1 /*
2 * Copyright © 2022 Collabora Ltd. and Red Hat Inc.
3 * SPDX-License-Identifier: MIT
4 */
5 #include "nvk_shader.h"
6
7 #include "nvk_cmd_buffer.h"
8 #include "nvk_descriptor_set_layout.h"
9 #include "nvk_device.h"
10 #include "nvk_physical_device.h"
11 #include "nvk_sampler.h"
12 #include "nvk_shader.h"
13
14 #include "vk_nir_convert_ycbcr.h"
15 #include "vk_pipeline.h"
16 #include "vk_pipeline_layout.h"
17 #include "vk_shader_module.h"
18 #include "vk_ycbcr_conversion.h"
19
20 #include "nak.h"
21 #include "nir.h"
22 #include "nir_builder.h"
23 #include "compiler/spirv/nir_spirv.h"
24
25 #include "nv50_ir_driver.h"
26
27 #include "util/mesa-sha1.h"
28 #include "util/u_debug.h"
29
30 #include "cla097.h"
31 #include "clb097.h"
32 #include "clc397.h"
33 #include "clc597.h"
34
35 static void
shared_var_info(const struct glsl_type * type,unsigned * size,unsigned * align)36 shared_var_info(const struct glsl_type *type, unsigned *size, unsigned *align)
37 {
38 assert(glsl_type_is_vector_or_scalar(type));
39
40 uint32_t comp_size = glsl_type_is_boolean(type) ? 4 : glsl_get_bit_size(type) / 8;
41 unsigned length = glsl_get_vector_elements(type);
42 *size = comp_size * length, *align = comp_size;
43 }
44
45 VkShaderStageFlags
nvk_nak_stages(const struct nv_device_info * info)46 nvk_nak_stages(const struct nv_device_info *info)
47 {
48 const VkShaderStageFlags all =
49 VK_SHADER_STAGE_VERTEX_BIT |
50 VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT |
51 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT |
52 VK_SHADER_STAGE_GEOMETRY_BIT |
53 VK_SHADER_STAGE_FRAGMENT_BIT |
54 VK_SHADER_STAGE_COMPUTE_BIT;
55
56 const struct debug_control flags[] = {
57 { "vs", BITFIELD64_BIT(MESA_SHADER_VERTEX) },
58 { "tcs", BITFIELD64_BIT(MESA_SHADER_TESS_CTRL) },
59 { "tes", BITFIELD64_BIT(MESA_SHADER_TESS_EVAL) },
60 { "gs", BITFIELD64_BIT(MESA_SHADER_GEOMETRY) },
61 { "fs", BITFIELD64_BIT(MESA_SHADER_FRAGMENT) },
62 { "cs", BITFIELD64_BIT(MESA_SHADER_COMPUTE) },
63 { "all", all },
64 { NULL, 0 },
65 };
66
67 const char *env_str = getenv("NVK_USE_NAK");
68 if (env_str == NULL)
69 return info->cls_eng3d >= VOLTA_A ? all : 0;
70 else
71 return parse_debug_string(env_str, flags);
72 }
73
74 static bool
use_nak(const struct nvk_physical_device * pdev,gl_shader_stage stage)75 use_nak(const struct nvk_physical_device *pdev, gl_shader_stage stage)
76 {
77 return nvk_nak_stages(&pdev->info) & mesa_to_vk_shader_stage(stage);
78 }
79
80 uint64_t
nvk_physical_device_compiler_flags(const struct nvk_physical_device * pdev)81 nvk_physical_device_compiler_flags(const struct nvk_physical_device *pdev)
82 {
83 bool no_cbufs = pdev->debug_flags & NVK_DEBUG_NO_CBUF;
84 uint64_t prog_debug = nvk_cg_get_prog_debug();
85 uint64_t prog_optimize = nvk_cg_get_prog_optimize();
86 uint64_t nak_stages = nvk_nak_stages(&pdev->info);
87 uint64_t nak_flags = nak_debug_flags(pdev->nak);
88
89 assert(prog_debug <= UINT8_MAX);
90 assert(prog_optimize < 16);
91 assert(nak_stages <= UINT32_MAX);
92 assert(nak_flags <= UINT16_MAX);
93
94 return prog_debug
95 | (prog_optimize << 8)
96 | ((uint64_t)no_cbufs << 12)
97 | (nak_stages << 16)
98 | (nak_flags << 48);
99 }
100
101 static const nir_shader_compiler_options *
nvk_get_nir_options(struct vk_physical_device * vk_pdev,gl_shader_stage stage,UNUSED const struct vk_pipeline_robustness_state * rs)102 nvk_get_nir_options(struct vk_physical_device *vk_pdev,
103 gl_shader_stage stage,
104 UNUSED const struct vk_pipeline_robustness_state *rs)
105 {
106 const struct nvk_physical_device *pdev =
107 container_of(vk_pdev, struct nvk_physical_device, vk);
108
109 if (use_nak(pdev, stage))
110 return nak_nir_options(pdev->nak);
111 else
112 return nvk_cg_nir_options(pdev, stage);
113 }
114
115 static struct spirv_to_nir_options
nvk_get_spirv_options(struct vk_physical_device * vk_pdev,UNUSED gl_shader_stage stage,const struct vk_pipeline_robustness_state * rs)116 nvk_get_spirv_options(struct vk_physical_device *vk_pdev,
117 UNUSED gl_shader_stage stage,
118 const struct vk_pipeline_robustness_state *rs)
119 {
120 const struct nvk_physical_device *pdev =
121 container_of(vk_pdev, struct nvk_physical_device, vk);
122
123 return (struct spirv_to_nir_options) {
124 .caps = {
125 .demote_to_helper_invocation = true,
126 .descriptor_array_dynamic_indexing = true,
127 .descriptor_array_non_uniform_indexing = true,
