * `gcc -DISL_GFX_VER(dev)=9 ...`.
62  */
63 #define ISL_GFX_VER(__dev) ((__dev)->info->ver)
64 #define ISL_GFX_VERX10(__dev) ((__dev)->info->verx10)
65 #define ISL_GFX_VER_SANITIZE(__dev)
66 #else
67 #define ISL_GFX_VER_SANITIZE(__dev) \
68    (assert(ISL_GFX_VER(__dev) == (__dev)->info->ver) && \
69            ISL_GFX_VERX10(__dev) == (__dev)->info->verx10))
70 #endif
71 
72 #ifndef ISL_DEV_IS_G4X
73 #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->platform == INTEL_PLATFORM_G4X)
74 #endif
75 
76 #ifndef ISL_DEV_IS_HASWELL
77 /**
78  * @brief Get the hardware generation of isl_device.
79  *
80  * You can define this as a compile-time constant in the CFLAGS. For example,
81  * `gcc -DISL_GFX_VER(dev)=9 ...`.
82  */
83 #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->platform == INTEL_PLATFORM_HSW)
84 #endif
85 
86 #ifndef ISL_DEV_IS_BAYTRAIL
87 #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->platform == INTEL_PLATFORM_BYT)
88 #endif
89 
90 #ifndef ISL_DEV_USE_SEPARATE_STENCIL
91 /**
92  * You can define this as a compile-time constant in the CFLAGS. For example,
93  * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`.
94  */
95 #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil)
96 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev)
97 #else
98 #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \
99    (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil))
100 #endif
101 
102 /**
103  * Hardware enumeration SURFACE_FORMAT.
104  *
105  * For the official list, see Broadwell PRM: Volume 2b: Command Reference:
106  * Enumerations: SURFACE_FORMAT.
107  */
108 enum isl_format {
109    ISL_FORMAT_R32G32B32A32_FLOAT =                               0,
110    ISL_FORMAT_R32G32B32A32_SINT =                                1,
111    ISL_FORMAT_R32G32B32A32_UINT =                                2,
112    ISL_FORMAT_R32G32B32A32_UNORM =                               3,
113    ISL_FORMAT_R32G32B32A32_SNORM =                               4,
114    ISL_FORMAT_R64G64_FLOAT =                                     5,
115    ISL_FORMAT_R32G32B32X32_FLOAT =                               6,
116    ISL_FORMAT_R32G32B32A32_SSCALED =                             7,
117    ISL_FORMAT_R32G32B32A32_USCALED =                             8,
118    ISL_FORMAT_R32G32B32A32_SFIXED =                             32,
119    ISL_FORMAT_R64G64_PASSTHRU =                                 33,
120    ISL_FORMAT_R32G32B32_FLOAT =                                 64,
121    ISL_FORMAT_R32G32B32_SINT =                                  65,
122    ISL_FORMAT_R32G32B32_UINT =                                  66,
123    ISL_FORMAT_R32G32B32_UNORM =                                 67,
124    ISL_FORMAT_R32G32B32_SNORM =                                 68,
125    ISL_FORMAT_R32G32B32_SSCALED =                               69,
126    ISL_FORMAT_R32G32B32_USCALED =                               70,
127    ISL_FORMAT_R32G32B32_SFIXED =                                80,
128    ISL_FORMAT_R16G16B16A16_UNORM =                             128,
129    ISL_FORMAT_R16G16B16A16_SNORM =                             129,
130    ISL_FORMAT_R16G16B16A16_SINT =                              130,
131    ISL_FORMAT_R16G16B16A16_UINT =                              131,
132    ISL_FORMAT_R16G16B16A16_FLOAT =                             132,
133    ISL_FORMAT_R32G32_FLOAT =                                   133,
134    ISL_FORMAT_R32G32_SINT =                                    134,
135    ISL_FORMAT_R32G32_UINT =                                    135,
136    ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS =                       136,
137    ISL_FORMAT_X32_TYPELESS_G8X24_UINT =                        137,
138    ISL_FORMAT_L32A32_FLOAT =                                   138,
139    ISL_FORMAT_R32G32_UNORM =                                   139,
140    ISL_FORMAT_R32G32_SNORM =                                   140,
141    ISL_FORMAT_R64_FLOAT =                                      141,
142    ISL_FORMAT_R16G16B16X16_UNORM =                             142,
143    ISL_FORMAT_R16G16B16X16_FLOAT =                             143,
144    ISL_FORMAT_A32X32_FLOAT =                                   144,
145    ISL_FORMAT_L32X32_FLOAT =                                   145,
146    ISL_FORMAT_I32X32_FLOAT =                                   146,
147    ISL_FORMAT_R16G16B16A16_SSCALED =                           147,
148    ISL_FORMAT_R16G16B16A16_USCALED =                           148,
149    ISL_FORMAT_R32G32_SSCALED =                                 149,
150    ISL_FORMAT_R32G32_USCALED =                                 150,
151    ISL_FORMAT_R32G32_FLOAT_LD =                                151,
152    ISL_FORMAT_R32G32_SFIXED =                                  160,
153    ISL_FORMAT_R64_PASSTHRU =                                   161,
154    ISL_FORMAT_B8G8R8A8_UNORM =                                 192,
155    ISL_FORMAT_B8G8R8A8_UNORM_SRGB =                            193,
156    ISL_FORMAT_R10G10B10A2_UNORM =                              194,
157    ISL_FORMAT_R10G10B10A2_UNORM_SRGB =                         195,
158    ISL_FORMAT_R10G10B10A2_UINT =                               196,
159    ISL_FORMAT_R10G10B10_SNORM_A2_UNORM =                       197,
160    ISL_FORMAT_R8G8B8A8_UNORM =                                 199,
161    ISL_FORMAT_R8G8B8A8_UNORM_SRGB =                            200,
162    ISL_FORMAT_R8G8B8A8_SNORM =                                 201,
163    ISL_FORMAT_R8G8B8A8_SINT =                                  202,
164    ISL_FORMAT_R8G8B8A8_UINT =                                  203,
165    ISL_FORMAT_R16G16_UNORM =                                   204,
166    ISL_FORMAT_R16G16_SNORM =                                   205,
167    ISL_FORMAT_R16G16_SINT =                                    206,
168    ISL_FORMAT_R16G16_UINT =                                    207,
169    ISL_FORMAT_R16G16_FLOAT =                                   208,
170    ISL_FORMAT_B10G10R10A2_UNORM =                              209,
171    ISL_FORMAT_B10G10R10A2_UNORM_SRGB =                         210,
172    ISL_FORMAT_R11G11B10_FLOAT =                                211,
173    ISL_FORMAT_R10G10B10_FLOAT_A2_UNORM =                       213,
174    ISL_FORMAT_R32_SINT =                                       214,
175    ISL_FORMAT_R32_UINT =                                       215,
176    ISL_FORMAT_R32_FLOAT =                                      216,
177    ISL_FORMAT_R24_UNORM_X8_TYPELESS =                          217,
178    ISL_FORMAT_X24_TYPELESS_G8_UINT =                           218,
179    ISL_FORMAT_L32_UNORM =                                      221,
180    ISL_FORMAT_A32_UNORM =                                      222,
181    ISL_FORMAT_L16A16_UNORM =                                   223,
182    ISL_FORMAT_I24X8_UNORM =                                    224,
183    ISL_FORMAT_L24X8_UNORM =                                    225,
184    ISL_FORMAT_A24X8_UNORM =                                    226,
185    ISL_FORMAT_I32_FLOAT =                                      227,
186    ISL_FORMAT_L32_FLOAT =                                      228,
187    ISL_FORMAT_A32_FLOAT =                                      229,
188    ISL_FORMAT_X8B8_UNORM_G8R8_SNORM =                          230,
189    ISL_FORMAT_A8X8_UNORM_G8R8_SNORM =                          231,
190    ISL_FORMAT_B8X8_UNORM_G8R8_SNORM =                          232,
191    ISL_FORMAT_B8G8R8X8_UNORM =                                 233,
192    ISL_FORMAT_B8G8R8X8_UNORM_SRGB =                            234,
193    ISL_FORMAT_R8G8B8X8_UNORM =                                 235,
194    ISL_FORMAT_R8G8B8X8_UNORM_SRGB =                            236,
195    ISL_FORMAT_R9G9B9E5_SHAREDEXP =                             237,
196    ISL_FORMAT_B10G10R10X2_UNORM =                              238,
197    ISL_FORMAT_L16A16_FLOAT =                                   240,
198    ISL_FORMAT_R32_UNORM =                                      241,
199    ISL_FORMAT_R32_SNORM =                                      242,
200    ISL_FORMAT_R10G10B10X2_USCALED =                            243,
201    ISL_FORMAT_R8G8B8A8_SSCALED =                               244,
202    ISL_FORMAT_R8G8B8A8_USCALED =                               245,
203    ISL_FORMAT_R16G16_SSCALED =                                 246,
204    ISL_FORMAT_R16G16_USCALED =                                 247,
205    ISL_FORMAT_R32_SSCALED =                                    248,
206    ISL_FORMAT_R32_USCALED =                                    249,
207    ISL_FORMAT_B5G6R5_UNORM =                                   256,
208    ISL_FORMAT_B5G6R5_UNORM_SRGB =                              257,
209    ISL_FORMAT_B5G5R5A1_UNORM =                                 258,
210    ISL_FORMAT_B5G5R5A1_UNORM_SRGB =                            259,
211    ISL_FORMAT_B4G4R4A4_UNORM =                                 260,
212    ISL_FORMAT_B4G4R4A4_UNORM_SRGB =                            261,
213    ISL_FORMAT_R8G8_UNORM =                                     262,
214    ISL_FORMAT_R8G8_SNORM =                                     263,
215    ISL_FORMAT_R8G8_SINT =                                      264,
216    ISL_FORMAT_R8G8_UINT =                                      265,
217    ISL_FORMAT_R16_UNORM =                                      266,
218    ISL_FORMAT_R16_SNORM =                                      267,
219    ISL_FORMAT_R16_SINT =                                       268,
220    ISL_FORMAT_R16_UINT =                                       269,
221    ISL_FORMAT_R16_FLOAT =                                      270,
222    ISL_FORMAT_A8P8_UNORM_PALETTE0 =                            271,
223    ISL_FORMAT_A8P8_UNORM_PALETTE1 =                            272,
224    ISL_FORMAT_I16_UNORM =                                      273,
225    ISL_FORMAT_L16_UNORM =                                      274,
226    ISL_FORMAT_A16_UNORM =                                      275,
227    ISL_FORMAT_L8A8_UNORM =                                     276,
228    ISL_FORMAT_I16_FLOAT =                                      277,
229    ISL_FORMAT_L16_FLOAT =                                      278,
230    ISL_FORMAT_A16_FLOAT =                                      279,
231    ISL_FORMAT_L8A8_UNORM_SRGB =                                280,
232    ISL_FORMAT_R5G5_SNORM_B6_UNORM =                            281,
233    ISL_FORMAT_B5G5R5X1_UNORM =                                 282,
234    ISL_FORMAT_B5G5R5X1_UNORM_SRGB =                            283,
235    ISL_FORMAT_R8G8_SSCALED =                                   284,
236    ISL_FORMAT_R8G8_USCALED =                                   285,
237    ISL_FORMAT_R16_SSCALED =                                    286,
238    ISL_FORMAT_R16_USCALED =                                    287,
239    ISL_FORMAT_P8A8_UNORM_PALETTE0 =                            290,
240    ISL_FORMAT_P8A8_UNORM_PALETTE1 =                            291,
241    ISL_FORMAT_A1B5G5R5_UNORM =                                 292,
242    ISL_FORMAT_A4B4G4R4_UNORM =                                 293,
243    ISL_FORMAT_L8A8_UINT =                                      294,
244    ISL_FORMAT_L8A8_SINT =                                      295,
245    ISL_FORMAT_R8_UNORM =                                       320,
246    ISL_FORMAT_R8_SNORM =                                       321,
247    ISL_FORMAT_R8_SINT =                                        322,
248    ISL_FORMAT_R8_UINT =                                        323,
249    ISL_FORMAT_A8_UNORM =                                       324,
250    ISL_FORMAT_I8_UNORM =                                       325,
251    ISL_FORMAT_L8_UNORM =                                       326,
252    ISL_FORMAT_P4A4_UNORM_PALETTE0 =                            327,
253    ISL_FORMAT_A4P4_UNORM_PALETTE0 =                            328,
254    ISL_FORMAT_R8_SSCALED =                                     329,
255    ISL_FORMAT_R8_USCALED =                                     330,
256    ISL_FORMAT_P8_UNORM_PALETTE0 =                              331,
257    ISL_FORMAT_L8_UNORM_SRGB =                                  332,
258    ISL_FORMAT_P8_UNORM_PALETTE1 =                              333,
259    ISL_FORMAT_P4A4_UNORM_PALETTE1 =                            334,
260    ISL_FORMAT_A4P4_UNORM_PALETTE1 =                            335,
261    ISL_FORMAT_Y8_UNORM =                                       336,
262    ISL_FORMAT_L8_UINT =                                        338,
263    ISL_FORMAT_L8_SINT =                                        339,
264    ISL_FORMAT_I8_UINT =                                        340,
265    ISL_FORMAT_I8_SINT =                                        341,
266    ISL_FORMAT_DXT1_RGB_SRGB =                                  384,
267    ISL_FORMAT_R1_UNORM =                                       385,
268    ISL_FORMAT_YCRCB_NORMAL =                                   386,
269    ISL_FORMAT_YCRCB_SWAPUVY =                                  387,
270    ISL_FORMAT_P2_UNORM_PALETTE0 =                              388,
271    ISL_FORMAT_P2_UNORM_PALETTE1 =                              389,
272    ISL_FORMAT_BC1_UNORM =                                      390,
273    ISL_FORMAT_BC2_UNORM =                                      391,
274    ISL_FORMAT_BC3_UNORM =                                      392,
275    ISL_FORMAT_BC4_UNORM =                                      393,
276    ISL_FORMAT_BC5_UNORM =                                      394,
277    ISL_FORMAT_BC1_UNORM_SRGB =                                 395,
278    ISL_FORMAT_BC2_UNORM_SRGB =                                 396,
279    ISL_FORMAT_BC3_UNORM_SRGB =                                 397,
280    ISL_FORMAT_MONO8 =                                          398,
281    ISL_FORMAT_YCRCB_SWAPUV =                                   399,
282    ISL_FORMAT_YCRCB_SWAPY =                                    400,
283    ISL_FORMAT_DXT1_RGB =                                       401,
284    ISL_FORMAT_FXT1 =                                           402,
285    ISL_FORMAT_R8G8B8_UNORM =                                   403,
286    ISL_FORMAT_R8G8B8_SNORM =                                   404,
287    ISL_FORMAT_R8G8B8_SSCALED =                                 405,
288    ISL_FORMAT_R8G8B8_USCALED =                                 406,
289    ISL_FORMAT_R64G64B64A64_FLOAT =                             407,
290    ISL_FORMAT_R64G64B64_FLOAT =                                408,
291    ISL_FORMAT_BC4_SNORM =                                      409,
292    ISL_FORMAT_BC5_SNORM =                                      410,
293    ISL_FORMAT_R16G16B16_FLOAT =                                411,
294    ISL_FORMAT_R16G16B16_UNORM =                                412,
295    ISL_FORMAT_R16G16B16_SNORM =                                413,
296    ISL_FORMAT_R16G16B16_SSCALED =                              414,
297    ISL_FORMAT_R16G16B16_USCALED =                              415,
298    ISL_FORMAT_BC6H_SF16 =                                      417,
299    ISL_FORMAT_BC7_UNORM =                                      418,
300    ISL_FORMAT_BC7_UNORM_SRGB =                                 419,
301    ISL_FORMAT_BC6H_UF16 =                                      420,
302    ISL_FORMAT_PLANAR_420_8 =                                   421,
303    ISL_FORMAT_PLANAR_420_16 =                                  422,
304    ISL_FORMAT_R8G8B8_UNORM_SRGB =                              424,
305    ISL_FORMAT_ETC1_RGB8 =                                      425,
306    ISL_FORMAT_ETC2_RGB8 =                                      426,
307    ISL_FORMAT_EAC_R11 =                                        427,
308    ISL_FORMAT_EAC_RG11 =                                       428,
309    ISL_FORMAT_EAC_SIGNED_R11 =                                 429,
310    ISL_FORMAT_EAC_SIGNED_RG11 =                                430,
311    ISL_FORMAT_ETC2_SRGB8 =                                     431,
312    ISL_FORMAT_R16G16B16_UINT =                                 432,
313    ISL_FORMAT_R16G16B16_SINT =                                 433,
314    ISL_FORMAT_R32_SFIXED =                                     434,
315    ISL_FORMAT_R10G10B10A2_SNORM =                              435,
316    ISL_FORMAT_R10G10B10A2_USCALED =                            436,
317    ISL_FORMAT_R10G10B10A2_SSCALED =                            437,
318    ISL_FORMAT_R10G10B10A2_SINT =                               438,
319    ISL_FORMAT_B10G10R10A2_SNORM =                              439,
320    ISL_FORMAT_B10G10R10A2_USCALED =                            440,
321    ISL_FORMAT_B10G10R10A2_SSCALED =                            441,
322    ISL_FORMAT_B10G10R10A2_UINT =                               442,
323    ISL_FORMAT_B10G10R10A2_SINT =                               443,
324    ISL_FORMAT_R64G64B64A64_PASSTHRU =                          444,
325    ISL_FORMAT_R64G64B64_PASSTHRU =                             445,
326    ISL_FORMAT_ETC2_RGB8_PTA =                                  448,
327    ISL_FORMAT_ETC2_SRGB8_PTA =                                 449,
328    ISL_FORMAT_ETC2_EAC_RGBA8 =                                 450,
329    ISL_FORMAT_ETC2_EAC_SRGB8_A8 =                              451,
330    ISL_FORMAT_R8G8B8_UINT =                                    456,
331    ISL_FORMAT_R8G8B8_SINT =                                    457,
332    ISL_FORMAT_RAW =                                            511,
333    ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB =                         512,
334    ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB =                         520,
335    ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB =                         521,
336    ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB =                         529,
337    ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB =                         530,
338    ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB =                         545,
339    ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB =                         546,
340    ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB =                         548,
341    ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB =                        561,
342    ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB =                        562,
343    ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB =                        564,
344    ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB =                       566,
345    ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB =                       574,
346    ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB =                       575,
347    ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 =                          576,
348    ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 =                          584,
349    ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 =                          585,
350    ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 =                          593,
351    ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 =                          594,
352    ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 =                          609,
353    ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 =                          610,
354    ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 =                          612,
355    ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 =                         625,
356    ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 =                         626,
357    ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 =                         628,
358    ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 =                        630,
359    ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 =                        638,
360    ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 =                        639,
361    ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 =                          832,
362    ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 =                          840,
363    ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 =                          841,
364    ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 =                          849,
365    ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 =                          850,
366    ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 =                          865,
367    ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 =                          866,
368    ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 =                          868,
369    ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 =                         881,
370    ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 =                         882,
371    ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 =                         884,
372    ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 =                        886,
373    ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 =                        894,
374    ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 =                        895,
375 
376    /* The formats that follow are internal to ISL and as such don't have an
377     * explicit number.  We'll just let the C compiler assign it for us.  Any
378     * actual hardware formats *must* come before these in the list.
