• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 
30 #include "util/mesa-sha1.h"
31 #include "util/os_time.h"
32 #include "common/intel_l3_config.h"
33 #include "common/intel_sample_positions.h"
34 #include "compiler/brw_disasm.h"
35 #include "anv_private.h"
36 #include "compiler/brw_nir.h"
37 #include "compiler/brw_nir_rt.h"
38 #include "compiler/intel_nir.h"
39 #include "anv_nir.h"
40 #include "nir/nir_xfb_info.h"
41 #include "spirv/nir_spirv.h"
42 #include "vk_nir_convert_ycbcr.h"
43 #include "vk_nir.h"
44 #include "vk_pipeline.h"
45 #include "vk_render_pass.h"
46 #include "vk_util.h"
47 
48 struct lower_set_vtx_and_prim_count_state {
49    nir_variable *primitive_count;
50 };
51 
52 static nir_variable *
anv_nir_prim_count_store(nir_builder * b,nir_def * val)53 anv_nir_prim_count_store(nir_builder *b, nir_def *val)
54 {
55    nir_variable *primitive_count =
56          nir_variable_create(b->shader,
57                              nir_var_shader_out,
58                              glsl_uint_type(),
59                              "gl_PrimitiveCountNV");
60    primitive_count->data.location = VARYING_SLOT_PRIMITIVE_COUNT;
61    primitive_count->data.interpolation = INTERP_MODE_NONE;
62 
63    nir_def *local_invocation_index = nir_load_local_invocation_index(b);
64 
65    nir_def *cmp = nir_ieq_imm(b, local_invocation_index, 0);
66    nir_if *if_stmt = nir_push_if(b, cmp);
67    {
68       nir_deref_instr *prim_count_deref = nir_build_deref_var(b, primitive_count);
69       nir_store_deref(b, prim_count_deref, val, 1);
70    }
71    nir_pop_if(b, if_stmt);
72 
73    return primitive_count;
74 }
75 
76 static bool
anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder * b,nir_intrinsic_instr * intrin,void * data)77 anv_nir_lower_set_vtx_and_prim_count_instr(nir_builder *b,
78                                            nir_intrinsic_instr *intrin,
79                                            void *data)
80 {
81    if (intrin->intrinsic != nir_intrinsic_set_vertex_and_primitive_count)
82       return false;
83 
84    /* Detect some cases of invalid primitive count. They might lead to URB
85     * memory corruption, where workgroups overwrite each other output memory.
86     */
87    if (nir_src_is_const(intrin->src[1]) &&
88          nir_src_as_uint(intrin->src[1]) > b->shader->info.mesh.max_primitives_out) {
89       assert(!"number of primitives bigger than max specified");
90    }
91 
92    struct lower_set_vtx_and_prim_count_state *state = data;
93    /* this intrinsic should show up only once */
94    assert(state->primitive_count == NULL);
95 
96    b->cursor = nir_before_instr(&intrin->instr);
97 
98    state->primitive_count = anv_nir_prim_count_store(b, intrin->src[1].ssa);
99 
100    nir_instr_remove(&intrin->instr);
101 
102    return true;
103 }
104 
105 static bool
anv_nir_lower_set_vtx_and_prim_count(nir_shader * nir)106 anv_nir_lower_set_vtx_and_prim_count(nir_shader *nir)
107 {
108    struct lower_set_vtx_and_prim_count_state state = { NULL, };
109 
110    nir_shader_intrinsics_pass(nir, anv_nir_lower_set_vtx_and_prim_count_instr,
111                                 nir_metadata_none,
112                                 &state);
113 
114    /* If we didn't find set_vertex_and_primitive_count, then we have to
115     * insert store of value 0 to primitive_count.
116     */
117    if (state.primitive_count == NULL) {
118       nir_builder b;
119       nir_function_impl *entrypoint = nir_shader_get_entrypoint(nir);
120       b = nir_builder_at(nir_before_impl(entrypoint));
121       nir_def *zero = nir_imm_int(&b, 0);
122       state.primitive_count = anv_nir_prim_count_store(&b, zero);
123    }
124 
125    assert(state.primitive_count != NULL);
126    return true;
127 }
128 
129 /* Eventually, this will become part of anv_CreateShader.  Unfortunately,
130  * we can't do that yet because we don't have the ability to copy nir.
131  */
132 static nir_shader *
anv_shader_stage_to_nir(struct anv_device * device,const VkPipelineShaderStageCreateInfo * stage_info,enum brw_robustness_flags robust_flags,void * mem_ctx)133 anv_shader_stage_to_nir(struct anv_device *device,
134                         const VkPipelineShaderStageCreateInfo *stage_info,
135                         enum brw_robustness_flags robust_flags,
136                         void *mem_ctx)
137 {
138    const struct anv_physical_device *pdevice = device->physical;
139    const struct anv_instance *instance = pdevice->instance;
140    const struct brw_compiler *compiler = pdevice->compiler;
141    gl_shader_stage stage = vk_to_mesa_shader_stage(stage_info->stage);
142    const nir_shader_compiler_options *nir_options =
143       compiler->nir_options[stage];
144 
145    const bool rt_enabled = ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
146    const struct spirv_to_nir_options spirv_options = {
147       .caps = {
148          .amd_image_gather_bias_lod = pdevice->info.ver >= 20,
149          .cooperative_matrix = anv_has_cooperative_matrix(pdevice),
150          .demote_to_helper_invocation = true,
151          .derivative_group = true,
152          .descriptor_array_dynamic_indexing = true,
153          .descriptor_array_non_uniform_indexing = true,
154          .descriptor_indexing = true,
155          .device_group = true,
156          .draw_parameters = true,
157          .float16 = true,
158          .float32_atomic_add = pdevice->info.has_lsc,
159          .float32_atomic_min_max = true,
160          .float64 = true,
161          .float64_atomic_min_max = pdevice->info.has_lsc,
162          .fragment_shader_sample_interlock = true,
163          .fragment_shader_pixel_interlock = true,
164          .geometry_streams = true,
165          /* When using Vulkan 1.3 or KHR_format_feature_flags2 is enabled, the
166           * read/write without format is per format, so just report true. It's
167           * up to the application to check.
168           */
169          .image_read_without_format =
170             pdevice->info.verx10 >= 125 ||
171             instance->vk.app_info.api_version >= VK_API_VERSION_1_3 ||
172             device->vk.enabled_extensions.KHR_format_feature_flags2,
173          .image_write_without_format = true,
174          .int8 = true,
175          .int16 = true,
176          .int64 = true,
177          .int64_atomics = true,
178          .integer_functions2 = true,
179          .mesh_shading = pdevice->vk.supported_extensions.EXT_mesh_shader,
180          .mesh_shading_nv = false,
181          .min_lod = true,
182          .multiview = true,
183          .physical_storage_buffer_address = true,
184          .post_depth_coverage = true,
185          .runtime_descriptor_array = true,
186          .float_controls = true,
187          .ray_cull_mask = rt_enabled,
188          .ray_query = rt_enabled,
189          .ray_tracing = rt_enabled,
190          .ray_tracing_position_fetch = rt_enabled,
191          .shader_clock = true,
192          .shader_viewport_index_layer = true,
193          .sparse_residency = pdevice->has_sparse,
194          .stencil_export = true,
195          .storage_8bit = true,
196          .storage_16bit = true,
197          .subgroup_arithmetic = true,
198          .subgroup_basic = true,
199          .subgroup_ballot = true,
200          .subgroup_dispatch = true,
201          .subgroup_quad = true,
202          .subgroup_rotate = true,
203          .subgroup_uniform_control_flow = true,
204          .subgroup_shuffle = true,
205          .subgroup_vote = true,
206          .tessellation = true,
207          .transform_feedback = true,
208          .variable_pointers = true,
209          .vk_memory_model = true,
210          .vk_memory_model_device_scope = true,
211          .workgroup_memory_explicit_layout = true,
212          .fragment_shading_rate = pdevice->info.ver >= 11,
213       },
214       .ubo_addr_format = anv_nir_ubo_addr_format(pdevice, robust_flags),
215       .ssbo_addr_format = anv_nir_ssbo_addr_format(pdevice, robust_flags),
216       .phys_ssbo_addr_format = nir_address_format_64bit_global,
217       .push_const_addr_format = nir_address_format_logical,
218 
219       /* TODO: Consider changing this to an address format that has the NULL
220        * pointer equals to 0.  That might be a better format to play nice
221        * with certain code / code generators.
222        */
223       .shared_addr_format = nir_address_format_32bit_offset,
224 
225       .min_ubo_alignment = ANV_UBO_ALIGNMENT,
226       .min_ssbo_alignment = ANV_SSBO_ALIGNMENT,
227    };
228 
229    nir_shader *nir;
230    VkResult result =
231       vk_pipeline_shader_stage_to_nir(&device->vk, stage_info,
232                                       &spirv_options, nir_options,
233                                       mem_ctx, &nir);
234    if (result != VK_SUCCESS)
235       return NULL;
236 
237    if (INTEL_DEBUG(intel_debug_flag_for_shader_stage(stage))) {
238       fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
239               gl_shader_stage_name(stage));
240       nir_print_shader(nir, stderr);
241    }
242 
243    NIR_PASS_V(nir, nir_lower_io_to_temporaries,
244               nir_shader_get_entrypoint(nir), true, false);
245 
246    return nir;
247 }
248 
249 static VkResult
anv_pipeline_init(struct anv_pipeline * pipeline,struct anv_device * device,enum anv_pipeline_type type,VkPipelineCreateFlags2KHR flags,const VkAllocationCallbacks * pAllocator)250 anv_pipeline_init(struct anv_pipeline *pipeline,
251                   struct anv_device *device,
252                   enum anv_pipeline_type type,
253                   VkPipelineCreateFlags2KHR flags,
254                   const VkAllocationCallbacks *pAllocator)
255 {
256    VkResult result;
257 
258    memset(pipeline, 0, sizeof(*pipeline));
259 
260    vk_object_base_init(&device->vk, &pipeline->base,
261                        VK_OBJECT_TYPE_PIPELINE);
262    pipeline->device = device;
263 
264    /* It's the job of the child class to provide actual backing storage for
265     * the batch by setting batch.start, batch.next, and batch.end.
266     */
267    pipeline->batch.alloc = pAllocator ? pAllocator : &device->vk.alloc;
268    pipeline->batch.relocs = &pipeline->batch_relocs;
269    pipeline->batch.status = VK_SUCCESS;
270 
271    const bool uses_relocs = device->physical->uses_relocs;
272    result = anv_reloc_list_init(&pipeline->batch_relocs,
273                                 pipeline->batch.alloc, uses_relocs);
274    if (result != VK_SUCCESS)
275       return result;
276 
277    pipeline->mem_ctx = ralloc_context(NULL);
278 
279    pipeline->type = type;
280    pipeline->flags = flags;
281 
282    util_dynarray_init(&pipeline->executables, pipeline->mem_ctx);
283 
284    anv_pipeline_sets_layout_init(&pipeline->layout, device,
285                                  false /* independent_sets */);
286 
287    return VK_SUCCESS;
288 }
289 
290 static void
anv_pipeline_init_layout(struct anv_pipeline * pipeline,struct anv_pipeline_layout * pipeline_layout)291 anv_pipeline_init_layout(struct anv_pipeline *pipeline,
292                          struct anv_pipeline_layout *pipeline_layout)
293 {
294    if (pipeline_layout) {
295       struct anv_pipeline_sets_layout *layout = &pipeline_layout->sets_layout;
296       for (uint32_t s = 0; s < layout->num_sets; s++) {
297          if (layout->set[s].layout == NULL)
298             continue;
299 
300          anv_pipeline_sets_layout_add(&pipeline->layout, s,
301                                       layout->set[s].layout);
302       }
303    }
304 
305    anv_pipeline_sets_layout_hash(&pipeline->layout);
306    assert(!pipeline_layout ||
307           !memcmp(pipeline->layout.sha1,
308                   pipeline_layout->sets_layout.sha1,
309                   sizeof(pipeline_layout->sets_layout.sha1)));
310 }
311 
312 static void
anv_pipeline_finish(struct anv_pipeline * pipeline,struct anv_device * device)313 anv_pipeline_finish(struct anv_pipeline *pipeline,
314                     struct anv_device *device)
315 {
316    anv_pipeline_sets_layout_fini(&pipeline->layout);
317    anv_reloc_list_finish(&pipeline->batch_relocs);
318    ralloc_free(pipeline->mem_ctx);
319    vk_object_base_finish(&pipeline->base);
320 }
321 
anv_DestroyPipeline(VkDevice _device,VkPipeline _pipeline,const VkAllocationCallbacks * pAllocator)322 void anv_DestroyPipeline(
323     VkDevice                                    _device,
324     VkPipeline                                  _pipeline,
325     const VkAllocationCallbacks*                pAllocator)
326 {
327    ANV_FROM_HANDLE(anv_device, device, _device);
328    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
329 
330    if (!pipeline)
331       return;
332 
333    ANV_RMV(resource_destroy, device, pipeline);
334 
335    switch (pipeline->type) {
336    case ANV_PIPELINE_GRAPHICS_LIB: {
337       struct anv_graphics_lib_pipeline *gfx_pipeline =
338          anv_pipeline_to_graphics_lib(pipeline);
339 
340       for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->base.shaders); s++) {
341          if (gfx_pipeline->base.shaders[s])
342             anv_shader_bin_unref(device, gfx_pipeline->base.shaders[s]);
343       }
344       break;
345    }
346 
347    case ANV_PIPELINE_GRAPHICS: {
348       struct anv_graphics_pipeline *gfx_pipeline =
349          anv_pipeline_to_graphics(pipeline);
350 
351       for (unsigned s = 0; s < ARRAY_SIZE(gfx_pipeline->base.shaders); s++) {
352          if (gfx_pipeline->base.shaders[s])
353             anv_shader_bin_unref(device, gfx_pipeline->base.shaders[s]);
354       }
355       break;
356    }
357 
358    case ANV_PIPELINE_COMPUTE: {
359       struct anv_compute_pipeline *compute_pipeline =
360          anv_pipeline_to_compute(pipeline);
361 
362       if (compute_pipeline->cs)
363          anv_shader_bin_unref(device, compute_pipeline->cs);
364 
365       break;
366    }
367 
368    case ANV_PIPELINE_RAY_TRACING: {
369       struct anv_ray_tracing_pipeline *rt_pipeline =
370          anv_pipeline_to_ray_tracing(pipeline);
371 
372       util_dynarray_foreach(&rt_pipeline->shaders,
373                             struct anv_shader_bin *, shader) {
374          anv_shader_bin_unref(device, *shader);
375       }
376       break;
377    }
378 
379    default:
380       unreachable("invalid pipeline type");
381    }
382 
383    anv_pipeline_finish(pipeline, device);
384    vk_free2(&device->vk.alloc, pAllocator, pipeline);
385 }
386 
387 struct anv_pipeline_stage {
388    gl_shader_stage stage;
389 
390    struct vk_pipeline_robustness_state rstate;
391 
392    /* VkComputePipelineCreateInfo, VkGraphicsPipelineCreateInfo or
393     * VkRayTracingPipelineCreateInfoKHR pNext field
394     */
395    const void *pipeline_pNext;
396    const VkPipelineShaderStageCreateInfo *info;
397 
398    unsigned char shader_sha1[20];
399    uint32_t      source_hash;
400 
401    union brw_any_prog_key key;
402 
403    struct {
404       gl_shader_stage stage;
405       unsigned char sha1[20];
406    } cache_key;
407 
408    nir_shader *nir;
409 
410    struct {
411       nir_shader *nir;
412       struct anv_shader_bin *bin;
413    } imported;
414 
415    struct anv_push_descriptor_info push_desc_info;
416 
417    enum gl_subgroup_size subgroup_size_type;
418 
419    enum brw_robustness_flags robust_flags;
420 
421    struct anv_pipeline_binding surface_to_descriptor[256];
422    struct anv_pipeline_binding sampler_to_descriptor[256];
423    struct anv_pipeline_bind_map bind_map;
424 
425    bool uses_bt_for_push_descs;
426 
427    enum anv_dynamic_push_bits dynamic_push_values;
428 
429    union brw_any_prog_data prog_data;
430 
431    uint32_t num_stats;
432    struct brw_compile_stats stats[3];
433    char *disasm[3];
434 
435    VkPipelineCreationFeedback feedback;
436    uint32_t feedback_idx;
437 
438    const unsigned *code;
439 
440    struct anv_shader_bin *bin;
441 };
442 
443 static enum brw_robustness_flags
anv_get_robust_flags(const struct vk_pipeline_robustness_state * rstate)444 anv_get_robust_flags(const struct vk_pipeline_robustness_state *rstate)
445 {
446    return
447       ((rstate->storage_buffers !=
448         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
449        BRW_ROBUSTNESS_SSBO : 0) |
450       ((rstate->uniform_buffers !=
451         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
452        BRW_ROBUSTNESS_UBO : 0);
453 }
454 
455 static void
populate_base_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)456 populate_base_prog_key(struct anv_pipeline_stage *stage,
457                        const struct anv_device *device)
458 {
459    stage->key.base.robust_flags = anv_get_robust_flags(&stage->rstate);
460    stage->key.base.limit_trig_input_range =
461       device->physical->instance->limit_trig_input_range;
462 }
463 
464 static void
populate_vs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)465 populate_vs_prog_key(struct anv_pipeline_stage *stage,
466                      const struct anv_device *device)
467 {
468    memset(&stage->key, 0, sizeof(stage->key));
469 
470    populate_base_prog_key(stage, device);
471 }
472 
473 static void
populate_tcs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,unsigned input_vertices)474 populate_tcs_prog_key(struct anv_pipeline_stage *stage,
475                       const struct anv_device *device,
476                       unsigned input_vertices)
477 {
478    memset(&stage->key, 0, sizeof(stage->key));
479 
480    populate_base_prog_key(stage, device);
481 
482    stage->key.tcs.input_vertices = input_vertices;
483 }
484 
485 static void
populate_tes_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)486 populate_tes_prog_key(struct anv_pipeline_stage *stage,
487                       const struct anv_device *device)
488 {
489    memset(&stage->key, 0, sizeof(stage->key));
490 
491    populate_base_prog_key(stage, device);
492 }
493 
494 static void
populate_gs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)495 populate_gs_prog_key(struct anv_pipeline_stage *stage,
496                      const struct anv_device *device)
497 {
498    memset(&stage->key, 0, sizeof(stage->key));
499 
500    populate_base_prog_key(stage, device);
501 }
502 
503 static bool
pipeline_has_coarse_pixel(const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr)504 pipeline_has_coarse_pixel(const BITSET_WORD *dynamic,
505                           const struct vk_multisample_state *ms,
506                           const struct vk_fragment_shading_rate_state *fsr)
507 {
508    /* The Vulkan 1.2.199 spec says:
509     *
510     *    "If any of the following conditions are met, Cxy' must be set to
511     *    {1,1}:
512     *
513     *     * If Sample Shading is enabled.
514     *     * [...]"
515     *
516     * And "sample shading" is defined as follows:
517     *
518     *    "Sample shading is enabled for a graphics pipeline:
519     *
520     *     * If the interface of the fragment shader entry point of the
521     *       graphics pipeline includes an input variable decorated with
522     *       SampleId or SamplePosition. In this case minSampleShadingFactor
523     *       takes the value 1.0.
524     *
525     *     * Else if the sampleShadingEnable member of the
526     *       VkPipelineMultisampleStateCreateInfo structure specified when
527     *       creating the graphics pipeline is set to VK_TRUE. In this case
528     *       minSampleShadingFactor takes the value of
529     *       VkPipelineMultisampleStateCreateInfo::minSampleShading.
530     *
531     *    Otherwise, sample shading is considered disabled."
532     *
533     * The first bullet above is handled by the back-end compiler because those
534     * inputs both force per-sample dispatch.  The second bullet is handled
535     * here.  Note that this sample shading being enabled has nothing to do
536     * with minSampleShading.
537     */
538    if (ms != NULL && ms->sample_shading_enable)
539       return false;
540 
541    /* Not dynamic & pipeline has a 1x1 fragment shading rate with no
542     * possibility for element of the pipeline to change the value or fragment
543     * shading rate not specified at all.
544     */
545    if (!BITSET_TEST(dynamic, MESA_VK_DYNAMIC_FSR) &&
546        (fsr == NULL ||
547         (fsr->fragment_size.width <= 1 &&
548          fsr->fragment_size.height <= 1 &&
549          fsr->combiner_ops[0] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR &&
550          fsr->combiner_ops[1] == VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR)))
551       return false;
552 
553    return true;
554 }
555 
556 static void
populate_task_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)557 populate_task_prog_key(struct anv_pipeline_stage *stage,
558                        const struct anv_device *device)
559 {
560    memset(&stage->key, 0, sizeof(stage->key));
561 
562    populate_base_prog_key(stage, device);
563 }
564 
565 static void
populate_mesh_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,bool compact_mue)566 populate_mesh_prog_key(struct anv_pipeline_stage *stage,
567                        const struct anv_device *device,
568                        bool compact_mue)
569 {
570    memset(&stage->key, 0, sizeof(stage->key));
571 
572    populate_base_prog_key(stage, device);
573 
574    stage->key.mesh.compact_mue = compact_mue;
575 }
576 
577 static uint32_t
rp_color_mask(const struct vk_render_pass_state * rp)578 rp_color_mask(const struct vk_render_pass_state *rp)
579 {
580    if (rp == NULL || !vk_render_pass_state_has_attachment_info(rp))
581       return ((1u << MAX_RTS) - 1);
582 
583    uint32_t color_mask = 0;
584    for (uint32_t i = 0; i < rp->color_attachment_count; i++) {
585       if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
586          color_mask |= BITFIELD_BIT(i);
587    }
588 
589    return color_mask;
590 }
591 
592 static void
populate_wm_prog_key(struct anv_pipeline_stage * stage,const struct anv_graphics_base_pipeline * pipeline,const BITSET_WORD * dynamic,const struct vk_multisample_state * ms,const struct vk_fragment_shading_rate_state * fsr,const struct vk_render_pass_state * rp,const enum brw_sometimes is_mesh)593 populate_wm_prog_key(struct anv_pipeline_stage *stage,
594                      const struct anv_graphics_base_pipeline *pipeline,
595                      const BITSET_WORD *dynamic,
596                      const struct vk_multisample_state *ms,
597                      const struct vk_fragment_shading_rate_state *fsr,
598                      const struct vk_render_pass_state *rp,
599                      const enum brw_sometimes is_mesh)
600 {
601    const struct anv_device *device = pipeline->base.device;
602 
603    memset(&stage->key, 0, sizeof(stage->key));
604 
605    populate_base_prog_key(stage, device);
606 
607    struct brw_wm_prog_key *key = &stage->key.wm;
608 
609    /* We set this to 0 here and set to the actual value before we call
610     * brw_compile_fs.
611     */
612    key->input_slots_valid = 0;
613 
614    /* XXX Vulkan doesn't appear to specify */
615    key->clamp_fragment_color = false;
616 
617    key->ignore_sample_mask_out = false;
618 
619    assert(rp == NULL || rp->color_attachment_count <= MAX_RTS);
620    /* Consider all inputs as valid until look at the NIR variables. */
621    key->color_outputs_valid = rp_color_mask(rp);
622    key->nr_color_regions = util_last_bit(key->color_outputs_valid);
623 
624    /* To reduce possible shader recompilations we would need to know if
625     * there is a SampleMask output variable to compute if we should emit
626     * code to workaround the issue that hardware disables alpha to coverage
627     * when there is SampleMask output.