128 .descriptor_indexing = true,
129 .device_group = true,
130 .draw_parameters = true,
131 .float_controls = true,
132 .float64 = true,
133 .fragment_barycentric = true,
134 .geometry_streams = true,
135 .image_atomic_int64 = true,
136 .image_read_without_format = true,
137 .image_write_without_format = true,
138 .int8 = true,
139 .int16 = true,
140 .int64 = true,
141 .int64_atomics = true,
142 .min_lod = true,
143 .multiview = true,
144 .physical_storage_buffer_address = true,
145 .runtime_descriptor_array = true,
146 .shader_clock = true,
147 .shader_sm_builtins_nv = true,
148 .shader_viewport_index_layer = true,
149 .storage_8bit = true,
150 .storage_16bit = true,
151 .subgroup_arithmetic = true,
152 .subgroup_ballot = true,
153 .subgroup_basic = true,
154 .subgroup_quad = true,
155 .subgroup_shuffle = true,
156 .subgroup_vote = true,
157 .tessellation = true,
158 .transform_feedback = true,
159 .variable_pointers = true,
160 .vk_memory_model_device_scope = true,
161 .vk_memory_model = true,
162 .workgroup_memory_explicit_layout = true,
163 },
164 .ssbo_addr_format = nvk_buffer_addr_format(rs->storage_buffers),
165 .phys_ssbo_addr_format = nir_address_format_64bit_global,
166 .ubo_addr_format = nvk_buffer_addr_format(rs->uniform_buffers),
167 .shared_addr_format = nir_address_format_32bit_offset,
168 .min_ssbo_alignment = NVK_MIN_SSBO_ALIGNMENT,
169 .min_ubo_alignment = nvk_min_cbuf_alignment(&pdev->info),
170 };
171 }
172
173 static void
nvk_preprocess_nir(struct vk_physical_device * vk_pdev,nir_shader * nir)174 nvk_preprocess_nir(struct vk_physical_device *vk_pdev, nir_shader *nir)
175 {
176 const struct nvk_physical_device *pdev =
177 container_of(vk_pdev, struct nvk_physical_device, vk);
178
179 NIR_PASS_V(nir, nir_lower_io_to_temporaries,
180 nir_shader_get_entrypoint(nir), true, false);
181
182 if (use_nak(pdev, nir->info.stage))
183 nak_preprocess_nir(nir, pdev->nak);
184 else
185 nvk_cg_preprocess_nir(nir);
186 }
187
188 static void
nvk_populate_fs_key(struct nak_fs_key * key,const struct vk_graphics_pipeline_state * state)189 nvk_populate_fs_key(struct nak_fs_key *key,
190 const struct vk_graphics_pipeline_state *state)
191 {
192 memset(key, 0, sizeof(*key));
193
194 key->sample_locations_cb = 0;
195 key->sample_locations_offset = nvk_root_descriptor_offset(draw.sample_locations);
196
197 if (state == NULL)
198 return;
199
200 if (state->pipeline_flags &
201 VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT)
202 key->zs_self_dep = true;
203
204 const struct vk_multisample_state *ms = state->ms;
205 if (ms == NULL || ms->rasterization_samples <= 1)
206 return;
207
208 if (ms->sample_shading_enable &&
209 (ms->rasterization_samples * ms->min_sample_shading) > 1.0)
210 key->force_sample_shading = true;
211 }
212
213 static void
nvk_hash_graphics_state(struct vk_physical_device * device,const struct vk_graphics_pipeline_state * state,VkShaderStageFlags stages,blake3_hash blake3_out)214 nvk_hash_graphics_state(struct vk_physical_device *device,
215 const struct vk_graphics_pipeline_state *state,
216 VkShaderStageFlags stages,
217 blake3_hash blake3_out)
218 {
219 struct mesa_blake3 blake3_ctx;
220 _mesa_blake3_init(&blake3_ctx);
221 if (stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
222 struct nak_fs_key key;
223 nvk_populate_fs_key(&key, state);
224 _mesa_blake3_update(&blake3_ctx, &key, sizeof(key));
225
226 const bool is_multiview = state->rp->view_mask != 0;
227 _mesa_blake3_update(&blake3_ctx, &is_multiview, sizeof(is_multiview));
228 }
229 _mesa_blake3_final(&blake3_ctx, blake3_out);
230 }
231
232 static bool
lower_load_global_constant_offset_instr(nir_builder * b,nir_intrinsic_instr * intrin,UNUSED void * _data)233 lower_load_global_constant_offset_instr(nir_builder *b,
234 nir_intrinsic_instr *intrin,
235 UNUSED void *_data)
236 {
237 if (intrin->intrinsic != nir_intrinsic_load_global_constant_offset &&
238 intrin->intrinsic != nir_intrinsic_load_global_constant_bounded)
239 return false;
240
241 b->cursor = nir_before_instr(&intrin->instr);
242
243 nir_def *base_addr = intrin->src[0].ssa;
244 nir_def *offset = intrin->src[1].ssa;
245
246 nir_def *zero = NULL;
247 if (intrin->intrinsic == nir_intrinsic_load_global_constant_bounded) {
248 nir_def *bound = intrin->src[2].ssa;
249
250 unsigned bit_size = intrin->def.bit_size;
251 assert(bit_size >= 8 && bit_size % 8 == 0);