379     */
380 
381    /* Formats for the aux-map */
382    ISL_FORMAT_PLANAR_420_10,
383    ISL_FORMAT_PLANAR_420_12,
384 
385    /* Formats for auxiliary surfaces */
386    ISL_FORMAT_HIZ,
387    ISL_FORMAT_GFX125_HIZ,
388    ISL_FORMAT_MCS_2X,
389    ISL_FORMAT_MCS_4X,
390    ISL_FORMAT_MCS_8X,
391    ISL_FORMAT_MCS_16X,
392    ISL_FORMAT_GFX7_CCS_32BPP_X,
393    ISL_FORMAT_GFX7_CCS_64BPP_X,
394    ISL_FORMAT_GFX7_CCS_128BPP_X,
395    ISL_FORMAT_GFX7_CCS_32BPP_Y,
396    ISL_FORMAT_GFX7_CCS_64BPP_Y,
397    ISL_FORMAT_GFX7_CCS_128BPP_Y,
398    ISL_FORMAT_GFX9_CCS_32BPP,
399    ISL_FORMAT_GFX9_CCS_64BPP,
400    ISL_FORMAT_GFX9_CCS_128BPP,
401    ISL_FORMAT_GFX12_CCS_8BPP_Y0,
402    ISL_FORMAT_GFX12_CCS_16BPP_Y0,
403    ISL_FORMAT_GFX12_CCS_32BPP_Y0,
404    ISL_FORMAT_GFX12_CCS_64BPP_Y0,
405    ISL_FORMAT_GFX12_CCS_128BPP_Y0,
406 
407    /* An upper bound on the supported format enumerations */
408    ISL_NUM_FORMATS,
409 
410    /* Hardware doesn't understand this out-of-band value */
411    ISL_FORMAT_UNSUPPORTED =                             UINT16_MAX,
412 };
413 
414 /**
415  * Numerical base type for channels of isl_format.
416  */
417 enum ENUM_PACKED isl_base_type {
418    /** Data which takes up space but is ignored */
419    ISL_VOID,
420 
421    /** Data in a "raw" form and cannot be easily interpreted */
422    ISL_RAW,
423 
424    /**
425     * Unsigned normalized data
426     *
427     * Though stored as an integer, the data is interpreted as a floating-point
428     * number in the range [0, 1] where the conversion from the in-memory
429     * representation to float is given by :math:`\frac{x}{2^{bits} - 1}`.
430     */
431    ISL_UNORM,
432 
433    /**
434     * Signed normalized data
435     *
436     * Though stored as an integer, the data is interpreted as a floating-point
437     * number in the range [-1, 1] where the conversion from the in-memory
438     * representation to float is given by
439     * :math:`max\left(\frac{x}{2^{bits - 1} - 1}, -1\right)`.
440     */
441    ISL_SNORM,
442 
443    /**
444     * Unsigned floating-point data
445     *
446     * Unlike the standard IEEE floating-point representation, unsigned
447     * floating-point data has no sign bit. This saves a bit of space which is
448     * important if more than one float is required to represent a color value.
449     * As with IEEE floats, the high bits are the exponent and the low bits are
450     * the mantissa.  The available bit sizes for unsigned floats are as
451     * follows:
452     *
453     * =====  =========  =========
454     * Bits   Mantissa   Exponent
455     * =====  =========  =========
456     *  11       6          5
457     *  10       5          5
458     * =====  =========  =========
459     *
460     * In particular, both unsigned floating-point formats are identical to
461     * IEEE float16 except that the sign bit and the bottom mantissa bits are
462     * removed.
463     */
464    ISL_UFLOAT,
465 
466    /** Signed floating-point data
467     *
468     * Signed floating-point data is represented as standard IEEE floats with
469     * the usual number of mantissa and exponent bits
470     *
471     * =====  =========  =========
472     * Bits   Mantissa   Exponent
473     * =====  =========  =========
474     *  64      52         11
475     *  32      23          8
476     *  16      10          5
477     * =====  =========  =========
478     */
479    ISL_SFLOAT,
480 
481    /**
482     * Unsigned fixed-point data
483     *
484     * This is a 32-bit unsigned integer that is interpreted as a 16.16
485     * fixed-point value.
486     */
487    ISL_UFIXED,
488 
489    /**
490     * Signed fixed-point data
491     *
492     * This is a 32-bit signed integer that is interpreted as a 16.16
493     * fixed-point value.
494     */
495    ISL_SFIXED,
496 
497    /** Unsigned integer data */
498    ISL_UINT,
499 
500    /** Signed integer data */
501    ISL_SINT,
502 
503    /**
504     * Unsigned scaled data
505     *
506     * This is data which is stored as an unsigned integer but interpreted as a
507     * floating-point value by the hardware.  The re-interpretation is done via
508     * a simple unsigned integer to float cast.  This is typically used as a
509     * vertex format.
510     */
511    ISL_USCALED,
512 
513    /**
514     * Signed scaled data
515     *
516     * This is data which is stored as a signed integer but interpreted as a
517     * floating-point value by the hardware.  The re-interpretation is done via
518     * a simple signed integer to float cast.  This is typically used as a
519     * vertex format.
520     */
521    ISL_SSCALED,
522 };
523 
524 /**
525  * Colorspace of isl_format.
526  */
527 enum isl_colorspace {
528    ISL_COLORSPACE_NONE = 0,
529    ISL_COLORSPACE_LINEAR,
530    ISL_COLORSPACE_SRGB,
531    ISL_COLORSPACE_YUV,
532 };
533 
534 /**
535  * Texture compression mode of isl_format.
536  */
537 enum isl_txc {
538    ISL_TXC_NONE = 0,
539    ISL_TXC_DXT1,
540    ISL_TXC_DXT3,
541    ISL_TXC_DXT5,
542    ISL_TXC_FXT1,
543    ISL_TXC_RGTC1,
544    ISL_TXC_RGTC2,
545    ISL_TXC_BPTC,
546    ISL_TXC_ETC1,
547    ISL_TXC_ETC2,
548    ISL_TXC_ASTC,
549 
550    /* Used for auxiliary surface formats */
551    ISL_TXC_HIZ,
552    ISL_TXC_MCS,
553    ISL_TXC_CCS,
554 };
555 
556 /**
557  * Describes the memory tiling of a surface
558  *
559  * This differs from the HW enum values used to represent tiling.  The bits
560  * used by hardware have varried significantly over the years from the
561  * "Tile Walk" bit on old pre-Broadwell parts to the "Tile Mode" enum on
562  * Broadwell to the combination of "Tile Mode" and "Tiled Resource Mode" on
563  * Skylake. This enum represents them all in a consistent manner and in one
564  * place.
565  *
566  * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to
567  * clearly distinguish it from Yf and Ys.
568  */
569 enum isl_tiling {
570    /** Linear, or no tiling */
571    ISL_TILING_LINEAR = 0,
572    /** W tiling */
573    ISL_TILING_W,
574    /** X tiling */
575    ISL_TILING_X,
576    /** Legacy Y tiling */
577    ISL_TILING_Y0,
578    /** Standard 4K tiling. The 'f' means "four". */
579    ISL_TILING_SKL_Yf,
580    /** Standard 64K tiling. The 's' means "sixty-four". */
581    ISL_TILING_SKL_Ys,
582    /** Standard 4K tiling. The 'f' means "four". */
583    ISL_TILING_ICL_Yf,
584    /** Standard 64K tiling. The 's' means "sixty-four". */
585    ISL_TILING_ICL_Ys,
586    /** 4K tiling. */
587    ISL_TILING_4,
588    /** 64K tiling.*/
589    ISL_TILING_64,
590    /** Xe2 64K tiling.*/
591    ISL_TILING_64_XE2,
592    /** Tiling format for HiZ surfaces */
593    ISL_TILING_HIZ,
594    /** Tiling format for CCS surfaces */
595    ISL_TILING_CCS,
596    /** Tiling format for Gfx12 CCS surfaces */
597    ISL_TILING_GFX12_CCS,
598 };
599 
600 /**
601  * @defgroup Tiling Flags
602  * @{
603  */
604 typedef uint32_t isl_tiling_flags_t;
605 #define ISL_TILING_LINEAR_BIT             (1u << ISL_TILING_LINEAR)
606 #define ISL_TILING_W_BIT                  (1u << ISL_TILING_W)
607 #define ISL_TILING_X_BIT                  (1u << ISL_TILING_X)
608 #define ISL_TILING_Y0_BIT                 (1u << ISL_TILING_Y0)
609 #define ISL_TILING_SKL_Yf_BIT             (1u << ISL_TILING_SKL_Yf)
610 #define ISL_TILING_SKL_Ys_BIT             (1u << ISL_TILING_SKL_Ys)
611 #define ISL_TILING_ICL_Yf_BIT             (1u << ISL_TILING_ICL_Yf)
612 #define ISL_TILING_ICL_Ys_BIT             (1u << ISL_TILING_ICL_Ys)
613 #define ISL_TILING_4_BIT                  (1u << ISL_TILING_4)
614 #define ISL_TILING_64_BIT                 (1u << ISL_TILING_64)
615 #define ISL_TILING_64_XE2_BIT             (1u << ISL_TILING_64_XE2)
616 #define ISL_TILING_HIZ_BIT                (1u << ISL_TILING_HIZ)
617 #define ISL_TILING_CCS_BIT                (1u << ISL_TILING_CCS)
618 #define ISL_TILING_GFX12_CCS_BIT          (1u << ISL_TILING_GFX12_CCS)
619 #define ISL_TILING_ANY_MASK               (~0u)
620 #define ISL_TILING_NON_LINEAR_MASK        (~ISL_TILING_LINEAR_BIT)
621 
622 /** Any Y tiling, including legacy Y tiling. */
623 #define ISL_TILING_ANY_Y_MASK             (ISL_TILING_Y0_BIT | \
624                                            ISL_TILING_SKL_Yf_BIT | \
625                                            ISL_TILING_SKL_Ys_BIT | \
626                                            ISL_TILING_ICL_Yf_BIT | \
627                                            ISL_TILING_ICL_Ys_BIT)
628 
629 /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */
630 #define ISL_TILING_STD_Y_MASK             (ISL_TILING_SKL_Yf_BIT | \
631                                            ISL_TILING_SKL_Ys_BIT | \
632                                            ISL_TILING_ICL_Yf_BIT | \
633                                            ISL_TILING_ICL_Ys_BIT)
634 
635 /** Any Tiling 64 */
636 #define ISL_TILING_STD_64_MASK            (ISL_TILING_64_BIT | \
637                                            ISL_TILING_64_XE2_BIT)
638 
639 /** @} */
640 
641 /**
642  * @brief Logical dimension of surface.
643  *
644  * Note: There is no dimension for cube map surfaces. ISL interprets cube maps
645  * as 2D array surfaces.
646  */
647 enum isl_surf_dim {
648    ISL_SURF_DIM_1D,
649    ISL_SURF_DIM_2D,
650    ISL_SURF_DIM_3D,
651 };
652 
653 /**
654  * @brief Physical layout of the surface's dimensions.
655  */
656 enum isl_dim_layout {
657    /**
658     * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
659     * 6.17.3: 2D Surfaces.
660     *
661     * On many gens, 1D surfaces share the same layout as 2D surfaces.  From
662     * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces:
663     *
664     *    One-dimensional surfaces are identical to 2D surfaces with height of
665     *    one.
666     */
667    ISL_DIM_LAYOUT_GFX4_2D,
668 
669    /**
670     * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section
671     * 6.17.5: 3D Surfaces.
672     *
673     * :invariant: isl_surf::phys_level0_sa::array_len == 1
674     */
675    ISL_DIM_LAYOUT_GFX4_3D,
676 
677    /**
678     * Special layout used for HiZ and stencil on Sandy Bridge to work around
679     * the hardware's lack of mipmap support.  On gfx6, HiZ and stencil buffers
680     * work the same as on gfx7+ except that they don't technically support
681     * mipmapping.  That does not, however, stop us from doing it.  As far as
682     * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a
683     * single miplevel 2D (possibly array) image.  The dimensions of that image
684     * are NOT minified.
685     *
686     * In order to implement HiZ and stencil on Sandy Bridge, we create one
687     * full-sized 2D (possibly array) image for every LOD with every image
688     * aligned to a page boundary.  When the surface is used with the stencil
689     * or HiZ hardware, we manually offset to the image for the given LOD.
690     *
691     * As a memory saving measure,  we pretend that the width of each miplevel
692     * is minified and we place LOD1 and above below LOD0 but horizontally
693     * adjacent to each other.  When considered as full-sized images, LOD1 and
694     * above technically overlap.  However, since we only write to part of that
695     * image, the hardware will never notice the overlap.
696     *
697     * This layout looks something like this:
698     *
699     *   +---------+
700     *   |         |
701     *   |         |
702     *   +---------+
703     *   |         |
704     *   |         |
705     *   +---------+
706     *
707     *   +----+ +-+ .
708     *   |    | +-+
709     *   +----+
710     *
711     *   +----+ +-+ .
712     *   |    | +-+
713     *   +----+
714     */
715    ISL_DIM_LAYOUT_GFX6_STENCIL_HIZ,
716 
717    /**
718     * For details, see the Skylake BSpec >> Memory Views >> Common Surface
719     * Formats >> Surface Layout and Tiling >> » 1D Surfaces.
720     */
721    ISL_DIM_LAYOUT_GFX9_1D,
722 };
723 
724 /**
725  * Enumerates the different forms of auxiliary surface compression
726  */
727 enum isl_aux_usage {
728    /** No Auxiliary surface is used */
729    ISL_AUX_USAGE_NONE,
730 
731    /** Hierarchical depth compression
732     *
733     * First introduced on Iron Lake, this compression scheme compresses depth
734     * surfaces by storing alternate forms of the depth value in a HiZ surface.