628     *
629     * If the pipeline we compile the fragment shader in includes the output
630     * interface, then we can be sure whether alpha_coverage is enabled or not.
631     * If we don't have that output interface, then we have to compile the
632     * shader with some conditionals.
633     */
634    if (ms != NULL) {
635       /* VUID-VkGraphicsPipelineCreateInfo-rasterizerDiscardEnable-00751:
636        *
637        *   "If the pipeline is being created with fragment shader state,
638        *    pMultisampleState must be a valid pointer to a valid
639        *    VkPipelineMultisampleStateCreateInfo structure"
640        *
641        * It's also required for the fragment output interface.
642        */
643       key->alpha_to_coverage =
644          ms && ms->alpha_to_coverage_enable ? BRW_ALWAYS : BRW_NEVER;
645       key->multisample_fbo =
646          ms && ms->rasterization_samples > 1 ? BRW_ALWAYS : BRW_NEVER;
647       key->persample_interp =
648       (ms->sample_shading_enable &&
649        (ms->min_sample_shading * ms->rasterization_samples) > 1) ?
650       BRW_ALWAYS : BRW_NEVER;
651 
652       /* TODO: We should make this dynamic */
653       if (device->physical->instance->sample_mask_out_opengl_behaviour)
654          key->ignore_sample_mask_out = !key->multisample_fbo;
655    } else {
656       /* Consider all inputs as valid until we look at the NIR variables. */
657       key->color_outputs_valid = (1u << MAX_RTS) - 1;
658       key->nr_color_regions = MAX_RTS;
659 
660       key->alpha_to_coverage = BRW_SOMETIMES;
661       key->multisample_fbo = BRW_SOMETIMES;
662       key->persample_interp = BRW_SOMETIMES;
663    }
664 
665    key->mesh_input = is_mesh;
666 
667    /* Vulkan doesn't support fixed-function alpha test */
668    key->alpha_test_replicate_alpha = false;
669 
670   key->coarse_pixel =
671      device->vk.enabled_extensions.KHR_fragment_shading_rate &&
672      pipeline_has_coarse_pixel(dynamic, ms, fsr);
673 }
674 
675 static bool
wm_prog_data_dynamic(const struct brw_wm_prog_data * prog_data)676 wm_prog_data_dynamic(const struct brw_wm_prog_data *prog_data)
677 {
678    return prog_data->alpha_to_coverage == BRW_SOMETIMES ||
679           prog_data->coarse_pixel_dispatch == BRW_SOMETIMES ||
680           prog_data->persample_dispatch == BRW_SOMETIMES;
681 }
682 
683 static void
populate_cs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device)684 populate_cs_prog_key(struct anv_pipeline_stage *stage,
685                      const struct anv_device *device)
686 {
687    memset(&stage->key, 0, sizeof(stage->key));
688 
689    populate_base_prog_key(stage, device);
690 }
691 
692 static void
populate_bs_prog_key(struct anv_pipeline_stage * stage,const struct anv_device * device,uint32_t ray_flags)693 populate_bs_prog_key(struct anv_pipeline_stage *stage,
694                      const struct anv_device *device,
695                      uint32_t ray_flags)
696 {
697    memset(&stage->key, 0, sizeof(stage->key));
698 
699    populate_base_prog_key(stage, device);
700 
701    stage->key.bs.pipeline_ray_flags = ray_flags;
702    stage->key.bs.pipeline_ray_flags = ray_flags;
703 }
704 
705 static void
anv_stage_write_shader_hash(struct anv_pipeline_stage * stage,const struct anv_device * device)706 anv_stage_write_shader_hash(struct anv_pipeline_stage *stage,
707                             const struct anv_device *device)
708 {
709    vk_pipeline_robustness_state_fill(&device->vk,
710                                      &stage->rstate,
711                                      stage->pipeline_pNext,
712                                      stage->info->pNext);
713 
714    vk_pipeline_hash_shader_stage(stage->info, &stage->rstate, stage->shader_sha1);
715 
716    stage->robust_flags =
717       ((stage->rstate.storage_buffers !=
718         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
719        BRW_ROBUSTNESS_SSBO : 0) |
720       ((stage->rstate.uniform_buffers !=
721         VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT) ?
722        BRW_ROBUSTNESS_UBO : 0);
723 
724    /* Use lowest dword of source shader sha1 for shader hash. */
725    stage->source_hash = ((uint32_t*)stage->shader_sha1)[0];
726 }
727 
728 static bool
anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage * stage)729 anv_graphics_pipeline_stage_fragment_dynamic(const struct anv_pipeline_stage *stage)
730 {
731    if (stage->stage != MESA_SHADER_FRAGMENT)
732       return false;
733 
734    return stage->key.wm.persample_interp == BRW_SOMETIMES ||
735           stage->key.wm.multisample_fbo == BRW_SOMETIMES ||
736           stage->key.wm.alpha_to_coverage == BRW_SOMETIMES;
737 }
738 
739 static void
anv_pipeline_hash_common(struct mesa_sha1 * ctx,const struct anv_pipeline * pipeline)740 anv_pipeline_hash_common(struct mesa_sha1 *ctx,
741                          const struct anv_pipeline *pipeline)
742 {
743    struct anv_device *device = pipeline->device;
744 
745    _mesa_sha1_update(ctx, pipeline->layout.sha1, sizeof(pipeline->layout.sha1));
746 
747    const bool indirect_descriptors = device->physical->indirect_descriptors;
748    _mesa_sha1_update(ctx, &indirect_descriptors, sizeof(indirect_descriptors));
749 
750    const bool rba = device->robust_buffer_access;
751    _mesa_sha1_update(ctx, &rba, sizeof(rba));
752 
753    const int spilling_rate = device->physical->compiler->spilling_rate;
754    _mesa_sha1_update(ctx, &spilling_rate, sizeof(spilling_rate));
755 }
756 
757 static void
anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,uint32_t view_mask,unsigned char * sha1_out)758 anv_pipeline_hash_graphics(struct anv_graphics_base_pipeline *pipeline,
759                            struct anv_pipeline_stage *stages,
760                            uint32_t view_mask,
761                            unsigned char *sha1_out)
762 {
763    const struct anv_device *device = pipeline->base.device;
764    struct mesa_sha1 ctx;
765    _mesa_sha1_init(&ctx);
766 
767    anv_pipeline_hash_common(&ctx, &pipeline->base);
768 
769    _mesa_sha1_update(&ctx, &view_mask, sizeof(view_mask));
770 
771    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
772       if (pipeline->base.active_stages & BITFIELD_BIT(s)) {
773          _mesa_sha1_update(&ctx, stages[s].shader_sha1,
774                            sizeof(stages[s].shader_sha1));
775          _mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
776       }
777    }
778 
779    if (stages[MESA_SHADER_MESH].info || stages[MESA_SHADER_TASK].info) {
780       const uint8_t afs = device->physical->instance->assume_full_subgroups;
781       _mesa_sha1_update(&ctx, &afs, sizeof(afs));
782    }
783 
784    _mesa_sha1_final(&ctx, sha1_out);
785 }
786 
787 static void
anv_pipeline_hash_compute(struct anv_compute_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)788 anv_pipeline_hash_compute(struct anv_compute_pipeline *pipeline,
789                           struct anv_pipeline_stage *stage,
790                           unsigned char *sha1_out)
791 {
792    const struct anv_device *device = pipeline->base.device;
793    struct mesa_sha1 ctx;
794    _mesa_sha1_init(&ctx);
795 
796    anv_pipeline_hash_common(&ctx, &pipeline->base);
797 
798    const uint8_t afs = device->physical->instance->assume_full_subgroups;
799    _mesa_sha1_update(&ctx, &afs, sizeof(afs));
800 
801    _mesa_sha1_update(&ctx, stage->shader_sha1,
802                      sizeof(stage->shader_sha1));
803    _mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
804 
805    _mesa_sha1_final(&ctx, sha1_out);
806 }
807 
808 static void
anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * stage,unsigned char * sha1_out)809 anv_pipeline_hash_ray_tracing_shader(struct anv_ray_tracing_pipeline *pipeline,
810                                      struct anv_pipeline_stage *stage,
811                                      unsigned char *sha1_out)
812 {
813    struct mesa_sha1 ctx;
814    _mesa_sha1_init(&ctx);
815 
816    anv_pipeline_hash_common(&ctx, &pipeline->base);
817 
818    _mesa_sha1_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1));
819    _mesa_sha1_update(&ctx, &stage->key, sizeof(stage->key.bs));
820 
821    _mesa_sha1_final(&ctx, sha1_out);
822 }
823 
824 static void
anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline * pipeline,struct anv_pipeline_stage * intersection,struct anv_pipeline_stage * any_hit,unsigned char * sha1_out)825 anv_pipeline_hash_ray_tracing_combined_shader(struct anv_ray_tracing_pipeline *pipeline,
826                                               struct anv_pipeline_stage *intersection,
827                                               struct anv_pipeline_stage *any_hit,
828                                               unsigned char *sha1_out)
829 {
830    struct mesa_sha1 ctx;
831    _mesa_sha1_init(&ctx);
832 
833    _mesa_sha1_update(&ctx, pipeline->base.layout.sha1,
834                      sizeof(pipeline->base.layout.sha1));
835 
836    const bool rba = pipeline->base.device->robust_buffer_access;
837    _mesa_sha1_update(&ctx, &rba, sizeof(rba));
838 
839    _mesa_sha1_update(&ctx, intersection->shader_sha1, sizeof(intersection->shader_sha1));
840    _mesa_sha1_update(&ctx, &intersection->key, sizeof(intersection->key.bs));
841    _mesa_sha1_update(&ctx, any_hit->shader_sha1, sizeof(any_hit->shader_sha1));
842    _mesa_sha1_update(&ctx, &any_hit->key, sizeof(any_hit->key.bs));
843 
844    _mesa_sha1_final(&ctx, sha1_out);
845 }
846 
847 static nir_shader *
anv_pipeline_stage_get_nir(struct anv_pipeline * pipeline,struct vk_pipeline_cache * cache,void * mem_ctx,struct anv_pipeline_stage * stage)848 anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
849                            struct vk_pipeline_cache *cache,
850                            void *mem_ctx,
851                            struct anv_pipeline_stage *stage)
852 {
853    const struct brw_compiler *compiler =
854       pipeline->device->physical->compiler;
855    const nir_shader_compiler_options *nir_options =
856       compiler->nir_options[stage->stage];
857    nir_shader *nir;
858 
859    nir = anv_device_search_for_nir(pipeline->device, cache,
860                                    nir_options,
861                                    stage->shader_sha1,
862                                    mem_ctx);
863    if (nir) {
864       assert(nir->info.stage == stage->stage);
865       return nir;
866    }
867 
868    nir = anv_shader_stage_to_nir(pipeline->device, stage->info,
869                                  stage->key.base.robust_flags, mem_ctx);
870    if (nir) {
871       anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
872       return nir;
873    }
874 
875    return NULL;
876 }
877 
878 static const struct vk_ycbcr_conversion_state *
lookup_ycbcr_conversion(const void * _sets_layout,uint32_t set,uint32_t binding,uint32_t array_index)879 lookup_ycbcr_conversion(const void *_sets_layout, uint32_t set,
880                         uint32_t binding, uint32_t array_index)
881 {
882    const struct anv_pipeline_sets_layout *sets_layout = _sets_layout;
883 
884    assert(set < MAX_SETS);
885    assert(binding < sets_layout->set[set].layout->binding_count);
886    const struct anv_descriptor_set_binding_layout *bind_layout =
887       &sets_layout->set[set].layout->binding[binding];
888 
889    if (bind_layout->immutable_samplers == NULL)
890       return NULL;
891 
892    array_index = MIN2(array_index, bind_layout->array_size - 1);
893 
894    const struct anv_sampler *sampler =
895       bind_layout->immutable_samplers[array_index];
896 
897    return sampler && sampler->vk.ycbcr_conversion ?
898           &sampler->vk.ycbcr_conversion->state : NULL;
899 }
900 
901 static void
shared_type_info(const struct glsl_type * type,unsigned * size,unsigned * align)902 shared_type_info(const struct glsl_type *type, unsigned *size, unsigned *align)
903 {
904    assert(glsl_type_is_vector_or_scalar(type));
905 
906    uint32_t comp_size = glsl_type_is_boolean(type)
907       ? 4 : glsl_get_bit_size(type) / 8;
908    unsigned length = glsl_get_vector_elements(type);
909    *size = comp_size * length,
910    *align = comp_size * (length == 3 ? 4 : length);
911 }
912 
913 static enum anv_dynamic_push_bits
anv_nir_compute_dynamic_push_bits(nir_shader * shader)914 anv_nir_compute_dynamic_push_bits(nir_shader *shader)
915 {
916    enum anv_dynamic_push_bits ret = 0;
917 
918    nir_foreach_function_impl(impl, shader) {
919       nir_foreach_block(block, impl) {
920          nir_foreach_instr(instr, block) {
921             if (instr->type != nir_instr_type_intrinsic)
922                continue;
923 
924             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
925             if (intrin->intrinsic != nir_intrinsic_load_push_constant)
926                continue;
927 
928             switch (nir_intrinsic_base(intrin)) {
929             case offsetof(struct anv_push_constants, gfx.tcs_input_vertices):
930                ret |= ANV_DYNAMIC_PUSH_INPUT_VERTICES;
931                break;
932 
933             default:
934                break;
935             }
936          }
937       }
938    }
939 
940    return ret;
941 }
942 
943 static void
anv_fixup_subgroup_size(struct anv_device * device,struct shader_info * info)944 anv_fixup_subgroup_size(struct anv_device *device, struct shader_info *info)
945 {
946    switch (info->stage) {
947    case MESA_SHADER_COMPUTE:
948    case MESA_SHADER_TASK:
949    case MESA_SHADER_MESH:
950       break;
951    default:
952       return;
953    }
954 
955    unsigned local_size = info->workgroup_size[0] *
956                          info->workgroup_size[1] *
957                          info->workgroup_size[2];
958 
959    /* Games don't always request full subgroups when they should,
960     * which can cause bugs, as they may expect bigger size of the
961     * subgroup than we choose for the execution.
962     */
963    if (device->physical->instance->assume_full_subgroups &&
964        info->uses_wide_subgroup_intrinsics &&
965        info->subgroup_size == SUBGROUP_SIZE_API_CONSTANT &&
966        local_size &&
967        local_size % BRW_SUBGROUP_SIZE == 0)
968       info->subgroup_size = SUBGROUP_SIZE_FULL_SUBGROUPS;
969 
970    /* If the client requests that we dispatch full subgroups but doesn't
971     * allow us to pick a subgroup size, we have to smash it to the API
972     * value of 32.  Performance will likely be terrible in this case but
973     * there's nothing we can do about that.  The client should have chosen
974     * a size.
975     */
976    if (info->subgroup_size == SUBGROUP_SIZE_FULL_SUBGROUPS)
977       info->subgroup_size =
978          device->physical->instance->assume_full_subgroups != 0 ?
979          device->physical->instance->assume_full_subgroups : BRW_SUBGROUP_SIZE;
980 
981    /* Cooperative matrix extension requires that all invocations in a subgroup
982     * be active. As a result, when the application does not request a specific
983     * subgroup size, we must use SIMD32.
984     */
985    if (info->stage == MESA_SHADER_COMPUTE && info->cs.has_cooperative_matrix &&
986        info->subgroup_size < SUBGROUP_SIZE_REQUIRE_8) {
987       info->subgroup_size = BRW_SUBGROUP_SIZE;
988    }
989 }
990 
991 static void
anv_pipeline_lower_nir(struct anv_pipeline * pipeline,void * mem_ctx,struct anv_pipeline_stage * stage,struct anv_pipeline_sets_layout * layout,uint32_t view_mask,bool use_primitive_replication)992 anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
993                        void *mem_ctx,
994                        struct anv_pipeline_stage *stage,
995                        struct anv_pipeline_sets_layout *layout,
996                        uint32_t view_mask,
997                        bool use_primitive_replication)
998 {
999    const struct anv_physical_device *pdevice = pipeline->device->physical;
1000    const struct brw_compiler *compiler = pdevice->compiler;
1001 
1002    struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
1003    nir_shader *nir = stage->nir;
1004 
1005    if (nir->info.stage == MESA_SHADER_FRAGMENT) {
1006       NIR_PASS(_, nir, nir_lower_wpos_center);
1007       NIR_PASS(_, nir, nir_lower_input_attachments,
1008                &(nir_input_attachment_options) {
1009                    .use_fragcoord_sysval = true,
1010                    .use_layer_id_sysval = true,
1011                });
1012    }
1013 
1014    if (nir->info.stage == MESA_SHADER_MESH ||
1015          nir->info.stage == MESA_SHADER_TASK) {
1016       nir_lower_compute_system_values_options options = {
1017             .lower_cs_local_id_to_index = true,
1018             .lower_workgroup_id_to_index = true,
1019             /* nir_lower_idiv generates expensive code */
1020             .shortcut_1d_workgroup_id = compiler->devinfo->verx10 >= 125,
1021       };
1022 
1023       NIR_PASS(_, nir, nir_lower_compute_system_values, &options);
1024    }
1025 
1026    NIR_PASS(_, nir, nir_vk_lower_ycbcr_tex, lookup_ycbcr_conversion, layout);
1027 
1028    if (pipeline->type == ANV_PIPELINE_GRAPHICS ||
1029        pipeline->type == ANV_PIPELINE_GRAPHICS_LIB) {
1030       NIR_PASS(_, nir, anv_nir_lower_multiview, view_mask,
1031                use_primitive_replication);
1032    }
1033 
1034    if (nir->info.stage == MESA_SHADER_COMPUTE && nir->info.cs.has_cooperative_matrix) {
1035       anv_fixup_subgroup_size(pipeline->device, &nir->info);
1036       NIR_PASS(_, nir, brw_nir_lower_cmat, nir->info.subgroup_size);
1037       NIR_PASS_V(nir, nir_lower_indirect_derefs, nir_var_function_temp, 16);
1038    }
1039 
1040    /* The patch control points are delivered through a push constant when
1041     * dynamic.
1042     */
1043    if (nir->info.stage == MESA_SHADER_TESS_CTRL &&
1044        stage->key.tcs.input_vertices == 0)
1045       NIR_PASS(_, nir, anv_nir_lower_load_patch_vertices_in);
1046 
1047    nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
1048 
1049    NIR_PASS(_, nir, brw_nir_lower_storage_image,
1050             &(struct brw_nir_lower_storage_image_opts) {
1051                /* Anv only supports Gfx9+ which has better defined typed read
1052                 * behavior. It allows us to only have to care about lowering
1053                 * loads.
1054                 */
1055                .devinfo = compiler->devinfo,
1056                .lower_loads = true,
1057             });
1058 
1059    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
1060             nir_address_format_64bit_global);
1061    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
1062             nir_address_format_32bit_offset);
1063 
1064    NIR_PASS(_, nir, brw_nir_lower_ray_queries, &pdevice->info);
1065 
1066    stage->push_desc_info.used_descriptors =
1067       anv_nir_compute_used_push_descriptors(nir, layout);
1068 
1069    struct anv_pipeline_push_map push_map = {};
1070 
1071    /* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
1072    NIR_PASS_V(nir, anv_nir_apply_pipeline_layout,
1073               pdevice, stage->key.base.robust_flags,
1074               layout->independent_sets,
1075               layout, &stage->bind_map, &push_map, mem_ctx);
1076 
1077    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
1078             anv_nir_ubo_addr_format(pdevice, stage->key.base.robust_flags));
1079    NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
1080             anv_nir_ssbo_addr_format(pdevice, stage->key.base.robust_flags));
1081 
1082    /* First run copy-prop to get rid of all of the vec() that address
1083     * calculations often create and then constant-fold so that, when we
1084     * get to anv_nir_lower_ubo_loads, we can detect constant offsets.
1085     */
1086    bool progress;
1087    do {
1088       progress = false;
1089       NIR_PASS(progress, nir, nir_opt_algebraic);
1090       NIR_PASS(progress, nir, nir_copy_prop);
1091       NIR_PASS(progress, nir, nir_opt_constant_folding);
1092       NIR_PASS(progress, nir, nir_opt_dce);
1093    } while (progress);
1094 
1095    /* Required for nir_divergence_analysis() which is needed for
1096     * anv_nir_lower_ubo_loads.
1097     */
1098    NIR_PASS(_, nir, nir_convert_to_lcssa, true, true);
1099    nir_divergence_analysis(nir);
1100 
1101    NIR_PASS(_, nir, anv_nir_lower_ubo_loads);
1102 
1103    NIR_PASS(_, nir, nir_opt_remove_phis);
1104 
1105    enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
1106       nir_lower_non_uniform_texture_access |
1107       nir_lower_non_uniform_image_access |
1108       nir_lower_non_uniform_get_ssbo_size;
1109 
1110    /* In practice, most shaders do not have non-uniform-qualified
1111     * accesses (see
1112     * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/17558#note_1475069)
1113     * thus a cheaper and likely to fail check is run first.
1114     */
1115    if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
1116       NIR_PASS(_, nir, nir_opt_non_uniform_access);
1117 
1118       /* We don't support non-uniform UBOs and non-uniform SSBO access is
1119       * handled naturally by falling back to A64 messages.
1120       */
1121       NIR_PASS(_, nir, nir_lower_non_uniform_access,
1122                &(nir_lower_non_uniform_access_options) {
1123                   .types = lower_non_uniform_access_types,
1124                   .callback = NULL,
1125                });
1126 
1127       NIR_PASS(_, nir, intel_nir_lower_non_uniform_resource_intel);
1128       NIR_PASS(_, nir, intel_nir_cleanup_resource_intel);
1129       NIR_PASS(_, nir, nir_opt_dce);
1130    }
1131 
1132    NIR_PASS_V(nir, anv_nir_update_resource_intel_block);
1133 
1134    stage->dynamic_push_values = anv_nir_compute_dynamic_push_bits(nir);
1135 
1136    NIR_PASS_V(nir, anv_nir_compute_push_layout,
1137               pdevice, stage->key.base.robust_flags,
1138               anv_graphics_pipeline_stage_fragment_dynamic(stage),
1139               prog_data, &stage->bind_map, &push_map, mem_ctx);
1140 
1141    NIR_PASS_V(nir, anv_nir_lower_resource_intel, pdevice,
1142               pipeline->layout.type);
1143 
1144    if (gl_shader_stage_uses_workgroup(nir->info.stage)) {
1145       if (!nir->info.shared_memory_explicit_layout) {
1146          NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
1147                   nir_var_mem_shared, shared_type_info);
1148       }
1149 
1150       NIR_PASS(_, nir, nir_lower_explicit_io,
1151                nir_var_mem_shared, nir_address_format_32bit_offset);
1152 
1153       if (nir->info.zero_initialize_shared_memory &&
1154           nir->info.shared_size > 0) {
1155          /* The effective Shared Local Memory size is at least 1024 bytes and
1156           * is always rounded to a power of two, so it is OK to align the size
1157           * used by the shader to chunk_size -- which does simplify the logic.