252 unsigned byte_size = bit_size / 8;
253
254 zero = nir_imm_zero(b, intrin->num_components, bit_size);
255
256 unsigned load_size = byte_size * intrin->num_components;
257
258 nir_def *sat_offset =
259 nir_umin(b, offset, nir_imm_int(b, UINT32_MAX - (load_size - 1)));
260 nir_def *in_bounds =
261 nir_ilt(b, nir_iadd_imm(b, sat_offset, load_size - 1), bound);
262
263 nir_push_if(b, in_bounds);
264 }
265
266 nir_def *val =
267 nir_build_load_global_constant(b, intrin->def.num_components,
268 intrin->def.bit_size,
269 nir_iadd(b, base_addr, nir_u2u64(b, offset)),
270 .align_mul = nir_intrinsic_align_mul(intrin),
271 .align_offset = nir_intrinsic_align_offset(intrin));
272
273 if (intrin->intrinsic == nir_intrinsic_load_global_constant_bounded) {
274 nir_pop_if(b, NULL);
275 val = nir_if_phi(b, val, zero);
276 }
277
278 nir_def_rewrite_uses(&intrin->def, val);
279
280 return true;
281 }
282
283 struct lower_ycbcr_state {
284 uint32_t set_layout_count;
285 struct vk_descriptor_set_layout * const *set_layouts;
286 };
287
288 static const struct vk_ycbcr_conversion_state *
lookup_ycbcr_conversion(const void * _state,uint32_t set,uint32_t binding,uint32_t array_index)289 lookup_ycbcr_conversion(const void *_state, uint32_t set,
290 uint32_t binding, uint32_t array_index)
291 {
292 const struct lower_ycbcr_state *state = _state;
293 assert(set < state->set_layout_count);
294 assert(state->set_layouts[set] != NULL);
295 const struct nvk_descriptor_set_layout *set_layout =
296 vk_to_nvk_descriptor_set_layout(state->set_layouts[set]);
297 assert(binding < set_layout->binding_count);
298
299 const struct nvk_descriptor_set_binding_layout *bind_layout =
300 &set_layout->binding[binding];
301
302 if (bind_layout->immutable_samplers == NULL)
303 return NULL;
304
305 array_index = MIN2(array_index, bind_layout->array_size - 1);
306
307 const struct nvk_sampler *sampler =
308 bind_layout->immutable_samplers[array_index];
309
310 return sampler && sampler->vk.ycbcr_conversion ?
311 &sampler->vk.ycbcr_conversion->state : NULL;
312 }
313
314 static inline bool
nir_has_image_var(nir_shader * nir)315 nir_has_image_var(nir_shader *nir)
316 {
317 nir_foreach_image_variable(_, nir)
318 return true;
319
320 return false;
321 }
322
323 void
nvk_lower_nir(struct nvk_device * dev,nir_shader * nir,const struct vk_pipeline_robustness_state * rs,bool is_multiview,uint32_t set_layout_count,struct vk_descriptor_set_layout * const * set_layouts,struct nvk_cbuf_map * cbuf_map_out)324 nvk_lower_nir(struct nvk_device *dev, nir_shader *nir,
325 const struct vk_pipeline_robustness_state *rs,
326 bool is_multiview,
327 uint32_t set_layout_count,
328 struct vk_descriptor_set_layout * const *set_layouts,
329 struct nvk_cbuf_map *cbuf_map_out)
330 {
331 struct nvk_physical_device *pdev = nvk_device_physical(dev);
332
333 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
334 NIR_PASS(_, nir, nir_lower_input_attachments,
335 &(nir_input_attachment_options) {
336 .use_fragcoord_sysval = use_nak(pdev, nir->info.stage),
337 .use_layer_id_sysval = use_nak(pdev, nir->info.stage) ||
338 is_multiview,
339 .use_view_id_for_layer = is_multiview,
340 });
341 }
342
343 if (nir->info.stage == MESA_SHADER_TESS_EVAL) {
344 NIR_PASS(_, nir, nir_lower_patch_vertices,
345 nir->info.tess.tcs_vertices_out, NULL);
346 }
347
348 const struct lower_ycbcr_state ycbcr_state = {
349 .set_layout_count = set_layout_count,
350 .set_layouts = set_layouts,
351 };
352 NIR_PASS(_, nir, nir_vk_lower_ycbcr_tex,
353 lookup_ycbcr_conversion, &ycbcr_state);
354
355 nir_lower_compute_system_values_options csv_options = {
356 .has_base_workgroup_id = true,
357 };
358 NIR_PASS(_, nir, nir_lower_compute_system_values, &csv_options);
359
360 /* Lower push constants before lower_descriptors */
361 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_push_const,
362 nir_address_format_32bit_offset);
363
364 /* Lower non-uniform access before lower_descriptors */
365 enum nir_lower_non_uniform_access_type lower_non_uniform_access_types =
366 nir_lower_non_uniform_ubo_access;
367
368 if (pdev->info.cls_eng3d < TURING_A) {
369 lower_non_uniform_access_types |= nir_lower_non_uniform_texture_access |
370 nir_lower_non_uniform_image_access;
371 }
372
373 /* In practice, most shaders do not have non-uniform-qualified accesses
374 * thus a cheaper and likely to fail check is run first.