735     * Possible (not all) compressed forms include:
736     *
737     *  - An uncompressed "look at the main surface" value
738     *
739     *  - A special value indicating that the main surface data should be
740     *    ignored and considered to contain the clear value.
741     *
742     *  - The depth for the entire main-surface block as a plane equation
743     *
744     *  - The minimum/maximum depth for the main-surface block
745     *
746     * This second one isn't helpful for getting exact depth values but can
747     * still substantially accelerate depth testing if the specified range is
748     * sufficiently small.
749     */
750    ISL_AUX_USAGE_HIZ,
751 
752    /** Multisampled color compression
753     *
754     * Introduced on Ivy Bridge, this compression scheme compresses
755     * multisampled color surfaces by storing a mapping from samples to planes
756     * in the MCS surface, allowing for de-duplication of identical samples.
757     * The MCS value of all 1's is reserved to indicate that the pixel contains
758     * the clear color. Exact details about the data stored in the MCS and how
759     * it maps samples to slices is documented in the PRMs.
760     *
761     * :invariant: :c:member:`isl_surf.samples` > 1
762     */
763    ISL_AUX_USAGE_MCS,
764 
765    /** Single-sampled fast-clear-only color compression
766     *
767     * Introduced on Ivy Bridge, this compression scheme compresses
768     * single-sampled color surfaces by storing a bit for each cache line pair
769     * in the main surface in the CCS which indicates that the corresponding
770     * pair of cache lines in the main surface only contains the clear color.
771     * On Skylake, this is increased to two bits per cache line pair with 0x0
772     * meaning resolved and 0x3 meaning clear.
773     *
774     * :invariant: The surface is a color surface
775     * :invariant: :c:member:`isl_surf.samples` == 1
776     */
777    ISL_AUX_USAGE_CCS_D,
778 
779    /** Single-sample lossless color compression
780     *
781     * Introduced on Skylake, this compression scheme compresses single-sampled
782     * color surfaces by storing a 2-bit value for each cache line pair in the
783     * main surface which says how the corresponding pair of cache lines in the
784     * main surface are to be interpreted.  Valid CCS values include:
785     *
786     *  - `0x0`: Indicates that the corresponding pair of cache lines in the
787     *    main surface contain valid color data
788     *
789     *  - `0x1`: Indicates that the corresponding pair of cache lines in the
790     *    main surface contain compressed color data.  Typically, the
791     *    compressed data fits in one of the two cache lines.
792     *
793     *  - `0x3`: Indicates that the corresponding pair of cache lines in the
794     *    main surface should be ignored.  Those cache lines should be
795     *    considered to contain the clear color.
796     *
797     * Starting with Tigerlake, each CCS value is 4 bits per cache line pair in
798     * the main surface.
799     *
800     * :invariant: The surface is a color surface
801     * :invariant: :c:member:`isl_surf.samples` == 1
802     */
803    ISL_AUX_USAGE_CCS_E,
804 
805    /** Single-sample lossless color compression with fast clear optimization
806     *
807     * Introduced on Tigerlake, this is identical to ISL_AUX_USAGE_CCS_E except
808     * it also encodes a feature about regular render writes possibly
809     * fast-clearing blocks in the surface. In the Alchemist docs, the name of
810     * the feature is easier to find. In the 3DSTATE_3D_MODE packet, it is
811     * referred to as "Fast Clear Optimization (FCV)".
812     *
813     * :invariant: The surface is a color surface
814     * :invariant: :c:member:`isl_surf.samples` == 1
815     */
816    ISL_AUX_USAGE_FCV_CCS_E,
817 
818    /** Media color compression
819     *
820     * Used by the media engine on Tigerlake and above.  This compression form
821     * is typically not produced by 3D drivers but they need to be able to
822     * consume it in order to get end-to-end compression when the image comes
823     * from media decode.
824     *
825     * :invariant: The surface is a color surface
826     * :invariant: :c:member:`isl_surf.samples` == 1
827     */
828    ISL_AUX_USAGE_MC,
829 
830    /** Combined HiZ+CCS in write-through mode
831     *
832     * In this mode, introduced on Tigerlake, the HiZ and CCS surfaces act as a
833     * single fused compression surface where resolves (but not ambiguates)
834     * operate on both surfaces at the same time.  In this mode, the HiZ
835     * surface operates in write-through mode where it is only used for
836     * accelerating depth testing and not for actual compression.  The
837     * CCS-compressed surface contains valid data at all times.
838     *
839     * :invariant: The surface is a color surface
840     * :invariant: :c:member:`isl_surf.samples` == 1
841     */
842    ISL_AUX_USAGE_HIZ_CCS_WT,
843 
844    /** Combined HiZ+CCS without write-through
845     *
846     * In this mode, introduced on Tigerlake, the HiZ and CCS surfaces act as a
847     * single fused compression surface where resolves (but not ambiguates)
848     * operate on both surfaces at the same time.  In this mode, full HiZ
849     * compression is enabled and the CCS-compressed main surface may not
850     * contain valid data.  The only way to read the surface outside of the
851     * depth hardware is to do a full resolve which resolves both HiZ and CCS
852     * so the surface is in the pass-through state.
853     *
854     * :invariant: The surface is a depth surface
855     */
856    ISL_AUX_USAGE_HIZ_CCS,
857 
858    /** Combined MCS+CCS without write-through
859     *
860     * In this mode, introduced on Tigerlake, we have fused MCS+CCS compression
861     * where the MCS is used for fast-clears and "identical samples"
862     * compression just like on Gfx7-11 but each plane is then CCS compressed.
863     *
864     * :invariant: The surface is a depth surface
865     * :invariant: :c:member:`isl_surf.samples` > 1
866     */
867    ISL_AUX_USAGE_MCS_CCS,
868 
869    /** Stencil compression
870     *
871     * Introduced on Tigerlake, this is similar to CCS_E only used to compress
872     * stencil surfaces.
873     *
874     * :invariant: The surface is a stencil surface
875     * :invariant: :c:member:`isl_surf.samples` == 1
876     */
877    ISL_AUX_USAGE_STC_CCS,
878 };
879 
880 /**
881  * Enum for keeping track of the state an auxiliary compressed surface.
882  *
883  * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any
884  * given slice (lod + array layer) can be in one of the seven states described
885  * by this enum. Drawing with or without aux enabled may implicitly cause the
886  * surface to transition between these states.  There are also four types of
887  * auxiliary compression operations which cause an explicit transition which
888  * are described by the isl_aux_op enum below.
889  *
890  * Not all operations are valid or useful in all states.  The diagram below
891  * contains a complete description of the states and all valid and useful
892  * transitions except clear.
893  *
894  * ::
895  *
896  *     Draw w/ Aux
897  *     +----------+
898  *     |          |
899  *     |       +-------------+    Draw w/ Aux     +-------------+
900  *     +------>| Compressed  |<-------------------|    Clear    |
901  *             |  w/ Clear   |----->----+         |             |
902  *             +-------------+          |         +-------------+
903  *                    |  /|\            |            |   |
904  *                    |   |             |            |   |
905  *                    |   |             +------<-----+   |  Draw w/
906  *                    |   |             |                | Clear Only
907  *                    |   |      Full   |                |   +----------+
908  *            Partial |   |     Resolve |               \|/  |          |
909  *            Resolve |   |             |         +-------------+       |
910  *                    |   |             |         |   Partial   |<------+
911  *                    |   |             |         |    Clear    |<----------+
912  *                    |   |             |         +-------------+           |
913  *                    |   |             |                |                  |
914  *                    |   |             +------>---------+  Full            |
915  *                    |   |                              | Resolve          |
916  *     Draw w/ aux    |   |   Partial Fast Clear         |                  |
917  *     +----------+   |   +--------------------------+   |                  |
918  *     |          |  \|/                             |  \|/                 |
919  *     |       +-------------+    Full Resolve    +-------------+           |
920  *     +------>| Compressed  |------------------->|  Resolved   |           |
921  *             |  w/o Clear  |<-------------------|             |           |
922  *             +-------------+    Draw w/ Aux     +-------------+           |
923  *                   /|\                             |   |                  |
924  *                    |  Draw                        |   |  Draw            |
925  *                    | w/ Aux                       |   | w/o Aux          |
926  *                    |            Ambiguate         |   |                  |
927  *                    |   +--------------------------+   |                  |
928  *     Draw w/o Aux   |   |                              |   Draw w/o Aux   |
929  *     +----------+   |   |                              |   +----------+   |
930  *     |          |   |  \|/                            \|/  |          |   |
931  *     |       +-------------+     Ambiguate      +-------------+       |   |
932  *     +------>|    Pass-    |<-------------------|     Aux     |<------+   |
933  *     +------>|   through   |                    |   Invalid   |           |
934  *     |       +-------------+                    +-------------+           |
935  *     |          |   |                                                     |
936  *     +----------+   +-----------------------------------------------------+
937  *       Draw w/                       Partial Fast Clear
938  *      Clear Only
939  *
940  *
941  * While the above general theory applies to all forms of auxiliary
942  * compression on Intel hardware, not all states and operations are available
943  * on all compression types.  However, each of the auxiliary states and
944  * operations can be fairly easily mapped onto the above diagram:
945  *
946  * **HiZ:** Hierarchical depth compression is capable of being in any of
947  * the states above.  Hardware provides three HiZ operations: "Depth
948  * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast Clear",
949  * "Full Resolve", and "Ambiguate" respectively.  The hardware provides no
950  * HiZ partial resolve operation so the only way to get into the
951  * "Compressed w/o Clear" state is to render with HiZ when the surface is
952  * in the resolved or pass-through states.
953  *
954  * **MCS:** Multisample compression is technically capable of being in any of
955  * the states above except that most of them aren't useful.  Both the render
956  * engine and the sampler support MCS compression and, apart from clear color,
957  * MCS is format-unaware so we leave the surface compressed 100% of the time.
958  * The hardware provides no MCS operations.
959  *
960  * **CCS_D:** Single-sample fast-clears (also called CCS_D in ISL) are one of
961  * the simplest forms of compression since they don't do anything beyond clear
962  * color tracking.  They really only support three of the six states: Clear,
963  * Partial Clear, and Pass-through.  The only CCS_D operation is "Resolve"
964  * which maps to a full resolve followed by an ambiguate.
965  *
966  * **CCS_E:** Single-sample render target compression (also called CCS_E in
967  * ISL) is capable of being in almost all of the above states.  THe only
968  * exception is that it does not have separate resolved and pass- through
969  * states.  Instead, the CCS_E full resolve operation does both a resolve and
970  * an ambiguate so it goes directly into the pass-through state.  CCS_E also
971  * provides fast clear and partial resolve operations which work as described
972  * above.
973  *
974  * .. note::
975  *
976  *   The state machine above isn't quite correct for CCS on TGL.  There is a
977  *   HW bug (or feature, depending on who you ask) which can cause blocks to
978  *   enter the fast-clear state as a side-effect of a regular draw call.  This
979  *   means that a draw in the resolved or compressed without clear states
980  *   takes you to the compressed with clear state, not the compressed without
981  *   clear state.
982  */
983 enum isl_aux_state {
984 #ifdef IN_UNIT_TEST
985    ISL_AUX_STATE_ASSERT,
986 #endif
987    /** Clear
988     *
989     * In this state, each block in the auxiliary surface contains a magic
990     * value that indicates that the block is in the clear state.  If a block
991     * is in the clear state, its values in the primary surface are ignored
992     * and the color of the samples in the block is taken either the
993     * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for depth.
994     * Since neither the primary surface nor the auxiliary surface contains the
995     * clear value, the surface can be cleared to a different color by simply
996     * changing the clear color without modifying either surface.
997     */
998    ISL_AUX_STATE_CLEAR,
999 
1000    /** Partial Clear
1001     *
1002     * In this state, each block in the auxiliary surface contains either the
1003     * magic clear or pass-through value.  See Clear and Pass-through for more
1004     * details.
1005     */
1006    ISL_AUX_STATE_PARTIAL_CLEAR,
1007 
1008    /** Compressed with clear color
1009     *
1010     * In this state, neither the auxiliary surface nor the primary surface has
1011     * a complete representation of the data. Instead, both surfaces must be
1012     * used together or else rendering corruption may occur.  Depending on the
1013     * auxiliary compression format and the data, any given block in the
1014     * primary surface may contain all, some, or none of the data required to
1015     * reconstruct the actual sample values.  Blocks may also be in the clear
1016     * state (see Clear) and have their value taken from outside the surface.
1017     */
1018    ISL_AUX_STATE_COMPRESSED_CLEAR,
1019 
1020    /** Compressed without clear color
1021     *
1022     * This state is identical to the state above except that no blocks are in
1023     * the clear state.  In this state, all of the data required to reconstruct
1024     * the final sample values is contained in the auxiliary and primary
1025     * surface and the clear value is not considered.
1026     */
1027    ISL_AUX_STATE_COMPRESSED_NO_CLEAR,
1028 
1029    /** Resolved
1030     *
1031     * In this state, the primary surface contains 100% of the data.  The
1032     * auxiliary surface is also valid so the surface can be validly used with
1033     * or without aux enabled.  The auxiliary surface may, however, contain
1034     * non-trivial data and any update to the primary surface with aux disabled
1035     * will cause the two to get out of sync.
1036     */
1037    ISL_AUX_STATE_RESOLVED,
1038 
1039    /** Pass-through
1040     *
1041     * In this state, the primary surface contains 100% of the data and every
1042     * block in the auxiliary surface contains a magic value which indicates
1043     * that the auxiliary surface should be ignored and only the primary
1044     * surface should be considered.  In this mode, the primary surface can
1045     * safely be written with ISL_AUX_USAGE_NONE or by something that ignores
1046     * compression such as the blit/copy engine or a CPU map and it will stay
1047     * in the pass-through state.  Writing to a surface in pass-through mode
1048     * with aux enabled may cause the auxiliary to be updated to contain
1049     * non-trivial data and it will no longer be in the pass-through state.
1050     * Likely, it will end up compressed, with or without clear color.
1051     */
1052    ISL_AUX_STATE_PASS_THROUGH,
1053 
1054    /** Aux Invalid
1055     *
1056     * In this state, the primary surface contains 100% of the data and the
1057     * auxiliary surface is completely bogus.  Any attempt to use the auxiliary
1058     * surface is liable to result in rendering corruption.  The only thing
1059     * that one can do to re-enable aux once this state is reached is to use an
1060     * ambiguate pass to transition into the pass-through state.
1061     */
1062    ISL_AUX_STATE_AUX_INVALID,
1063 };
1064 
1065 /** Enum describing explicit aux transition operations
1066  *
1067  * These operations are used to transition from one isl_aux_state to another.
1068  * Even though a draw does transition the state machine, it's not included in
1069  * this enum as it's something of a special case.
1070  */
1071 enum isl_aux_op {
1072 #ifdef IN_UNIT_TEST
1073    ISL_AUX_OP_ASSERT,
1074 #endif
1075 
1076    /** Do nothing */
1077    ISL_AUX_OP_NONE,
1078 
1079    /** Fast Clear
1080     *
1081     * This operation writes the magic "clear" value to the auxiliary surface.
1082     * This operation will safely transition any slice of a surface from any
1083     * state to the clear state so long as the entire slice is fast cleared at
1084     * once.  A fast clear that only covers part of a slice of a surface is
1085     * called a partial fast clear.
1086     */
1087    ISL_AUX_OP_FAST_CLEAR,
1088 
1089    /** Full Resolve
1090     *
1091     * This operation combines the auxiliary surface data with the primary
1092     * surface data and writes the result to the primary.  For HiZ, the docs
1093     * call this a depth resolve.  For CCS, the hardware full resolve operation
1094     * does both a full resolve and an ambiguate so it actually takes you all
1095     * the way to the pass-through state.
1096     */
1097    ISL_AUX_OP_FULL_RESOLVE,
1098 
1099    /** Partial Resolve
1100     *
1101     * This operation considers blocks which are in the "clear" state and
1102     * writes the clear value directly into the primary or auxiliary surface.
1103     * Once this operation completes, the surface is still compressed but no
1104     * longer references the clear color.  This operation is only available
1105     * for CCS_E.
1106     */
1107    ISL_AUX_OP_PARTIAL_RESOLVE,
1108 
1109    /** Ambiguate
1110     *
1111     * This operation throws away the current auxiliary data and replaces it
1112     * with the magic pass-through value.  If an ambiguate operation is
1113     * performed when the primary surface does not contain 100% of the data,
1114     * data will be lost.  This operation is only implemented in hardware for
1115     * depth where it is called a HiZ resolve.