1158           */
1159          const unsigned chunk_size = 16;
1160          const unsigned shared_size = ALIGN(nir->info.shared_size, chunk_size);
1161          assert(shared_size <=
1162                 intel_calculate_slm_size(compiler->devinfo->ver, nir->info.shared_size));
1163 
1164          NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
1165                   shared_size, chunk_size);
1166       }
1167    }
1168 
1169    if (gl_shader_stage_is_compute(nir->info.stage) ||
1170        gl_shader_stage_is_mesh(nir->info.stage)) {
1171       NIR_PASS(_, nir, brw_nir_lower_cs_intrinsics, compiler->devinfo,
1172                &stage->prog_data.cs);
1173    }
1174 
1175    stage->push_desc_info.used_set_buffer =
1176       anv_nir_loads_push_desc_buffer(nir, layout, &stage->bind_map);
1177    stage->push_desc_info.fully_promoted_ubo_descriptors =
1178       anv_nir_push_desc_ubo_fully_promoted(nir, layout, &stage->bind_map);
1179 
1180    stage->nir = nir;
1181 }
1182 
1183 static void
anv_pipeline_link_vs(const struct brw_compiler * compiler,struct anv_pipeline_stage * vs_stage,struct anv_pipeline_stage * next_stage)1184 anv_pipeline_link_vs(const struct brw_compiler *compiler,
1185                      struct anv_pipeline_stage *vs_stage,
1186                      struct anv_pipeline_stage *next_stage)
1187 {
1188    if (next_stage)
1189       brw_nir_link_shaders(compiler, vs_stage->nir, next_stage->nir);
1190 }
1191 
1192 static void
anv_pipeline_compile_vs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * vs_stage,uint32_t view_mask)1193 anv_pipeline_compile_vs(const struct brw_compiler *compiler,
1194                         void *mem_ctx,
1195                         struct anv_graphics_base_pipeline *pipeline,
1196                         struct anv_pipeline_stage *vs_stage,
1197                         uint32_t view_mask)
1198 {
1199    /* When using Primitive Replication for multiview, each view gets its own
1200     * position slot.
1201     */
1202    uint32_t pos_slots =
1203       (vs_stage->nir->info.per_view_outputs & VARYING_BIT_POS) ?
1204       MAX2(1, util_bitcount(view_mask)) : 1;
1205 
1206    /* Only position is allowed to be per-view */
1207    assert(!(vs_stage->nir->info.per_view_outputs & ~VARYING_BIT_POS));
1208 
1209    brw_compute_vue_map(compiler->devinfo,
1210                        &vs_stage->prog_data.vs.base.vue_map,
1211                        vs_stage->nir->info.outputs_written,
1212                        vs_stage->nir->info.separate_shader,
1213                        pos_slots);
1214 
1215    vs_stage->num_stats = 1;
1216 
1217    struct brw_compile_vs_params params = {
1218       .base = {
1219          .nir = vs_stage->nir,
1220          .stats = vs_stage->stats,
1221          .log_data = pipeline->base.device,
1222          .mem_ctx = mem_ctx,
1223          .source_hash = vs_stage->source_hash,
1224       },
1225       .key = &vs_stage->key.vs,
1226       .prog_data = &vs_stage->prog_data.vs,
1227    };
1228 
1229    vs_stage->code = brw_compile_vs(compiler, &params);
1230 }
1231 
1232 static void
merge_tess_info(struct shader_info * tes_info,const struct shader_info * tcs_info)1233 merge_tess_info(struct shader_info *tes_info,
1234                 const struct shader_info *tcs_info)
1235 {
1236    /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
1237     *
1238     *    "PointMode. Controls generation of points rather than triangles
1239     *     or lines. This functionality defaults to disabled, and is
1240     *     enabled if either shader stage includes the execution mode.
1241     *
1242     * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
1243     * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
1244     * and OutputVertices, it says:
1245     *
1246     *    "One mode must be set in at least one of the tessellation
1247     *     shader stages."
1248     *
1249     * So, the fields can be set in either the TCS or TES, but they must
1250     * agree if set in both.  Our backend looks at TES, so bitwise-or in
1251     * the values from the TCS.
1252     */
1253    assert(tcs_info->tess.tcs_vertices_out == 0 ||
1254           tes_info->tess.tcs_vertices_out == 0 ||
1255           tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
1256    tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
1257 
1258    assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1259           tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
1260           tcs_info->tess.spacing == tes_info->tess.spacing);
1261    tes_info->tess.spacing |= tcs_info->tess.spacing;
1262 
1263    assert(tcs_info->tess._primitive_mode == 0 ||
1264           tes_info->tess._primitive_mode == 0 ||
1265           tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
1266    tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
1267    tes_info->tess.ccw |= tcs_info->tess.ccw;
1268    tes_info->tess.point_mode |= tcs_info->tess.point_mode;
1269 }
1270 
1271 static void
anv_pipeline_link_tcs(const struct brw_compiler * compiler,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * tes_stage)1272 anv_pipeline_link_tcs(const struct brw_compiler *compiler,
1273                       struct anv_pipeline_stage *tcs_stage,
1274                       struct anv_pipeline_stage *tes_stage)
1275 {
1276    assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
1277 
1278    brw_nir_link_shaders(compiler, tcs_stage->nir, tes_stage->nir);
1279 
1280    nir_lower_patch_vertices(tes_stage->nir,
1281                             tcs_stage->nir->info.tess.tcs_vertices_out,
1282                             NULL);
1283 
1284    /* Copy TCS info into the TES info */
1285    merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
1286 
1287    /* Whacking the key after cache lookup is a bit sketchy, but all of
1288     * this comes from the SPIR-V, which is part of the hash used for the
1289     * pipeline cache.  So it should be safe.
1290     */
1291    tcs_stage->key.tcs._tes_primitive_mode =
1292       tes_stage->nir->info.tess._primitive_mode;
1293 }
1294 
1295 static void
anv_pipeline_compile_tcs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tcs_stage,struct anv_pipeline_stage * prev_stage)1296 anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
1297                          void *mem_ctx,
1298                          struct anv_device *device,
1299                          struct anv_pipeline_stage *tcs_stage,
1300                          struct anv_pipeline_stage *prev_stage)
1301 {
1302    tcs_stage->key.tcs.outputs_written =
1303       tcs_stage->nir->info.outputs_written;
1304    tcs_stage->key.tcs.patch_outputs_written =
1305       tcs_stage->nir->info.patch_outputs_written;
1306 
1307    tcs_stage->num_stats = 1;
1308 
1309    struct brw_compile_tcs_params params = {
1310       .base = {
1311          .nir = tcs_stage->nir,
1312          .stats = tcs_stage->stats,
1313          .log_data = device,
1314          .mem_ctx = mem_ctx,
1315          .source_hash = tcs_stage->source_hash,
1316       },
1317       .key = &tcs_stage->key.tcs,
1318       .prog_data = &tcs_stage->prog_data.tcs,
1319    };
1320 
1321    tcs_stage->code = brw_compile_tcs(compiler, &params);
1322 }
1323 
1324 static void
anv_pipeline_link_tes(const struct brw_compiler * compiler,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * next_stage)1325 anv_pipeline_link_tes(const struct brw_compiler *compiler,
1326                       struct anv_pipeline_stage *tes_stage,
1327                       struct anv_pipeline_stage *next_stage)
1328 {
1329    if (next_stage)
1330       brw_nir_link_shaders(compiler, tes_stage->nir, next_stage->nir);
1331 }
1332 
1333 static void
anv_pipeline_compile_tes(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * tes_stage,struct anv_pipeline_stage * tcs_stage)1334 anv_pipeline_compile_tes(const struct brw_compiler *compiler,
1335                          void *mem_ctx,
1336                          struct anv_device *device,
1337                          struct anv_pipeline_stage *tes_stage,
1338                          struct anv_pipeline_stage *tcs_stage)
1339 {
1340    tes_stage->key.tes.inputs_read =
1341       tcs_stage->nir->info.outputs_written;
1342    tes_stage->key.tes.patch_inputs_read =
1343       tcs_stage->nir->info.patch_outputs_written;
1344 
1345    tes_stage->num_stats = 1;
1346 
1347    struct brw_compile_tes_params params = {
1348       .base = {
1349          .nir = tes_stage->nir,
1350          .stats = tes_stage->stats,
1351          .log_data = device,
1352          .mem_ctx = mem_ctx,
1353          .source_hash = tes_stage->source_hash,
1354       },
1355       .key = &tes_stage->key.tes,
1356       .prog_data = &tes_stage->prog_data.tes,
1357       .input_vue_map = &tcs_stage->prog_data.tcs.base.vue_map,
1358    };
1359 
1360    tes_stage->code = brw_compile_tes(compiler, &params);
1361 }
1362 
1363 static void
anv_pipeline_link_gs(const struct brw_compiler * compiler,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * next_stage)1364 anv_pipeline_link_gs(const struct brw_compiler *compiler,
1365                      struct anv_pipeline_stage *gs_stage,
1366                      struct anv_pipeline_stage *next_stage)
1367 {
1368    if (next_stage)
1369       brw_nir_link_shaders(compiler, gs_stage->nir, next_stage->nir);
1370 }
1371 
1372 static void
anv_pipeline_compile_gs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * gs_stage,struct anv_pipeline_stage * prev_stage)1373 anv_pipeline_compile_gs(const struct brw_compiler *compiler,
1374                         void *mem_ctx,
1375                         struct anv_device *device,
1376                         struct anv_pipeline_stage *gs_stage,
1377                         struct anv_pipeline_stage *prev_stage)
1378 {
1379    brw_compute_vue_map(compiler->devinfo,
1380                        &gs_stage->prog_data.gs.base.vue_map,
1381                        gs_stage->nir->info.outputs_written,
1382                        gs_stage->nir->info.separate_shader, 1);
1383 
1384    gs_stage->num_stats = 1;
1385 
1386    struct brw_compile_gs_params params = {
1387       .base = {
1388          .nir = gs_stage->nir,
1389          .stats = gs_stage->stats,
1390          .log_data = device,
1391          .mem_ctx = mem_ctx,
1392          .source_hash = gs_stage->source_hash,
1393       },
1394       .key = &gs_stage->key.gs,
1395       .prog_data = &gs_stage->prog_data.gs,
1396    };
1397 
1398    gs_stage->code = brw_compile_gs(compiler, &params);
1399 }
1400 
1401 static void
anv_pipeline_link_task(const struct brw_compiler * compiler,struct anv_pipeline_stage * task_stage,struct anv_pipeline_stage * next_stage)1402 anv_pipeline_link_task(const struct brw_compiler *compiler,
1403                        struct anv_pipeline_stage *task_stage,
1404                        struct anv_pipeline_stage *next_stage)
1405 {
1406    assert(next_stage);
1407    assert(next_stage->stage == MESA_SHADER_MESH);
1408    brw_nir_link_shaders(compiler, task_stage->nir, next_stage->nir);
1409 }
1410 
1411 static void
anv_pipeline_compile_task(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * task_stage)1412 anv_pipeline_compile_task(const struct brw_compiler *compiler,
1413                           void *mem_ctx,
1414                           struct anv_device *device,
1415                           struct anv_pipeline_stage *task_stage)
1416 {
1417    task_stage->num_stats = 1;
1418 
1419    struct brw_compile_task_params params = {
1420       .base = {
1421          .nir = task_stage->nir,
1422          .stats = task_stage->stats,
1423          .log_data = device,
1424          .mem_ctx = mem_ctx,
1425          .source_hash = task_stage->source_hash,
1426       },
1427       .key = &task_stage->key.task,
1428       .prog_data = &task_stage->prog_data.task,
1429    };
1430 
1431    task_stage->code = brw_compile_task(compiler, &params);
1432 }
1433 
1434 static void
anv_pipeline_link_mesh(const struct brw_compiler * compiler,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * next_stage)1435 anv_pipeline_link_mesh(const struct brw_compiler *compiler,
1436                        struct anv_pipeline_stage *mesh_stage,
1437                        struct anv_pipeline_stage *next_stage)
1438 {
1439    if (next_stage) {
1440       brw_nir_link_shaders(compiler, mesh_stage->nir, next_stage->nir);
1441    }
1442 }
1443 
1444 static void
anv_pipeline_compile_mesh(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * mesh_stage,struct anv_pipeline_stage * prev_stage)1445 anv_pipeline_compile_mesh(const struct brw_compiler *compiler,
1446                           void *mem_ctx,
1447                           struct anv_device *device,
1448                           struct anv_pipeline_stage *mesh_stage,
1449                           struct anv_pipeline_stage *prev_stage)
1450 {
1451    mesh_stage->num_stats = 1;
1452 
1453    struct brw_compile_mesh_params params = {
1454       .base = {
1455          .nir = mesh_stage->nir,
1456          .stats = mesh_stage->stats,
1457          .log_data = device,
1458          .mem_ctx = mem_ctx,
1459          .source_hash = mesh_stage->source_hash,
1460       },
1461       .key = &mesh_stage->key.mesh,
1462       .prog_data = &mesh_stage->prog_data.mesh,
1463    };
1464 
1465    if (prev_stage) {
1466       assert(prev_stage->stage == MESA_SHADER_TASK);
1467       params.tue_map = &prev_stage->prog_data.task.map;
1468    }
1469 
1470    mesh_stage->code = brw_compile_mesh(compiler, &params);
1471 }
1472 
1473 static void
anv_pipeline_link_fs(const struct brw_compiler * compiler,struct anv_pipeline_stage * stage,const struct vk_render_pass_state * rp)1474 anv_pipeline_link_fs(const struct brw_compiler *compiler,
1475                      struct anv_pipeline_stage *stage,
1476                      const struct vk_render_pass_state *rp)
1477 {
1478    /* Initially the valid outputs value is set to all possible render targets
1479     * valid (see populate_wm_prog_key()), before we look at the shader
1480     * variables. Here we look at the output variables of the shader an compute
1481     * a correct number of render target outputs.
1482     */
1483    stage->key.wm.color_outputs_valid = 0;
1484    nir_foreach_shader_out_variable_safe(var, stage->nir) {
1485       if (var->data.location < FRAG_RESULT_DATA0)
1486          continue;
1487 
1488       const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
1489       const unsigned array_len =
1490          glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
1491       assert(rt + array_len <= MAX_RTS);
1492 
1493       stage->key.wm.color_outputs_valid |= BITFIELD_RANGE(rt, array_len);
1494    }
1495    stage->key.wm.color_outputs_valid &= rp_color_mask(rp);
1496    stage->key.wm.nr_color_regions =
1497       util_last_bit(stage->key.wm.color_outputs_valid);
1498 
1499    unsigned num_rt_bindings;
1500    struct anv_pipeline_binding rt_bindings[MAX_RTS];
1501    if (stage->key.wm.nr_color_regions > 0) {
1502       assert(stage->key.wm.nr_color_regions <= MAX_RTS);
1503       for (unsigned rt = 0; rt < stage->key.wm.nr_color_regions; rt++) {
1504          if (stage->key.wm.color_outputs_valid & BITFIELD_BIT(rt)) {
1505             rt_bindings[rt] = (struct anv_pipeline_binding) {
1506                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1507                .index = rt,
1508                .binding = UINT32_MAX,
1509 
1510             };
1511          } else {
1512             /* Setup a null render target */
1513             rt_bindings[rt] = (struct anv_pipeline_binding) {
1514                .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1515                .index = UINT32_MAX,
1516                .binding = UINT32_MAX,
1517             };
1518          }
1519       }
1520       num_rt_bindings = stage->key.wm.nr_color_regions;
1521    } else {
1522       /* Setup a null render target */
1523       rt_bindings[0] = (struct anv_pipeline_binding) {
1524          .set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
1525          .index = UINT32_MAX,
1526       };
1527       num_rt_bindings = 1;
1528    }
1529 
1530    assert(num_rt_bindings <= MAX_RTS);
1531    assert(stage->bind_map.surface_count == 0);
1532    typed_memcpy(stage->bind_map.surface_to_descriptor,
1533                 rt_bindings, num_rt_bindings);
1534    stage->bind_map.surface_count += num_rt_bindings;
1535 }
1536 
1537 static void
anv_pipeline_compile_fs(const struct brw_compiler * compiler,void * mem_ctx,struct anv_device * device,struct anv_pipeline_stage * fs_stage,struct anv_pipeline_stage * prev_stage,struct anv_graphics_base_pipeline * pipeline,uint32_t view_mask,bool use_primitive_replication)1538 anv_pipeline_compile_fs(const struct brw_compiler *compiler,
1539                         void *mem_ctx,
1540                         struct anv_device *device,
1541                         struct anv_pipeline_stage *fs_stage,
1542                         struct anv_pipeline_stage *prev_stage,
1543                         struct anv_graphics_base_pipeline *pipeline,
1544                         uint32_t view_mask,
1545                         bool use_primitive_replication)
1546 {
1547    /* When using Primitive Replication for multiview, each view gets its own
1548     * position slot.
1549     */
1550    uint32_t pos_slots = use_primitive_replication ?
1551       MAX2(1, util_bitcount(view_mask)) : 1;
1552 
1553    /* If we have a previous stage we can use that to deduce valid slots.
1554     * Otherwise, rely on inputs of the input shader.
1555     */
1556    if (prev_stage) {
1557       fs_stage->key.wm.input_slots_valid =
1558          prev_stage->prog_data.vue.vue_map.slots_valid;
1559    } else {
1560       struct intel_vue_map prev_vue_map;
1561       brw_compute_vue_map(compiler->devinfo,
1562                           &prev_vue_map,
1563                           fs_stage->nir->info.inputs_read,
1564                           fs_stage->nir->info.separate_shader,
1565                           pos_slots);
1566 
1567       fs_stage->key.wm.input_slots_valid = prev_vue_map.slots_valid;
1568    }
1569 
1570    struct brw_compile_fs_params params = {
1571       .base = {
1572          .nir = fs_stage->nir,
1573          .stats = fs_stage->stats,
1574          .log_data = device,
1575          .mem_ctx = mem_ctx,
1576          .source_hash = fs_stage->source_hash,
1577       },
1578       .key = &fs_stage->key.wm,
1579       .prog_data = &fs_stage->prog_data.wm,
1580 
1581       .allow_spilling = true,
1582       .max_polygons = UCHAR_MAX,
1583    };
1584 
1585    if (prev_stage && prev_stage->stage == MESA_SHADER_MESH) {
1586       params.mue_map = &prev_stage->prog_data.mesh.map;
1587       /* TODO(mesh): Slots valid, do we even use/rely on it? */
1588    }
1589 
1590    fs_stage->code = brw_compile_fs(compiler, &params);
1591 
1592    fs_stage->num_stats = (uint32_t)!!fs_stage->prog_data.wm.dispatch_multi +
1593                          (uint32_t)fs_stage->prog_data.wm.dispatch_8 +
1594                          (uint32_t)fs_stage->prog_data.wm.dispatch_16 +
1595                          (uint32_t)fs_stage->prog_data.wm.dispatch_32;
1596    assert(fs_stage->num_stats <= ARRAY_SIZE(fs_stage->stats));
1597 }
1598 
1599 static void
anv_pipeline_add_executable(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage,struct brw_compile_stats * stats,uint32_t code_offset)1600 anv_pipeline_add_executable(struct anv_pipeline *pipeline,
1601                             struct anv_pipeline_stage *stage,
1602                             struct brw_compile_stats *stats,
1603                             uint32_t code_offset)
1604 {
1605    char *nir = NULL;
1606    if (stage->nir &&
1607        (pipeline->flags &
1608         VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1609       nir = nir_shader_as_str(stage->nir, pipeline->mem_ctx);
1610    }
1611 
1612    char *disasm = NULL;
1613    if (stage->code &&
1614        (pipeline->flags &
1615         VK_PIPELINE_CREATE_2_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR)) {
1616       char *stream_data = NULL;
1617       size_t stream_size = 0;
1618       FILE *stream = open_memstream(&stream_data, &stream_size);
1619 
1620       uint32_t push_size = 0;
1621       for (unsigned i = 0; i < 4; i++)
1622          push_size += stage->bind_map.push_ranges[i].length;
1623       if (push_size > 0) {
1624          fprintf(stream, "Push constant ranges:\n");
1625          for (unsigned i = 0; i < 4; i++) {
1626             if (stage->bind_map.push_ranges[i].length == 0)
1627                continue;
1628 
1629             fprintf(stream, "    RANGE%d (%dB): ", i,
1630                     stage->bind_map.push_ranges[i].length * 32);
1631 
1632             switch (stage->bind_map.push_ranges[i].set) {
1633             case ANV_DESCRIPTOR_SET_NULL:
1634                fprintf(stream, "NULL");
1635                break;
1636 
1637             case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
1638                fprintf(stream, "Vulkan push constants and API params");
1639                break;
1640 
1641             case ANV_DESCRIPTOR_SET_DESCRIPTORS:
1642                fprintf(stream, "Descriptor buffer for set %d (start=%dB)",
1643                        stage->bind_map.push_ranges[i].index,
1644                        stage->bind_map.push_ranges[i].start * 32);
1645                break;
1646 
1647             case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS:
1648                unreachable("gl_NumWorkgroups is never pushed");
1649 
1650             case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
1651                unreachable("Color attachments can't be pushed");
1652 
1653             default:
1654                fprintf(stream, "UBO (set=%d binding=%d start=%dB)",
1655                        stage->bind_map.push_ranges[i].set,
1656                        stage->bind_map.push_ranges[i].index,
1657                        stage->bind_map.push_ranges[i].start * 32);
1658                break;
1659             }
1660             fprintf(stream, "\n");
1661          }
1662          fprintf(stream, "\n");
1663       }
1664 
1665       /* Creating this is far cheaper than it looks.  It's perfectly fine to
1666        * do it for every binary.
1667        */
1668       brw_disassemble_with_errors(&pipeline->device->physical->compiler->isa,
1669                                   stage->code, code_offset, stream);
1670 
1671       fclose(stream);
1672 
1673       /* Copy it to a ralloc'd thing */
1674       disasm = ralloc_size(pipeline->mem_ctx, stream_size + 1);
1675       memcpy(disasm, stream_data, stream_size);
1676       disasm[stream_size] = 0;
1677 
1678       free(stream_data);
1679    }
1680 
1681    const struct anv_pipeline_executable exe = {
1682       .stage = stage->stage,
1683       .stats = *stats,
1684       .nir = nir,
1685       .disasm = disasm,
1686    };
1687    util_dynarray_append(&pipeline->executables,
1688                         struct anv_pipeline_executable, exe);
1689 }
1690 
1691 static void
anv_pipeline_add_executables(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)1692 anv_pipeline_add_executables(struct anv_pipeline *pipeline,
1693                              struct anv_pipeline_stage *stage)
1694 {
1695    if (stage->stage == MESA_SHADER_FRAGMENT) {
1696       /* We pull the prog data and stats out of the anv_shader_bin because
1697        * the anv_pipeline_stage may not be fully populated if we successfully
1698        * looked up the shader in a cache.