375 */
376 if (nir_has_non_uniform_access(nir, lower_non_uniform_access_types)) {
377 struct nir_lower_non_uniform_access_options opts = {
378 .types = lower_non_uniform_access_types,
379 .callback = NULL,
380 };
381 NIR_PASS(_, nir, nir_opt_non_uniform_access);
382 NIR_PASS(_, nir, nir_lower_non_uniform_access, &opts);
383 }
384
385 /* TODO: Kepler image lowering requires image params to be loaded from the
386 * descriptor set which we don't currently support.
387 */
388 assert(dev->pdev->info.cls_eng3d >= MAXWELL_A || !nir_has_image_var(nir));
389
390 struct nvk_cbuf_map *cbuf_map = NULL;
391 if (use_nak(pdev, nir->info.stage) &&
392 !(pdev->debug_flags & NVK_DEBUG_NO_CBUF)) {
393 cbuf_map = cbuf_map_out;
394
395 /* Large constant support assumes cbufs */
396 NIR_PASS(_, nir, nir_opt_large_constants, NULL, 32);
397 } else {
398 /* Codegen sometimes puts stuff in cbuf 1 and adds 1 to our cbuf indices
399 * so we can't really rely on it for lowering to cbufs and instead place
400 * the root descriptors in both cbuf 0 and cbuf 1.
401 */
402 *cbuf_map_out = (struct nvk_cbuf_map) {
403 .cbuf_count = 2,
404 .cbufs = {
405 { .type = NVK_CBUF_TYPE_ROOT_DESC },
406 { .type = NVK_CBUF_TYPE_ROOT_DESC },
407 }
408 };
409 }
410
411 NIR_PASS(_, nir, nvk_nir_lower_descriptors, rs,
412 set_layout_count, set_layouts, cbuf_map);
413 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_global,
414 nir_address_format_64bit_global);
415 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ssbo,
416 nvk_buffer_addr_format(rs->storage_buffers));
417 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_ubo,
418 nvk_buffer_addr_format(rs->uniform_buffers));
419 NIR_PASS(_, nir, nir_shader_intrinsics_pass,
420 lower_load_global_constant_offset_instr, nir_metadata_none, NULL);
421
422 if (!nir->info.shared_memory_explicit_layout) {
423 NIR_PASS(_, nir, nir_lower_vars_to_explicit_types,
424 nir_var_mem_shared, shared_var_info);
425 }
426 NIR_PASS(_, nir, nir_lower_explicit_io, nir_var_mem_shared,
427 nir_address_format_32bit_offset);
428
429 if (nir->info.zero_initialize_shared_memory && nir->info.shared_size > 0) {
430 /* QMD::SHARED_MEMORY_SIZE requires an alignment of 256B so it's safe to
431 * align everything up to 16B so we can write whole vec4s.
432 */
433 nir->info.shared_size = align(nir->info.shared_size, 16);
434 NIR_PASS(_, nir, nir_zero_initialize_shared_memory,
435 nir->info.shared_size, 16);
436
437 /* We need to call lower_compute_system_values again because
438 * nir_zero_initialize_shared_memory generates load_invocation_id which
439 * has to be lowered to load_invocation_index.
