• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "bi_builder.h"
25 #include "va_compiler.h"
26 #include "valhall_enums.h"
27 
28 /*
29  * Insert flow control into a scheduled and register allocated shader.  This
30  * pass runs after scheduling and register allocation. This pass only
31  * inserts NOPs with the appropriate flow control modifiers. It should be
32  * followed by a cleanup pass to merge flow control modifiers on adjacent
33  * instructions, eliminating the NOPs. This decouples optimization from
34  * correctness, simplifying both passes.
35  *
36  * This pass is responsible for calculating dependencies, according to the
37  * rules:
38  *
39  * 1. An instruction that depends on the results of a previous asyncronous
40  *    must first wait for that instruction's slot, unless all
41  *    reaching code paths already depended on it.
42  * 2. More generally, any dependencies must be encoded. This includes
43  *    Write-After-Write and Write-After-Read hazards with LOAD/STORE to memory.
44  * 3. The shader must wait on slot #6 before running BLEND, ATEST
45  * 4. The shader must wait on slot #7 before running BLEND, ST_TILE
46  * 6. BARRIER must wait on every active slot.
47  *
48  * Unlike Bifrost, it is not necessary to worry about outbound staging
49  * registers, as the hardware stalls reading staging registers when issuing
50  * asynchronous instructions. So we don't track reads in our model of the
51  * hardware scoreboard. This makes things a bit simpler.
52  *
53  * We may reuse slots for multiple asynchronous instructions, though there may
54  * be a performance penalty.
55  */
56 
57 #define BI_NUM_REGISTERS 64
58 
59 /*
60  * Insert a NOP instruction with given flow control.
61  */
62 static void
bi_flow(bi_context * ctx,bi_cursor cursor,enum va_flow flow)63 bi_flow(bi_context *ctx, bi_cursor cursor, enum va_flow flow)
64 {
65    bi_builder b = bi_init_builder(ctx, cursor);
66 
67    bi_nop(&b)->flow = flow;
68 }
69 
70 static uint64_t
bi_read_mask(bi_instr * I)71 bi_read_mask(bi_instr *I)
72 {
73    uint64_t mask = 0;
74 
75    bi_foreach_src(I, s) {
76       if (I->src[s].type == BI_INDEX_REGISTER) {
77          unsigned reg = I->src[s].value;
78          unsigned count = bi_count_read_registers(I, s);
79 
80          mask |= (BITFIELD64_MASK(count) << reg);
81       }
82    }
83 
84    return mask;
85 }
86 
87 static uint64_t
bi_write_mask(bi_instr * I)88 bi_write_mask(bi_instr *I)
89 {
90    uint64_t mask = 0;
91 
92    bi_foreach_dest(I, d) {
93       assert(I->dest[d].type == BI_INDEX_REGISTER);
94 
95       unsigned reg = I->dest[d].value;
96       unsigned count = bi_count_write_registers(I, d);
97 
98       mask |= (BITFIELD64_MASK(count) << reg);
99    }
100 
101    return mask;
102 }
103 
104 static bool
bi_ld_vary_writes_hidden_register(const bi_instr * I)105 bi_ld_vary_writes_hidden_register(const bi_instr *I)
106 {
107    /* Only varying loads can write the hidden register */
108    if (bi_opcode_props[I->op].message != BIFROST_MESSAGE_VARYING)
109       return false;
110 
111    /* They only write in some update modes */
112    return (I->update == BI_UPDATE_STORE) || (I->update == BI_UPDATE_CLOBBER);
113 }
114 
115 static bool
bi_is_memory_access(const bi_instr * I)116 bi_is_memory_access(const bi_instr *I)
117 {
118    /* On the attribute unit but functionally a general memory load */
119    if (I->op == BI_OPCODE_LD_ATTR_TEX)
120       return true;
121 
122    /* UBOs are read-only so there are no ordering constriants */
123    if (I->seg == BI_SEG_UBO)
124       return false;
125 