1699        */
1700       const struct brw_wm_prog_data *wm_prog_data =
1701          (const struct brw_wm_prog_data *)stage->bin->prog_data;
1702       struct brw_compile_stats *stats = stage->bin->stats;
1703 
1704       if (wm_prog_data->dispatch_8 ||
1705           wm_prog_data->dispatch_multi) {
1706          anv_pipeline_add_executable(pipeline, stage, stats++, 0);
1707       }
1708 
1709       if (wm_prog_data->dispatch_16) {
1710          anv_pipeline_add_executable(pipeline, stage, stats++,
1711                                      wm_prog_data->prog_offset_16);
1712       }
1713 
1714       if (wm_prog_data->dispatch_32) {
1715          anv_pipeline_add_executable(pipeline, stage, stats++,
1716                                      wm_prog_data->prog_offset_32);
1717       }
1718    } else {
1719       anv_pipeline_add_executable(pipeline, stage, stage->bin->stats, 0);
1720    }
1721 }
1722 
1723 static void
anv_pipeline_account_shader(struct anv_pipeline * pipeline,struct anv_shader_bin * shader)1724 anv_pipeline_account_shader(struct anv_pipeline *pipeline,
1725                             struct anv_shader_bin *shader)
1726 {
1727    pipeline->scratch_size = MAX2(pipeline->scratch_size,
1728                                  shader->prog_data->total_scratch);
1729 
1730    pipeline->ray_queries = MAX2(pipeline->ray_queries,
1731                                 shader->prog_data->ray_queries);
1732 
1733    if (shader->push_desc_info.used_set_buffer) {
1734       pipeline->use_push_descriptor_buffer |=
1735          mesa_to_vk_shader_stage(shader->stage);
1736    }
1737    if (shader->push_desc_info.used_descriptors &
1738        ~shader->push_desc_info.fully_promoted_ubo_descriptors)
1739       pipeline->use_push_descriptor |= mesa_to_vk_shader_stage(shader->stage);
1740 }
1741 
1742 /* This function return true if a shader should not be looked at because of
1743  * fast linking. Instead we should use the shader binaries provided by
1744  * libraries.
1745  */
1746 static bool
anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool link_optimize,gl_shader_stage stage)1747 anv_graphics_pipeline_skip_shader_compile(struct anv_graphics_base_pipeline *pipeline,
1748                                           struct anv_pipeline_stage *stages,
1749                                           bool link_optimize,
1750                                           gl_shader_stage stage)
1751 {
1752    /* Always skip non active stages */
1753    if (!anv_pipeline_base_has_stage(pipeline, stage))
1754       return true;
1755 
1756    /* When link optimizing, consider all stages */
1757    if (link_optimize)
1758       return false;
1759 
1760    /* Otherwise check if the stage was specified through
1761     * VkGraphicsPipelineCreateInfo
1762     */
1763    assert(stages[stage].info != NULL || stages[stage].imported.bin != NULL);
1764    return stages[stage].info == NULL;
1765 }
1766 
1767 static void
anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline * pipeline,const struct vk_graphics_pipeline_state * state,struct anv_pipeline_stage * stages)1768 anv_graphics_pipeline_init_keys(struct anv_graphics_base_pipeline *pipeline,
1769                                 const struct vk_graphics_pipeline_state *state,
1770                                 struct anv_pipeline_stage *stages)
1771 {
1772    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
1773       if (!anv_pipeline_base_has_stage(pipeline, s))
1774          continue;
1775 
1776       int64_t stage_start = os_time_get_nano();
1777 
1778       const struct anv_device *device = pipeline->base.device;
1779       switch (stages[s].stage) {
1780       case MESA_SHADER_VERTEX:
1781          populate_vs_prog_key(&stages[s], device);
1782          break;
1783       case MESA_SHADER_TESS_CTRL:
1784          populate_tcs_prog_key(&stages[s],
1785                                device,
1786                                BITSET_TEST(state->dynamic,
1787                                            MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) ?
1788                                0 : state->ts->patch_control_points);
1789          break;
1790       case MESA_SHADER_TESS_EVAL:
1791          populate_tes_prog_key(&stages[s], device);
1792          break;
1793       case MESA_SHADER_GEOMETRY:
1794          populate_gs_prog_key(&stages[s], device);
1795          break;
1796       case MESA_SHADER_FRAGMENT: {
1797          /* Assume rasterization enabled in any of the following case :
1798           *
1799           *    - We're a pipeline library without pre-rasterization information
1800           *
1801           *    - Rasterization is not disabled in the non dynamic state
1802           *
1803           *    - Rasterization disable is dynamic
1804           */
1805          const bool raster_enabled =
1806             state->rs == NULL ||
1807             !state->rs->rasterizer_discard_enable ||
1808             BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE);
1809          enum brw_sometimes is_mesh = BRW_NEVER;
1810          if (device->vk.enabled_extensions.EXT_mesh_shader) {
1811             if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_VERTEX))
1812                is_mesh = BRW_NEVER;
1813             else if (anv_pipeline_base_has_stage(pipeline, MESA_SHADER_MESH))
1814                is_mesh = BRW_ALWAYS;
1815             else {
1816                assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1817                is_mesh = BRW_SOMETIMES;
1818             }
1819          }
1820          populate_wm_prog_key(&stages[s],
1821                               pipeline,
1822                               state->dynamic,
1823                               raster_enabled ? state->ms : NULL,
1824                               state->fsr, state->rp, is_mesh);
1825          break;
1826       }
1827 
1828       case MESA_SHADER_TASK:
1829          populate_task_prog_key(&stages[s], device);
1830          break;
1831 
1832       case MESA_SHADER_MESH: {
1833          const bool compact_mue =
1834             !(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB &&
1835               !anv_pipeline_base_has_stage(pipeline, MESA_SHADER_FRAGMENT));
1836          populate_mesh_prog_key(&stages[s], device, compact_mue);
1837          break;
1838       }
1839 
1840       default:
1841          unreachable("Invalid graphics shader stage");
1842       }
1843 
1844       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1845       stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
1846    }
1847 }
1848 
1849 static void
anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,bool will_compile)1850 anv_graphics_lib_retain_shaders(struct anv_graphics_base_pipeline *pipeline,
1851                                 struct anv_pipeline_stage *stages,
1852                                 bool will_compile)
1853 {
1854    /* There isn't much point in retaining NIR shaders on final pipelines. */
1855    assert(pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB);
1856 
1857    struct anv_graphics_lib_pipeline *lib = (struct anv_graphics_lib_pipeline *) pipeline;
1858 
1859    for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1860       if (!anv_pipeline_base_has_stage(pipeline, s))
1861          continue;
1862 
1863       memcpy(lib->retained_shaders[s].shader_sha1, stages[s].shader_sha1,
1864              sizeof(stages[s].shader_sha1));
1865 
1866       lib->retained_shaders[s].subgroup_size_type = stages[s].subgroup_size_type;
1867 
1868       nir_shader *nir = stages[s].nir != NULL ? stages[s].nir : stages[s].imported.nir;
1869       assert(nir != NULL);
1870 
1871       if (!will_compile) {
1872          lib->retained_shaders[s].nir = nir;
1873       } else {
1874          lib->retained_shaders[s].nir =
1875             nir_shader_clone(pipeline->base.mem_ctx, nir);
1876       }
1877    }
1878 }
1879 
1880 static bool
anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,bool link_optimize,VkPipelineCreationFeedback * pipeline_feedback)1881 anv_graphics_pipeline_load_cached_shaders(struct anv_graphics_base_pipeline *pipeline,
1882                                           struct vk_pipeline_cache *cache,
1883                                           struct anv_pipeline_stage *stages,
1884                                           bool link_optimize,
1885                                           VkPipelineCreationFeedback *pipeline_feedback)
1886 {
1887    struct anv_device *device = pipeline->base.device;
1888    unsigned cache_hits = 0, found = 0, imported = 0;
1889 
1890    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1891       if (!anv_pipeline_base_has_stage(pipeline, s))
1892          continue;
1893 
1894       int64_t stage_start = os_time_get_nano();
1895 
1896       bool cache_hit;
1897       stages[s].bin =
1898          anv_device_search_for_kernel(device, cache, &stages[s].cache_key,
1899                                       sizeof(stages[s].cache_key), &cache_hit);
1900       if (stages[s].bin) {
1901          found++;
1902          pipeline->shaders[s] = stages[s].bin;
1903       }
1904 
1905       if (cache_hit) {
1906          cache_hits++;
1907          stages[s].feedback.flags |=
1908             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1909       }
1910       stages[s].feedback.duration += os_time_get_nano() - stage_start;
1911    }
1912 
1913    /* When not link optimizing, lookup the missing shader in the imported
1914     * libraries.
1915     */
1916    if (!link_optimize) {
1917       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1918          if (!anv_pipeline_base_has_stage(pipeline, s))
1919             continue;
1920 
1921          if (pipeline->shaders[s] != NULL)
1922             continue;
1923 
1924          if (stages[s].imported.bin == NULL)
1925             continue;
1926 
1927          stages[s].bin = stages[s].imported.bin;
1928          pipeline->shaders[s] = anv_shader_bin_ref(stages[s].imported.bin);
1929          pipeline->source_hashes[s] = stages[s].source_hash;
1930          imported++;
1931       }
1932    }
1933 
1934    if ((found + imported) == __builtin_popcount(pipeline->base.active_stages)) {
1935       if (cache_hits == found && found != 0) {
1936          pipeline_feedback->flags |=
1937             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
1938       }
1939       /* We found all our shaders in the cache.  We're done. */
1940       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1941          if (pipeline->shaders[s] == NULL)
1942             continue;
1943 
1944          /* Only add the executables when we're not importing or doing link
1945           * optimizations. The imported executables are added earlier. Link
1946           * optimization can produce different binaries.
1947           */
1948          if (stages[s].imported.bin == NULL || link_optimize)
1949             anv_pipeline_add_executables(&pipeline->base, &stages[s]);
1950          pipeline->source_hashes[s] = stages[s].source_hash;
1951       }
1952       return true;
1953    } else if (found > 0) {
1954       /* We found some but not all of our shaders. This shouldn't happen most
1955        * of the time but it can if we have a partially populated pipeline
1956        * cache.
1957        */
1958       assert(found < __builtin_popcount(pipeline->base.active_stages));
1959 
1960       vk_perf(VK_LOG_OBJS(cache ? &cache->base :
1961                                   &pipeline->base.device->vk.base),
1962               "Found a partial pipeline in the cache.  This is "
1963               "most likely caused by an incomplete pipeline cache "
1964               "import or export");
1965 
1966       /* We're going to have to recompile anyway, so just throw away our
1967        * references to the shaders in the cache.  We'll get them out of the
1968        * cache again as part of the compilation process.
1969        */
1970       for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
1971          stages[s].feedback.flags = 0;
1972          if (pipeline->shaders[s]) {
1973             anv_shader_bin_unref(device, pipeline->shaders[s]);
1974             pipeline->shaders[s] = NULL;
1975          }
1976       }
1977    }
1978 
1979    return false;
1980 }
1981 
1982 static const gl_shader_stage graphics_shader_order[] = {
1983    MESA_SHADER_VERTEX,
1984    MESA_SHADER_TESS_CTRL,
1985    MESA_SHADER_TESS_EVAL,
1986    MESA_SHADER_GEOMETRY,
1987 
1988    MESA_SHADER_TASK,
1989    MESA_SHADER_MESH,
1990 
1991    MESA_SHADER_FRAGMENT,
1992 };
1993 
1994 /* This function loads NIR only for stages specified in
1995  * VkGraphicsPipelineCreateInfo::pStages[]
1996  */
1997 static VkResult
anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline * pipeline,struct vk_pipeline_cache * cache,struct anv_pipeline_stage * stages,void * mem_ctx,bool need_clone)1998 anv_graphics_pipeline_load_nir(struct anv_graphics_base_pipeline *pipeline,
1999                                struct vk_pipeline_cache *cache,
2000                                struct anv_pipeline_stage *stages,
2001                                void *mem_ctx,
2002                                bool need_clone)
2003 {
2004    for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2005       if (!anv_pipeline_base_has_stage(pipeline, s))
2006          continue;
2007 
2008       int64_t stage_start = os_time_get_nano();
2009 
2010       assert(stages[s].stage == s);
2011 
2012       stages[s].bind_map = (struct anv_pipeline_bind_map) {
2013          .surface_to_descriptor = stages[s].surface_to_descriptor,
2014          .sampler_to_descriptor = stages[s].sampler_to_descriptor
2015       };
2016 
2017       /* Only use the create NIR from the pStages[] element if we don't have
2018        * an imported library for the same stage.
2019        */
2020       if (stages[s].imported.bin == NULL) {
2021          stages[s].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
2022                                                     mem_ctx, &stages[s]);
2023          if (stages[s].nir == NULL)
2024             return vk_error(pipeline, VK_ERROR_UNKNOWN);
2025       } else {
2026          stages[s].nir = need_clone ?
2027                          nir_shader_clone(mem_ctx, stages[s].imported.nir) :
2028                          stages[s].imported.nir;
2029       }
2030 
2031       stages[s].feedback.duration += os_time_get_nano() - stage_start;
2032    }
2033 
2034    return VK_SUCCESS;
2035 }
2036 
2037 static void
anv_pipeline_nir_preprocess(struct anv_pipeline * pipeline,struct anv_pipeline_stage * stage)2038 anv_pipeline_nir_preprocess(struct anv_pipeline *pipeline,
2039                             struct anv_pipeline_stage *stage)
2040 {
2041    struct anv_device *device = pipeline->device;
2042    const struct brw_compiler *compiler = device->physical->compiler;
2043 
2044    const struct nir_lower_sysvals_to_varyings_options sysvals_to_varyings = {
2045       .point_coord = true,
2046    };
2047    NIR_PASS(_, stage->nir, nir_lower_sysvals_to_varyings, &sysvals_to_varyings);
2048 
2049    const nir_opt_access_options opt_access_options = {
2050       .is_vulkan = true,
2051    };
2052    NIR_PASS(_, stage->nir, nir_opt_access, &opt_access_options);
2053 
2054    /* Vulkan uses the separate-shader linking model */
2055    stage->nir->info.separate_shader = true;
2056 
2057    struct brw_nir_compiler_opts opts = {
2058       .softfp64 = device->fp64_nir,
2059       /* Assume robustness with EXT_pipeline_robustness because this can be
2060        * turned on/off per pipeline and we have no visibility on this here.
2061        */
2062       .robust_image_access = device->vk.enabled_features.robustImageAccess ||
2063                              device->vk.enabled_features.robustImageAccess2 ||
2064                              device->vk.enabled_extensions.EXT_pipeline_robustness,
2065       .input_vertices = stage->nir->info.stage == MESA_SHADER_TESS_CTRL ?
2066                         stage->key.tcs.input_vertices : 0,
2067    };
2068    brw_preprocess_nir(compiler, stage->nir, &opts);
2069 
2070    if (stage->nir->info.stage == MESA_SHADER_MESH) {
2071       NIR_PASS(_, stage->nir, anv_nir_lower_set_vtx_and_prim_count);
2072       NIR_PASS(_, stage->nir, nir_opt_dce);
2073       NIR_PASS(_, stage->nir, nir_remove_dead_variables, nir_var_shader_out, NULL);
2074    }
2075 
2076    NIR_PASS(_, stage->nir, nir_opt_barrier_modes);
2077 
2078    nir_shader_gather_info(stage->nir, nir_shader_get_entrypoint(stage->nir));
2079 }
2080 
2081 static void
anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline * pipeline,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,struct anv_pipeline_stage * stages)2082 anv_fill_pipeline_creation_feedback(const struct anv_graphics_base_pipeline *pipeline,
2083                                     VkPipelineCreationFeedback *pipeline_feedback,
2084                                     const VkGraphicsPipelineCreateInfo *info,
2085                                     struct anv_pipeline_stage *stages)
2086 {
2087    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2088       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2089    if (create_feedback) {
2090       *create_feedback->pPipelineCreationFeedback = *pipeline_feedback;
2091 
2092       /* VkPipelineCreationFeedbackCreateInfo:
2093        *
2094        *    "An implementation must set or clear the
2095        *     VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT in
2096        *     VkPipelineCreationFeedback::flags for pPipelineCreationFeedback
2097        *     and every element of pPipelineStageCreationFeedbacks."
2098        *
2099        */
2100       for (uint32_t i = 0; i < create_feedback->pipelineStageCreationFeedbackCount; i++) {
2101          create_feedback->pPipelineStageCreationFeedbacks[i].flags &=
2102             ~VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
2103       }
2104       /* This part is not really specified in the Vulkan spec at the moment.
2105        * We're kind of guessing what the CTS wants. We might need to update
2106        * when https://gitlab.khronos.org/vulkan/vulkan/-/issues/3115 is
2107        * clarified.
2108        */
2109       for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2110          if (!anv_pipeline_base_has_stage(pipeline, s))
2111             continue;
2112 
2113          if (stages[s].feedback_idx < create_feedback->pipelineStageCreationFeedbackCount) {
2114             create_feedback->pPipelineStageCreationFeedbacks[
2115                stages[s].feedback_idx] = stages[s].feedback;
2116          }
2117       }
2118    }
2119 }
2120 
2121 static uint32_t
anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage * stages)2122 anv_graphics_pipeline_imported_shader_count(struct anv_pipeline_stage *stages)
2123 {
2124    uint32_t count = 0;
2125    for (uint32_t s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2126       if (stages[s].imported.bin != NULL)
2127          count++;
2128    }
2129    return count;
2130 }
2131 
2132 static VkResult
anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,VkPipelineCreationFeedback * pipeline_feedback,const VkGraphicsPipelineCreateInfo * info,const struct vk_graphics_pipeline_state * state)2133 anv_graphics_pipeline_compile(struct anv_graphics_base_pipeline *pipeline,
2134                               struct anv_pipeline_stage *stages,
2135                               struct vk_pipeline_cache *cache,
2136                               VkPipelineCreationFeedback *pipeline_feedback,
2137                               const VkGraphicsPipelineCreateInfo *info,
2138                               const struct vk_graphics_pipeline_state *state)
2139 {
2140    int64_t pipeline_start = os_time_get_nano();
2141 
2142    struct anv_device *device = pipeline->base.device;
2143    const struct intel_device_info *devinfo = device->info;
2144    const struct brw_compiler *compiler = device->physical->compiler;
2145 
2146    /* Setup the shaders given in this VkGraphicsPipelineCreateInfo::pStages[].
2147     * Other shaders imported from libraries should have been added by
2148     * anv_graphics_pipeline_import_lib().
2149     */
2150    uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
2151    for (uint32_t i = 0; i < info->stageCount; i++) {
2152       gl_shader_stage stage = vk_to_mesa_shader_stage(info->pStages[i].stage);
2153 
2154       /* If a pipeline library is loaded in this stage, we should ignore the
2155        * pStages[] entry of the same stage.
2156        */
2157       if (stages[stage].imported.bin != NULL)
2158          continue;
2159 
2160       stages[stage].stage = stage;
2161       stages[stage].pipeline_pNext = info->pNext;
2162       stages[stage].info = &info->pStages[i];
2163       stages[stage].feedback_idx = shader_count++;
2164 
2165       anv_stage_write_shader_hash(&stages[stage], device);
2166    }
2167 
2168    /* Prepare shader keys for all shaders in pipeline->base.active_stages
2169     * (this includes libraries) before generating the hash for cache look up.
2170     *
2171     * We're doing this because the spec states that :
2172     *
2173     *    "When an implementation is looking up a pipeline in a pipeline cache,
2174     *     if that pipeline is being created using linked libraries,
2175     *     implementations should always return an equivalent pipeline created
2176     *     with VK_PIPELINE_CREATE_LINK_TIME_OPTIMIZATION_BIT_EXT if available,
2177     *     whether or not that bit was specified."
2178     *
2179     * So even if the application does not request link optimization, we have
2180     * to do our cache lookup with the entire set of shader sha1s so that we
2181     * can find what would be the best optimized pipeline in the case as if we
2182     * had compiled all the shaders together and known the full graphics state.
2183     */
2184    anv_graphics_pipeline_init_keys(pipeline, state, stages);
2185 
2186    uint32_t view_mask = state->rp ? state->rp->view_mask : 0;
2187 
2188    unsigned char sha1[20];
2189    anv_pipeline_hash_graphics(pipeline, stages, view_mask, sha1);
2190 
2191    for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2192       if (!anv_pipeline_base_has_stage(pipeline, s))
2193          continue;
2194 
2195       stages[s].cache_key.stage = s;
2196       memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
2197    }
2198 
2199    const bool retain_shaders =
2200       pipeline->base.flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT;
2201    const bool link_optimize =
2202       pipeline->base.flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT;
2203 
2204    VkResult result = VK_SUCCESS;
2205    const bool skip_cache_lookup =
2206       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2207 
2208    if (!skip_cache_lookup) {
2209       bool found_all_shaders =
2210          anv_graphics_pipeline_load_cached_shaders(pipeline, cache, stages,
2211                                                    link_optimize,
2212                                                    pipeline_feedback);
2213 
2214       if (found_all_shaders) {
2215          /* If we need to retain shaders, we need to also load from the NIR
2216           * cache.
2217           */
2218          if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders) {
2219             result = anv_graphics_pipeline_load_nir(pipeline, cache,
2220                                                     stages,
2221                                                     pipeline->base.mem_ctx,
2222                                                     false /* need_clone */);
2223             if (result != VK_SUCCESS) {
2224                vk_perf(VK_LOG_OBJS(cache ? &cache->base :
2225                                    &pipeline->base.device->vk.base),
2226                        "Found all ISA shaders in the cache but not all NIR shaders.");
2227             }
2228 
2229             anv_graphics_lib_retain_shaders(pipeline, stages, false /* will_compile */);
2230          }
2231 
2232          if (result == VK_SUCCESS)
2233             goto done;
2234 
2235          for (unsigned s = 0; s < ANV_GRAPHICS_SHADER_STAGE_COUNT; s++) {
2236             if (!anv_pipeline_base_has_stage(pipeline, s))
2237                continue;
2238 
2239             if (stages[s].nir) {
2240                ralloc_free(stages[s].nir);
2241                stages[s].nir = NULL;
2242             }
2243 
2244             assert(pipeline->shaders[s] != NULL);
2245             anv_shader_bin_unref(device, pipeline->shaders[s]);
2246             pipeline->shaders[s] = NULL;
2247          }
2248       }
2249    }
2250 
2251    if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
2252       return VK_PIPELINE_COMPILE_REQUIRED;
2253 
2254    void *tmp_ctx = ralloc_context(NULL);
2255 
2256    result = anv_graphics_pipeline_load_nir(pipeline, cache, stages,
2257                                            tmp_ctx, link_optimize /* need_clone */);
2258    if (result != VK_SUCCESS)
2259       goto fail;
2260 
2261    /* Retain shaders now if asked, this only applies to libraries */
2262    if (pipeline->base.type == ANV_PIPELINE_GRAPHICS_LIB && retain_shaders)
2263       anv_graphics_lib_retain_shaders(pipeline, stages, true /* will_compile */);
2264 
2265    /* The following steps will be executed for shaders we need to compile :
2266     *
2267     *    - specified through VkGraphicsPipelineCreateInfo::pStages[]
2268     *
2269     *    - or compiled from libraries with retained shaders (libraries
2270     *      compiled with CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT) if the
2271     *      pipeline has the CREATE_LINK_TIME_OPTIMIZATION_BIT flag.