440 */
441 NIR_PASS(_, nir, nir_lower_compute_system_values, NULL);
442 }
443 }
444
445 #ifndef NDEBUG
446 static void
nvk_shader_dump(struct nvk_shader * shader)447 nvk_shader_dump(struct nvk_shader *shader)
448 {
449 unsigned pos;
450
451 if (shader->info.stage != MESA_SHADER_COMPUTE) {
452 _debug_printf("dumping HDR for %s shader\n",
453 _mesa_shader_stage_to_string(shader->info.stage));
454 for (pos = 0; pos < ARRAY_SIZE(shader->info.hdr); ++pos)
455 _debug_printf("HDR[%02"PRIxPTR"] = 0x%08x\n",
456 pos * sizeof(shader->info.hdr[0]), shader->info.hdr[pos]);
457 }
458 _debug_printf("shader binary code (0x%x bytes):", shader->code_size);
459 for (pos = 0; pos < shader->code_size / 4; ++pos) {
460 if ((pos % 8) == 0)
461 _debug_printf("\n");
462 _debug_printf("%08x ", ((const uint32_t *)shader->code_ptr)[pos]);
463 }
464 _debug_printf("\n");
465 }
466 #endif
467
468 static VkResult
nvk_compile_nir_with_nak(struct nvk_physical_device * pdev,nir_shader * nir,VkShaderCreateFlagsEXT shader_flags,const struct vk_pipeline_robustness_state * rs,const struct nak_fs_key * fs_key,struct nvk_shader * shader)469 nvk_compile_nir_with_nak(struct nvk_physical_device *pdev,
470 nir_shader *nir,
471 VkShaderCreateFlagsEXT shader_flags,
472 const struct vk_pipeline_robustness_state *rs,
473 const struct nak_fs_key *fs_key,
474 struct nvk_shader *shader)
475 {
476 const bool dump_asm =
477 shader_flags & VK_SHADER_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_MESA;
478
479 nir_variable_mode robust2_modes = 0;
480 if (rs->uniform_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT)
481 robust2_modes |= nir_var_mem_ubo;
482 if (rs->storage_buffers == VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT)
483 robust2_modes |= nir_var_mem_ssbo;
484
485 shader->nak = nak_compile_shader(nir, dump_asm, pdev->nak, robust2_modes, fs_key);
486 shader->info = shader->nak->info;
487 shader->code_ptr = shader->nak->code;
488 shader->code_size = shader->nak->code_size;
489
490 return VK_SUCCESS;
491 }
492
493 static VkResult
nvk_compile_nir(struct nvk_device * dev,nir_shader * nir,VkShaderCreateFlagsEXT shader_flags,const struct vk_pipeline_robustness_state * rs,const struct nak_fs_key * fs_key,struct nvk_shader * shader)494 nvk_compile_nir(struct nvk_device *dev, nir_shader *nir,
495 VkShaderCreateFlagsEXT shader_flags,
496 const struct vk_pipeline_robustness_state *rs,
497 const struct nak_fs_key *fs_key,
498 struct nvk_shader *shader)
499 {
500 struct nvk_physical_device *pdev = nvk_device_physical(dev);
501 VkResult result;
502
503 if (use_nak(pdev, nir->info.stage)) {
504 result = nvk_compile_nir_with_nak(pdev, nir, shader_flags, rs,
505 fs_key, shader);
506 } else {
507 result = nvk_cg_compile_nir(pdev, nir, fs_key, shader);
508 }
509 if (result != VK_SUCCESS)
510 return result;
511
512 if (nir->constant_data_size > 0) {
513 uint32_t data_align = nvk_min_cbuf_alignment(&pdev->info);
514 uint32_t data_size = align(nir->constant_data_size, data_align);
515
516 void *data = malloc(data_size);
517 if (data == NULL)
518 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
519
520 memcpy(data, nir->constant_data, nir->constant_data_size);
521
522 assert(nir->constant_data_size <= data_size);
523 memset(data + nir->constant_data_size, 0,
524 data_size - nir->constant_data_size);
525
526 shader->data_ptr = data;
527 shader->data_size = data_size;
528 }
529
530 return VK_SUCCESS;
531 }
532
533 VkResult
nvk_shader_upload(struct nvk_device * dev,struct nvk_shader * shader)534 nvk_shader_upload(struct nvk_device *dev, struct nvk_shader *shader)
535 {
536 uint32_t hdr_size = 0;
537 if (shader->info.stage != MESA_SHADER_COMPUTE) {
538 if (dev->pdev->info.cls_eng3d >= TURING_A)
539 hdr_size = TU102_SHADER_HEADER_SIZE;
540 else
541 hdr_size = GF100_SHADER_HEADER_SIZE;
542 }
543
544 /* Fermi needs 0x40 alignment
545 * Kepler+ needs the first instruction to be 0x80 aligned, so we waste 0x30 bytes
546 */
547 int alignment = dev->pdev->info.cls_eng3d >= KEPLER_A ? 0x80 : 0x40;
548
549 uint32_t total_size = 0;
550 if (dev->pdev->info.cls_eng3d >= KEPLER_A &&
551 dev->pdev->info.cls_eng3d < TURING_A &&
552 hdr_size > 0) {
553 /* The instructions are what has to be aligned so we need to start at a
554 * small offset (0x30 B) into the upload area.