1116     */
1117    ISL_AUX_OP_AMBIGUATE,
1118 };
1119 
1120 /* TODO(chadv): Explain */
1121 enum isl_array_pitch_span {
1122    ISL_ARRAY_PITCH_SPAN_FULL,
1123    ISL_ARRAY_PITCH_SPAN_COMPACT,
1124 };
1125 
1126 /**
1127  * @defgroup Surface Usage
1128  * @{
1129  */
1130 typedef uint64_t isl_surf_usage_flags_t;
1131 #define ISL_SURF_USAGE_RENDER_TARGET_BIT       (1u << 0)
1132 #define ISL_SURF_USAGE_DEPTH_BIT               (1u << 1)
1133 #define ISL_SURF_USAGE_STENCIL_BIT             (1u << 2)
1134 #define ISL_SURF_USAGE_TEXTURE_BIT             (1u << 3)
1135 #define ISL_SURF_USAGE_CUBE_BIT                (1u << 4)
1136 #define ISL_SURF_USAGE_DISABLE_AUX_BIT         (1u << 5)
1137 #define ISL_SURF_USAGE_DISPLAY_BIT             (1u << 6)
1138 #define ISL_SURF_USAGE_STORAGE_BIT             (1u << 7)
1139 #define ISL_SURF_USAGE_HIZ_BIT                 (1u << 8)
1140 #define ISL_SURF_USAGE_MCS_BIT                 (1u << 9)
1141 #define ISL_SURF_USAGE_CCS_BIT                 (1u << 10)
1142 #define ISL_SURF_USAGE_VERTEX_BUFFER_BIT       (1u << 11)
1143 #define ISL_SURF_USAGE_INDEX_BUFFER_BIT        (1u << 12)
1144 #define ISL_SURF_USAGE_CONSTANT_BUFFER_BIT     (1u << 13)
1145 #define ISL_SURF_USAGE_STAGING_BIT             (1u << 14)
1146 #define ISL_SURF_USAGE_CPB_BIT                 (1u << 15)
1147 #define ISL_SURF_USAGE_PROTECTED_BIT           (1u << 16)
1148 #define ISL_SURF_USAGE_VIDEO_DECODE_BIT        (1u << 17)
1149 #define ISL_SURF_USAGE_STREAM_OUT_BIT          (1u << 18)
1150 #define ISL_SURF_USAGE_2D_3D_COMPATIBLE_BIT    (1u << 19)
1151 #define ISL_SURF_USAGE_SPARSE_BIT              (1u << 20)
1152 #define ISL_SURF_USAGE_NO_AUX_TT_ALIGNMENT_BIT (1u << 21)
1153 /** @} */
1154 
1155 /**
1156  * @defgroup Channel Mask
1157  *
1158  * These #define values are chosen to match the values of
1159  * RENDER_SURFACE_STATE::Color Buffer Component Write Disables
1160  *
1161  * @{
1162  */
1163 typedef uint8_t isl_channel_mask_t;
1164 #define ISL_CHANNEL_BLUE_BIT  (1 << 0)
1165 #define ISL_CHANNEL_GREEN_BIT (1 << 1)
1166 #define ISL_CHANNEL_RED_BIT   (1 << 2)
1167 #define ISL_CHANNEL_ALPHA_BIT (1 << 3)
1168 /** @} */
1169 
1170 /**
1171  * @brief A channel select (also known as texture swizzle) value
1172  */
1173 enum ENUM_PACKED isl_channel_select {
1174    ISL_CHANNEL_SELECT_ZERO = 0,
1175    ISL_CHANNEL_SELECT_ONE = 1,
1176    ISL_CHANNEL_SELECT_RED = 4,
1177    ISL_CHANNEL_SELECT_GREEN = 5,
1178    ISL_CHANNEL_SELECT_BLUE = 6,
1179    ISL_CHANNEL_SELECT_ALPHA = 7,
1180 };
1181 
1182 /**
1183  * Identical to VkSampleCountFlagBits.
1184  */
1185 enum isl_sample_count {
1186    ISL_SAMPLE_COUNT_1_BIT     = 1u,
1187    ISL_SAMPLE_COUNT_2_BIT     = 2u,
1188    ISL_SAMPLE_COUNT_4_BIT     = 4u,
1189    ISL_SAMPLE_COUNT_8_BIT     = 8u,
1190    ISL_SAMPLE_COUNT_16_BIT    = 16u,
1191 };
1192 typedef uint32_t isl_sample_count_mask_t;
1193 
1194 /**
1195  * @brief Multisample Format
1196  */
1197 enum isl_msaa_layout {
1198    /**
1199     * @brief Surface is single-sampled.
1200     */
1201    ISL_MSAA_LAYOUT_NONE,
1202 
1203    /**
1204     * @brief [SNB+] Interleaved Multisample Format
1205     *
1206     * In this format, multiple samples are interleaved into each cacheline.
1207     * In other words, the sample index is swizzled into the low 6 bits of the
1208     * surface's virtual address space.
1209     *
1210     * For example, suppose the surface is legacy Y tiled, is 4x multisampled,
1211     * and its pixel format is 32bpp. Then the first cacheline is arranged
1212     * thus:
1213     *
1214     *    (0,0,0) (0,1,0)   (0,0,1) (1,0,1)
1215     *    (1,0,0) (1,1,0)   (0,1,1) (1,1,1)
1216     *
1217     *    (0,0,2) (1,0,2)   (0,0,3) (1,0,3)
1218     *    (0,1,2) (1,1,2)   (0,1,3) (1,1,3)
1219     *
1220     * The hardware docs refer to this format with multiple terms.  In
1221     * Sandybridge, this is the only multisample format; so no term is used.
1222     * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved
1223     * Multisample Surface). Later hardware docs additionally refer to this
1224     * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for
1225     * color surfaces).
1226     *
1227     * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled
1228     * Surface Behavior".
1229     *
1230     * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved
1231     * Multisampled Surfaces".
1232     */
1233    ISL_MSAA_LAYOUT_INTERLEAVED,
1234 
1235    /**
1236     * @brief [IVB+] Array Multisample Format
1237     *
1238     * In this format, the surface's physical layout resembles that of a
1239     * 2D array surface.
1240     *
1241     * Suppose the multisample surface's logical extent is (w, h) and its
1242     * sample count is N. Then surface's physical extent is the same as
1243     * a singlesample 2D surface whose logical extent is (w, h) and array
1244     * length is N.  Array slice `i` contains the pixel values for sample
1245     * index `i`.
1246     *
1247     * The Ivybridge docs refer to surfaces in this format as UMS
1248     * (Uncompressed Multsample Layout) and CMS (Compressed Multisample
1249     * Surface). The Broadwell docs additionally refer to this format as
1250     * MSFMT_MSS (MSS=Multisample Surface Storage).
1251     *
1252     * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed
1253     * Multisample Surfaces".
1254     *
1255     * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed
1256     * Multisample Surfaces".
1257     */
1258    ISL_MSAA_LAYOUT_ARRAY,
1259 };
1260 
1261 typedef enum {
1262   ISL_MEMCPY = 0,
1263   ISL_MEMCPY_BGRA8,
1264   ISL_MEMCPY_STREAMING_LOAD,
1265   ISL_MEMCPY_INVALID,
1266 } isl_memcpy_type;
1267 
1268 struct isl_surf_fill_state_info;
1269 struct isl_buffer_fill_state_info;
1270 struct isl_depth_stencil_hiz_emit_info;
1271 struct isl_null_fill_state_info;
1272 struct isl_cpb_emit_info;
1273 
1274 struct isl_device {
1275    const struct intel_device_info *info;
1276    bool use_separate_stencil;
1277    bool has_bit6_swizzling;
1278 
1279    /**
1280     * Describes the layout of a RENDER_SURFACE_STATE structure for the
1281     * current gen.
1282     */
1283    struct {
1284       uint8_t size;
1285       uint8_t align;
1286       uint8_t addr_offset;
1287       uint8_t aux_addr_offset;
1288 
1289       /* Rounded up to the nearest dword to simplify GPU memcpy operations. */
1290 
1291       /* size of the state buffer used to store the clear color + extra
1292        * additional space used by the hardware */
1293       uint8_t clear_color_state_size;
1294       uint8_t clear_color_state_offset;
1295       /* size of the clear color itself - used to copy it to/from a BO */
1296       uint8_t clear_value_size;
1297       uint8_t clear_value_offset;
1298    } ss;
1299 
1300    uint64_t max_buffer_size;
1301 
1302    /**
1303     * Describes the layout of the depth/stencil/hiz commands as emitted by
1304     * isl_emit_depth_stencil_hiz.
1305     */
1306    struct {
1307       uint8_t size;
1308       uint8_t depth_offset;
1309       uint8_t stencil_offset;
1310       uint8_t hiz_offset;
1311    } ds;
1312 
1313    /**
1314     * Describes the layout of the coarse pixel control commands as emitted by
1315     * isl_emit_cpb_control.
1316     */
1317    struct {
1318       uint8_t size;
1319       uint8_t offset;
1320    } cpb;
1321 
1322    struct {
1323       uint32_t internal;
1324       uint32_t external;
1325       uint32_t uncached;
1326       uint32_t l1_hdc_l3_llc;
1327       uint32_t blitter_src;
1328       uint32_t blitter_dst;
1329       /* Protected is an additional bit on top of the existing entry index. */
1330       uint32_t protected_mask;
1331    } mocs;
1332 
1333    /* Options to configure by the driver: */
1334 
1335    /**
1336     * Write buffer length in the upper dword of the
1337     * RENDER_SURFACE_STATE::AuxilliarySurfaceBaseAddress field.
1338     *
1339     * This field is unused for buffer surfaces so we can reuse it store the
1340     * buffer length. This is useful when you want to load a vec4 with (main
1341     * address, size).
1342     */
1343    bool buffer_length_in_aux_addr;
1344 
1345    void (*surf_fill_state_s)(const struct isl_device *dev, void *state,
1346                              const struct isl_surf_fill_state_info *restrict info);
1347 
1348    void (*buffer_fill_state_s)(const struct isl_device *dev, void *state,
1349                                const struct isl_buffer_fill_state_info *restrict info);
1350 
1351    void (*emit_depth_stencil_hiz_s)(const struct isl_device *dev, void *batch,
1352                                     const struct isl_depth_stencil_hiz_emit_info *restrict info);
1353 
1354    void (*null_fill_state_s)(const struct isl_device *dev, void *state,
1355                              const struct isl_null_fill_state_info *restrict info);
1356 
1357    void (*emit_cpb_control_s)(const struct isl_device *dev, void *batch,
1358                               const struct isl_cpb_emit_info *restrict info);
1359 };
1360 
1361 struct isl_extent2d {
1362    union { uint32_t w, width; };
1363    union { uint32_t h, height; };
1364 };
1365 
1366 struct isl_extent3d {
1367    union { uint32_t w, width; };
1368    union { uint32_t h, height; };
1369    union { uint32_t d, depth; };
1370 };
1371 
1372 struct isl_extent4d {
1373    union { uint32_t w, width; };
1374    union { uint32_t h, height; };
1375    union { uint32_t d, depth; };
1376    union { uint32_t a, array_len; };
1377 };
1378 
1379 /**
1380  * Describes a single channel of an isl_format
1381  */
1382 struct isl_channel_layout {
1383    /** Channel data encoding */
1384    enum isl_base_type type;
1385    /** Bit at which this channel starts */
1386    uint8_t start_bit;
1387    /** Size in bits */
1388    uint8_t bits;
1389 };
1390 
1391 /**
1392  * Describes the layout of an isl_format
1393  *
1394  * Each format has 3D block extent (width, height, depth). The block extent of
1395  * compressed formats is that of the format's compression block. For example,
1396  * the block extent of ``ISL_FORMAT_ETC2_RGB8`` is ``(w=4, h=4, d=1)``. The block
1397  * extent of uncompressed pixel formats, such as ``ISL_FORMAT_R8G8B8A8_UNORM``,
1398  * is ``(w=1, h=1, d=1)``.
1399  */
1400 struct isl_format_layout {
1401    /** Format */
1402    enum isl_format format;
1403 
1404    /** Bits per block */
1405    uint16_t bpb;
1406    /** Block width, in pixels */
1407    uint8_t bw;
1408    /** Block height, in pixels */
1409    uint8_t bh;
1410    /** Block depth, in pixels */
1411    uint8_t bd;
1412 
1413    /***/
1414    union {
1415       /***/
1416       struct {
1417          /** Red channel */
1418          struct isl_channel_layout r;
1419          /** Green channel */
1420          struct isl_channel_layout g;
1421          /** Blue channel */
1422          struct isl_channel_layout b;
1423          /** Alpha channel */
1424          struct isl_channel_layout a;
1425          /** Luminance channel */
1426          struct isl_channel_layout l;
1427          /** Intensity channel */
1428          struct isl_channel_layout i;
1429          /** Palette channel */
1430          struct isl_channel_layout p;
1431       } channels;
1432       struct isl_channel_layout channels_array[7];
1433    };
1434 
1435    /** Set if all channels have the same isl_base_type. Otherwise, ISL_VOID. */
1436    enum isl_base_type uniform_channel_type;
1437 
1438    enum isl_colorspace colorspace;
1439    enum isl_txc txc;
1440 };
1441 
1442 /***/
1443 struct isl_tile_info {
1444    /** Tiling represented by this isl_tile_info */
1445    enum isl_tiling tiling;
1446 
1447    /**
1448     * The size (in bits per block) of a single surface element
1449     *
1450     * For surfaces with power-of-two formats, this is the same as
1451     * isl_format_layout::bpb.  For non-power-of-two formats it may be smaller.
1452     * The logical_extent_el field is in terms of elements of this size.
1453     *
1454     * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which
1455     * isl_format_layout::bpb is 96 (a non-power-of-two).  In this case, none
1456     * of the tiling formats can actually hold an integer number of 96-bit
1457     * surface elements so isl_tiling_get_info returns an isl_tile_info for a
1458     * 32-bit element size.  It is the responsibility of the caller to
1459     * recognize that 32 != 96 ad adjust accordingly.  For instance, to compute
1460     * the width of a surface in tiles, you would do::
1461     *
1462     *   width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb),
1463     *                           tile_info.logical_extent_el.width);
1464     */
1465    uint32_t format_bpb;
1466 
1467    /**
1468     * The logical size of the tile in units of format_bpb size elements
1469     *
1470     * This field determines how a given surface is cut up into tiles.  It is
1471     * used to compute the size of a surface in tiles and can be used to
1472     * determine the location of the tile containing any given surface element.
1473     * The exact value of this field depends heavily on the bits-per-block of
1474     * the format being used.
1475     */
1476    struct isl_extent4d logical_extent_el;
1477 
1478    /**
1479     * The maximum number of miplevels that will fit in the miptail.
1480     *
1481     * This does not guarantee that the given number of miplevels will fit in
1482     * the miptail as that is also dependent on the size of the miplevels.
1483     */
1484    uint32_t max_miptail_levels;
1485 
1486    /**
1487     * The physical size of the tile in bytes and rows of bytes
1488     *
1489     * This field determines how the tiles of a surface are physically laid
1490     * out in memory.  The logical and physical tile extent are frequently the
1491     * same but this is not always the case.  For instance, a W-tile (which is
1492     * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but
1493     * its physical size is 128B x 32rows, the same as a Y-tile.
1494     *
1495     * See :c:member:`isl_surf.row_pitch_B`
1496     */
1497    struct isl_extent2d phys_extent_B;
1498 };
1499 
1500 /**
1501  * Metadata about a DRM format modifier.