2272     */
2273 
2274    /* Preprocess all NIR shaders. */
2275    for (int s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2276       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2277                                                     link_optimize, s))
2278          continue;
2279 
2280       anv_pipeline_nir_preprocess(&pipeline->base, &stages[s]);
2281    }
2282 
2283    if (stages[MESA_SHADER_MESH].info && stages[MESA_SHADER_FRAGMENT].info) {
2284       anv_apply_per_prim_attr_wa(stages[MESA_SHADER_MESH].nir,
2285                                  stages[MESA_SHADER_FRAGMENT].nir,
2286                                  device,
2287                                  info);
2288    }
2289 
2290    /* Walk backwards to link */
2291    struct anv_pipeline_stage *next_stage = NULL;
2292    for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
2293       gl_shader_stage s = graphics_shader_order[i];
2294       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2295                                                     link_optimize, s))
2296          continue;
2297 
2298       struct anv_pipeline_stage *stage = &stages[s];
2299 
2300       switch (s) {
2301       case MESA_SHADER_VERTEX:
2302          anv_pipeline_link_vs(compiler, stage, next_stage);
2303          break;
2304       case MESA_SHADER_TESS_CTRL:
2305          anv_pipeline_link_tcs(compiler, stage, next_stage);
2306          break;
2307       case MESA_SHADER_TESS_EVAL:
2308          anv_pipeline_link_tes(compiler, stage, next_stage);
2309          break;
2310       case MESA_SHADER_GEOMETRY:
2311          anv_pipeline_link_gs(compiler, stage, next_stage);
2312          break;
2313       case MESA_SHADER_TASK:
2314          anv_pipeline_link_task(compiler, stage, next_stage);
2315          break;
2316       case MESA_SHADER_MESH:
2317          anv_pipeline_link_mesh(compiler, stage, next_stage);
2318          break;
2319       case MESA_SHADER_FRAGMENT:
2320          anv_pipeline_link_fs(compiler, stage, state->rp);
2321          break;
2322       default:
2323          unreachable("Invalid graphics shader stage");
2324       }
2325 
2326       next_stage = stage;
2327    }
2328 
2329    bool use_primitive_replication = false;
2330    if (devinfo->ver >= 12 && view_mask != 0) {
2331       /* For some pipelines HW Primitive Replication can be used instead of
2332        * instancing to implement Multiview.  This depend on how viewIndex is
2333        * used in all the active shaders, so this check can't be done per
2334        * individual shaders.
2335        */
2336       nir_shader *shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
2337       for (unsigned s = 0; s < ARRAY_SIZE(shaders); s++)
2338          shaders[s] = stages[s].nir;
2339 
2340       use_primitive_replication =
2341          anv_check_for_primitive_replication(device,
2342                                              pipeline->base.active_stages,
2343                                              shaders, view_mask);
2344    }
2345 
2346    struct anv_pipeline_stage *prev_stage = NULL;
2347    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2348       gl_shader_stage s = graphics_shader_order[i];
2349       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2350                                                     link_optimize, s))
2351          continue;
2352 
2353       struct anv_pipeline_stage *stage = &stages[s];
2354 
2355       int64_t stage_start = os_time_get_nano();
2356 
2357       anv_pipeline_lower_nir(&pipeline->base, tmp_ctx, stage,
2358                              &pipeline->base.layout, view_mask,
2359                              use_primitive_replication);
2360 
2361       struct shader_info *cur_info = &stage->nir->info;
2362 
2363       if (prev_stage && compiler->nir_options[s]->unify_interfaces) {
2364          struct shader_info *prev_info = &prev_stage->nir->info;
2365 
2366          prev_info->outputs_written |= cur_info->inputs_read &
2367                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2368          cur_info->inputs_read |= prev_info->outputs_written &
2369                   ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
2370          prev_info->patch_outputs_written |= cur_info->patch_inputs_read;
2371          cur_info->patch_inputs_read |= prev_info->patch_outputs_written;
2372       }
2373 
2374       anv_fixup_subgroup_size(device, cur_info);
2375 
2376       stage->feedback.duration += os_time_get_nano() - stage_start;
2377 
2378       prev_stage = stage;
2379    }
2380 
2381    /* In the case the platform can write the primitive variable shading rate
2382     * and KHR_fragment_shading_rate is enabled :
2383     *    - there can be a fragment shader but we don't have it yet
2384     *    - the fragment shader needs fragment shading rate
2385     *
2386     * figure out the last geometry stage that should write the primitive
2387     * shading rate, and ensure it is marked as used there. The backend will
2388     * write a default value if the shader doesn't actually write it.
2389     *
2390     * We iterate backwards in the stage and stop on the first shader that can
2391     * set the value.
2392     *
2393     * Don't apply this to MESH stages, as this is a per primitive thing.
2394     */
2395    if (devinfo->has_coarse_pixel_primitive_and_cb &&
2396        device->vk.enabled_extensions.KHR_fragment_shading_rate &&
2397        pipeline_has_coarse_pixel(state->dynamic, state->ms, state->fsr) &&
2398        (!stages[MESA_SHADER_FRAGMENT].info ||
2399         stages[MESA_SHADER_FRAGMENT].key.wm.coarse_pixel) &&
2400        stages[MESA_SHADER_MESH].nir == NULL) {
2401       struct anv_pipeline_stage *last_psr = NULL;
2402 
2403       for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2404          gl_shader_stage s =
2405             graphics_shader_order[ARRAY_SIZE(graphics_shader_order) - i - 1];
2406 
2407          if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages,
2408                                                        link_optimize, s) ||
2409              !gl_shader_stage_can_set_fragment_shading_rate(s))
2410             continue;
2411 
2412          last_psr = &stages[s];
2413          break;
2414       }
2415 
2416       /* Only set primitive shading rate if there is a pre-rasterization
2417        * shader in this pipeline/pipeline-library.
2418        */
2419       if (last_psr)
2420          last_psr->nir->info.outputs_written |= VARYING_BIT_PRIMITIVE_SHADING_RATE;
2421    }
2422 
2423    prev_stage = NULL;
2424    for (unsigned i = 0; i < ARRAY_SIZE(graphics_shader_order); i++) {
2425       gl_shader_stage s = graphics_shader_order[i];
2426       struct anv_pipeline_stage *stage = &stages[s];
2427 
2428       if (anv_graphics_pipeline_skip_shader_compile(pipeline, stages, link_optimize, s))
2429          continue;
2430 
2431       int64_t stage_start = os_time_get_nano();
2432 
2433       void *stage_ctx = ralloc_context(NULL);
2434 
2435       switch (s) {
2436       case MESA_SHADER_VERTEX:
2437          anv_pipeline_compile_vs(compiler, stage_ctx, pipeline,
2438                                  stage, view_mask);
2439          break;
2440       case MESA_SHADER_TESS_CTRL:
2441          anv_pipeline_compile_tcs(compiler, stage_ctx, device,
2442                                   stage, prev_stage);
2443          break;
2444       case MESA_SHADER_TESS_EVAL:
2445          anv_pipeline_compile_tes(compiler, stage_ctx, device,
2446                                   stage, prev_stage);
2447          break;
2448       case MESA_SHADER_GEOMETRY:
2449          anv_pipeline_compile_gs(compiler, stage_ctx, device,
2450                                  stage, prev_stage);
2451          break;
2452       case MESA_SHADER_TASK:
2453          anv_pipeline_compile_task(compiler, stage_ctx, device,
2454                                    stage);
2455          break;
2456       case MESA_SHADER_MESH:
2457          anv_pipeline_compile_mesh(compiler, stage_ctx, device,
2458                                    stage, prev_stage);
2459          break;
2460       case MESA_SHADER_FRAGMENT:
2461          anv_pipeline_compile_fs(compiler, stage_ctx, device,
2462                                  stage, prev_stage, pipeline,
2463                                  view_mask,
2464                                  use_primitive_replication);
2465          break;
2466       default:
2467          unreachable("Invalid graphics shader stage");
2468       }
2469       if (stage->code == NULL) {
2470          ralloc_free(stage_ctx);
2471          result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2472          goto fail;
2473       }
2474 
2475       anv_nir_validate_push_layout(&stage->prog_data.base,
2476                                    &stage->bind_map);
2477 
2478       struct anv_shader_upload_params upload_params = {
2479          .stage               = s,
2480          .key_data            = &stage->cache_key,
2481          .key_size            = sizeof(stage->cache_key),
2482          .kernel_data         = stage->code,
2483          .kernel_size         = stage->prog_data.base.program_size,
2484          .prog_data           = &stage->prog_data.base,
2485          .prog_data_size      = brw_prog_data_size(s),
2486          .stats               = stage->stats,
2487          .num_stats           = stage->num_stats,
2488          .xfb_info            = stage->nir->xfb_info,
2489          .bind_map            = &stage->bind_map,
2490          .push_desc_info      = &stage->push_desc_info,
2491          .dynamic_push_values = stage->dynamic_push_values,
2492       };
2493 
2494       stage->bin =
2495          anv_device_upload_kernel(device, cache, &upload_params);
2496       if (!stage->bin) {
2497          ralloc_free(stage_ctx);
2498          result = vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2499          goto fail;
2500       }
2501 
2502       anv_pipeline_add_executables(&pipeline->base, stage);
2503       pipeline->source_hashes[s] = stage->source_hash;
2504       pipeline->shaders[s] = stage->bin;
2505 
2506       ralloc_free(stage_ctx);
2507 
2508       stage->feedback.duration += os_time_get_nano() - stage_start;
2509 
2510       prev_stage = stage;
2511    }
2512 
2513    /* Finally add the imported shaders that were not compiled as part of this
2514     * step.
2515     */
2516    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2517       if (!anv_pipeline_base_has_stage(pipeline, s))
2518          continue;
2519 
2520       if (pipeline->shaders[s] != NULL)
2521          continue;
2522 
2523       /* We should have recompiled everything with link optimization. */
2524       assert(!link_optimize);
2525 
2526       struct anv_pipeline_stage *stage = &stages[s];
2527 
2528       pipeline->source_hashes[s] = stage->source_hash;
2529       pipeline->shaders[s] = anv_shader_bin_ref(stage->imported.bin);
2530    }
2531 
2532    ralloc_free(tmp_ctx);
2533 
2534 done:
2535 
2536    /* Write the feedback index into the pipeline */
2537    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2538       if (!anv_pipeline_base_has_stage(pipeline, s))
2539          continue;
2540 
2541       struct anv_pipeline_stage *stage = &stages[s];
2542       pipeline->feedback_index[s] = stage->feedback_idx;
2543       pipeline->robust_flags[s] = stage->robust_flags;
2544 
2545       anv_pipeline_account_shader(&pipeline->base, pipeline->shaders[s]);
2546    }
2547 
2548    pipeline_feedback->duration = os_time_get_nano() - pipeline_start;
2549 
2550    if (pipeline->shaders[MESA_SHADER_FRAGMENT]) {
2551       pipeline->fragment_dynamic =
2552          anv_graphics_pipeline_stage_fragment_dynamic(
2553             &stages[MESA_SHADER_FRAGMENT]);
2554    }
2555 
2556    return VK_SUCCESS;
2557 
2558 fail:
2559    ralloc_free(tmp_ctx);
2560 
2561    for (unsigned s = 0; s < ARRAY_SIZE(pipeline->shaders); s++) {
2562       if (pipeline->shaders[s])
2563          anv_shader_bin_unref(device, pipeline->shaders[s]);
2564    }
2565 
2566    return result;
2567 }
2568 
2569 static VkResult
anv_pipeline_compile_cs(struct anv_compute_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * info)2570 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
2571                         struct vk_pipeline_cache *cache,
2572                         const VkComputePipelineCreateInfo *info)
2573 {
2574    ASSERTED const VkPipelineShaderStageCreateInfo *sinfo = &info->stage;
2575    assert(sinfo->stage == VK_SHADER_STAGE_COMPUTE_BIT);
2576 
2577    VkPipelineCreationFeedback pipeline_feedback = {
2578       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2579    };
2580    int64_t pipeline_start = os_time_get_nano();
2581 
2582    struct anv_device *device = pipeline->base.device;
2583    const struct brw_compiler *compiler = device->physical->compiler;
2584 
2585    struct anv_pipeline_stage stage = {
2586       .stage = MESA_SHADER_COMPUTE,
2587       .info = &info->stage,
2588       .pipeline_pNext = info->pNext,
2589       .cache_key = {
2590          .stage = MESA_SHADER_COMPUTE,
2591       },
2592       .feedback = {
2593          .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
2594       },
2595    };
2596    anv_stage_write_shader_hash(&stage, device);
2597 
2598    populate_cs_prog_key(&stage, device);
2599 
2600    const bool skip_cache_lookup =
2601       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
2602 
2603    anv_pipeline_hash_compute(pipeline, &stage, stage.cache_key.sha1);
2604 
2605    bool cache_hit = false;
2606    if (!skip_cache_lookup) {
2607       stage.bin = anv_device_search_for_kernel(device, cache,
2608                                                &stage.cache_key,
2609                                                sizeof(stage.cache_key),
2610                                                &cache_hit);
2611    }
2612 
2613    if (stage.bin == NULL &&
2614        (pipeline->base.flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT))
2615       return VK_PIPELINE_COMPILE_REQUIRED;
2616 
2617    void *mem_ctx = ralloc_context(NULL);
2618    if (stage.bin == NULL) {
2619       int64_t stage_start = os_time_get_nano();
2620 
2621       stage.bind_map = (struct anv_pipeline_bind_map) {
2622          .surface_to_descriptor = stage.surface_to_descriptor,
2623          .sampler_to_descriptor = stage.sampler_to_descriptor
2624       };
2625 
2626       /* Set up a binding for the gl_NumWorkGroups */
2627       stage.bind_map.surface_count = 1;
2628       stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
2629          .set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
2630          .binding = UINT32_MAX,
2631       };
2632 
2633       stage.nir = anv_pipeline_stage_get_nir(&pipeline->base, cache, mem_ctx, &stage);
2634       if (stage.nir == NULL) {
2635          ralloc_free(mem_ctx);
2636          return vk_error(pipeline, VK_ERROR_UNKNOWN);
2637       }
2638 
2639       anv_pipeline_nir_preprocess(&pipeline->base, &stage);
2640 
2641       anv_pipeline_lower_nir(&pipeline->base, mem_ctx, &stage,
2642                              &pipeline->base.layout, 0 /* view_mask */,
2643                              false /* use_primitive_replication */);
2644 
2645       anv_fixup_subgroup_size(device, &stage.nir->info);
2646 
2647       stage.num_stats = 1;
2648 
2649       struct brw_compile_cs_params params = {
2650          .base = {
2651             .nir = stage.nir,
2652             .stats = stage.stats,
2653             .log_data = device,
2654             .mem_ctx = mem_ctx,
2655          },
2656          .key = &stage.key.cs,
2657          .prog_data = &stage.prog_data.cs,
2658       };
2659 
2660       stage.code = brw_compile_cs(compiler, &params);
2661       if (stage.code == NULL) {
2662          ralloc_free(mem_ctx);
2663          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2664       }
2665 
2666       anv_nir_validate_push_layout(&stage.prog_data.base, &stage.bind_map);
2667 
2668       if (!stage.prog_data.cs.uses_num_work_groups) {
2669          assert(stage.bind_map.surface_to_descriptor[0].set ==
2670                 ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS);
2671          stage.bind_map.surface_to_descriptor[0].set = ANV_DESCRIPTOR_SET_NULL;
2672       }
2673 
2674       struct anv_shader_upload_params upload_params = {
2675          .stage               = MESA_SHADER_COMPUTE,
2676          .key_data            = &stage.cache_key,
2677          .key_size            = sizeof(stage.cache_key),
2678          .kernel_data         = stage.code,
2679          .kernel_size         = stage.prog_data.base.program_size,
2680          .prog_data           = &stage.prog_data.base,
2681          .prog_data_size      = sizeof(stage.prog_data.cs),
2682          .stats               = stage.stats,
2683          .num_stats           = stage.num_stats,
2684          .bind_map            = &stage.bind_map,
2685          .push_desc_info      = &stage.push_desc_info,
2686          .dynamic_push_values = stage.dynamic_push_values,
2687       };
2688 
2689       stage.bin = anv_device_upload_kernel(device, cache, &upload_params);
2690       if (!stage.bin) {
2691          ralloc_free(mem_ctx);
2692          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
2693       }
2694 
2695       stage.feedback.duration = os_time_get_nano() - stage_start;
2696    }
2697 
2698    anv_pipeline_account_shader(&pipeline->base, stage.bin);
2699    anv_pipeline_add_executables(&pipeline->base, &stage);
2700    pipeline->source_hash = stage.source_hash;
2701 
2702    ralloc_free(mem_ctx);
2703 
2704    if (cache_hit) {
2705       stage.feedback.flags |=
2706          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2707       pipeline_feedback.flags |=
2708          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
2709    }
2710    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
2711 
2712    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
2713       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
2714    if (create_feedback) {
2715       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
2716 
2717       if (create_feedback->pipelineStageCreationFeedbackCount) {
2718          assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
2719          create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
2720       }
2721    }
2722 
2723    pipeline->cs = stage.bin;
2724 
2725    return VK_SUCCESS;
2726 }
2727 
2728 static VkResult
anv_compute_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkComputePipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)2729 anv_compute_pipeline_create(struct anv_device *device,
2730                             struct vk_pipeline_cache *cache,
2731                             const VkComputePipelineCreateInfo *pCreateInfo,
2732                             const VkAllocationCallbacks *pAllocator,
2733                             VkPipeline *pPipeline)
2734 {
2735    struct anv_compute_pipeline *pipeline;
2736    VkResult result;
2737 
2738    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2739 
2740    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
2741                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2742    if (pipeline == NULL)
2743       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2744 
2745    result = anv_pipeline_init(&pipeline->base, device,
2746                               ANV_PIPELINE_COMPUTE,
2747                               vk_compute_pipeline_create_flags(pCreateInfo),
2748                               pAllocator);
2749    if (result != VK_SUCCESS) {
2750       vk_free2(&device->vk.alloc, pAllocator, pipeline);
2751       return result;
2752    }
2753 
2754 
2755    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
2756    anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
2757 
2758    pipeline->base.active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
2759 
2760    anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
2761                          pipeline->batch_data, sizeof(pipeline->batch_data));
2762 
2763    result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo);
2764    if (result != VK_SUCCESS) {
2765       anv_pipeline_finish(&pipeline->base, device);
2766       vk_free2(&device->vk.alloc, pAllocator, pipeline);
2767       return result;
2768    }
2769 
2770    anv_genX(device->info, compute_pipeline_emit)(pipeline);
2771 
2772    ANV_RMV(compute_pipeline_create, device, pipeline, false);
2773 
2774    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
2775 
2776    return pipeline->base.batch.status;
2777 }
2778 
anv_CreateComputePipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)2779 VkResult anv_CreateComputePipelines(
2780     VkDevice                                    _device,
2781     VkPipelineCache                             pipelineCache,
2782     uint32_t                                    count,
2783     const VkComputePipelineCreateInfo*          pCreateInfos,
2784     const VkAllocationCallbacks*                pAllocator,
2785     VkPipeline*                                 pPipelines)
2786 {
2787    ANV_FROM_HANDLE(anv_device, device, _device);
2788    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
2789 
2790    VkResult result = VK_SUCCESS;
2791 
2792    unsigned i;
2793    for (i = 0; i < count; i++) {
2794       const VkPipelineCreateFlags2KHR flags =
2795          vk_compute_pipeline_create_flags(&pCreateInfos[i]);
2796       VkResult res = anv_compute_pipeline_create(device, pipeline_cache,
2797                                                  &pCreateInfos[i],
2798                                                  pAllocator, &pPipelines[i]);
2799 
2800       if (res == VK_SUCCESS)
2801          continue;
2802 
2803       /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
2804        * is not obvious what error should be report upon 2 different failures.
2805        * */
2806       result = res;
2807       if (res != VK_PIPELINE_COMPILE_REQUIRED)
2808          break;
2809 
2810       pPipelines[i] = VK_NULL_HANDLE;
2811 
2812       if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
2813          break;
2814    }
2815 
2816    for (; i < count; i++)
2817       pPipelines[i] = VK_NULL_HANDLE;
2818 
2819    return result;
2820 }
2821 
2822 /**
2823  * Calculate the desired L3 partitioning based on the current state of the
2824  * pipeline.  For now this simply returns the conservative defaults calculated
2825  * by get_default_l3_weights(), but we could probably do better by gathering
2826  * more statistics from the pipeline state (e.g. guess of expected URB usage
2827  * and bound surfaces), or by using feed-back from performance counters.
2828  */
2829 void
anv_pipeline_setup_l3_config(struct anv_pipeline * pipeline,bool needs_slm)2830 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
2831 {
2832    const struct intel_device_info *devinfo = pipeline->device->info;
2833 
2834    const struct intel_l3_weights w =
2835       intel_get_default_l3_weights(devinfo, true, needs_slm);
2836 
2837    pipeline->l3_config = intel_get_l3_config(devinfo, w);
2838 }
2839 
2840 static uint32_t
get_vs_input_elements(const struct brw_vs_prog_data * vs_prog_data)2841 get_vs_input_elements(const struct brw_vs_prog_data *vs_prog_data)
2842 {
2843    /* Pull inputs_read out of the VS prog data */
2844    const uint64_t inputs_read = vs_prog_data->inputs_read;
2845    const uint64_t double_inputs_read =
2846       vs_prog_data->double_inputs_read & inputs_read;
2847    assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
2848    const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
2849    const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
2850 
2851    return __builtin_popcount(elements) -
2852           __builtin_popcount(elements_double) / 2;
2853 }
2854 
2855 static void
anv_graphics_pipeline_emit(struct anv_graphics_pipeline * pipeline,const struct vk_graphics_pipeline_state * state)2856 anv_graphics_pipeline_emit(struct anv_graphics_pipeline *pipeline,
2857                            const struct vk_graphics_pipeline_state *state)
2858 {
2859    pipeline->view_mask = state->rp->view_mask;
2860 
2861    anv_pipeline_setup_l3_config(&pipeline->base.base, false);
2862 
2863    if (anv_pipeline_is_primitive(pipeline)) {
2864       const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2865 
2866       /* The total number of vertex elements we need to program. We might need
2867        * a couple more to implement some of the draw parameters.
2868        */
2869       pipeline->svgs_count =
2870          (vs_prog_data->uses_vertexid ||
2871           vs_prog_data->uses_instanceid ||
2872           vs_prog_data->uses_firstvertex ||
2873           vs_prog_data->uses_baseinstance) + vs_prog_data->uses_drawid;
2874 
2875       pipeline->vs_input_elements = get_vs_input_elements(vs_prog_data);
2876 
2877       pipeline->vertex_input_elems =
2878          (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI) ?
2879           0 : pipeline->vs_input_elements) + pipeline->svgs_count;
2880 
2881       /* Our implementation of VK_KHR_multiview uses instancing to draw the
2882        * different views when primitive replication cannot be used.  If the
2883        * client asks for instancing, we need to multiply by the client's
2884        * instance count at draw time and instance divisor in the vertex
2885        * bindings by the number of views ensure that we repeat the client's
2886        * per-instance data once for each view.