555 */
556 total_size = alignment - hdr_size;
557 }
558
559 const uint32_t hdr_offset = total_size;
560 total_size += hdr_size;
561
562 const uint32_t code_offset = total_size;
563 assert(code_offset % alignment == 0);
564 total_size += shader->code_size;
565
566 uint32_t data_offset = 0;
567 if (shader->data_size > 0) {
568 total_size = align(total_size, nvk_min_cbuf_alignment(&dev->pdev->info));
569 data_offset = total_size;
570 total_size += shader->data_size;
571 }
572
573 char *data = malloc(total_size);
574 if (data == NULL)
575 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
576
577 assert(hdr_size <= sizeof(shader->info.hdr));
578 memcpy(data + hdr_offset, shader->info.hdr, hdr_size);
579 memcpy(data + code_offset, shader->code_ptr, shader->code_size);
580 if (shader->data_size > 0)
581 memcpy(data + data_offset, shader->data_ptr, shader->data_size);
582
583 #ifndef NDEBUG
584 if (debug_get_bool_option("NV50_PROG_DEBUG", false))
585 nvk_shader_dump(shader);
586 #endif
587
588 VkResult result = nvk_heap_upload(dev, &dev->shader_heap, data,
589 total_size, alignment,
590 &shader->upload_addr);
591 if (result == VK_SUCCESS) {
592 shader->upload_size = total_size;
593
594 shader->hdr_addr = shader->upload_addr + hdr_offset;
595 if (dev->pdev->info.cls_eng3d < VOLTA_A) {
596 const uint64_t heap_base_addr =
597 nvk_heap_contiguous_base_address(&dev->shader_heap);
598 assert(shader->upload_addr - heap_base_addr < UINT32_MAX);
599 shader->hdr_addr -= heap_base_addr;
600 }
601 shader->data_addr = shader->upload_addr + data_offset;
602 }
603 free(data);
604
605 return result;
606 }
607
608 static const struct vk_shader_ops nvk_shader_ops;
609
610 static void
nvk_shader_destroy(struct vk_device * vk_dev,struct vk_shader * vk_shader,const VkAllocationCallbacks * pAllocator)611 nvk_shader_destroy(struct vk_device *vk_dev,
612 struct vk_shader *vk_shader,
613 const VkAllocationCallbacks* pAllocator)
614 {
615 struct nvk_device *dev = container_of(vk_dev, struct nvk_device, vk);
616 struct nvk_shader *shader = container_of(vk_shader, struct nvk_shader, vk);
617
618 if (shader->upload_size > 0) {
619 nvk_heap_free(dev, &dev->shader_heap,
620 shader->upload_addr,
621 shader->upload_size);
622 }
623
624 if (shader->nak) {
625 nak_shader_bin_destroy(shader->nak);
626 } else {
627 /* This came from codegen or deserialize, just free it */
628 free((void *)shader->code_ptr);
629 }
630
631 free((void *)shader->data_ptr);
632
633 vk_shader_free(&dev->vk, pAllocator, &shader->vk);
634 }
635
636 static VkResult
nvk_compile_shader(struct nvk_device * dev,struct vk_shader_compile_info * info,const struct vk_graphics_pipeline_state * state,const VkAllocationCallbacks * pAllocator,struct vk_shader ** shader_out)637 nvk_compile_shader(struct nvk_device *dev,
638 struct vk_shader_compile_info *info,
639 const struct vk_graphics_pipeline_state *state,
640 const VkAllocationCallbacks* pAllocator,
641 struct vk_shader **shader_out)
642 {
643 struct nvk_shader *shader;
644 VkResult result;
645
646 /* We consume the NIR, regardless of success or failure */
647 nir_shader *nir = info->nir;
648
649 shader = vk_shader_zalloc(&dev->vk, &nvk_shader_ops, info->stage,
650 pAllocator, sizeof(*shader));
651 if (shader == NULL) {
652 ralloc_free(nir);
653 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
654 }
655
656 /* TODO: Multiview with ESO */
657 const bool is_multiview = state && state->rp->view_mask != 0;
658
659 nvk_lower_nir(dev, nir, info->robustness, is_multiview,
660 info->set_layout_count, info->set_layouts,
661 &shader->cbuf_map);
662
663 struct nak_fs_key fs_key_tmp, *fs_key = NULL;
664 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
665 nvk_populate_fs_key(&fs_key_tmp, state);
666 fs_key = &fs_key_tmp;
667 }
668
669 result = nvk_compile_nir(dev, nir, info->flags, info->robustness,
670 fs_key, shader);
671 ralloc_free(nir);
672 if (result != VK_SUCCESS) {
673 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
674 return result;
675 }
676
677 result = nvk_shader_upload(dev, shader);
678 if (result != VK_SUCCESS) {
679 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
680 return result;
681 }
682
683 if (info->stage == MESA_SHADER_FRAGMENT) {
684 if (shader->info.fs.reads_sample_mask ||
685 shader->info.fs.uses_sample_shading) {
686 shader->min_sample_shading = 1;
687 } else if (state != NULL && state->ms != NULL &&
688 state->ms->sample_shading_enable) {
689 shader->min_sample_shading =
690 CLAMP(state->ms->min_sample_shading, 0, 1);
691 } else {
692 shader->min_sample_shading = 0;
693 }
694 }
695
696 *shader_out = &shader->vk;
697
698 return VK_SUCCESS;
699 }
700
701 static VkResult
nvk_compile_shaders(struct vk_device * vk_dev,uint32_t shader_count,struct vk_shader_compile_info * infos,const struct vk_graphics_pipeline_state * state,const VkAllocationCallbacks * pAllocator,struct vk_shader ** shaders_out)702 nvk_compile_shaders(struct vk_device *vk_dev,