1502  */
1503 struct isl_drm_modifier_info {
1504    uint64_t modifier;
1505 
1506    /** Text name of the modifier */
1507    const char *name;
1508 
1509    /** ISL tiling implied by this modifier */
1510    enum isl_tiling tiling;
1511 
1512    /** Compression types supported by this modifier */
1513    bool supports_render_compression;
1514    bool supports_media_compression;
1515 
1516    /** Whether or not this modifier supports clear color */
1517    bool supports_clear_color;
1518 };
1519 
1520 /**
1521  * @brief Input to surface initialization
1522  *
1523  * :invariant: width >= 1
1524  * :invariant: height >= 1
1525  * :invariant: depth >= 1
1526  * :invariant: levels >= 1
1527  * :invariant: samples >= 1
1528  * :invariant: array_len >= 1
1529  *
1530  * :invariant: if 1D then height == 1 and depth == 1 and samples == 1
1531  * :invariant: if 2D then depth == 1
1532  * :invariant: if 3D then array_len == 1 and samples == 1
1533  */
1534 struct isl_surf_init_info {
1535    enum isl_surf_dim dim;
1536    enum isl_format format;
1537 
1538    uint32_t width;
1539    uint32_t height;
1540    uint32_t depth;
1541    uint32_t levels;
1542    uint32_t array_len;
1543    uint32_t samples;
1544 
1545    /** Lower bound for :c:member:`isl_surf.alignment`, in bytes. */
1546    uint32_t min_alignment_B;
1547 
1548    /** Lower bound for where to start the miptail */
1549    uint32_t min_miptail_start_level;
1550 
1551    /**
1552     * Exact value for :c:member:`isl_surf.row_pitch`. Ignored if zero.
1553     * isl_surf_init() will fail if this is misaligned or out of bounds.
1554     */
1555    uint32_t row_pitch_B;
1556 
1557    isl_surf_usage_flags_t usage;
1558 
1559    /** Flags that alter how ISL selects isl_surf::tiling.  */
1560    isl_tiling_flags_t tiling_flags;
1561 };
1562 
1563 /***/
1564 struct isl_surf {
1565    /** Dimensionality of the surface */
1566    enum isl_surf_dim dim;
1567 
1568    /**
1569     * Spatial layout of the surface in memory
1570     *
1571     * This is dependent on :c:member:`isl_surf.dim` and hardware generation.
1572     */
1573    enum isl_dim_layout dim_layout;
1574 
1575    /** Spatial layout of the samples if isl_surf::samples > 1 */
1576    enum isl_msaa_layout msaa_layout;
1577 
1578    /** Memory tiling used by the surface */
1579    enum isl_tiling tiling;
1580 
1581    /**
1582     * Base image format of the surface
1583     *
1584     * This need not be the same as the format specified in isl_view::format
1585     * when a surface state is constructed.  It must, however, have the same
1586     * number of bits per pixel or else memory calculations will go wrong.
1587     */
1588    enum isl_format format;
1589 
1590    /**
1591     * Alignment of the upper-left sample of each subimage, in units of surface
1592     * elements.
1593     */
1594    struct isl_extent3d image_alignment_el;
1595 
1596    /**
1597     * Logical extent of the surface's base level, in units of pixels.  This is
1598     * identical to the extent defined in isl_surf_init_info.
1599     */
1600    struct isl_extent4d logical_level0_px;
1601 
1602    /**
1603     * Physical extent of the surface's base level, in units of physical
1604     * surface samples.
1605     *
1606     * Consider isl_dim_layout as an operator that transforms a logical surface
1607     * layout to a physical surface layout. Then
1608     *
1609     *    logical_layout := (isl_surf::dim, isl_surf::logical_level0_px)
1610     *    isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout
1611     */
1612    struct isl_extent4d phys_level0_sa;
1613 
1614    /** Number of miplevels in the surface */
1615    uint32_t levels;
1616 
1617    /**
1618     * Number of samples in the surface
1619     *
1620     * :invariant: samples >= 1
1621     */
1622    uint32_t samples;
1623 
1624    /** Total size of the surface, in bytes. */
1625    uint64_t size_B;
1626 
1627    /** Required alignment for the surface's base address. */
1628    uint32_t alignment_B;
1629 
1630    /**
1631     * The interpretation of this field depends on the value of
1632     * isl_tile_info::physical_extent_B.  In particular, the width of the
1633     * surface in tiles is row_pitch_B / isl_tile_info::physical_extent_B.width
1634     * and the distance in bytes between vertically adjacent tiles in the image
1635     * is given by row_pitch_B * isl_tile_info::physical_extent_B.height.
1636     *
1637     * For linear images where isl_tile_info::physical_extent_B.height == 1,
1638     * this cleanly reduces to being the distance, in bytes, between vertically
1639     * adjacent surface elements.
1640     *
1641     * @see isl_tile_info::phys_extent_B;
1642     */
1643    uint32_t row_pitch_B;
1644 
1645    /**
1646     * Pitch between physical array slices, in rows of surface elements.
1647     */
1648    uint32_t array_pitch_el_rows;
1649 
1650    enum isl_array_pitch_span array_pitch_span;
1651 
1652    /**
1653     * Level at which the miptail starts.
1654     *
1655     * This value is inclusive in the sense that the miptail contains this
1656     * level.
1657     */
1658    uint32_t miptail_start_level;
1659 
1660    /** Copy of isl_surf_init_info::usage. */
1661    isl_surf_usage_flags_t usage;
1662 };
1663 
1664 struct isl_swizzle {
1665    enum isl_channel_select r:4;
1666    enum isl_channel_select g:4;
1667    enum isl_channel_select b:4;
1668    enum isl_channel_select a:4;
1669 };
1670 
1671 #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \
1672       .r = ISL_CHANNEL_SELECT_##R, \
1673       .g = ISL_CHANNEL_SELECT_##G, \
1674       .b = ISL_CHANNEL_SELECT_##B, \
1675       .a = ISL_CHANNEL_SELECT_##A, \
1676    })
1677 
1678 #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA)
1679 
1680 struct isl_view {
1681    /**
1682     * Indicates the usage of the particular view
1683     *
1684     * Normally, this is one bit.  However, for a cube map texture, it
1685     * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT.
1686     */
1687    isl_surf_usage_flags_t usage;
1688 
1689    /**
1690     * The format to use in the view
1691     *
1692     * This may differ from the format of the actual isl_surf but must have
1693     * the same block size.
1694     */
1695    enum isl_format format;
1696 
1697    uint32_t base_level;
1698    uint32_t levels;
1699 
1700    /**
1701     * Base array layer
1702     *
1703     * For cube maps, both base_array_layer and array_len should be
1704     * specified in terms of 2-D layers and must be a multiple of 6.
1705     *
1706     * 3-D textures are effectively treated as 2-D arrays when used as a
1707     * storage image or render target.  If `usage` contains
1708     * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then
1709     * base_array_layer and array_len are applied.  If the surface is only used
1710     * for texturing, they are ignored.
1711     */
1712    uint32_t base_array_layer;
1713 
1714    /**
1715     * Array Length
1716     *
1717     * Indicates the number of array elements starting at  Base Array Layer.
1718     */
1719    uint32_t array_len;
1720 
1721    /**
1722     * Minimum LOD
1723     *
1724     * Similar to sampler minimum LOD, the computed LOD is clamped to be at
1725     * least min_lod_clamp.
1726     */
1727    float min_lod_clamp;
1728 
1729    struct isl_swizzle swizzle;
1730 };
1731 
1732 union isl_color_value {
1733    float f32[4];
1734    uint32_t u32[4];
1735    int32_t i32[4];
1736 };
1737 
1738 struct isl_surf_fill_state_info {
1739    const struct isl_surf *surf;
1740    const struct isl_view *view;
1741 
1742    /**
1743     * The address of the surface in GPU memory.
1744     */
1745    uint64_t address;
1746 
1747    /**
1748     * The Memory Object Control state for the filled surface state.
1749     *
1750     * The exact format of this value depends on hardware generation.
1751     */
1752    uint32_t mocs;
1753 
1754    /**
1755     * The auxiliary surface or NULL if no auxiliary surface is to be used.
1756     */
1757    const struct isl_surf *aux_surf;
1758    enum isl_aux_usage aux_usage;
1759    uint64_t aux_address;
1760 
1761    /**
1762     * The format to use for decoding media compression.
1763     *
1764     * Used together with the surface format.
1765     */
1766    enum isl_format mc_format;
1767 
1768    /**
1769     * The clear color for this surface
1770     *
1771     * Valid values depend on hardware generation.
1772     */
1773    union isl_color_value clear_color;
1774 
1775    /**
1776     * Send only the clear value address
1777     *
1778     * If set, we only pass the clear address to the GPU and it will fetch it
1779     * from wherever it is.
1780     */
1781    bool use_clear_address;
1782    uint64_t clear_address;
1783 
1784    /**
1785     * Surface write disables for gfx4-5
1786     */
1787    isl_channel_mask_t write_disables;
1788 
1789    /**
1790     * blend enable for gfx4-5
1791     */
1792    bool blend_enable;
1793 
1794    /* Intra-tile offset */
1795    uint16_t x_offset_sa, y_offset_sa;
1796 
1797    /**
1798     * Robust image access enabled
1799     *
1800     * This is used to turn off a performance workaround.
1801     */
1802    bool robust_image_access;
1803 };
1804 
1805 struct isl_buffer_fill_state_info {
1806    /**
1807     * The address of the surface in GPU memory.
1808     */
1809    uint64_t address;
1810 
1811    /**
1812     * The size of the buffer
1813     */
1814    uint64_t size_B;
1815 
1816    /**
1817     * The Memory Object Control state for the filled surface state.
1818     *
1819     * The exact format of this value depends on hardware generation.
1820     */
1821    uint32_t mocs;
1822 
1823    /**
1824     * The format to use in the surface state
1825     *
1826     * This may differ from the format of the actual isl_surf but have the
1827     * same block size.
1828     */
1829    enum isl_format format;
1830 
1831    /**
1832     * The swizzle to use in the surface state
1833     */
1834    struct isl_swizzle swizzle;
1835 
1836    uint32_t stride_B;
1837 
1838    bool is_scratch;
1839 };
1840 
1841 struct isl_depth_stencil_hiz_emit_info {
1842    /**
1843     * The depth surface
1844     */
1845    const struct isl_surf *depth_surf;
1846 
1847    /**
1848     * The stencil surface
1849     *
1850     * If separate stencil is not available, this must point to the same
1851     * isl_surf as depth_surf.
1852     */
1853    const struct isl_surf *stencil_surf;
1854 
1855    /**
1856     * The view into the depth and stencil surfaces.
1857     *
1858     * This view applies to both surfaces simultaneously.
1859     */
1860    const struct isl_view *view;
1861 
1862    /**
1863     * The address of the depth surface in GPU memory
1864     */
1865    uint64_t depth_address;
1866 
1867    /**
1868     * The address of the stencil surface in GPU memory
1869     *
1870     * If separate stencil is not available, this must have the same value as
1871     * depth_address.
1872     */
1873    uint64_t stencil_address;
1874 
1875    /**
1876     * The Memory Object Control state for depth and stencil buffers
1877     *
1878     * Both depth and stencil will get the same MOCS value.  The exact format
1879     * of this value depends on hardware generation.
1880     */
1881    uint32_t mocs;
1882 
1883    /**
1884     * The HiZ surface or NULL if HiZ is disabled.
1885     */
1886    const struct isl_surf *hiz_surf;
1887    enum isl_aux_usage hiz_usage;
1888    uint64_t hiz_address;
1889 
1890    /**
1891     * The depth clear value
1892     */
1893    float depth_clear_value;
1894 
1895    /**
1896     * Track stencil aux usage for Gen >= 12
1897     */
1898    enum isl_aux_usage stencil_aux_usage;
1899 };
1900 
1901 struct isl_null_fill_state_info {
1902    struct isl_extent3d size;
1903    uint32_t levels;
1904    uint32_t minimum_array_element;
1905 };
1906 
1907 struct isl_cpb_emit_info {
1908    /**
1909     * The coarse pixel shading control surface.
1910     */
1911    const struct isl_surf *surf;
1912 
1913    /**
1914     * The view into the control surface.
1915     */
1916    const struct isl_view *view;
1917 
1918    /**
1919     * The address of the control surface in GPU memory.
1920     */
1921    uint64_t address;
1922 
1923    /**
1924     * The Memory Object Control state for the surface.
1925     */
1926    uint32_t mocs;
1927 };
1928 
1929 /*
1930  * Image metadata structure as laid out in the shader parameter
1931  * buffer.  Entries have to be 16B-aligned for the vec4 back-end to be
1932  * able to use them.  That's okay because the padding and any unused
1933  * entries [most of them except when we're doing untyped surface
1934  * access] will be removed by the uniform packing pass.
1935  */
1936 #define ISL_IMAGE_PARAM_OFFSET_OFFSET           0
1937 #define ISL_IMAGE_PARAM_SIZE_OFFSET             4
1938 #define ISL_IMAGE_PARAM_STRIDE_OFFSET           8
1939 #define ISL_IMAGE_PARAM_TILING_OFFSET           12
1940 #define ISL_IMAGE_PARAM_SWIZZLING_OFFSET        16
1941 #define ISL_IMAGE_PARAM_SIZE                    20
1942 
1943 struct isl_image_param {
1944    /** Offset applied to the X and Y surface coordinates. */
1945    uint32_t offset[2];
1946 
1947    /** Surface X, Y and Z dimensions. */
1948    uint32_t size[3];
1949 
1950    /** X-stride in bytes, Y-stride in pixels, horizontal slice stride in
1951     * pixels, vertical slice stride in pixels.
1952     */
1953    uint32_t stride[4];
1954 
1955    /** Log2 of the tiling modulus in the X, Y and Z dimension. */
1956    uint32_t tiling[3];
1957 
1958    /**
1959     * Right shift to apply for bit 6 address swizzling.  Two different
1960     * swizzles can be specified and will be applied one after the other.  The
1961     * resulting address will be:
1962     *
1963     *  addr' = addr ^ ((1 << 6) & ((addr >> swizzling[0]) ^
1964     *                              (addr >> swizzling[1])))
1965     *
1966     * Use \c 0xff if any of the swizzles is not required.