126    switch (bi_opcode_props[I->op].message) {
127    case BIFROST_MESSAGE_LOAD:
128    case BIFROST_MESSAGE_STORE:
129    case BIFROST_MESSAGE_ATOMIC:
130       return true;
131    default:
132       return false;
133    }
134 }
135 
136 /* Update the scoreboard model to assign an instruction to a given slot */
137 
138 static void
bi_push_instr(struct bi_scoreboard_state * st,bi_instr * I)139 bi_push_instr(struct bi_scoreboard_state *st, bi_instr *I)
140 {
141    if (bi_opcode_props[I->op].sr_write)
142       st->write[I->slot] |= bi_write_mask(I);
143 
144    if (bi_is_memory_access(I))
145       st->memory |= BITFIELD_BIT(I->slot);
146 
147    if (bi_opcode_props[I->op].message == BIFROST_MESSAGE_VARYING)
148       st->varying |= BITFIELD_BIT(I->slot);
149 }
150 
151 static uint8_t MUST_CHECK
bi_pop_slot(struct bi_scoreboard_state * st,unsigned slot)152 bi_pop_slot(struct bi_scoreboard_state *st, unsigned slot)
153 {
154    st->write[slot] = 0;
155    st->varying &= ~BITFIELD_BIT(slot);
156    st->memory &= ~BITFIELD_BIT(slot);
157 
158    return BITFIELD_BIT(slot);
159 }
160 
161 /* Adds a dependency on each slot writing any specified register */
162 
163 static uint8_t MUST_CHECK
bi_depend_on_writers(struct bi_scoreboard_state * st,uint64_t regmask)164 bi_depend_on_writers(struct bi_scoreboard_state *st, uint64_t regmask)
165 {
166    uint8_t slots = 0;
167 
168    for (unsigned slot = 0; slot < ARRAY_SIZE(st->write); ++slot) {
169       if (st->write[slot] & regmask)
170          slots |= bi_pop_slot(st, slot);
171    }
172 
173    return slots;
174 }
175 
176 /* Sets the dependencies for a given clause, updating the model */
177 
178 static void
bi_set_dependencies(bi_block * block,bi_instr * I,struct bi_scoreboard_state * st)179 bi_set_dependencies(bi_block *block, bi_instr *I,
180                     struct bi_scoreboard_state *st)
181 {
182    /* Depend on writers to handle read-after-write and write-after-write
183     * dependencies. Write-after-read dependencies are handled in the hardware
184     * where necessary, so we don't worry about them.
185     */
186    I->flow |= bi_depend_on_writers(st, bi_read_mask(I) | bi_write_mask(I));
187 
188    /* Handle write-after-write and write-after-read dependencies for the varying
189     * hidden registers. Read-after-write dependencies handled in hardware.
190     */
191    if (bi_ld_vary_writes_hidden_register(I)) {
192       u_foreach_bit(slot, st->varying)
193          I->flow |= bi_pop_slot(st, slot);
194    }
195 
196    /* For now, serialize all memory access */
197    if (bi_is_memory_access(I)) {
198       u_foreach_bit(slot, st->memory)
199          I->flow |= bi_pop_slot(st, slot);
200    }
201 
202    /* We need to wait for all general slots before a barrier. The reason is
203     * unknown. In theory, this is redundant, since the BARRIER instruction will
204     * be followed immediately by .wait which waits for all slots. However, that
205     * doesn't seem to work properly in practice.
206     *
207     * The DDK is observed to use the same workaround, going so far as
208     * introducing a NOP before a BARRIER at the beginning of a basic block when
209     * there are outstanding stores.
210     *
211     *     NOP.wait12
212     *     BARRIER.slot7.wait
213     *
214     * Luckily, this situation is pretty rare. The wait introduced here can
215     * usually be merged into the preceding instruction.
216     *
217     * We also use the same workaround to serialize all async instructions when
218     * debugging this pass with the BIFROST_MESA_DEBUG=nosb option.