703 uint32_t shader_count,
704 struct vk_shader_compile_info *infos,
705 const struct vk_graphics_pipeline_state *state,
706 const VkAllocationCallbacks* pAllocator,
707 struct vk_shader **shaders_out)
708 {
709 struct nvk_device *dev = container_of(vk_dev, struct nvk_device, vk);
710
711 for (uint32_t i = 0; i < shader_count; i++) {
712 VkResult result = nvk_compile_shader(dev, &infos[i], state,
713 pAllocator, &shaders_out[i]);
714 if (result != VK_SUCCESS) {
715 /* Clean up all the shaders before this point */
716 for (uint32_t j = 0; j < i; j++)
717 nvk_shader_destroy(&dev->vk, shaders_out[j], pAllocator);
718
719 /* Clean up all the NIR after this point */
720 for (uint32_t j = i + 1; j < shader_count; j++)
721 ralloc_free(infos[j].nir);
722
723 /* Memset the output array */
724 memset(shaders_out, 0, shader_count * sizeof(*shaders_out));
725
726 return result;
727 }
728 }
729
730 return VK_SUCCESS;
731 }
732
733 static VkResult
nvk_deserialize_shader(struct vk_device * vk_dev,struct blob_reader * blob,uint32_t binary_version,const VkAllocationCallbacks * pAllocator,struct vk_shader ** shader_out)734 nvk_deserialize_shader(struct vk_device *vk_dev,
735 struct blob_reader *blob,
736 uint32_t binary_version,
737 const VkAllocationCallbacks* pAllocator,
738 struct vk_shader **shader_out)
739 {
740 struct nvk_device *dev = container_of(vk_dev, struct nvk_device, vk);
741 struct nvk_shader *shader;
742 VkResult result;
743
744 struct nak_shader_info info;
745 blob_copy_bytes(blob, &info, sizeof(info));
746
747 struct nvk_cbuf_map cbuf_map;
748 blob_copy_bytes(blob, &cbuf_map, sizeof(cbuf_map));
749
750 float min_sample_shading;
751 blob_copy_bytes(blob, &min_sample_shading, sizeof(min_sample_shading));
752
753 const uint32_t code_size = blob_read_uint32(blob);
754 const uint32_t data_size = blob_read_uint32(blob);
755 if (blob->overrun)
756 return vk_error(dev, VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT);
757
758 shader = vk_shader_zalloc(&dev->vk, &nvk_shader_ops, info.stage,
759 pAllocator, sizeof(*shader));
760 if (shader == NULL)
761 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
762
763 shader->info = info;
764 shader->cbuf_map = cbuf_map;
765 shader->min_sample_shading = min_sample_shading;
766 shader->code_size = code_size;
767 shader->data_size = data_size;
768
769 shader->code_ptr = malloc(code_size);
770 if (shader->code_ptr == NULL) {
771 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
772 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
773 }
774
775 shader->data_ptr = malloc(data_size);
776 if (shader->data_ptr == NULL) {
777 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
778 return vk_error(dev, VK_ERROR_OUT_OF_HOST_MEMORY);
779 }
780
781 blob_copy_bytes(blob, (void *)shader->code_ptr, shader->code_size);
782 blob_copy_bytes(blob, (void *)shader->data_ptr, shader->data_size);
783 if (blob->overrun) {
784 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
785 return vk_error(dev, VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT);
786 }
787
788 result = nvk_shader_upload(dev, shader);
789 if (result != VK_SUCCESS) {
790 nvk_shader_destroy(&dev->vk, &shader->vk, pAllocator);
791 return result;
792 }
793
794 *shader_out = &shader->vk;
795
796 return VK_SUCCESS;
797 }
798
799 static bool
nvk_shader_serialize(struct vk_device * vk_dev,const struct vk_shader * vk_shader,struct blob * blob)800 nvk_shader_serialize(struct vk_device *vk_dev,
801 const struct vk_shader *vk_shader,
802 struct blob *blob)
803 {
804 struct nvk_shader *shader = container_of(vk_shader, struct nvk_shader, vk);
805
806 /* We can't currently cache assmbly */
807 if (shader->nak != NULL && shader->nak->asm_str != NULL)
808 return false;
809
810 blob_write_bytes(blob, &shader->info, sizeof(shader->info));
811 blob_write_bytes(blob, &shader->cbuf_map, sizeof(shader->cbuf_map));
812 blob_write_bytes(blob, &shader->min_sample_shading,
813 sizeof(shader->min_sample_shading));
814
815 blob_write_uint32(blob, shader->code_size);
816 blob_write_uint32(blob, shader->data_size);
817 blob_write_bytes(blob, shader->code_ptr, shader->code_size);
818 blob_write_bytes(blob, shader->data_ptr, shader->data_size);
819
820 return !blob->out_of_memory;
821 }
822
823 #define WRITE_STR(field, ...) ({ \
824 memset(field, 0, sizeof(field)); \
825 UNUSED int i = snprintf(field, sizeof(field), __VA_ARGS__); \
826 assert(i > 0 && i < sizeof(field)); \
827 })
828
829 static VkResult
nvk_shader_get_executable_properties(UNUSED struct vk_device * device,const struct vk_shader * vk_shader,uint32_t * executable_count,VkPipelineExecutablePropertiesKHR * properties)830 nvk_shader_get_executable_properties(
831 UNUSED struct vk_device *device,
832 const struct vk_shader *vk_shader,
833 uint32_t *executable_count,
834 VkPipelineExecutablePropertiesKHR *properties)
835 {