1967     */
1968    uint32_t swizzling[2];
1969 };
1970 
1971 extern const struct isl_format_layout isl_format_layouts[];
1972 extern const char isl_format_names[];
1973 extern const uint16_t isl_format_name_offsets[];
1974 
1975 void
1976 isl_device_init(struct isl_device *dev,
1977                 const struct intel_device_info *info);
1978 
1979 isl_sample_count_mask_t ATTRIBUTE_CONST
1980 isl_device_get_sample_counts(const struct isl_device *dev);
1981 
1982 /**
1983  * :returns: The isl_format_layout for the given isl_format
1984  */
1985 static inline const struct isl_format_layout * ATTRIBUTE_CONST
isl_format_get_layout(enum isl_format fmt)1986 isl_format_get_layout(enum isl_format fmt)
1987 {
1988    assert(fmt != ISL_FORMAT_UNSUPPORTED);
1989    assert(fmt < ISL_NUM_FORMATS);
1990    return &isl_format_layouts[fmt];
1991 }
1992 
1993 bool isl_format_is_valid(enum isl_format);
1994 
1995 static inline const char * ATTRIBUTE_CONST
isl_format_get_name(enum isl_format fmt)1996 isl_format_get_name(enum isl_format fmt)
1997 {
1998    assert(fmt != ISL_FORMAT_UNSUPPORTED);
1999    assert(fmt < ISL_NUM_FORMATS);
2000    return isl_format_names + isl_format_name_offsets[fmt];
2001 }
2002 
2003 static inline const char * ATTRIBUTE_CONST
isl_format_get_short_name(enum isl_format fmt)2004 isl_format_get_short_name(enum isl_format fmt)
2005 {
2006    return isl_format_get_name(fmt) + 11 /* ISL_FORMAT_ */;
2007 }
2008 
2009 /***/
2010 enum isl_format isl_format_for_pipe_format(enum pipe_format pf);
2011 
2012 /***/
2013 bool isl_format_supports_rendering(const struct intel_device_info *devinfo,
2014                                    enum isl_format format);
2015 /***/
2016 bool isl_format_supports_alpha_blending(const struct intel_device_info *devinfo,
2017                                         enum isl_format format);
2018 /***/
2019 bool isl_format_supports_sampling(const struct intel_device_info *devinfo,
2020                                   enum isl_format format);
2021 /***/
2022 bool isl_format_supports_filtering(const struct intel_device_info *devinfo,
2023                                    enum isl_format format);
2024 /***/
2025 bool isl_format_supports_vertex_fetch(const struct intel_device_info *devinfo,
2026                                       enum isl_format format);
2027 /***/
2028 bool isl_format_supports_typed_writes(const struct intel_device_info *devinfo,
2029                                       enum isl_format format);
2030 bool isl_format_supports_typed_reads(const struct intel_device_info *devinfo,
2031                                      enum isl_format format);
2032 bool isl_format_supports_ccs_d(const struct intel_device_info *devinfo,
2033                                enum isl_format format);
2034 bool isl_format_supports_ccs_e(const struct intel_device_info *devinfo,
2035                                enum isl_format format);
2036 /***/
2037 bool isl_format_supports_multisampling(const struct intel_device_info *devinfo,
2038                                        enum isl_format format);
2039 bool isl_format_supports_typed_atomics(const struct intel_device_info *devinfo,
2040                                        enum isl_format fmt);
2041 
2042 bool isl_formats_are_ccs_e_compatible(const struct intel_device_info *devinfo,
2043                                       enum isl_format format1,
2044                                       enum isl_format format2);
2045 uint8_t isl_format_get_aux_map_encoding(enum isl_format format);
2046 uint8_t isl_get_render_compression_format(enum isl_format format);
2047 
2048 bool isl_formats_have_same_bits_per_channel(enum isl_format format1,
2049                                             enum isl_format format2);
2050 
2051 bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2052 bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2053 bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2054 bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2055 bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2056 bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST;
2057 
2058 static inline bool
isl_format_has_normalized_channel(enum isl_format fmt)2059 isl_format_has_normalized_channel(enum isl_format fmt)
2060 {
2061    return isl_format_has_unorm_channel(fmt) ||
2062           isl_format_has_snorm_channel(fmt);
2063 }
2064 
2065 static inline bool
isl_format_has_float_channel(enum isl_format fmt)2066 isl_format_has_float_channel(enum isl_format fmt)
2067 {
2068    return isl_format_has_ufloat_channel(fmt) ||
2069           isl_format_has_sfloat_channel(fmt);
2070 }
2071 
2072 static inline bool
isl_format_has_int_channel(enum isl_format fmt)2073 isl_format_has_int_channel(enum isl_format fmt)
2074 {
2075    return isl_format_has_uint_channel(fmt) ||
2076           isl_format_has_sint_channel(fmt);
2077 }
2078 
2079 bool isl_format_has_color_component(enum isl_format fmt,
2080                                     int component) ATTRIBUTE_CONST;
2081 
2082 unsigned isl_format_get_num_channels(enum isl_format fmt);
2083 
2084 uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil);
2085 
2086 static inline bool
isl_format_is_compressed(enum isl_format fmt)2087 isl_format_is_compressed(enum isl_format fmt)
2088 {
2089    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2090 
2091    return fmtl->txc != ISL_TXC_NONE;
2092 }
2093 
2094 static inline bool
isl_format_has_bc_compression(enum isl_format fmt)2095 isl_format_has_bc_compression(enum isl_format fmt)
2096 {
2097    switch (isl_format_get_layout(fmt)->txc) {
2098    case ISL_TXC_DXT1:
2099    case ISL_TXC_DXT3:
2100    case ISL_TXC_DXT5:
2101       return true;
2102    case ISL_TXC_NONE:
2103    case ISL_TXC_FXT1:
2104    case ISL_TXC_RGTC1:
2105    case ISL_TXC_RGTC2:
2106    case ISL_TXC_BPTC:
2107    case ISL_TXC_ETC1:
2108    case ISL_TXC_ETC2:
2109    case ISL_TXC_ASTC:
2110       return false;
2111 
2112    case ISL_TXC_HIZ:
2113    case ISL_TXC_MCS:
2114    case ISL_TXC_CCS:
2115       unreachable("Should not be called on an aux surface");
2116    }
2117 
2118    unreachable("bad texture compression mode");
2119    return false;
2120 }
2121 
2122 static inline bool
isl_format_is_mcs(enum isl_format fmt)2123 isl_format_is_mcs(enum isl_format fmt)
2124 {
2125    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2126 
2127    return fmtl->txc == ISL_TXC_MCS;
2128 }
2129 
2130 static inline bool
isl_format_is_hiz(enum isl_format fmt)2131 isl_format_is_hiz(enum isl_format fmt)
2132 {
2133    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2134 
2135    return fmtl->txc == ISL_TXC_HIZ;
2136 }
2137 
2138 static inline bool
isl_format_is_planar(enum isl_format fmt)2139 isl_format_is_planar(enum isl_format fmt)
2140 {
2141    return fmt == ISL_FORMAT_PLANAR_420_8 ||
2142           fmt == ISL_FORMAT_PLANAR_420_10 ||
2143           fmt == ISL_FORMAT_PLANAR_420_12 ||
2144           fmt == ISL_FORMAT_PLANAR_420_16;
2145 }
2146 
2147 static inline bool
isl_format_is_yuv(enum isl_format fmt)2148 isl_format_is_yuv(enum isl_format fmt)
2149 {
2150    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2151 
2152    return fmtl->colorspace == ISL_COLORSPACE_YUV;
2153 }
2154 
2155 static inline bool
isl_format_block_is_1x1x1(enum isl_format fmt)2156 isl_format_block_is_1x1x1(enum isl_format fmt)
2157 {
2158    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2159 
2160    return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1;
2161 }
2162 
2163 static inline bool
isl_format_is_srgb(enum isl_format fmt)2164 isl_format_is_srgb(enum isl_format fmt)
2165 {
2166    return isl_format_get_layout(fmt)->colorspace == ISL_COLORSPACE_SRGB;
2167 }
2168 
2169 enum isl_format isl_format_srgb_to_linear(enum isl_format fmt);
2170 
2171 static inline bool
isl_format_is_rgb(enum isl_format fmt)2172 isl_format_is_rgb(enum isl_format fmt)
2173 {
2174    if (isl_format_is_yuv(fmt))
2175       return false;
2176 
2177    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2178 
2179    return fmtl->channels.r.bits > 0 &&
2180           fmtl->channels.g.bits > 0 &&
2181           fmtl->channels.b.bits > 0 &&
2182           fmtl->channels.a.bits == 0;
2183 }
2184 
2185 static inline bool
isl_format_is_rgbx(enum isl_format fmt)2186 isl_format_is_rgbx(enum isl_format fmt)
2187 {
2188    const struct isl_format_layout *fmtl = isl_format_get_layout(fmt);
2189 
2190    return fmtl->channels.r.bits > 0 &&
2191           fmtl->channels.g.bits > 0 &&
2192           fmtl->channels.b.bits > 0 &&
2193           fmtl->channels.a.bits > 0 &&
2194           fmtl->channels.a.type == ISL_VOID;
2195 }
2196 
2197 enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
2198 enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST;
2199 enum isl_format isl_format_rgbx_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST;
2200 
2201 bool isl_format_support_sampler_route_to_lsc(enum isl_format fmt);
2202 
2203 union isl_color_value
2204 isl_color_value_swizzle(union isl_color_value src,
2205                         struct isl_swizzle swizzle,
2206                         bool is_float);
2207 
2208 union isl_color_value
2209 isl_color_value_swizzle_inv(union isl_color_value src,
2210                             struct isl_swizzle swizzle);
2211 
2212 void isl_color_value_pack(const union isl_color_value *value,
2213                           enum isl_format format,
2214                           uint32_t *data_out);
2215 void isl_color_value_unpack(union isl_color_value *value,
2216                             enum isl_format format,
2217                             const uint32_t *data_in);
2218 
2219 bool isl_is_storage_image_format(const struct intel_device_info *devinfo,
2220                                  enum isl_format fmt);
2221 
2222 enum isl_format
2223 isl_lower_storage_image_format(const struct intel_device_info *devinfo,
2224                                enum isl_format fmt);
2225 
2226 /* Returns true if this hardware supports typed load/store on a format with
2227  * the same size as the given format.
2228  */
2229 bool
2230 isl_has_matching_typed_storage_image_format(const struct intel_device_info *devinfo,
2231                                             enum isl_format fmt);
2232 
2233 void
2234 isl_tiling_get_info(enum isl_tiling tiling,
2235                     enum isl_surf_dim dim,
2236                     enum isl_msaa_layout msaa_layout,
2237                     uint32_t format_bpb,
2238                     uint32_t samples,
2239                     struct isl_tile_info *tile_info);
2240 
2241 static inline enum isl_tiling
isl_tiling_flag_to_enum(isl_tiling_flags_t flag)2242 isl_tiling_flag_to_enum(isl_tiling_flags_t flag)
2243 {
2244    assert(__builtin_popcount(flag) == 1);
2245    return (enum isl_tiling) (__builtin_ffs(flag) - 1);
2246 }
2247 
2248 static inline bool
isl_tiling_is_any_y(enum isl_tiling tiling)2249 isl_tiling_is_any_y(enum isl_tiling tiling)
2250 {
2251    return (1u << tiling) & ISL_TILING_ANY_Y_MASK;
2252 }
2253 
2254 static inline bool
isl_tiling_is_std_y(enum isl_tiling tiling)2255 isl_tiling_is_std_y(enum isl_tiling tiling)
2256 {
2257    return (1u << tiling) & ISL_TILING_STD_Y_MASK;
2258 }
2259 
2260 static inline bool
isl_tiling_is_64(enum isl_tiling tiling)2261 isl_tiling_is_64(enum isl_tiling tiling)
2262 {
2263    return (1u << tiling) & ISL_TILING_STD_64_MASK;
2264 }
2265 
2266 uint32_t
2267 isl_tiling_to_i915_tiling(enum isl_tiling tiling);
2268 
2269 enum isl_tiling
2270 isl_tiling_from_i915_tiling(uint32_t tiling);
2271 
2272 /**
2273  * Return an isl_aux_op needed to enable an access to occur in an
2274  * isl_aux_state suitable for the isl_aux_usage.
2275  *
2276  * .. note::
2277  *    If the access will invalidate the main surface, this function should not be
2278  *    called and the isl_aux_op of NONE should be used instead. Otherwise, an
2279  *    extra (but still lossless) ambiguate may occur.
2280  *
2281  * :invariant: initial_state is possible with an isl_aux_usage compatible with
2282  *             the given usage. Two usages are compatible if it's possible to
2283  *             switch between them (e.g. CCS_E <-> CCS_D).
2284  * :invariant: fast_clear is false if the aux doesn't support fast clears.
2285  */
2286 enum isl_aux_op
2287 isl_aux_prepare_access(enum isl_aux_state initial_state,
2288                        enum isl_aux_usage usage,
2289                        bool fast_clear_supported);
2290 
2291 /**
2292  * Return the isl_aux_state entered after performing an isl_aux_op.
2293  *
2294  * :invariant: initial_state is possible with the given usage.
2295  * :invariant: op is possible with the given usage.
2296  * :invariant: op must not cause HW to read from an invalid aux.
2297  */
2298 enum isl_aux_state
2299 isl_aux_state_transition_aux_op(enum isl_aux_state initial_state,
2300                                 enum isl_aux_usage usage,
2301                                 enum isl_aux_op op);
2302 
2303 /**
2304  * Return the isl_aux_state entered after performing a write.
2305  *
2306  * .. note::
2307  *
2308  *   full_surface should be true if the write covers the entire slice. Setting
2309  *   it to false in this case will still result in a correct (but imprecise)
2310  *   aux state.
2311  *
2312  * :invariant: if usage is not ISL_AUX_USAGE_NONE, then initial_state is
2313  *            possible with the given usage.
2314  * :invariant: usage can be ISL_AUX_USAGE_NONE iff:
2315  *            * the main surface is valid, or
2316  *            * the main surface is being invalidated/replaced.
2317  */
2318 enum isl_aux_state
2319 isl_aux_state_transition_write(enum isl_aux_state initial_state,
2320                                enum isl_aux_usage usage,
2321                                bool full_surface);
2322 
2323 /***/
2324 bool
2325 isl_aux_usage_has_fast_clears(enum isl_aux_usage usage);
2326 
2327 /***/
2328 bool
2329 isl_aux_usage_has_compression(enum isl_aux_usage usage);
2330 
2331 /***/
2332 static inline bool
isl_aux_usage_has_hiz(enum isl_aux_usage usage)2333 isl_aux_usage_has_hiz(enum isl_aux_usage usage)
2334 {
2335    return usage == ISL_AUX_USAGE_HIZ ||
2336           usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
2337           usage == ISL_AUX_USAGE_HIZ_CCS;
2338 }
2339 
2340 /***/
2341 static inline bool
isl_aux_usage_has_mcs(enum isl_aux_usage usage)2342 isl_aux_usage_has_mcs(enum isl_aux_usage usage)
2343 {
2344    return usage == ISL_AUX_USAGE_MCS ||
2345           usage == ISL_AUX_USAGE_MCS_CCS;
2346 }
2347 
2348 /***/
2349 static inline bool
isl_aux_usage_has_ccs(enum isl_aux_usage usage)2350 isl_aux_usage_has_ccs(enum isl_aux_usage usage)
2351 {
2352    return usage == ISL_AUX_USAGE_CCS_D ||
2353           usage == ISL_AUX_USAGE_CCS_E ||
2354           usage == ISL_AUX_USAGE_FCV_CCS_E ||
2355           usage == ISL_AUX_USAGE_MC ||
2356           usage == ISL_AUX_USAGE_HIZ_CCS_WT ||
2357           usage == ISL_AUX_USAGE_HIZ_CCS ||
2358           usage == ISL_AUX_USAGE_MCS_CCS ||
2359           usage == ISL_AUX_USAGE_STC_CCS;
2360 }
2361 
2362 static inline bool
isl_aux_usage_has_ccs_e(enum isl_aux_usage usage)2363 isl_aux_usage_has_ccs_e(enum isl_aux_usage usage)
2364 {
2365    return usage == ISL_AUX_USAGE_CCS_E ||
2366           usage == ISL_AUX_USAGE_FCV_CCS_E;
2367 }
2368 
2369 /***/
2370 static inline bool
isl_aux_state_has_valid_primary(enum isl_aux_state state)2371 isl_aux_state_has_valid_primary(enum isl_aux_state state)
2372 {
2373    return state == ISL_AUX_STATE_RESOLVED ||
2374           state == ISL_AUX_STATE_PASS_THROUGH ||
2375           state == ISL_AUX_STATE_AUX_INVALID;
2376 }
2377 
2378 /***/
2379 static inline bool
isl_aux_state_has_valid_aux(enum isl_aux_state state)2380 isl_aux_state_has_valid_aux(enum isl_aux_state state)
2381 {
2382    return state != ISL_AUX_STATE_AUX_INVALID;
2383 }
2384 
2385 extern const struct isl_drm_modifier_info isl_drm_modifier_info_list[];
2386 
2387 #define isl_drm_modifier_info_for_each(__info) \
2388    for (const struct isl_drm_modifier_info *__info = isl_drm_modifier_info_list; \
2389         __info->modifier != DRM_FORMAT_MOD_INVALID; \
2390         ++__info)
2391 
2392 const struct isl_drm_modifier_info * ATTRIBUTE_CONST
2393 isl_drm_modifier_get_info(uint64_t modifier);
2394 
2395 static inline bool
isl_drm_modifier_has_aux(uint64_t modifier)2396 isl_drm_modifier_has_aux(uint64_t modifier)
2397 {
2398    if (modifier == DRM_FORMAT_MOD_INVALID)
2399       return false;
2400 
2401    return isl_drm_modifier_get_info(modifier)->supports_render_compression ||
2402           isl_drm_modifier_get_info(modifier)->supports_media_compression;
2403 }
2404 
2405 static inline bool
isl_drm_modifier_plane_is_clear_color(uint64_t modifier,uint32_t plane)2406 isl_drm_modifier_plane_is_clear_color(uint64_t modifier, uint32_t plane)
2407 {
2408    if (modifier == DRM_FORMAT_MOD_INVALID)
2409       return false;
2410 
2411    ASSERTED const struct isl_drm_modifier_info *mod_info =
2412       isl_drm_modifier_get_info(modifier);
2413    assert(mod_info);
2414 
2415    switch (modifier) {
2416    case I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC:
2417    case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC:
2418       assert(mod_info->supports_clear_color);
2419       return plane == 2;
2420    case I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC:
2421       assert(mod_info->supports_clear_color);
2422       return plane == 1;
2423    default:
2424       assert(!mod_info->supports_clear_color);
2425       return false;
2426    }
2427 }
2428 
2429 /** Returns the default isl_aux_state for the given modifier.