219     */
220    if (I->op == BI_OPCODE_BARRIER || (bifrost_debug & BIFROST_DBG_NOSB)) {
221       for (unsigned i = 0; i < VA_NUM_GENERAL_SLOTS; ++i) {
222          if (st->write[i] || ((st->varying | st->memory) & BITFIELD_BIT(i)))
223             I->flow |= bi_pop_slot(st, i);
224       }
225    }
226 }
227 
228 static bool
scoreboard_block_update(bi_context * ctx,bi_block * blk)229 scoreboard_block_update(bi_context *ctx, bi_block *blk)
230 {
231    bool progress = false;
232 
233    /* pending_in[s] = sum { p in pred[s] } ( pending_out[p] ) */
234    bi_foreach_predecessor(blk, pred) {
235       for (unsigned i = 0; i < BI_NUM_SLOTS; ++i) {
236          blk->scoreboard_in.read[i] |= (*pred)->scoreboard_out.read[i];
237          blk->scoreboard_in.write[i] |= (*pred)->scoreboard_out.write[i];
238          blk->scoreboard_in.varying |= (*pred)->scoreboard_out.varying;
239          blk->scoreboard_in.memory |= (*pred)->scoreboard_out.memory;
240       }
241    }
242 
243    struct bi_scoreboard_state state = blk->scoreboard_in;
244 
245    /* Assign locally */
246 
247    bi_foreach_instr_in_block(blk, I) {
248       bi_set_dependencies(blk, I, &state);
249       bi_push_instr(&state, I);
250    }
251 
252    /* Insert a wait for varyings at the end of the block.
253     *
254     * A varying load with .store has to wait for all other varying loads
255     * in the quad to complete. The bad case looks like:
256     *
257     *    if (dynamic) {
258     *        x = ld_var()
259     *    } else {
260     *       x = ld_var()
261     *    }
262     *
263     * Logically, a given thread executes only a single ld_var instruction. But
264     * if the quad diverges, the second ld_var has to wait for the first ld_var.
265     * For correct handling, we need to maintain a physical control flow graph
266     * and do the dataflow analysis on that instead of the logical control flow
267     * graph. However, this probably doesn't matter much in practice. This seems
268     * like a decent compromise for now.
269     *
270     * TODO: Consider optimizing this case.
271     */
272    if (state.varying) {
273       uint8_t flow = 0;
274 
275       u_foreach_bit(slot, state.varying)
276          flow |= bi_pop_slot(&state, slot);
277 
278       bi_flow(ctx, bi_after_block(blk), flow);
279    }
280 
281    /* To figure out progress, diff scoreboard_out */
282    progress = !!memcmp(&state, &blk->scoreboard_out, sizeof(state));
283 
284    blk->scoreboard_out = state;
285 
286    return progress;
287 }
288 
289 static void
va_assign_scoreboard(bi_context * ctx)290 va_assign_scoreboard(bi_context *ctx)
291 {
292    u_worklist worklist;
293    bi_worklist_init(ctx, &worklist);
294 
295    bi_foreach_block(ctx, block) {
296       bi_worklist_push_tail(&worklist, block);
297    }
298 
299    /* Perform forward data flow analysis to calculate dependencies */
300    while (!u_worklist_is_empty(&worklist)) {
301       /* Pop from the front for forward analysis */
302       bi_block *blk = bi_worklist_pop_head(&worklist);
303 
304       if (scoreboard_block_update(ctx, blk)) {
305          bi_foreach_successor(blk, succ)
306             bi_worklist_push_tail(&worklist, succ);
307       }
308    }
309 
310    u_worklist_fini(&worklist);
311 }
312 
313 /*
314  * Determine if execution should terminate after a given block. Execution cannot
315  * terminate within a basic block.
316  */
317 static bool
va_should_end(bi_block * block)318 va_should_end(bi_block *block)
319 {
320    /* Don't return if we're succeeded by instructions */
321    for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
322       bi_block *succ = block->successors[i];
323 
324       if (succ)
325          return false;
326    }
327 
328    return true;
329 }
330 
331 /*
332  * We should discard helper invocations as soon as helper invocations die after
333  * their last use. Either they die after an instruction using helper
334  * invocations, or they die along a control flow edge. The former is handled by
335  * discarding appropriately after instructions. The latter is handled by
336  * inserting a discard at the _start_ of some blocks:
337  *
338  * Lemma: If a non-critical edge discards helpers, it is the only edge that
339  * enters its destination.
340  *
341  * Proof: An edge discards helpers if helpers are live at the end of the source
342  * block and dead at the start of the destination block. By definition, helpers
343  * are live at the end of a block iff they are live at the start of some
344  * successor of a block. The source block therefore has a successor with helpers
345  * live at the start and a successor with helpers dead at the start. As the
346  * source block has at least two successors, the edge is NOT the only edge
347  * exiting its source. Hence it is the only edge entering the destination,
348  * otherwise the edge would be critical.