836 struct nvk_shader *shader = container_of(vk_shader, struct nvk_shader, vk);
837 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutablePropertiesKHR, out,
838 properties, executable_count);
839
840 vk_outarray_append_typed(VkPipelineExecutablePropertiesKHR, &out, props) {
841 props->stages = mesa_to_vk_shader_stage(shader->info.stage);
842 props->subgroupSize = 32;
843 WRITE_STR(props->name, "%s",
844 _mesa_shader_stage_to_string(shader->info.stage));
845 WRITE_STR(props->description, "%s shader",
846 _mesa_shader_stage_to_string(shader->info.stage));
847 }
848
849 return vk_outarray_status(&out);
850 }
851
852 static VkResult
nvk_shader_get_executable_statistics(UNUSED struct vk_device * device,const struct vk_shader * vk_shader,uint32_t executable_index,uint32_t * statistic_count,VkPipelineExecutableStatisticKHR * statistics)853 nvk_shader_get_executable_statistics(
854 UNUSED struct vk_device *device,
855 const struct vk_shader *vk_shader,
856 uint32_t executable_index,
857 uint32_t *statistic_count,
858 VkPipelineExecutableStatisticKHR *statistics)
859 {
860 struct nvk_shader *shader = container_of(vk_shader, struct nvk_shader, vk);
861 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableStatisticKHR, out,
862 statistics, statistic_count);
863
864 assert(executable_index == 0);
865
866 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
867 WRITE_STR(stat->name, "Code Size");
868 WRITE_STR(stat->description,
869 "Size of the compiled shader binary, in bytes");
870 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
871 stat->value.u64 = shader->code_size;
872 }
873
874 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
875 WRITE_STR(stat->name, "Number of GPRs");
876 WRITE_STR(stat->description, "Number of GPRs used by this pipeline");
877 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
878 stat->value.u64 = shader->info.num_gprs;
879 }
880
881 vk_outarray_append_typed(VkPipelineExecutableStatisticKHR, &out, stat) {
882 WRITE_STR(stat->name, "SLM Size");
883 WRITE_STR(stat->description,
884 "Size of shader local (scratch) memory, in bytes");
885 stat->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR;
886 stat->value.u64 = shader->info.slm_size;
887 }
888
889 return vk_outarray_status(&out);
890 }
891
892 static bool
write_ir_text(VkPipelineExecutableInternalRepresentationKHR * ir,const char * data)893 write_ir_text(VkPipelineExecutableInternalRepresentationKHR* ir,
894 const char *data)
895 {
896 ir->isText = VK_TRUE;
897
898 size_t data_len = strlen(data) + 1;
899
900 if (ir->pData == NULL) {
901 ir->dataSize = data_len;
902 return true;
903 }
904
905 strncpy(ir->pData, data, ir->dataSize);
906 if (ir->dataSize < data_len)
907 return false;
908
909 ir->dataSize = data_len;
910 return true;
911 }
912
913 static VkResult
nvk_shader_get_executable_internal_representations(UNUSED struct vk_device * device,const struct vk_shader * vk_shader,uint32_t executable_index,uint32_t * internal_representation_count,VkPipelineExecutableInternalRepresentationKHR * internal_representations)914 nvk_shader_get_executable_internal_representations(
915 UNUSED struct vk_device *device,
916 const struct vk_shader *vk_shader,
917 uint32_t executable_index,
918 uint32_t *internal_representation_count,
919 VkPipelineExecutableInternalRepresentationKHR *internal_representations)
920 {
921 struct nvk_shader *shader = container_of(vk_shader, struct nvk_shader, vk);
922 VK_OUTARRAY_MAKE_TYPED(VkPipelineExecutableInternalRepresentationKHR, out,
923 internal_representations,
924 internal_representation_count);
925 bool incomplete_text = false;
926
927 assert(executable_index == 0);
928
929 if (shader->nak != NULL && shader->nak->asm_str != NULL) {
930 vk_outarray_append_typed(VkPipelineExecutableInternalRepresentationKHR, &out, ir) {
931 WRITE_STR(ir->name, "NAK assembly");
932 WRITE_STR(ir->description, "NAK assembly");
933 if (!write_ir_text(ir, shader->nak->asm_str))
934 incomplete_text = true;
935 }
936 }
937
938 return incomplete_text ? VK_INCOMPLETE : vk_outarray_status(&out);
939 }
940
941 static const struct vk_shader_ops nvk_shader_ops = {
942 .destroy = nvk_shader_destroy,
943 .serialize = nvk_shader_serialize,
944 .get_executable_properties = nvk_shader_get_executable_properties,
945 .get_executable_statistics = nvk_shader_get_executable_statistics,
946 .get_executable_internal_representations =
947 nvk_shader_get_executable_internal_representations,
948 };
949
950 const struct vk_device_shader_ops nvk_device_shader_ops = {
951 .get_nir_options = nvk_get_nir_options,
952 .get_spirv_options = nvk_get_spirv_options,
953 .preprocess_nir = nvk_preprocess_nir,
954 .hash_graphics_state = nvk_hash_graphics_state,
955 .compile = nvk_compile_shaders,
956 .deserialize = nvk_deserialize_shader,
957 .cmd_set_dynamic_graphics_state = vk_cmd_set_dynamic_graphics_state,
958 .cmd_bind_shaders = nvk_cmd_bind_shaders,
959 };
960