2887        */
2888       const bool uses_primitive_replication =
2889          anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map.num_pos_slots > 1;
2890       pipeline->instance_multiplier = 1;
2891       if (pipeline->view_mask && !uses_primitive_replication)
2892          pipeline->instance_multiplier = util_bitcount(pipeline->view_mask);
2893    } else {
2894       assert(anv_pipeline_is_mesh(pipeline));
2895       /* TODO(mesh): Mesh vs. Multiview with Instancing. */
2896    }
2897 
2898    /* Store line mode and rasterization samples, these are used
2899     * for dynamic primitive topology.
2900     */
2901    pipeline->rasterization_samples =
2902       state->ms != NULL ? state->ms->rasterization_samples : 1;
2903 
2904    pipeline->dynamic_patch_control_points =
2905       anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) &&
2906       BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_TS_PATCH_CONTROL_POINTS) &&
2907       (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->dynamic_push_values &
2908        ANV_DYNAMIC_PUSH_INPUT_VERTICES);
2909 
2910    if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]) {
2911       const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2912 
2913       if (wm_prog_data_dynamic(wm_prog_data)) {
2914          pipeline->fs_msaa_flags = INTEL_MSAA_FLAG_ENABLE_DYNAMIC;
2915 
2916          assert(wm_prog_data->persample_dispatch == BRW_SOMETIMES);
2917          if (state->ms && state->ms->rasterization_samples > 1) {
2918             pipeline->fs_msaa_flags |= INTEL_MSAA_FLAG_MULTISAMPLE_FBO;
2919 
2920             if (wm_prog_data->sample_shading) {
2921                assert(wm_prog_data->persample_dispatch != BRW_NEVER);
2922                pipeline->fs_msaa_flags |= INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH;
2923             }
2924 
2925             if (state->ms->sample_shading_enable &&
2926                 (state->ms->min_sample_shading * state->ms->rasterization_samples) > 1) {
2927                pipeline->fs_msaa_flags |= INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH |
2928                                           INTEL_MSAA_FLAG_PERSAMPLE_INTERP;
2929             }
2930          }
2931 
2932          if (state->ms && state->ms->alpha_to_coverage_enable)
2933             pipeline->fs_msaa_flags |= INTEL_MSAA_FLAG_ALPHA_TO_COVERAGE;
2934 
2935          assert(wm_prog_data->coarse_pixel_dispatch != BRW_ALWAYS);
2936          if (wm_prog_data->coarse_pixel_dispatch == BRW_SOMETIMES &&
2937              !(pipeline->fs_msaa_flags & INTEL_MSAA_FLAG_PERSAMPLE_DISPATCH) &&
2938              (!state->ms || !state->ms->sample_shading_enable)) {
2939             pipeline->fs_msaa_flags |= INTEL_MSAA_FLAG_COARSE_PI_MSG |
2940                                        INTEL_MSAA_FLAG_COARSE_RT_WRITES;
2941          }
2942       } else {
2943          assert(wm_prog_data->alpha_to_coverage != BRW_SOMETIMES);
2944          assert(wm_prog_data->coarse_pixel_dispatch != BRW_SOMETIMES);
2945          assert(wm_prog_data->persample_dispatch != BRW_SOMETIMES);
2946       }
2947    }
2948 
2949    const struct anv_device *device = pipeline->base.base.device;
2950    const struct intel_device_info *devinfo = device->info;
2951    anv_genX(devinfo, graphics_pipeline_emit)(pipeline, state);
2952 }
2953 
2954 static void
anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline * pipeline,struct anv_pipeline_sets_layout * layout)2955 anv_graphics_pipeline_import_layout(struct anv_graphics_base_pipeline *pipeline,
2956                                     struct anv_pipeline_sets_layout *layout)
2957 {
2958    pipeline->base.layout.independent_sets |= layout->independent_sets;
2959 
2960    for (uint32_t s = 0; s < layout->num_sets; s++) {
2961       if (layout->set[s].layout == NULL)
2962          continue;
2963 
2964       anv_pipeline_sets_layout_add(&pipeline->base.layout, s,
2965                                    layout->set[s].layout);
2966    }
2967 }
2968 
2969 static void
anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline * pipeline,bool link_optimize,bool retain_shaders,struct anv_pipeline_stage * stages,struct anv_graphics_lib_pipeline * lib)2970 anv_graphics_pipeline_import_lib(struct anv_graphics_base_pipeline *pipeline,
2971                                  bool link_optimize,
2972                                  bool retain_shaders,
2973                                  struct anv_pipeline_stage *stages,
2974                                  struct anv_graphics_lib_pipeline *lib)
2975 {
2976    struct anv_pipeline_sets_layout *lib_layout =
2977       &lib->base.base.layout;
2978    anv_graphics_pipeline_import_layout(pipeline, lib_layout);
2979 
2980    /* We can't have shaders specified twice through libraries. */
2981    assert((pipeline->base.active_stages & lib->base.base.active_stages) == 0);
2982 
2983    /* VK_EXT_graphics_pipeline_library:
2984     *
2985     *    "To perform link time optimizations,
2986     *     VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT must
2987     *     be specified on all pipeline libraries that are being linked
2988     *     together. Implementations should retain any additional information
2989     *     needed to perform optimizations at the final link step when this bit
2990     *     is present."
2991     */
2992    assert(!link_optimize || lib->retain_shaders);
2993 
2994    pipeline->base.active_stages |= lib->base.base.active_stages;
2995 
2996    /* Propagate the fragment dynamic flag, unless we're doing link
2997     * optimization, in that case we'll have all the state information and this
2998     * will never be dynamic.
2999     */
3000    if (!link_optimize) {
3001       if (lib->base.fragment_dynamic) {
3002          assert(lib->base.base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT);
3003          pipeline->fragment_dynamic = true;
3004       }
3005    }
3006 
3007    uint32_t shader_count = anv_graphics_pipeline_imported_shader_count(stages);
3008    for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.shaders); s++) {
3009       if (lib->base.shaders[s] == NULL)
3010          continue;
3011 
3012       stages[s].stage = s;
3013       stages[s].feedback_idx = shader_count + lib->base.feedback_index[s];
3014       stages[s].robust_flags = lib->base.robust_flags[s];
3015 
3016       /* Always import the shader sha1, this will be used for cache lookup. */
3017       memcpy(stages[s].shader_sha1, lib->retained_shaders[s].shader_sha1,
3018              sizeof(stages[s].shader_sha1));
3019       stages[s].source_hash = lib->base.source_hashes[s];
3020 
3021       stages[s].subgroup_size_type = lib->retained_shaders[s].subgroup_size_type;
3022       stages[s].imported.nir = lib->retained_shaders[s].nir;
3023       stages[s].imported.bin = lib->base.shaders[s];
3024 
3025       stages[s].bind_map = (struct anv_pipeline_bind_map) {
3026          .surface_to_descriptor = stages[s].surface_to_descriptor,
3027          .sampler_to_descriptor = stages[s].sampler_to_descriptor
3028       };
3029    }
3030 
3031    /* When not link optimizing, import the executables (shader descriptions
3032     * for VK_KHR_pipeline_executable_properties). With link optimization there
3033     * is a chance it'll produce different binaries, so we'll add the optimized
3034     * version later.
3035     */
3036    if (!link_optimize) {
3037       util_dynarray_foreach(&lib->base.base.executables,
3038                             struct anv_pipeline_executable, exe) {
3039          util_dynarray_append(&pipeline->base.executables,
3040                               struct anv_pipeline_executable, *exe);
3041       }
3042    }
3043 }
3044 
3045 static void
anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline * lib,bool retained_shaders)3046 anv_graphics_lib_validate_shaders(struct anv_graphics_lib_pipeline *lib,
3047                                   bool retained_shaders)
3048 {
3049    for (uint32_t s = 0; s < ARRAY_SIZE(lib->retained_shaders); s++) {
3050       if (anv_pipeline_base_has_stage(&lib->base, s)) {
3051          assert(!retained_shaders || lib->retained_shaders[s].nir != NULL);
3052          assert(lib->base.shaders[s] != NULL);
3053       }
3054    }
3055 }
3056 
3057 static VkResult
anv_graphics_lib_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3058 anv_graphics_lib_pipeline_create(struct anv_device *device,
3059                                  struct vk_pipeline_cache *cache,
3060                                  const VkGraphicsPipelineCreateInfo *pCreateInfo,
3061                                  const VkAllocationCallbacks *pAllocator,
3062                                  VkPipeline *pPipeline)
3063 {
3064    struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3065    VkPipelineCreationFeedback pipeline_feedback = {
3066       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3067    };
3068    int64_t pipeline_start = os_time_get_nano();
3069 
3070    struct anv_graphics_lib_pipeline *pipeline;
3071    VkResult result;
3072 
3073    const VkPipelineCreateFlags2KHR flags =
3074       vk_graphics_pipeline_create_flags(pCreateInfo);
3075    assert(flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
3076 
3077    const VkPipelineLibraryCreateInfoKHR *libs_info =
3078       vk_find_struct_const(pCreateInfo->pNext,
3079                            PIPELINE_LIBRARY_CREATE_INFO_KHR);
3080 
3081    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3082                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3083    if (pipeline == NULL)
3084       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3085 
3086    result = anv_pipeline_init(&pipeline->base.base, device,
3087                               ANV_PIPELINE_GRAPHICS_LIB, flags,
3088                               pAllocator);
3089    if (result != VK_SUCCESS) {
3090       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3091       if (result == VK_PIPELINE_COMPILE_REQUIRED)
3092          *pPipeline = VK_NULL_HANDLE;
3093       return result;
3094    }
3095 
3096    /* Capture the retain state before we compile/load any shader. */
3097    pipeline->retain_shaders =
3098       (flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
3099 
3100    /* If we have libraries, import them first. */
3101    if (libs_info) {
3102       for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3103          ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3104          struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3105             anv_pipeline_to_graphics_lib(pipeline_lib);
3106 
3107          vk_graphics_pipeline_state_merge(&pipeline->state, &gfx_pipeline_lib->state);
3108          anv_graphics_pipeline_import_lib(&pipeline->base,
3109                                           false /* link_optimize */,
3110                                           pipeline->retain_shaders,
3111                                           stages, gfx_pipeline_lib);
3112       }
3113    }
3114 
3115    result = vk_graphics_pipeline_state_fill(&device->vk,
3116                                             &pipeline->state, pCreateInfo,
3117                                             NULL /* driver_rp */,
3118                                             0 /* driver_rp_flags */,
3119                                             &pipeline->all_state, NULL, 0, NULL);
3120    if (result != VK_SUCCESS) {
3121       anv_pipeline_finish(&pipeline->base.base, device);
3122       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3123       return result;
3124    }
3125 
3126    pipeline->base.base.active_stages = pipeline->state.shader_stages;
3127 
3128    /* After we've imported all the libraries' layouts, import the pipeline
3129     * layout and hash the whole lot.
3130     */
3131    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3132    if (pipeline_layout != NULL) {
3133       anv_graphics_pipeline_import_layout(&pipeline->base,
3134                                           &pipeline_layout->sets_layout);
3135    }
3136 
3137    anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3138 
3139    /* Compile shaders. We can skip this if there are no active stage in that
3140     * pipeline.
3141     */
3142    if (pipeline->base.base.active_stages != 0) {
3143       result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3144                                              cache, &pipeline_feedback,
3145                                              pCreateInfo, &pipeline->state);
3146       if (result != VK_SUCCESS) {
3147          anv_pipeline_finish(&pipeline->base.base, device);
3148          vk_free2(&device->vk.alloc, pAllocator, pipeline);
3149          return result;
3150       }
3151    }
3152 
3153    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3154 
3155    anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3156                                        pCreateInfo, stages);
3157 
3158    anv_graphics_lib_validate_shaders(
3159       pipeline,
3160       flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
3161 
3162    *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3163 
3164    return VK_SUCCESS;
3165 }
3166 
3167 static VkResult
anv_graphics_pipeline_create(struct anv_device * device,struct vk_pipeline_cache * cache,const VkGraphicsPipelineCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3168 anv_graphics_pipeline_create(struct anv_device *device,
3169                              struct vk_pipeline_cache *cache,
3170                              const VkGraphicsPipelineCreateInfo *pCreateInfo,
3171                              const VkAllocationCallbacks *pAllocator,
3172                              VkPipeline *pPipeline)
3173 {
3174    struct anv_pipeline_stage stages[ANV_GRAPHICS_SHADER_STAGE_COUNT] = {};
3175    VkPipelineCreationFeedback pipeline_feedback = {
3176       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3177    };
3178    int64_t pipeline_start = os_time_get_nano();
3179 
3180    struct anv_graphics_pipeline *pipeline;
3181    VkResult result;
3182 
3183    const VkPipelineCreateFlags2KHR flags =
3184       vk_graphics_pipeline_create_flags(pCreateInfo);
3185    assert((flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) == 0);
3186 
3187    const VkPipelineLibraryCreateInfoKHR *libs_info =
3188       vk_find_struct_const(pCreateInfo->pNext,
3189                            PIPELINE_LIBRARY_CREATE_INFO_KHR);
3190 
3191    pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
3192                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3193    if (pipeline == NULL)
3194       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3195 
3196    /* Initialize some information required by shaders */
3197    result = anv_pipeline_init(&pipeline->base.base, device,
3198                               ANV_PIPELINE_GRAPHICS, flags,
3199                               pAllocator);
3200    if (result != VK_SUCCESS) {
3201       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3202       return result;
3203    }
3204 
3205    const bool link_optimize =
3206       (flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
3207 
3208    struct vk_graphics_pipeline_all_state all;
3209    struct vk_graphics_pipeline_state state = { };
3210 
3211    /* If we have libraries, import them first. */
3212    if (libs_info) {
3213       for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
3214          ANV_FROM_HANDLE(anv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
3215          struct anv_graphics_lib_pipeline *gfx_pipeline_lib =
3216             anv_pipeline_to_graphics_lib(pipeline_lib);
3217 
3218          /* If we have link time optimization, all libraries must be created
3219           * with
3220           * VK_PIPELINE_CREATE_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
3221           */
3222          assert(!link_optimize || gfx_pipeline_lib->retain_shaders);
3223 
3224          vk_graphics_pipeline_state_merge(&state, &gfx_pipeline_lib->state);
3225          anv_graphics_pipeline_import_lib(&pipeline->base,
3226                                           link_optimize,
3227                                           false,
3228                                           stages,
3229                                           gfx_pipeline_lib);
3230       }
3231    }
3232 
3233    result = vk_graphics_pipeline_state_fill(&device->vk, &state, pCreateInfo,
3234                                             NULL /* driver_rp */,
3235                                             0 /* driver_rp_flags */,
3236                                             &all, NULL, 0, NULL);
3237    if (result != VK_SUCCESS) {
3238       anv_pipeline_finish(&pipeline->base.base, device);
3239       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3240       return result;
3241    }
3242 
3243    pipeline->dynamic_state.vi = &pipeline->vertex_input;
3244    pipeline->dynamic_state.ms.sample_locations = &pipeline->base.sample_locations;
3245    vk_dynamic_graphics_state_fill(&pipeline->dynamic_state, &state);
3246 
3247    pipeline->base.base.active_stages = state.shader_stages;
3248 
3249    /* Sanity check on the shaders */
3250    assert(pipeline->base.base.active_stages & VK_SHADER_STAGE_VERTEX_BIT ||
3251           pipeline->base.base.active_stages & VK_SHADER_STAGE_MESH_BIT_EXT);
3252 
3253    if (anv_pipeline_is_mesh(pipeline)) {
3254       assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3255    }
3256 
3257    /* After we've imported all the libraries' layouts, import the pipeline
3258     * layout and hash the whole lot.
3259     */
3260    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3261    if (pipeline_layout != NULL) {
3262       anv_graphics_pipeline_import_layout(&pipeline->base,
3263                                           &pipeline_layout->sets_layout);
3264    }
3265 
3266    anv_pipeline_sets_layout_hash(&pipeline->base.base.layout);
3267 
3268    /* Compile shaders, all required information should be have been copied in
3269     * the previous step. We can skip this if there are no active stage in that
3270     * pipeline.
3271     */
3272    result = anv_graphics_pipeline_compile(&pipeline->base, stages,
3273                                           cache, &pipeline_feedback,
3274                                           pCreateInfo, &state);
3275    if (result != VK_SUCCESS) {
3276       anv_pipeline_finish(&pipeline->base.base, device);
3277       vk_free2(&device->vk.alloc, pAllocator, pipeline);
3278       return result;
3279    }
3280 
3281    /* Prepare a batch for the commands and emit all the non dynamic ones.
3282     */
3283    anv_batch_set_storage(&pipeline->base.base.batch, ANV_NULL_ADDRESS,
3284                          pipeline->batch_data, sizeof(pipeline->batch_data));
3285 
3286    if (pipeline->base.base.active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
3287       pipeline->base.base.active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3288 
3289    if (anv_pipeline_is_mesh(pipeline))
3290       assert(device->physical->vk.supported_extensions.EXT_mesh_shader);
3291 
3292    anv_graphics_pipeline_emit(pipeline, &state);
3293 
3294    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3295 
3296    anv_fill_pipeline_creation_feedback(&pipeline->base, &pipeline_feedback,
3297                                        pCreateInfo, stages);
3298 
3299    ANV_RMV(graphics_pipeline_create, device, pipeline, false);
3300 
3301    *pPipeline = anv_pipeline_to_handle(&pipeline->base.base);
3302 
3303    return pipeline->base.base.batch.status;
3304 }
3305 
anv_CreateGraphicsPipelines(VkDevice _device,VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)3306 VkResult anv_CreateGraphicsPipelines(
3307     VkDevice                                    _device,
3308     VkPipelineCache                             pipelineCache,
3309     uint32_t                                    count,
3310     const VkGraphicsPipelineCreateInfo*         pCreateInfos,
3311     const VkAllocationCallbacks*                pAllocator,
3312     VkPipeline*                                 pPipelines)
3313 {
3314    ANV_FROM_HANDLE(anv_device, device, _device);
3315    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
3316 
3317    VkResult result = VK_SUCCESS;
3318 
3319    unsigned i;
3320    for (i = 0; i < count; i++) {
3321       assert(pCreateInfos[i].sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
3322 
3323       const VkPipelineCreateFlags2KHR flags =
3324          vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
3325       VkResult res;
3326       if (flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
3327          res = anv_graphics_lib_pipeline_create(device, pipeline_cache,
3328                                                 &pCreateInfos[i],
3329                                                 pAllocator,
3330                                                 &pPipelines[i]);
3331       } else {
3332          res = anv_graphics_pipeline_create(device,
3333                                             pipeline_cache,
3334                                             &pCreateInfos[i],
3335                                             pAllocator, &pPipelines[i]);
3336       }
3337 
3338       if (res == VK_SUCCESS)
3339          continue;
3340 
3341       /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED as it
3342        * is not obvious what error should be report upon 2 different failures.
3343        * */
3344       result = res;
3345       if (res != VK_PIPELINE_COMPILE_REQUIRED)
3346          break;
3347 
3348       pPipelines[i] = VK_NULL_HANDLE;
3349 
3350       if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
3351          break;
3352    }
3353 
3354    for (; i < count; i++)
3355       pPipelines[i] = VK_NULL_HANDLE;
3356 
3357    return result;
3358 }
3359 
3360 static bool
should_remat_cb(nir_instr * instr,void * data)3361 should_remat_cb(nir_instr *instr, void *data)
3362 {
3363    if (instr->type != nir_instr_type_intrinsic)
3364       return false;
3365 
3366    return nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_resource_intel;
3367 }
3368 
3369 static VkResult
compile_upload_rt_shader(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,nir_shader * nir,struct anv_pipeline_stage * stage,void * mem_ctx)3370 compile_upload_rt_shader(struct anv_ray_tracing_pipeline *pipeline,
3371                          struct vk_pipeline_cache *cache,
3372                          nir_shader *nir,
3373                          struct anv_pipeline_stage *stage,
3374                          void *mem_ctx)
3375 {
3376    const struct brw_compiler *compiler =
3377       pipeline->base.device->physical->compiler;
3378    const struct intel_device_info *devinfo = compiler->devinfo;
3379 
3380    nir_shader **resume_shaders = NULL;
3381    uint32_t num_resume_shaders = 0;
3382    if (nir->info.stage != MESA_SHADER_COMPUTE) {
3383       const nir_lower_shader_calls_options opts = {
3384          .address_format = nir_address_format_64bit_global,
3385          .stack_alignment = BRW_BTD_STACK_ALIGN,
3386          .localized_loads = true,
3387          .vectorizer_callback = brw_nir_should_vectorize_mem,
3388          .vectorizer_data = NULL,
3389          .should_remat_callback = should_remat_cb,
3390       };
3391 
3392       NIR_PASS(_, nir, nir_lower_shader_calls, &opts,
3393                &resume_shaders, &num_resume_shaders, mem_ctx);
3394       NIR_PASS(_, nir, brw_nir_lower_shader_calls, &stage->key.bs);
3395       NIR_PASS_V(nir, brw_nir_lower_rt_intrinsics, devinfo);
3396    }
3397 
3398    for (unsigned i = 0; i < num_resume_shaders; i++) {
3399       NIR_PASS(_,resume_shaders[i], brw_nir_lower_shader_calls, &stage->key.bs);
3400       NIR_PASS_V(resume_shaders[i], brw_nir_lower_rt_intrinsics, devinfo);
3401    }
3402 
3403    struct brw_compile_bs_params params = {
3404       .base = {
3405          .nir = nir,
3406          .stats = stage->stats,
3407          .log_data = pipeline->base.device,
3408          .mem_ctx = mem_ctx,
3409       },
3410       .key = &stage->key.bs,
3411       .prog_data = &stage->prog_data.bs,
3412       .num_resume_shaders = num_resume_shaders,
3413       .resume_shaders = resume_shaders,
3414    };
3415 
3416    stage->code = brw_compile_bs(compiler, &params);
3417    if (stage->code == NULL)
3418       return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3419 
3420    /* Ray-tracing shaders don't have a "real" bind map */
3421    struct anv_pipeline_bind_map empty_bind_map = {};
3422 
3423    struct anv_shader_upload_params upload_params = {
3424       .stage               = stage->stage,
3425       .key_data            = &stage->cache_key,
3426       .key_size            = sizeof(stage->cache_key),
3427       .kernel_data         = stage->code,
3428       .kernel_size         = stage->prog_data.base.program_size,
3429       .prog_data           = &stage->prog_data.base,
3430       .prog_data_size      = brw_prog_data_size(stage->stage),
3431       .stats               = stage->stats,
3432       .num_stats           = 1,
3433       .bind_map            = &empty_bind_map,
3434       .push_desc_info      = &stage->push_desc_info,
3435       .dynamic_push_values = stage->dynamic_push_values,
3436    };
3437 
3438    stage->bin =
3439       anv_device_upload_kernel(pipeline->base.device, cache, &upload_params);
3440    if (stage->bin == NULL)
3441       return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3442 
3443    anv_pipeline_add_executables(&pipeline->base, stage);
3444 
3445    return VK_SUCCESS;
3446 }
3447 
3448 static bool
is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR * info)3449 is_rt_stack_size_dynamic(const VkRayTracingPipelineCreateInfoKHR *info)
3450 {
3451    if (info->pDynamicState == NULL)
3452       return false;
3453 
3454    for (unsigned i = 0; i < info->pDynamicState->dynamicStateCount; i++) {
3455       if (info->pDynamicState->pDynamicStates[i] ==
3456           VK_DYNAMIC_STATE_RAY_TRACING_PIPELINE_STACK_SIZE_KHR)
3457          return true;
3458    }
3459 
3460    return false;
3461 }
3462 
3463 static void
anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,uint32_t * stack_max)3464 anv_pipeline_compute_ray_tracing_stacks(struct anv_ray_tracing_pipeline *pipeline,
3465                                         const VkRayTracingPipelineCreateInfoKHR *info,
3466                                         uint32_t *stack_max)
3467 {
3468    if (is_rt_stack_size_dynamic(info)) {
3469       pipeline->stack_size = 0; /* 0 means dynamic */
3470    } else {
3471       /* From the Vulkan spec:
3472        *
3473        *    "If the stack size is not set explicitly, the stack size for a
3474        *    pipeline is:
3475        *
3476        *       rayGenStackMax +
3477        *       min(1, maxPipelineRayRecursionDepth) ×
3478        *       max(closestHitStackMax, missStackMax,
3479        *           intersectionStackMax + anyHitStackMax) +
3480        *       max(0, maxPipelineRayRecursionDepth-1) ×
3481        *       max(closestHitStackMax, missStackMax) +
3482        *       2 × callableStackMax"
3483        */
3484       pipeline->stack_size =
3485          stack_max[MESA_SHADER_RAYGEN] +
3486          MIN2(1, info->maxPipelineRayRecursionDepth) *
3487          MAX4(stack_max[MESA_SHADER_CLOSEST_HIT],
3488               stack_max[MESA_SHADER_MISS],
3489               stack_max[MESA_SHADER_INTERSECTION],
3490               stack_max[MESA_SHADER_ANY_HIT]) +
3491          MAX2(0, (int)info->maxPipelineRayRecursionDepth - 1) *
3492          MAX2(stack_max[MESA_SHADER_CLOSEST_HIT],
3493               stack_max[MESA_SHADER_MISS]) +
3494          2 * stack_max[MESA_SHADER_CALLABLE];
3495 
3496       /* This is an extremely unlikely case but we need to set it to some
3497        * non-zero value so that we don't accidentally think it's dynamic.