2430  *
2431  * If we have a modifier which supports compression, then the auxiliary data
2432  * could be in state other than ISL_AUX_STATE_AUX_INVALID.  In particular, it
2433  * can be in any of the following:
2434  *
2435  *  - ISL_AUX_STATE_CLEAR
2436  *  - ISL_AUX_STATE_PARTIAL_CLEAR
2437  *  - ISL_AUX_STATE_COMPRESSED_CLEAR
2438  *  - ISL_AUX_STATE_COMPRESSED_NO_CLEAR
2439  *  - ISL_AUX_STATE_RESOLVED
2440  *  - ISL_AUX_STATE_PASS_THROUGH
2441  *
2442  * If the modifier does not support fast-clears, then we are guaranteed
2443  * that the surface is at least partially resolved and the first three not
2444  * possible.  We return ISL_AUX_STATE_COMPRESSED_CLEAR if the modifier
2445  * supports fast clears and ISL_AUX_STATE_COMPRESSED_NO_CLEAR if it does not
2446  * because they are the least common denominator of the set of possible aux
2447  * states and will yield a valid interpretation of the aux data.
2448  *
2449  * For modifiers with no aux support, ISL_AUX_STATE_AUX_INVALID is returned.
2450  */
2451 static inline enum isl_aux_state
isl_drm_modifier_get_default_aux_state(uint64_t modifier)2452 isl_drm_modifier_get_default_aux_state(uint64_t modifier)
2453 {
2454    const struct isl_drm_modifier_info *mod_info =
2455       isl_drm_modifier_get_info(modifier);
2456 
2457    if (!mod_info || !isl_drm_modifier_has_aux(modifier))
2458       return ISL_AUX_STATE_AUX_INVALID;
2459 
2460    assert(mod_info->supports_render_compression !=
2461           mod_info->supports_media_compression);
2462    return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
2463                                            ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
2464 }
2465 
2466 /**
2467  * Return the modifier's score, which indicates the driver's preference for the
2468  * modifier relative to others. A higher score is better. Zero means
2469  * unsupported.
2470  *
2471  * Intended to assist selection of a modifier from an externally provided list,
2472  * such as VkImageDrmFormatModifierListCreateInfoEXT.
2473  */
2474 uint32_t
2475 isl_drm_modifier_get_score(const struct intel_device_info *devinfo,
2476                            uint64_t modifier);
2477 
2478 /* Return the number of planes used by an image with the given parameters. */
2479 uint32_t
2480 isl_drm_modifier_get_plane_count(const struct intel_device_info *devinfo,
2481                                  uint64_t modifier,
2482                                  uint32_t fmt_planes);
2483 
2484 struct isl_extent2d ATTRIBUTE_CONST
2485 isl_get_interleaved_msaa_px_size_sa(uint32_t samples);
2486 
2487 static inline bool
isl_surf_usage_is_display(isl_surf_usage_flags_t usage)2488 isl_surf_usage_is_display(isl_surf_usage_flags_t usage)
2489 {
2490    return usage & ISL_SURF_USAGE_DISPLAY_BIT;
2491 }
2492 
2493 static inline bool
isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)2494 isl_surf_usage_is_depth(isl_surf_usage_flags_t usage)
2495 {
2496    return usage & ISL_SURF_USAGE_DEPTH_BIT;
2497 }
2498 
2499 static inline bool
isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)2500 isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage)
2501 {
2502    return usage & ISL_SURF_USAGE_STENCIL_BIT;
2503 }
2504 
2505 static inline bool
isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)2506 isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage)
2507 {
2508    return (usage & ISL_SURF_USAGE_DEPTH_BIT) &&
2509           (usage & ISL_SURF_USAGE_STENCIL_BIT);
2510 }
2511 
2512 static inline bool
isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)2513 isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage)
2514 {
2515    return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT);
2516 }
2517 
2518 static inline bool
isl_surf_usage_is_cpb(isl_surf_usage_flags_t usage)2519 isl_surf_usage_is_cpb(isl_surf_usage_flags_t usage)
2520 {
2521    return usage & ISL_SURF_USAGE_CPB_BIT;
2522 }
2523 
2524 static inline bool
isl_surf_info_is_z16(const struct isl_surf_init_info * info)2525 isl_surf_info_is_z16(const struct isl_surf_init_info *info)
2526 {
2527    return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
2528           (info->format == ISL_FORMAT_R16_UNORM);
2529 }
2530 
2531 static inline bool
isl_surf_info_is_z32_float(const struct isl_surf_init_info * info)2532 isl_surf_info_is_z32_float(const struct isl_surf_init_info *info)
2533 {
2534    return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) &&
2535           (info->format == ISL_FORMAT_R32_FLOAT);
2536 }
2537 
2538 static inline struct isl_extent2d
isl_extent2d(uint32_t width,uint32_t height)2539 isl_extent2d(uint32_t width, uint32_t height)
2540 {
2541    struct isl_extent2d e = { { 0 } };
2542 
2543    e.width = width;
2544    e.height = height;
2545 
2546    return e;
2547 }
2548 
2549 static inline struct isl_extent3d
isl_extent3d(uint32_t width,uint32_t height,uint32_t depth)2550 isl_extent3d(uint32_t width, uint32_t height, uint32_t depth)
2551 {
2552    struct isl_extent3d e = { { 0 } };
2553 
2554    e.width = width;
2555    e.height = height;
2556    e.depth = depth;
2557 
2558    return e;
2559 }
2560 
2561 static inline struct isl_extent4d
isl_extent4d(uint32_t width,uint32_t height,uint32_t depth,uint32_t array_len)2562 isl_extent4d(uint32_t width, uint32_t height, uint32_t depth,
2563              uint32_t array_len)
2564 {
2565    struct isl_extent4d e = { { 0 } };
2566 
2567    e.width = width;
2568    e.height = height;
2569    e.depth = depth;
2570    e.array_len = array_len;
2571 
2572    return e;
2573 }
2574 
2575 bool isl_color_value_is_zero(union isl_color_value value,
2576                              enum isl_format format);
2577 
2578 bool isl_color_value_is_zero_one(union isl_color_value value,
2579                                  enum isl_format format);
2580 
2581 static inline bool
isl_swizzle_is_identity(struct isl_swizzle swizzle)2582 isl_swizzle_is_identity(struct isl_swizzle swizzle)
2583 {
2584    return swizzle.r == ISL_CHANNEL_SELECT_RED &&
2585           swizzle.g == ISL_CHANNEL_SELECT_GREEN &&
2586           swizzle.b == ISL_CHANNEL_SELECT_BLUE &&
2587           swizzle.a == ISL_CHANNEL_SELECT_ALPHA;
2588 }
2589 
2590 static inline bool
isl_swizzle_is_identity_for_format(enum isl_format format,struct isl_swizzle swizzle)2591 isl_swizzle_is_identity_for_format(enum isl_format format,
2592                                    struct isl_swizzle swizzle)
2593 {
2594    const struct isl_format_layout *layout = isl_format_get_layout(format);
2595 
2596 #define channel_id_or_zero(name, ID)                 \
2597    (swizzle.name == ISL_CHANNEL_SELECT_##ID ||       \
2598     layout->channels.name.bits == 0)
2599    return channel_id_or_zero(r, RED) &&
2600           channel_id_or_zero(g, GREEN) &&
2601           channel_id_or_zero(b, BLUE) &&
2602           channel_id_or_zero(a, ALPHA);
2603 #undef channel_id_or_zero
2604 }
2605 
2606 bool
2607 isl_swizzle_supports_rendering(const struct intel_device_info *devinfo,
2608                                struct isl_swizzle swizzle);
2609 
2610 struct isl_swizzle
2611 isl_swizzle_compose(struct isl_swizzle first, struct isl_swizzle second);
2612 struct isl_swizzle
2613 isl_swizzle_invert(struct isl_swizzle swizzle);
2614 
2615 uint32_t isl_mocs(const struct isl_device *dev, isl_surf_usage_flags_t usage,
2616                   bool external);
2617 
2618 #define isl_surf_init(dev, surf, ...) \
2619    isl_surf_init_s((dev), (surf), \
2620                    &(struct isl_surf_init_info) {  __VA_ARGS__ });
2621 
2622 bool
2623 isl_surf_init_s(const struct isl_device *dev,
2624                 struct isl_surf *surf,
2625                 const struct isl_surf_init_info *restrict info);
2626 
2627 void
2628 isl_surf_get_tile_info(const struct isl_surf *surf,
2629                        struct isl_tile_info *tile_info);
2630 
2631 /**
2632  * :param surf:                 |in|  The main surface
2633  * :param hiz_or_mcs_surf:      |in|  HiZ or MCS surface associated with the main
2634  *                                    surface
2635  * :returns: true if the given surface supports CCS.
2636  */
2637 bool
2638 isl_surf_supports_ccs(const struct isl_device *dev,
2639                       const struct isl_surf *surf,
2640                       const struct isl_surf *hiz_or_mcs_surf);
2641 
2642 /** Constructs a HiZ surface for the given main surface.
2643  *
2644  * :param surf:         |in|  The main surface
2645  * :param hiz_surf:     |out| The HiZ surface to populate on success
2646  * :returns: false if the main surface cannot support HiZ.
2647  */
2648 bool
2649 isl_surf_get_hiz_surf(const struct isl_device *dev,
2650                       const struct isl_surf *surf,
2651                       struct isl_surf *hiz_surf);
2652 
2653 /** Constructs a MCS for the given main surface.
2654  *
2655  * :param surf:         |in|  The main surface
2656  * :param mcs_surf:     |out| The MCS to populate on success
2657  * :returns: false if the main surface cannot support MCS.
2658  */
2659 bool
2660 isl_surf_get_mcs_surf(const struct isl_device *dev,
2661                       const struct isl_surf *surf,
2662                       struct isl_surf *mcs_surf);
2663 
2664 /** Constructs a CCS for the given main surface.
2665  *
2666  * .. note::
2667  *
2668  *   Starting with Tigerlake, the CCS is no longer really a surface.  It's not
2669  *   laid out as an independent surface and isn't referenced by
2670  *   RENDER_SURFACE_STATE::"Auxiliary Surface Base Address" like other
2671  *   auxiliary compression surfaces.  It's a blob of memory that's a 1:256
2672  *   scale-down from the main surfaced that's attached side-band via a second
2673  *   set of page tables.
2674  *
2675  * In spite of this, it's sometimes useful to think of it as being a linear
2676  * buffer-like surface, at least for the purposes of allocation.  When invoked
2677  * on Tigerlake or later, this function still works and produces such a linear
2678  * surface.
2679  *
2680  * :param surf:                 |in|  The main surface
2681  * :param hiz_or_mcs_surf:      |in|  HiZ or MCS surface associated with the main
2682  *                                    surface
2683  * :param ccs_surf:             |out| The CCS to populate on success
2684  * :param row_pitch_B:                The row pitch for the CCS in bytes or 0 if
2685  *                                    ISL should calculate the row pitch.
2686  * :returns: false if the main surface cannot support CCS.
2687  */
2688 bool
2689 isl_surf_get_ccs_surf(const struct isl_device *dev,
2690                       const struct isl_surf *surf,
2691                       const struct isl_surf *hiz_or_mcs_surf,
2692                       struct isl_surf *ccs_surf,
2693                       uint32_t row_pitch_B);
2694 
2695 #define isl_surf_fill_state(dev, state, ...) \
2696    (dev)->surf_fill_state_s(dev, state, \
2697                          &(struct isl_surf_fill_state_info) {  __VA_ARGS__ });
2698 
2699 #define isl_surf_fill_state_s(dev, state, info) \
2700    (dev)->surf_fill_state_s(dev, state, info)
2701 
2702 #define isl_buffer_fill_state(dev, state, ...) \
2703    (dev)->buffer_fill_state_s(dev, state, \
2704                               &(struct isl_buffer_fill_state_info) {  __VA_ARGS__ });
2705 
2706 #define isl_buffer_fill_state_s(dev, state, info) \
2707    (dev)->buffer_fill_state_s(dev, state, info);
2708 
2709 #define isl_null_fill_state(dev, state, ...) \
2710    (dev)->null_fill_state_s(dev, state, \
2711                             &(struct isl_null_fill_state_info) {  __VA_ARGS__ });
2712 
2713 #define isl_null_fill_state_s(dev, state, info) \
2714    (dev)->null_fill_state_s(dev, state, info);
2715 
2716 #define isl_emit_depth_stencil_hiz(dev, batch, ...) \
2717    (dev)->emit_depth_stencil_hiz_s(dev, batch, \
2718                                    &(struct isl_depth_stencil_hiz_emit_info) {  __VA_ARGS__ })
2719 
2720 #define isl_emit_depth_stencil_hiz_s(dev, batch, info) \
2721    (dev)->emit_depth_stencil_hiz_s(dev, batch, info)
2722 
2723 #define isl_emit_cpb_control_s(dev, batch, info) \
2724    (dev)->emit_cpb_control_s(dev, batch, info)
2725 
2726 void
2727 isl_surf_fill_image_param(const struct isl_device *dev,
2728                           struct isl_image_param *param,
2729                           const struct isl_surf *surf,
2730                           const struct isl_view *view);
2731 
2732 void
2733 isl_buffer_fill_image_param(const struct isl_device *dev,
2734                             struct isl_image_param *param,
2735                             enum isl_format format,
2736                             uint64_t size);
2737 
2738 /**
2739  * Alignment of the upper-left sample of each subimage, in units of surface
2740  * elements.
2741  */
2742 static inline struct isl_extent3d
isl_surf_get_image_alignment_el(const struct isl_surf * surf)2743 isl_surf_get_image_alignment_el(const struct isl_surf *surf)
2744 {
2745    return surf->image_alignment_el;
2746 }
2747 
2748 /**
2749  * Alignment of the upper-left sample of each subimage, in units of surface
2750  * samples.
2751  */
2752 static inline struct isl_extent3d
isl_surf_get_image_alignment_sa(const struct isl_surf * surf)2753 isl_surf_get_image_alignment_sa(const struct isl_surf *surf)
2754 {
2755    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2756 
2757    return isl_extent3d(fmtl->bw * surf->image_alignment_el.w,
2758                        fmtl->bh * surf->image_alignment_el.h,
2759                        fmtl->bd * surf->image_alignment_el.d);
2760 }
2761 
2762 /**
2763  * Logical extent of level 0 in units of surface elements.
2764  */
2765 static inline struct isl_extent4d
isl_surf_get_logical_level0_el(const struct isl_surf * surf)2766 isl_surf_get_logical_level0_el(const struct isl_surf *surf)
2767 {
2768    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2769 
2770    return isl_extent4d(DIV_ROUND_UP(surf->logical_level0_px.w, fmtl->bw),
2771                        DIV_ROUND_UP(surf->logical_level0_px.h, fmtl->bh),
2772                        DIV_ROUND_UP(surf->logical_level0_px.d, fmtl->bd),
2773                        surf->logical_level0_px.a);
2774 }
2775 
2776 /**
2777  * Physical extent of level 0 in units of surface elements.
2778  */
2779 static inline struct isl_extent4d
isl_surf_get_phys_level0_el(const struct isl_surf * surf)2780 isl_surf_get_phys_level0_el(const struct isl_surf *surf)
2781 {
2782    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2783 
2784    return isl_extent4d(DIV_ROUND_UP(surf->phys_level0_sa.w, fmtl->bw),
2785                        DIV_ROUND_UP(surf->phys_level0_sa.h, fmtl->bh),
2786                        DIV_ROUND_UP(surf->phys_level0_sa.d, fmtl->bd),
2787                        surf->phys_level0_sa.a);
2788 }
2789 
2790 /**
2791  * Pitch between vertically adjacent surface elements, in bytes.
2792  */
2793 static inline uint32_t
isl_surf_get_row_pitch_B(const struct isl_surf * surf)2794 isl_surf_get_row_pitch_B(const struct isl_surf *surf)
2795 {
2796    return surf->row_pitch_B;
2797 }
2798 
2799 /**
2800  * Pitch between vertically adjacent surface elements, in units of surface elements.
2801  */
2802 static inline uint32_t
isl_surf_get_row_pitch_el(const struct isl_surf * surf)2803 isl_surf_get_row_pitch_el(const struct isl_surf *surf)
2804 {
2805    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2806 
2807    assert(surf->row_pitch_B % (fmtl->bpb / 8) == 0);
2808    return surf->row_pitch_B / (fmtl->bpb / 8);
2809 }
2810 
2811 /**
2812  * Pitch between physical array slices, in rows of surface elements.
2813  */
2814 static inline uint32_t
isl_surf_get_array_pitch_el_rows(const struct isl_surf * surf)2815 isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf)
2816 {
2817    return surf->array_pitch_el_rows;
2818 }
2819 
2820 /**
2821  * Pitch between physical array slices, in units of surface elements.