3498        * Our minimum stack size is 2KB anyway so we could set to any small
3499        * value we like.
3500        */
3501       if (pipeline->stack_size == 0)
3502          pipeline->stack_size = 1;
3503    }
3504 }
3505 
3506 static enum brw_rt_ray_flags
anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)3507 anv_pipeline_get_pipeline_ray_flags(VkPipelineCreateFlags2KHR flags)
3508 {
3509    uint32_t ray_flags = 0;
3510 
3511    const bool rt_skip_triangles =
3512       flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_TRIANGLES_BIT_KHR;
3513    const bool rt_skip_aabbs =
3514       flags & VK_PIPELINE_CREATE_2_RAY_TRACING_SKIP_AABBS_BIT_KHR;
3515    assert(!(rt_skip_triangles && rt_skip_aabbs));
3516 
3517    if (rt_skip_triangles)
3518       ray_flags |= BRW_RT_RAY_FLAG_SKIP_TRIANGLES;
3519    else if (rt_skip_aabbs)
3520       ray_flags |= BRW_RT_RAY_FLAG_SKIP_AABBS;
3521 
3522    return ray_flags;
3523 }
3524 
3525 static struct anv_pipeline_stage *
anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline * pipeline,const VkRayTracingPipelineCreateInfoKHR * info,void * tmp_pipeline_ctx)3526 anv_pipeline_init_ray_tracing_stages(struct anv_ray_tracing_pipeline *pipeline,
3527                                      const VkRayTracingPipelineCreateInfoKHR *info,
3528                                      void *tmp_pipeline_ctx)
3529 {
3530    struct anv_device *device = pipeline->base.device;
3531    /* Create enough stage entries for all shader modules plus potential
3532     * combinaisons in the groups.
3533     */
3534    struct anv_pipeline_stage *stages =
3535       rzalloc_array(tmp_pipeline_ctx, struct anv_pipeline_stage, info->stageCount);
3536 
3537    enum brw_rt_ray_flags ray_flags =
3538       anv_pipeline_get_pipeline_ray_flags(pipeline->base.flags);
3539 
3540    for (uint32_t i = 0; i < info->stageCount; i++) {
3541       const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
3542       if (vk_pipeline_shader_stage_is_null(sinfo))
3543          continue;
3544 
3545       int64_t stage_start = os_time_get_nano();
3546 
3547       stages[i] = (struct anv_pipeline_stage) {
3548          .stage = vk_to_mesa_shader_stage(sinfo->stage),
3549          .pipeline_pNext = info->pNext,
3550          .info = sinfo,
3551          .cache_key = {
3552             .stage = vk_to_mesa_shader_stage(sinfo->stage),
3553          },
3554          .feedback = {
3555             .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3556          },
3557       };
3558 
3559       pipeline->base.active_stages |= sinfo->stage;
3560 
3561       anv_stage_write_shader_hash(&stages[i], device);
3562 
3563       populate_bs_prog_key(&stages[i],
3564                            pipeline->base.device,
3565                            ray_flags);
3566 
3567       if (stages[i].stage != MESA_SHADER_INTERSECTION) {
3568          anv_pipeline_hash_ray_tracing_shader(pipeline, &stages[i],
3569                                               stages[i].cache_key.sha1);
3570       }
3571 
3572       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3573    }
3574 
3575    for (uint32_t i = 0; i < info->groupCount; i++) {
3576       const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3577 
3578       if (ginfo->type != VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR)
3579          continue;
3580 
3581       int64_t stage_start = os_time_get_nano();
3582 
3583       uint32_t intersection_idx = ginfo->intersectionShader;
3584       assert(intersection_idx < info->stageCount);
3585 
3586       uint32_t any_hit_idx = ginfo->anyHitShader;
3587       if (any_hit_idx != VK_SHADER_UNUSED_KHR) {
3588          assert(any_hit_idx < info->stageCount);
3589          anv_pipeline_hash_ray_tracing_combined_shader(pipeline,
3590                                                        &stages[intersection_idx],
3591                                                        &stages[any_hit_idx],
3592                                                        stages[intersection_idx].cache_key.sha1);
3593       } else {
3594          anv_pipeline_hash_ray_tracing_shader(pipeline,
3595                                               &stages[intersection_idx],
3596                                               stages[intersection_idx].cache_key.sha1);
3597       }
3598 
3599       stages[intersection_idx].feedback.duration += os_time_get_nano() - stage_start;
3600    }
3601 
3602    return stages;
3603 }
3604 
3605 static bool
anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline * pipeline,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info,struct anv_pipeline_stage * stages)3606 anv_ray_tracing_pipeline_load_cached_shaders(struct anv_ray_tracing_pipeline *pipeline,
3607                                              struct vk_pipeline_cache *cache,
3608                                              const VkRayTracingPipelineCreateInfoKHR *info,
3609                                              struct anv_pipeline_stage *stages)
3610 {
3611    uint32_t shaders = 0, cache_hits = 0;
3612    for (uint32_t i = 0; i < info->stageCount; i++) {
3613       if (stages[i].info == NULL)
3614          continue;
3615 
3616       shaders++;
3617 
3618       int64_t stage_start = os_time_get_nano();
3619 
3620       bool cache_hit;
3621       stages[i].bin = anv_device_search_for_kernel(pipeline->base.device, cache,
3622                                                    &stages[i].cache_key,
3623                                                    sizeof(stages[i].cache_key),
3624                                                    &cache_hit);
3625       if (cache_hit) {
3626          cache_hits++;
3627          stages[i].feedback.flags |=
3628             VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3629       }
3630 
3631       if (stages[i].bin != NULL)
3632          anv_pipeline_add_executables(&pipeline->base, &stages[i]);
3633 
3634       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3635    }
3636 
3637    return cache_hits == shaders;
3638 }
3639 
3640 static VkResult
anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline * pipeline,void * tmp_pipeline_ctx,struct anv_pipeline_stage * stages,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * info)3641 anv_pipeline_compile_ray_tracing(struct anv_ray_tracing_pipeline *pipeline,
3642                                  void *tmp_pipeline_ctx,
3643                                  struct anv_pipeline_stage *stages,
3644                                  struct vk_pipeline_cache *cache,
3645                                  const VkRayTracingPipelineCreateInfoKHR *info)
3646 {
3647    const struct intel_device_info *devinfo = pipeline->base.device->info;
3648    VkResult result;
3649 
3650    VkPipelineCreationFeedback pipeline_feedback = {
3651       .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
3652    };
3653    int64_t pipeline_start = os_time_get_nano();
3654 
3655    const bool skip_cache_lookup =
3656       (pipeline->base.flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR);
3657 
3658    if (!skip_cache_lookup &&
3659        anv_ray_tracing_pipeline_load_cached_shaders(pipeline, cache, info, stages)) {
3660       pipeline_feedback.flags |=
3661          VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
3662       goto done;
3663    }
3664 
3665    if (pipeline->base.flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
3666       return VK_PIPELINE_COMPILE_REQUIRED;
3667 
3668    for (uint32_t i = 0; i < info->stageCount; i++) {
3669       if (stages[i].info == NULL)
3670          continue;
3671 
3672       int64_t stage_start = os_time_get_nano();
3673 
3674       stages[i].nir = anv_pipeline_stage_get_nir(&pipeline->base, cache,
3675                                                  tmp_pipeline_ctx, &stages[i]);
3676       if (stages[i].nir == NULL)
3677          return vk_error(pipeline, VK_ERROR_OUT_OF_HOST_MEMORY);
3678 
3679       anv_pipeline_nir_preprocess(&pipeline->base, &stages[i]);
3680 
3681       anv_pipeline_lower_nir(&pipeline->base, tmp_pipeline_ctx, &stages[i],
3682                              &pipeline->base.layout, 0 /* view_mask */,
3683                              false /* use_primitive_replication */);
3684 
3685       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3686    }
3687 
3688    for (uint32_t i = 0; i < info->stageCount; i++) {
3689       if (stages[i].info == NULL)
3690          continue;
3691 
3692       /* Shader found in cache already. */
3693       if (stages[i].bin != NULL)
3694          continue;
3695 
3696       /* We handle intersection shaders as part of the group */
3697       if (stages[i].stage == MESA_SHADER_INTERSECTION)
3698          continue;
3699 
3700       int64_t stage_start = os_time_get_nano();
3701 
3702       void *tmp_stage_ctx = ralloc_context(tmp_pipeline_ctx);
3703 
3704       nir_shader *nir = nir_shader_clone(tmp_stage_ctx, stages[i].nir);
3705       switch (stages[i].stage) {
3706       case MESA_SHADER_RAYGEN:
3707          brw_nir_lower_raygen(nir);
3708          break;
3709 
3710       case MESA_SHADER_ANY_HIT:
3711          brw_nir_lower_any_hit(nir, devinfo);
3712          break;
3713 
3714       case MESA_SHADER_CLOSEST_HIT:
3715          brw_nir_lower_closest_hit(nir);
3716          break;
3717 
3718       case MESA_SHADER_MISS:
3719          brw_nir_lower_miss(nir);
3720          break;
3721 
3722       case MESA_SHADER_INTERSECTION:
3723          unreachable("These are handled later");
3724 
3725       case MESA_SHADER_CALLABLE:
3726          brw_nir_lower_callable(nir);
3727          break;
3728 
3729       default:
3730          unreachable("Invalid ray-tracing shader stage");
3731       }
3732 
3733       result = compile_upload_rt_shader(pipeline, cache, nir, &stages[i],
3734                                         tmp_stage_ctx);
3735       if (result != VK_SUCCESS) {
3736          ralloc_free(tmp_stage_ctx);
3737          return result;
3738       }
3739 
3740       ralloc_free(tmp_stage_ctx);
3741 
3742       stages[i].feedback.duration += os_time_get_nano() - stage_start;
3743    }
3744 
3745  done:
3746    for (uint32_t i = 0; i < info->groupCount; i++) {
3747       const VkRayTracingShaderGroupCreateInfoKHR *ginfo = &info->pGroups[i];
3748       struct anv_rt_shader_group *group = &pipeline->groups[i];
3749       group->type = ginfo->type;
3750       switch (ginfo->type) {
3751       case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
3752          assert(ginfo->generalShader < info->stageCount);
3753          group->general = stages[ginfo->generalShader].bin;
3754          break;
3755 
3756       case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
3757          if (ginfo->anyHitShader < info->stageCount)
3758             group->any_hit = stages[ginfo->anyHitShader].bin;
3759 
3760          if (ginfo->closestHitShader < info->stageCount)
3761             group->closest_hit = stages[ginfo->closestHitShader].bin;
3762          break;
3763 
3764       case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR: {
3765          if (ginfo->closestHitShader < info->stageCount)
3766             group->closest_hit = stages[ginfo->closestHitShader].bin;
3767 
3768          uint32_t intersection_idx = info->pGroups[i].intersectionShader;
3769          assert(intersection_idx < info->stageCount);
3770 
3771          /* Only compile this stage if not already found in the cache. */
3772          if (stages[intersection_idx].bin == NULL) {
3773             /* The any-hit and intersection shader have to be combined */
3774             uint32_t any_hit_idx = info->pGroups[i].anyHitShader;
3775             const nir_shader *any_hit = NULL;
3776             if (any_hit_idx < info->stageCount)
3777                any_hit = stages[any_hit_idx].nir;
3778 
3779             void *tmp_group_ctx = ralloc_context(tmp_pipeline_ctx);
3780             nir_shader *intersection =
3781                nir_shader_clone(tmp_group_ctx, stages[intersection_idx].nir);
3782 
3783             brw_nir_lower_combined_intersection_any_hit(intersection, any_hit,
3784                                                         devinfo);
3785 
3786             result = compile_upload_rt_shader(pipeline, cache,
3787                                               intersection,
3788                                               &stages[intersection_idx],
3789                                               tmp_group_ctx);
3790             ralloc_free(tmp_group_ctx);
3791             if (result != VK_SUCCESS)
3792                return result;
3793          }
3794 
3795          group->intersection = stages[intersection_idx].bin;
3796          break;
3797       }
3798 
3799       default:
3800          unreachable("Invalid ray tracing shader group type");
3801       }
3802    }
3803 
3804    pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
3805 
3806    const VkPipelineCreationFeedbackCreateInfo *create_feedback =
3807       vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
3808    if (create_feedback) {
3809       *create_feedback->pPipelineCreationFeedback = pipeline_feedback;
3810 
3811       uint32_t stage_count = create_feedback->pipelineStageCreationFeedbackCount;
3812       assert(stage_count == 0 || info->stageCount == stage_count);
3813       for (uint32_t i = 0; i < stage_count; i++) {
3814          gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
3815          create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
3816       }
3817    }
3818 
3819    return VK_SUCCESS;
3820 }
3821 
3822 VkResult
anv_device_init_rt_shaders(struct anv_device * device)3823 anv_device_init_rt_shaders(struct anv_device *device)
3824 {
3825    device->bvh_build_method = ANV_BVH_BUILD_METHOD_NEW_SAH;
3826 
3827    if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3828       return VK_SUCCESS;
3829 
3830    bool cache_hit;
3831 
3832    struct anv_push_descriptor_info empty_push_desc_info = {};
3833    struct anv_pipeline_bind_map empty_bind_map = {};
3834    struct brw_rt_trampoline {
3835       char name[16];
3836       struct brw_cs_prog_key key;
3837    } trampoline_key = {
3838       .name = "rt-trampoline",
3839    };
3840    device->rt_trampoline =
3841       anv_device_search_for_kernel(device, device->internal_cache,
3842                                    &trampoline_key, sizeof(trampoline_key),
3843                                    &cache_hit);
3844    if (device->rt_trampoline == NULL) {
3845 
3846       void *tmp_ctx = ralloc_context(NULL);
3847       nir_shader *trampoline_nir =
3848          brw_nir_create_raygen_trampoline(device->physical->compiler, tmp_ctx);
3849 
3850       trampoline_nir->info.subgroup_size = SUBGROUP_SIZE_REQUIRE_16;
3851 
3852       uint32_t dummy_params[4] = { 0, };
3853       struct brw_cs_prog_data trampoline_prog_data = {
3854          .base.nr_params = 4,
3855          .base.param = dummy_params,
3856          .uses_inline_data = true,
3857          .uses_btd_stack_ids = true,
3858       };
3859       struct brw_compile_cs_params params = {
3860          .base = {
3861             .nir = trampoline_nir,
3862             .log_data = device,
3863             .mem_ctx = tmp_ctx,
3864          },
3865          .key = &trampoline_key.key,
3866          .prog_data = &trampoline_prog_data,
3867       };
3868       const unsigned *tramp_data =
3869          brw_compile_cs(device->physical->compiler, &params);
3870 
3871       struct anv_shader_upload_params upload_params = {
3872          .stage               = MESA_SHADER_COMPUTE,
3873          .key_data            = &trampoline_key,
3874          .key_size            = sizeof(trampoline_key),
3875          .kernel_data         = tramp_data,
3876          .kernel_size         = trampoline_prog_data.base.program_size,
3877          .prog_data           = &trampoline_prog_data.base,
3878          .prog_data_size      = sizeof(trampoline_prog_data),
3879          .bind_map            = &empty_bind_map,
3880          .push_desc_info      = &empty_push_desc_info,
3881       };
3882 
3883       device->rt_trampoline =
3884          anv_device_upload_kernel(device, device->internal_cache,
3885                                   &upload_params);
3886 
3887       ralloc_free(tmp_ctx);
3888 
3889       if (device->rt_trampoline == NULL)
3890          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3891    }
3892 
3893    /* The cache already has a reference and it's not going anywhere so there
3894     * is no need to hold a second reference.
3895     */
3896    anv_shader_bin_unref(device, device->rt_trampoline);
3897 
3898    struct brw_rt_trivial_return {
3899       char name[16];
3900       struct brw_bs_prog_key key;
3901    } return_key = {
3902       .name = "rt-trivial-ret",
3903    };
3904    device->rt_trivial_return =
3905       anv_device_search_for_kernel(device, device->internal_cache,
3906                                    &return_key, sizeof(return_key),
3907                                    &cache_hit);
3908    if (device->rt_trivial_return == NULL) {
3909       void *tmp_ctx = ralloc_context(NULL);
3910       nir_shader *trivial_return_nir =
3911          brw_nir_create_trivial_return_shader(device->physical->compiler, tmp_ctx);
3912 
3913       NIR_PASS_V(trivial_return_nir, brw_nir_lower_rt_intrinsics, device->info);
3914 
3915       struct brw_bs_prog_data return_prog_data = { 0, };
3916       struct brw_compile_bs_params params = {
3917          .base = {
3918             .nir = trivial_return_nir,
3919             .log_data = device,
3920             .mem_ctx = tmp_ctx,
3921          },
3922          .key = &return_key.key,
3923          .prog_data = &return_prog_data,
3924       };
3925       const unsigned *return_data =
3926          brw_compile_bs(device->physical->compiler, &params);
3927 
3928       struct anv_shader_upload_params upload_params = {
3929          .stage               = MESA_SHADER_CALLABLE,
3930          .key_data            = &return_key,
3931          .key_size            = sizeof(return_key),
3932          .kernel_data         = return_data,
3933          .kernel_size         = return_prog_data.base.program_size,
3934          .prog_data           = &return_prog_data.base,
3935          .prog_data_size      = sizeof(return_prog_data),
3936          .bind_map            = &empty_bind_map,
3937          .push_desc_info      = &empty_push_desc_info,
3938       };
3939 
3940       device->rt_trivial_return =
3941          anv_device_upload_kernel(device, device->internal_cache,
3942                                   &upload_params);
3943 
3944       ralloc_free(tmp_ctx);
3945 
3946       if (device->rt_trivial_return == NULL)
3947          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
3948    }
3949 
3950    /* The cache already has a reference and it's not going anywhere so there
3951     * is no need to hold a second reference.
3952     */
3953    anv_shader_bin_unref(device, device->rt_trivial_return);
3954 
3955    return VK_SUCCESS;
3956 }
3957 
3958 void
anv_device_finish_rt_shaders(struct anv_device * device)3959 anv_device_finish_rt_shaders(struct anv_device *device)
3960 {
3961    if (!device->vk.enabled_extensions.KHR_ray_tracing_pipeline)
3962       return;
3963 }
3964 
3965 static void
anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline * pipeline,struct anv_device * device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * alloc)3966 anv_ray_tracing_pipeline_init(struct anv_ray_tracing_pipeline *pipeline,
3967                               struct anv_device *device,
3968                               struct vk_pipeline_cache *cache,
3969                               const VkRayTracingPipelineCreateInfoKHR *pCreateInfo,
3970                               const VkAllocationCallbacks *alloc)
3971 {
3972    util_dynarray_init(&pipeline->shaders, pipeline->base.mem_ctx);
3973 
3974    ANV_FROM_HANDLE(anv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
3975    anv_pipeline_init_layout(&pipeline->base, pipeline_layout);
3976 
3977    anv_pipeline_setup_l3_config(&pipeline->base, /* needs_slm */ false);
3978 }
3979 
3980 static void
assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,uint32_t stage_idx,VkShaderStageFlags valid_stages)3981 assert_rt_stage_index_valid(const VkRayTracingPipelineCreateInfoKHR* pCreateInfo,
3982                             uint32_t stage_idx,
3983                             VkShaderStageFlags valid_stages)
3984 {
3985    if (stage_idx == VK_SHADER_UNUSED_KHR)
3986       return;
3987 
3988    assert(stage_idx <= pCreateInfo->stageCount);
3989    assert(util_bitcount(pCreateInfo->pStages[stage_idx].stage) == 1);
3990    assert(pCreateInfo->pStages[stage_idx].stage & valid_stages);
3991 }
3992 
3993 static VkResult
anv_ray_tracing_pipeline_create(VkDevice _device,struct vk_pipeline_cache * cache,const VkRayTracingPipelineCreateInfoKHR * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipeline)3994 anv_ray_tracing_pipeline_create(
3995     VkDevice                                    _device,
3996     struct vk_pipeline_cache *                  cache,
3997     const VkRayTracingPipelineCreateInfoKHR*    pCreateInfo,
3998     const VkAllocationCallbacks*                pAllocator,
3999     VkPipeline*                                 pPipeline)
4000 {
4001    ANV_FROM_HANDLE(anv_device, device, _device);
4002    VkResult result;
4003 
4004    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR);
4005 
4006    uint32_t group_count = pCreateInfo->groupCount;
4007    if (pCreateInfo->pLibraryInfo) {
4008       for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4009          ANV_FROM_HANDLE(anv_pipeline, library,
4010                          pCreateInfo->pLibraryInfo->pLibraries[l]);
4011          struct anv_ray_tracing_pipeline *rt_library =
4012             anv_pipeline_to_ray_tracing(library);
4013          group_count += rt_library->group_count;
4014       }
4015    }
4016 
4017    VK_MULTIALLOC(ma);
4018    VK_MULTIALLOC_DECL(&ma, struct anv_ray_tracing_pipeline, pipeline, 1);
4019    VK_MULTIALLOC_DECL(&ma, struct anv_rt_shader_group, groups, group_count);
4020    if (!vk_multialloc_zalloc2(&ma, &device->vk.alloc, pAllocator,
4021                               VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
4022       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4023 
4024    result = anv_pipeline_init(&pipeline->base, device,
4025                               ANV_PIPELINE_RAY_TRACING,
4026                               vk_rt_pipeline_create_flags(pCreateInfo),
4027                               pAllocator);
4028    if (result != VK_SUCCESS) {
4029       vk_free2(&device->vk.alloc, pAllocator, pipeline);
4030       return result;
4031    }
4032 
4033    pipeline->group_count = group_count;
4034    pipeline->groups = groups;
4035 
4036    ASSERTED const VkShaderStageFlags ray_tracing_stages =
4037       VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4038       VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
4039       VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
4040       VK_SHADER_STAGE_MISS_BIT_KHR |
4041       VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
4042       VK_SHADER_STAGE_CALLABLE_BIT_KHR;
4043 
4044    for (uint32_t i = 0; i < pCreateInfo->stageCount; i++)
4045       assert((pCreateInfo->pStages[i].stage & ~ray_tracing_stages) == 0);
4046 
4047    for (uint32_t i = 0; i < pCreateInfo->groupCount; i++) {
4048       const VkRayTracingShaderGroupCreateInfoKHR *ginfo =
4049          &pCreateInfo->pGroups[i];
4050       assert_rt_stage_index_valid(pCreateInfo, ginfo->generalShader,
4051                                   VK_SHADER_STAGE_RAYGEN_BIT_KHR |
4052                                   VK_SHADER_STAGE_MISS_BIT_KHR |
4053                                   VK_SHADER_STAGE_CALLABLE_BIT_KHR);
4054       assert_rt_stage_index_valid(pCreateInfo, ginfo->closestHitShader,
4055                                   VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
4056       assert_rt_stage_index_valid(pCreateInfo, ginfo->anyHitShader,
4057                                   VK_SHADER_STAGE_ANY_HIT_BIT_KHR);
4058       assert_rt_stage_index_valid(pCreateInfo, ginfo->intersectionShader,
4059                                   VK_SHADER_STAGE_INTERSECTION_BIT_KHR);
4060       switch (ginfo->type) {
4061       case VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR:
4062          assert(ginfo->generalShader < pCreateInfo->stageCount);
4063          assert(ginfo->anyHitShader == VK_SHADER_UNUSED_KHR);
4064          assert(ginfo->closestHitShader == VK_SHADER_UNUSED_KHR);
4065          assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4066          break;
4067 
4068       case VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR:
4069          assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4070          assert(ginfo->intersectionShader == VK_SHADER_UNUSED_KHR);
4071          break;
4072 
4073       case VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_KHR:
4074          assert(ginfo->generalShader == VK_SHADER_UNUSED_KHR);
4075          break;
4076 
4077       default:
4078          unreachable("Invalid ray-tracing shader group type");
4079       }
4080    }
4081 
4082    anv_ray_tracing_pipeline_init(pipeline, device, cache,
4083                                  pCreateInfo, pAllocator);
4084 
4085    void *tmp_ctx = ralloc_context(NULL);
4086 
4087    struct anv_pipeline_stage *stages =
4088       anv_pipeline_init_ray_tracing_stages(pipeline, pCreateInfo, tmp_ctx);
4089 
4090    result = anv_pipeline_compile_ray_tracing(pipeline, tmp_ctx, stages,
4091                                              cache, pCreateInfo);
4092    if (result != VK_SUCCESS) {
4093       ralloc_free(tmp_ctx);
4094       util_dynarray_foreach(&pipeline->shaders, struct anv_shader_bin *, shader)
4095          anv_shader_bin_unref(device, *shader);
4096       anv_pipeline_finish(&pipeline->base, device);
4097       vk_free2(&device->vk.alloc, pAllocator, pipeline);
4098       return result;
4099    }
4100 
4101    /* Compute the size of the scratch BO (for register spilling) by taking the
4102     * max of all the shaders in the pipeline. Also add the shaders to the list
4103     * of executables.
4104     */
4105    uint32_t stack_max[MESA_VULKAN_SHADER_STAGES] = {};
4106    for (uint32_t s = 0; s < pCreateInfo->stageCount; s++) {
4107       util_dynarray_append(&pipeline->shaders,
4108                            struct anv_shader_bin *,
4109                            stages[s].bin);
4110 
4111       uint32_t stack_size =
4112          brw_bs_prog_data_const(stages[s].bin->prog_data)->max_stack_size;
4113       stack_max[stages[s].stage] = MAX2(stack_max[stages[s].stage], stack_size);
4114 
4115       anv_pipeline_account_shader(&pipeline->base, stages[s].bin);
4116    }
4117 
4118    anv_pipeline_compute_ray_tracing_stacks(pipeline, pCreateInfo, stack_max);
4119 
4120    if (pCreateInfo->pLibraryInfo) {
4121       uint32_t g = pCreateInfo->groupCount;
4122       for (uint32_t l = 0; l < pCreateInfo->pLibraryInfo->libraryCount; l++) {
4123          ANV_FROM_HANDLE(anv_pipeline, library,
4124                          pCreateInfo->pLibraryInfo->pLibraries[l]);
4125          struct anv_ray_tracing_pipeline *rt_library =
4126             anv_pipeline_to_ray_tracing(library);
4127          for (uint32_t lg = 0; lg < rt_library->group_count; lg++) {
4128             pipeline->groups[g] = rt_library->groups[lg];
4129             pipeline->groups[g].imported = true;
4130             g++;
4131          }
4132 
4133          /* Account for shaders in the library. */
4134          util_dynarray_foreach(&rt_library->shaders,
4135                                struct anv_shader_bin *, shader) {
4136             util_dynarray_append(&pipeline->shaders,
4137                                  struct anv_shader_bin *,
4138                                  anv_shader_bin_ref(*shader));
4139             anv_pipeline_account_shader(&pipeline->base, *shader);
4140          }
4141 
4142          /* Add the library shaders to this pipeline's executables. */
4143          util_dynarray_foreach(&rt_library->base.executables,
4144                                struct anv_pipeline_executable, exe) {
4145             util_dynarray_append(&pipeline->base.executables,
4146                                  struct anv_pipeline_executable, *exe);
4147          }
4148 
4149          pipeline->base.active_stages |= rt_library->base.active_stages;
4150       }
4151    }
4152 
4153    anv_genX(device->info, ray_tracing_pipeline_emit)(pipeline);
4154 
4155    ralloc_free(tmp_ctx);
4156 
4157    ANV_RMV(rt_pipeline_create, device, pipeline, false);
4158 
4159    *pPipeline = anv_pipeline_to_handle(&pipeline->base);
4160 
4161    return pipeline->base.batch.status;
4162 }
4163 
4164 VkResult
anv_CreateRayTracingPipelinesKHR(VkDevice _device,VkDeferredOperationKHR deferredOperation,VkPipelineCache pipelineCache,uint32_t createInfoCount,const VkRayTracingPipelineCreateInfoKHR * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)4165 anv_CreateRayTracingPipelinesKHR(
4166     VkDevice                                    _device,
4167     VkDeferredOperationKHR                      deferredOperation,
4168     VkPipelineCache                             pipelineCache,
4169     uint32_t                                    createInfoCount,
4170     const VkRayTracingPipelineCreateInfoKHR*    pCreateInfos,
4171     const VkAllocationCallbacks*                pAllocator,
4172     VkPipeline*                                 pPipelines)
4173 {
4174    ANV_FROM_HANDLE(vk_pipeline_cache, pipeline_cache, pipelineCache);
4175 
4176    VkResult result = VK_SUCCESS;
4177 
4178    unsigned i;
4179    for (i = 0; i < createInfoCount; i++) {
4180       const VkPipelineCreateFlags2KHR flags =
4181          vk_rt_pipeline_create_flags(&pCreateInfos[i]);
4182       VkResult res = anv_ray_tracing_pipeline_create(_device, pipeline_cache,
4183                                                      &pCreateInfos[i],
4184                                                      pAllocator, &pPipelines[i]);
4185 
4186       if (res == VK_SUCCESS)
4187          continue;
4188 
4189       /* Bail out on the first error as it is not obvious what error should be
4190        * report upon 2 different failures. */
4191       result = res;
4192       if (result != VK_PIPELINE_COMPILE_REQUIRED)
4193          break;
4194 
4195       pPipelines[i] = VK_NULL_HANDLE;
4196 
4197       if (flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
4198          break;
4199    }
4200 
4201    for (; i < createInfoCount; i++)
4202       pPipelines[i] = VK_NULL_HANDLE;
4203 
4204    return result;
4205 }
4206 
4207 #define WRITE_STR(field, ...) ({                               \
4208    memset(field, 0, sizeof(field));                            \
4209    UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
4210    assert(i > 0 && i < sizeof(field));                         \
4211 })
4212 
anv_GetPipelineExecutablePropertiesKHR(VkDevice device,const VkPipelineInfoKHR * pPipelineInfo,uint32_t * pExecutableCount,VkPipelineExecutablePropertiesKHR * pProperties)4213 VkResult anv_GetPipelineExecutablePropertiesKHR(
4214     VkDevice                                    device,
4215     const VkPipelineInfoKHR*                    pPipelineInfo,
4216     uint32_t*                                   pExecutableCount,
4217     VkPipelineExecutablePropertiesKHR*          pProperties)
4218 {
4219    ANV_FROM_HANDLE(anv_pipeline, pipeline, pPipelineInfo->pipeline);
4220    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
4221                           pProperties, pExecutableCount);
4222 
4223    util_dynarray_foreach (&pipeline->executables, struct anv_pipeline_executable, exe) {
4224       vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
4225          gl_shader_stage stage = exe->stage;
4226          props->stages = mesa_to_vk_shader_stage(stage);
4227 
4228          unsigned simd_width = exe->stats.dispatch_width;
4229          if (stage == MESA_SHADER_FRAGMENT) {
4230             if (exe->stats.max_polygons > 1)
4231                WRITE_STR(props->name, "SIMD%dx%d %s",
4232                          exe->stats.max_polygons,
4233                          simd_width / exe->stats.max_polygons,
4234                          _mesa_shader_stage_to_string(stage));
4235             else
4236                WRITE_STR(props->name, "%s%d %s",
4237                          simd_width ? "SIMD" : "vec",
4238                          simd_width ? simd_width : 4,
4239                          _mesa_shader_stage_to_string(stage));
4240          } else {
4241             WRITE_STR(props->name, "%s", _mesa_shader_stage_to_string(stage));
4242          }
4243          WRITE_STR(props->description, "%s%d %s shader",
4244                    simd_width ? "SIMD" : "vec",
4245                    simd_width ? simd_width : 4,
4246                    _mesa_shader_stage_to_string(stage));
4247 
4248          /* The compiler gives us a dispatch width of 0 for vec4 but Vulkan
4249           * wants a subgroup size of 1.
4250           */
4251          props->subgroupSize = MAX2(simd_width, 1);
4252       }
4253    }
4254 
4255    return vk_outarray_status(&out);
4256 }
4257 
4258 static const struct anv_pipeline_executable *
anv_pipeline_get_executable(struct anv_pipeline * pipeline,uint32_t index)4259 anv_pipeline_get_executable(struct anv_pipeline *pipeline, uint32_t index)
4260 {
4261    assert(index < util_dynarray_num_elements(&pipeline->executables,
4262                                              struct anv_pipeline_executable));
4263    return util_dynarray_element(
4264       &pipeline->executables, struct anv_pipeline_executable, index);
4265 }
4266 
anv_GetPipelineExecutableStatisticsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pStatisticCount,VkPipelineExecutableStatisticKHR * pStatistics)4267 VkResult anv_GetPipelineExecutableStatisticsKHR(
4268     VkDevice                                    device,
4269     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
4270     uint32_t*                                   pStatisticCount,
4271     VkPipelineExecutableStatisticKHR*           pStatistics)
4272 {
4273    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4274    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
4275                           pStatistics, pStatisticCount);
4276 
4277    const struct anv_pipeline_executable *exe =
4278       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4279 
4280    const struct brw_stage_prog_data *prog_data;
4281    switch (pipeline->type) {
4282    case ANV_PIPELINE_GRAPHICS:
4283    case ANV_PIPELINE_GRAPHICS_LIB: {
4284       prog_data = anv_pipeline_to_graphics(pipeline)->base.shaders[exe->stage]->prog_data;
4285       break;
4286    }
4287    case ANV_PIPELINE_COMPUTE: {
4288       prog_data = anv_pipeline_to_compute(pipeline)->cs->prog_data;
4289       break;
4290    }
4291    case ANV_PIPELINE_RAY_TRACING: {
4292       struct anv_shader_bin **shader =
4293          util_dynarray_element(&anv_pipeline_to_ray_tracing(pipeline)->shaders,
4294                                struct anv_shader_bin *,
4295                                pExecutableInfo->executableIndex);
4296       prog_data = (*shader)->prog_data;
4297       break;
4298    }
4299    default:
4300       unreachable("invalid pipeline type");
4301    }
4302 
4303    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4304       WRITE_STR(stat->name, "Instruction Count");
4305       WRITE_STR(stat->description,
4306                 "Number of GEN instructions in the final generated "
4307                 "shader executable.");
4308       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4309       stat->value.u64 = exe->stats.instructions;
4310    }
4311 
4312    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4313       WRITE_STR(stat->name, "SEND Count");
4314       WRITE_STR(stat->description,
4315                 "Number of instructions in the final generated shader "
4316                 "executable which access external units such as the "
4317                 "constant cache or the sampler.");
4318       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4319       stat->value.u64 = exe->stats.sends;
4320    }
4321 
4322    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4323       WRITE_STR(stat->name, "Loop Count");
4324       WRITE_STR(stat->description,
4325                 "Number of loops (not unrolled) in the final generated "
4326                 "shader executable.");
4327       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4328       stat->value.u64 = exe->stats.loops;
4329    }
4330 
4331    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4332       WRITE_STR(stat->name, "Cycle Count");
4333       WRITE_STR(stat->description,
4334                 "Estimate of the number of EU cycles required to execute "
4335                 "the final generated executable.  This is an estimate only "
4336                 "and may vary greatly from actual run-time performance.");
4337       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4338       stat->value.u64 = exe->stats.cycles;
4339    }
4340 
4341    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4342       WRITE_STR(stat->name, "Spill Count");
4343       WRITE_STR(stat->description,
4344                 "Number of scratch spill operations.  This gives a rough "
4345                 "estimate of the cost incurred due to spilling temporary "
4346                 "values to memory.  If this is non-zero, you may want to "
4347                 "adjust your shader to reduce register pressure.");
4348       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4349       stat->value.u64 = exe->stats.spills;
4350    }
4351 
4352    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4353       WRITE_STR(stat->name, "Fill Count");
4354       WRITE_STR(stat->description,
4355                 "Number of scratch fill operations.  This gives a rough "
4356                 "estimate of the cost incurred due to spilling temporary "
4357                 "values to memory.  If this is non-zero, you may want to "
4358                 "adjust your shader to reduce register pressure.");
4359       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4360       stat->value.u64 = exe->stats.fills;
4361    }
4362 
4363    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4364       WRITE_STR(stat->name, "Scratch Memory Size");
4365       WRITE_STR(stat->description,
4366                 "Number of bytes of scratch memory required by the "
4367                 "generated shader executable.  If this is non-zero, you "
4368                 "may want to adjust your shader to reduce register "
4369                 "pressure.");
4370       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4371       stat->value.u64 = prog_data->total_scratch;
4372    }
4373 
4374    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4375       WRITE_STR(stat->name, "Max dispatch width");
4376       WRITE_STR(stat->description,
4377                 "Largest SIMD dispatch width.");
4378       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4379       /* Report the max dispatch width only on the smallest SIMD variant */
4380       if (exe->stage != MESA_SHADER_FRAGMENT || exe->stats.dispatch_width == 8)
4381          stat->value.u64 = exe->stats.max_dispatch_width;
4382       else
4383          stat->value.u64 = 0;
4384    }
4385 
4386    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4387       WRITE_STR(stat->name, "Max live registers");
4388       WRITE_STR(stat->description,
4389                 "Maximum number of registers used across the entire shader.");
4390       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4391       stat->value.u64 = exe->stats.max_live_registers;
4392    }
4393 
4394    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4395       WRITE_STR(stat->name, "Workgroup Memory Size");
4396       WRITE_STR(stat->description,
4397                 "Number of bytes of workgroup shared memory used by this "
4398                 "shader including any padding.");
4399       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4400       if (gl_shader_stage_uses_workgroup(exe->stage))
4401          stat->value.u64 = prog_data->total_shared;
4402       else
4403          stat->value.u64 = 0;
4404    }
4405 
4406    vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
4407       uint32_t hash = pipeline->type == ANV_PIPELINE_COMPUTE ?
4408                       anv_pipeline_to_compute(pipeline)->source_hash :
4409                       (pipeline->type == ANV_PIPELINE_GRAPHICS_LIB ||
4410                        pipeline->type == ANV_PIPELINE_GRAPHICS) ?
4411                       anv_pipeline_to_graphics_base(pipeline)->source_hashes[exe->stage] :
4412                       0 /* No source hash for ray tracing */;
4413       WRITE_STR(stat->name, "Source hash");
4414       WRITE_STR(stat->description,
4415                 "hash = 0x%08x. Hash generated from shader source.", hash);
4416       stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
4417       stat->value.u64 = hash;
4418    }
4419 
4420    return vk_outarray_status(&out);
4421 }
4422 
4423 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)4424 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
4425               const char *data)
4426 {
4427    ir->isText = VK_TRUE;
4428 
4429    size_t data_len = strlen(data) + 1;
4430 
4431    if (ir->pData == NULL) {
4432       ir->dataSize = data_len;
4433       return true;
4434    }
4435 
4436    strncpy(ir->pData, data, ir->dataSize);
4437    if (ir->dataSize < data_len)
4438       return false;
4439 
4440    ir->dataSize = data_len;
4441    return true;
4442 }
4443 
anv_GetPipelineExecutableInternalRepresentationsKHR(VkDevice device,const VkPipelineExecutableInfoKHR * pExecutableInfo,uint32_t * pInternalRepresentationCount,VkPipelineExecutableInternalRepresentationKHR * pInternalRepresentations)4444 VkResult anv_GetPipelineExecutableInternalRepresentationsKHR(
4445     VkDevice                                    device,
4446     const VkPipelineExecutableInfoKHR*          pExecutableInfo,
4447     uint32_t*                                   pInternalRepresentationCount,
4448     VkPipelineExecutableInternalRepresentationKHR* pInternalRepresentations)
4449 {
4450    ANV_FROM_HANDLE(anv_pipeline, pipeline, pExecutableInfo->pipeline);
4451    VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
4452                           pInternalRepresentations, pInternalRepresentationCount);
4453    bool incomplete_text = false;
4454 
4455    const struct anv_pipeline_executable *exe =
4456       anv_pipeline_get_executable(pipeline, pExecutableInfo->executableIndex);
4457 
4458    if (exe->nir) {
4459       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4460          WRITE_STR(ir->name, "Final NIR");
4461          WRITE_STR(ir->description,
4462                    "Final NIR before going into the back-end compiler");
4463 
4464          if (!write_ir_text(ir, exe->nir))
4465             incomplete_text = true;
4466       }
4467    }
4468 
4469    if (exe->disasm) {
4470       vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
4471          WRITE_STR(ir->name, "GEN Assembly");
4472          WRITE_STR(ir->description,
4473                    "Final GEN assembly for the generated shader binary");
4474 
4475          if (!write_ir_text(ir, exe->disasm))
4476             incomplete_text = true;
4477       }
4478    }
4479 
4480    return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
4481 }
4482 
4483 VkResult
anv_GetRayTracingShaderGroupHandlesKHR(VkDevice _device,VkPipeline _pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4484 anv_GetRayTracingShaderGroupHandlesKHR(
4485     VkDevice                                    _device,
4486     VkPipeline                                  _pipeline,
4487     uint32_t                                    firstGroup,
4488     uint32_t                                    groupCount,
4489     size_t                                      dataSize,
4490     void*                                       pData)
4491 {
4492    ANV_FROM_HANDLE(anv_device, device, _device);
4493    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4494 
4495    if (pipeline->type != ANV_PIPELINE_RAY_TRACING)
4496       return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4497 
4498    struct anv_ray_tracing_pipeline *rt_pipeline =
4499       anv_pipeline_to_ray_tracing(pipeline);
4500 
4501    assert(firstGroup + groupCount <= rt_pipeline->group_count);
4502    for (uint32_t i = 0; i < groupCount; i++) {
4503       struct anv_rt_shader_group *group = &rt_pipeline->groups[firstGroup + i];
4504       memcpy(pData, group->handle, sizeof(group->handle));
4505       pData += sizeof(group->handle);
4506    }
4507 
4508    return VK_SUCCESS;
4509 }
4510 
4511 VkResult
anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(VkDevice _device,VkPipeline pipeline,uint32_t firstGroup,uint32_t groupCount,size_t dataSize,void * pData)4512 anv_GetRayTracingCaptureReplayShaderGroupHandlesKHR(
4513     VkDevice                                    _device,
4514     VkPipeline                                  pipeline,
4515     uint32_t                                    firstGroup,
4516     uint32_t                                    groupCount,
4517     size_t                                      dataSize,
4518     void*                                       pData)
4519 {
4520    ANV_FROM_HANDLE(anv_device, device, _device);
4521    unreachable("Unimplemented");
4522    return vk_error(device, VK_ERROR_FEATURE_NOT_PRESENT);
4523 }
4524 
4525 VkDeviceSize
anv_GetRayTracingShaderGroupStackSizeKHR(VkDevice device,VkPipeline _pipeline,uint32_t group,VkShaderGroupShaderKHR groupShader)4526 anv_GetRayTracingShaderGroupStackSizeKHR(
4527     VkDevice                                    device,
4528     VkPipeline                                  _pipeline,
4529     uint32_t                                    group,
4530     VkShaderGroupShaderKHR                      groupShader)
4531 {
4532    ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
4533    assert(pipeline->type == ANV_PIPELINE_RAY_TRACING);
4534 
4535    struct anv_ray_tracing_pipeline *rt_pipeline =
4536       anv_pipeline_to_ray_tracing(pipeline);
4537 
4538    assert(group < rt_pipeline->group_count);
4539 
4540    struct anv_shader_bin *bin;
4541    switch (groupShader) {
4542    case VK_SHADER_GROUP_SHADER_GENERAL_KHR:
4543       bin = rt_pipeline->groups[group].general;
4544       break;
4545 
4546    case VK_SHADER_GROUP_SHADER_CLOSEST_HIT_KHR:
4547       bin = rt_pipeline->groups[group].closest_hit;
4548       break;
4549 
4550    case VK_SHADER_GROUP_SHADER_ANY_HIT_KHR:
4551       bin = rt_pipeline->groups[group].any_hit;
4552       break;
4553 
4554    case VK_SHADER_GROUP_SHADER_INTERSECTION_KHR:
4555       bin = rt_pipeline->groups[group].intersection;
4556       break;
4557 
4558    default:
4559       unreachable("Invalid VkShaderGroupShader enum");
4560    }
4561 
4562    if (bin == NULL)
4563       return 0;
4564 
4565    return brw_bs_prog_data_const(bin->prog_data)->max_stack_size;
4566 }
4567