2822  */
2823 static inline uint32_t
isl_surf_get_array_pitch_el(const struct isl_surf * surf)2824 isl_surf_get_array_pitch_el(const struct isl_surf *surf)
2825 {
2826    return isl_surf_get_array_pitch_el_rows(surf) *
2827           isl_surf_get_row_pitch_el(surf);
2828 }
2829 
2830 /**
2831  * Pitch between physical array slices, in rows of surface samples.
2832  */
2833 static inline uint32_t
isl_surf_get_array_pitch_sa_rows(const struct isl_surf * surf)2834 isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf)
2835 {
2836    const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
2837    return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf);
2838 }
2839 
2840 /**
2841  * Pitch between physical array slices, in bytes.
2842  */
2843 static inline uint32_t
isl_surf_get_array_pitch(const struct isl_surf * surf)2844 isl_surf_get_array_pitch(const struct isl_surf *surf)
2845 {
2846    return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch_B;
2847 }
2848 
2849 /**
2850  * Calculate the offset, in units of surface samples, to a subimage in the
2851  * surface.
2852  *
2853  * :invariant: level < surface levels
2854  * :invariant: logical_array_layer < logical array length of surface
2855  * :invariant: logical_z_offset_px < logical depth of surface at level
2856  */
2857 void
2858 isl_surf_get_image_offset_sa(const struct isl_surf *surf,
2859                              uint32_t level,
2860                              uint32_t logical_array_layer,
2861                              uint32_t logical_z_offset_px,
2862                              uint32_t *x_offset_sa,
2863                              uint32_t *y_offset_sa,
2864                              uint32_t *z_offset_sa,
2865                              uint32_t *array_offset);
2866 
2867 /**
2868  * Calculate the offset, in units of surface elements, to a subimage in the
2869  * surface.
2870  *
2871  * :invariant: level < surface levels
2872  * :invariant: logical_array_layer < logical array length of surface
2873  * :invariant: logical_z_offset_px < logical depth of surface at level
2874  */
2875 void
2876 isl_surf_get_image_offset_el(const struct isl_surf *surf,
2877                              uint32_t level,
2878                              uint32_t logical_array_layer,
2879                              uint32_t logical_z_offset_px,
2880                              uint32_t *x_offset_el,
2881                              uint32_t *y_offset_el,
2882                              uint32_t *z_offset_el,
2883                              uint32_t *array_offset);
2884 
2885 /**
2886  * Calculate the offset, in bytes and intratile surface samples, to a
2887  * subimage in the surface.
2888  *
2889  * This is equivalent to calling isl_surf_get_image_offset_el, passing the
2890  * result to isl_tiling_get_intratile_offset_el, and converting the tile
2891  * offsets to samples.
2892  *
2893  * :invariant: level < surface levels
2894  * :invariant: logical_array_layer < logical array length of surface
2895  * :invariant: logical_z_offset_px < logical depth of surface at level
2896  */
2897 void
2898 isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf,
2899                                     uint32_t level,
2900                                     uint32_t logical_array_layer,
2901                                     uint32_t logical_z_offset_px,
2902                                     uint64_t *offset_B,
2903                                     uint32_t *x_offset_sa,
2904                                     uint32_t *y_offset_sa);
2905 
2906 /**
2907  * Calculate the offset, in bytes and intratile surface elements, to a
2908  * subimage in the surface.
2909  *
2910  * This is equivalent to calling isl_surf_get_image_offset_el, passing the
2911  * result to isl_tiling_get_intratile_offset_el.
2912  *
2913  * :invariant: level < surface levels
2914  * :invariant: logical_array_layer < logical array length of surface
2915  * :invariant: logical_z_offset_px < logical depth of surface at level
2916  */
2917 void
2918 isl_surf_get_image_offset_B_tile_el(const struct isl_surf *surf,
2919                                     uint32_t level,
2920                                     uint32_t logical_array_layer,
2921                                     uint32_t logical_z_offset_px,
2922                                     uint64_t *offset_B,
2923                                     uint32_t *x_offset_el,
2924                                     uint32_t *y_offset_el);
2925 
2926 /**
2927  * Calculate the range in bytes occupied by a subimage, to the nearest tile.
2928  *
2929  * The range returned will be the smallest memory range in which the give
2930  * subimage fits, rounded to even tiles.  Intel images do not usually have a
2931  * direct subimage -> range mapping so the range returned may contain data
2932  * from other sub-images.  The returned range is a half-open interval where
2933  * all of the addresses within the subimage are < end_tile_B.
2934  *
2935  * :invariant: level < surface levels
2936  * :invariant: logical_array_layer < logical array length of surface
2937  * :invariant: logical_z_offset_px < logical depth of surface at level
2938  */
2939 void
2940 isl_surf_get_image_range_B_tile(const struct isl_surf *surf,
2941                                 uint32_t level,
2942                                 uint32_t logical_array_layer,
2943                                 uint32_t logical_z_offset_px,
2944                                 uint64_t *start_tile_B,
2945                                 uint64_t *end_tile_B);
2946 
2947 /**
2948  * Create an isl_surf that represents a particular subimage in the surface.
2949  *
2950  * The newly created surface will have a single miplevel and array slice.  The
2951  * surface lives at the returned byte and intratile offsets, in samples.
2952  *
2953  * It is safe to call this function with surf == image_surf.
2954  *
2955  * :invariant: level < surface levels
2956  * :invariant: logical_array_layer < logical array length of surface
2957  * :invariant: logical_z_offset_px < logical depth of surface at level
2958  */
2959 void
2960 isl_surf_get_image_surf(const struct isl_device *dev,
2961                         const struct isl_surf *surf,
2962                         uint32_t level,
2963                         uint32_t logical_array_layer,
2964                         uint32_t logical_z_offset_px,
2965                         struct isl_surf *image_surf,
2966                         uint64_t *offset_B,
2967                         uint32_t *x_offset_sa,
2968                         uint32_t *y_offset_sa);
2969 
2970 /**
2971  * Create an isl_surf that is an uncompressed view of a compressed isl_surf
2972  *
2973  * The incoming surface must have a compressed format.  The incoming view must
2974  * be a valid view for the given surface with the exception that it's format
2975  * is an umcompressed format with the same bpb as the surface format.  The
2976  * incoming view must have isl_view::levels == 1.
2977  *
2978  * When the function returns, the resulting combination of uncompressed_surf
2979  * and uncompressed_view will be a valid view giving an uncompressed view of
2980  * the incoming surface.  Depending on tiling, uncompressed_surf may have a
2981  * different isl_surf::dim from surf and uncompressed_view may or may not have
2982  * a zero base_array_layer.  For legacy tiling (not Yf or Ys), an intratile
2983  * offset is returned in x_offset_sa and y_offset_sa.  For standard Y tilings
2984  * (Yf and Ys), x_offset_sa and y_offset_sa will be set to zero.
2985  *
2986  * It is safe to call this function with surf == uncompressed_surf and
2987  * view == uncompressed_view.
2988  */
2989 bool MUST_CHECK
2990 isl_surf_get_uncompressed_surf(const struct isl_device *dev,
2991                                const struct isl_surf *surf,
2992                                const struct isl_view *view,
2993                                struct isl_surf *uncompressed_surf,
2994                                struct isl_view *uncompressed_view,
2995                                uint64_t *offset_B,
2996                                uint32_t *x_offset_el,
2997                                uint32_t *y_offset_el);
2998 
2999 /**
3000  * Calculate the intratile offsets to a surface coordinate, in elements.
3001  *
3002  * This function takes a coordinate in global tile space and returns the byte
3003  * offset to the specific tile as well as the offset within that tile to the
3004  * given coordinate in tile space.  The returned x/y/z/array offsets are
3005  * guaranteed to lie within the tile.
3006  *
3007  * :param tiling:               |in|  The tiling of the surface
3008  * :param bpb:                  |in|  The size of the surface format in bits per
3009  *                                    block
3010  * :param array_pitch_el_rows:  |in|  The array pitch of the surface for flat 2D
3011  *                                    tilings such as ISL_TILING_Y0
3012  * :param total_x_offset_el:    |in|  The X offset in tile space, in elements
3013  * :param total_y_offset_el:    |in|  The Y offset in tile space, in elements
3014  * :param total_z_offset_el:    |in|  The Z offset in tile space, in elements
3015  * :param total_array_offset:   |in|  The array offset in tile space
3016  * :param tile_offset_B:        |out| The returned byte offset to the tile
3017  * :param x_offset_el:          |out| The X offset within the tile, in elements
3018  * :param y_offset_el:          |out| The Y offset within the tile, in elements
3019  * :param z_offset_el:          |out| The Z offset within the tile, in elements
3020  * :param array_offset:         |out| The array offset within the tile
3021  */
3022 void
3023 isl_tiling_get_intratile_offset_el(enum isl_tiling tiling,
3024                                    enum isl_surf_dim dim,
3025                                    enum isl_msaa_layout msaa_layout,
3026                                    uint32_t bpb,
3027                                    uint32_t samples,
3028                                    uint32_t row_pitch_B,
3029                                    uint32_t array_pitch_el_rows,
3030                                    uint32_t total_x_offset_el,
3031                                    uint32_t total_y_offset_el,
3032                                    uint32_t total_z_offset_el,
3033                                    uint32_t total_array_offset,
3034                                    uint64_t *tile_offset_B,
3035                                    uint32_t *x_offset_el,
3036                                    uint32_t *y_offset_el,
3037                                    uint32_t *z_offset_el,
3038                                    uint32_t *array_offset);
3039 
3040 /**
3041  * Calculate the intratile offsets to a surface coordinate, in samples.
3042  *
3043  * This function takes a coordinate in global tile space and returns the byte
3044  * offset to the specific tile as well as the offset within that tile to the
3045  * given coordinate in tile space.  The returned x/y/z/array offsets are
3046  * guaranteed to lie within the tile.
3047  *
3048  * :param tiling:               |in|  The tiling of the surface
3049  * :param bpb:                  |in|  The size of the surface format in bits per
3050  *                                    block
3051  * :param array_pitch_el_rows:  |in|  The array pitch of the surface for flat 2D
3052  *                                    tilings such as ISL_TILING_Y0
3053  * :param total_x_offset_sa:    |in|  The X offset in tile space, in samples
3054  * :param total_y_offset_sa:    |in|  The Y offset in tile space, in samples
3055  * :param total_z_offset_sa:    |in|  The Z offset in tile space, in samples
3056  * :param total_array_offset:   |in|  The array offset in tile space
3057  * :param tile_offset_B:        |out| The returned byte offset to the tile
3058  * :param x_offset_sa:          |out| The X offset within the tile, in samples
3059  * :param y_offset_sa:          |out| The Y offset within the tile, in samples
3060  * :param z_offset_sa:          |out| The Z offset within the tile, in samples
3061  * :param array_offset:         |out| The array offset within the tile
3062  */
3063 static inline void
isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,enum isl_surf_dim dim,enum isl_msaa_layout msaa_layout,enum isl_format format,uint32_t samples,uint32_t row_pitch_B,uint32_t array_pitch_el_rows,uint32_t total_x_offset_sa,uint32_t total_y_offset_sa,uint32_t total_z_offset_sa,uint32_t total_array_offset,uint64_t * tile_offset_B,uint32_t * x_offset_sa,uint32_t * y_offset_sa,uint32_t * z_offset_sa,uint32_t * array_offset)3064 isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling,
3065                                    enum isl_surf_dim dim,
3066                                    enum isl_msaa_layout msaa_layout,
3067                                    enum isl_format format,
3068                                    uint32_t samples,
3069                                    uint32_t row_pitch_B,
3070                                    uint32_t array_pitch_el_rows,
3071                                    uint32_t total_x_offset_sa,
3072                                    uint32_t total_y_offset_sa,
3073                                    uint32_t total_z_offset_sa,
3074                                    uint32_t total_array_offset,
3075                                    uint64_t *tile_offset_B,
3076                                    uint32_t *x_offset_sa,
3077                                    uint32_t *y_offset_sa,
3078                                    uint32_t *z_offset_sa,
3079                                    uint32_t *array_offset)
3080 {
3081    const struct isl_format_layout *fmtl = isl_format_get_layout(format);
3082 
3083    /* For computing the intratile offsets, we actually want a strange unit
3084     * which is samples for multisampled surfaces but elements for compressed
3085     * surfaces.
3086     */
3087    assert(total_x_offset_sa % fmtl->bw == 0);
3088    assert(total_y_offset_sa % fmtl->bh == 0);
3089    assert(total_z_offset_sa % fmtl->bd == 0);
3090    const uint32_t total_x_offset_el = total_x_offset_sa / fmtl->bw;
3091    const uint32_t total_y_offset_el = total_y_offset_sa / fmtl->bh;
3092    const uint32_t total_z_offset_el = total_z_offset_sa / fmtl->bd;
3093 
3094    isl_tiling_get_intratile_offset_el(tiling, dim, msaa_layout, fmtl->bpb,
3095                                       samples, row_pitch_B,
3096                                       array_pitch_el_rows,
3097                                       total_x_offset_el,
3098                                       total_y_offset_el,
3099                                       total_z_offset_el,
3100                                       total_array_offset,
3101                                       tile_offset_B,
3102                                       x_offset_sa, y_offset_sa,
3103                                       z_offset_sa, array_offset);
3104    *x_offset_sa *= fmtl->bw;
3105    *y_offset_sa *= fmtl->bh;
3106    *z_offset_sa *= fmtl->bd;
3107 }
3108 
3109 /**
3110  * Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat
3111  *
3112  * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT
3113  * @pre surf->format must be a valid format for depth surfaces
3114  */
3115 uint32_t
3116 isl_surf_get_depth_format(const struct isl_device *dev,
3117                           const struct isl_surf *surf);
3118 
3119 /**
3120  * Performs a copy from linear to tiled surface
3121  */
3122 void
3123 isl_memcpy_linear_to_tiled(uint32_t xt1, uint32_t xt2,
3124                            uint32_t yt1, uint32_t yt2,
3125                            char *dst, const char *src,
3126                            uint32_t dst_pitch, int32_t src_pitch,
3127                            bool has_swizzling,
3128                            enum isl_tiling tiling,
3129                            isl_memcpy_type copy_type);
3130 
3131 /**
3132  * Performs a copy from tiled to linear surface
3133  */
3134 void
3135 isl_memcpy_tiled_to_linear(uint32_t xt1, uint32_t xt2,
3136                            uint32_t yt1, uint32_t yt2,
3137                            char *dst, const char *src,
3138                            int32_t dst_pitch, uint32_t src_pitch,
3139                            bool has_swizzling,
3140                            enum isl_tiling tiling,
3141                            isl_memcpy_type copy_type);
3142 
3143 /**
3144  * Computes the tile_w (in bytes) and tile_h (in rows) of
3145  * different tiling patterns.
3146  */
3147 static inline void
isl_get_tile_dims(enum isl_tiling tiling,uint32_t cpp,uint32_t * tile_w,uint32_t * tile_h)3148 isl_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
3149                   uint32_t *tile_w, uint32_t *tile_h)
3150 {
3151    switch (tiling) {
3152    case ISL_TILING_X:
3153       *tile_w = 512;
3154       *tile_h = 8;
3155       break;
3156    case ISL_TILING_Y0:
3157       *tile_w = 128;
3158       *tile_h = 32;
3159       break;
3160    case ISL_TILING_LINEAR:
3161       *tile_w = cpp;
3162       *tile_h = 1;
3163       break;
3164    default:
3165       unreachable("not reached");
3166    }
3167 }
3168 
3169 /**
3170  * Computes masks that may be used to select the bits of the X and Y
3171  * coordinates that indicate the offset within a tile.  If the BO is untiled,
3172  * the masks are set to 0.
3173  */
3174 static inline void
isl_get_tile_masks(enum isl_tiling tiling,uint32_t cpp,uint32_t * mask_x,uint32_t * mask_y)3175 isl_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
3176                    uint32_t *mask_x, uint32_t *mask_y)
3177 {
3178    uint32_t tile_w_bytes, tile_h;
3179 
3180    isl_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
3181 
3182    *mask_x = tile_w_bytes / cpp - 1;
3183    *mask_y = tile_h - 1;
3184 }
3185 
3186 const char *
3187 isl_aux_op_to_name(enum isl_aux_op op);
3188 
3189 const char *
3190 isl_tiling_to_name(enum isl_tiling tiling);
3191 
3192 const char *
3193 isl_aux_usage_to_name(enum isl_aux_usage usage);
3194 
3195 const char *
3196 isl_aux_state_to_name(enum isl_aux_state state);
3197 
3198 #ifdef __cplusplus
3199 }
3200 #endif
3201 
3202 #endif /* ISL_H */
3203