349  *
350  * By corrollary, we may handle discards on control flow edges by discarding at
351  * the start of blocks with a single predecessor.
352  *
353  * This routine tests if a block should discard helper invocations at its start.
354  */
355 static bool
va_discard_before_block(bi_block * block)356 va_discard_before_block(bi_block *block)
357 {
358    /* Do not discard if the block requires helpers at the start */
359    if (block->pass_flags)
360       return false;
361 
362    /* By the lemma, if we need to discard, there is a unique predecessor */
363    if (bi_num_predecessors(block) != 1)
364       return false;
365 
366    bi_block *pred = *util_dynarray_element(&block->predecessors, bi_block *, 0);
367 
368    /* Discard if helpers are live at the end of the predecessor, due to helpers
369     * live at the start of some (other) successor.
370     */
371    bi_foreach_successor(pred, succ) {
372       if (succ->pass_flags)
373          return true;
374    }
375 
376    return false;
377 }
378 
379 /*
380  * Test if a program is empty, in the sense of having zero instructions. Empty
381  * shaders get special handling.
382  */
383 static bool
bi_is_empty(bi_context * ctx)384 bi_is_empty(bi_context *ctx)
385 {
386    bi_foreach_instr_global(ctx, _)
387       return false;
388 
389    return true;
390 }
391 
392 /*
393  * Given a program with no flow control modifiers, insert NOPs signaling the
394  * required flow control. Not much optimization happens here.
395  */
396 void
va_insert_flow_control_nops(bi_context * ctx)397 va_insert_flow_control_nops(bi_context *ctx)
398 {
399    /* Special case: if a program is empty, leave it empty. In particular, do not
400     * insert NOP.end. There is special handling in the driver for skipping empty
401     * shaders for shader stage. The .end is not necessary and disrupts
402     * optimizations.
403     */
404    if (bi_is_empty(ctx))
405       return;
406 
407    /* First do dataflow analysis for the scoreboard. This populates I->flow with
408     * a bitmap of slots to wait on.
409     *
410     * Also do dataflow analysis for helper invocations in fragment shaders. This
411     * populates block->pass_flags with helper invocation information.
412     */
413    va_assign_scoreboard(ctx);
414    bi_analyze_helper_terminate(ctx);
415 
416    bi_foreach_block(ctx, block) {
417       /* Handle discards along control flow edges */
418       if (va_discard_before_block(block))
419          bi_flow(ctx, bi_before_block(block), VA_FLOW_DISCARD);
420 
421       bi_foreach_instr_in_block_safe(block, I) {
422          switch (I->op) {
423          /* Signal barriers immediately */
424          case BI_OPCODE_BARRIER:
425             bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT);
426             break;
427 
428          /* Insert waits for tilebuffer and depth/stencil instructions. These
429           * only happen in regular fragment shaders, as the required waits are
430           * assumed to already have happened in blend shaders.
431           *
432           * For discarded thread handling, ATEST must be serialized against all
433           * other asynchronous instructions and should be serialized against all
434           * instructions. Wait for slot 0 immediately after the ATEST.
435           */
436          case BI_OPCODE_BLEND:
437          case BI_OPCODE_LD_TILE:
438          case BI_OPCODE_ST_TILE:
439             if (!ctx->inputs->is_blend)
440                bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT);
441             break;
442          case BI_OPCODE_ATEST:
443             bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
444             bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT0);
445             break;
446          case BI_OPCODE_ZS_EMIT:
447             if (!ctx->inputs->is_blend)
448                bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
449             break;
450 
451          default:
452             break;
453          }
454 
455          if (I->flow && I->op != BI_OPCODE_NOP) {
456             /* Wait on the results of asynchronous instructions
457              *
458              * Bitmap of general slots lines up with the encoding of va_flow for
459              * waits on general slots. The dataflow analysis should be ignoring
460              * the special slots #6 and #7, which are handled separately.
461              */
462             assert((I->flow & ~BITFIELD_MASK(VA_NUM_GENERAL_SLOTS)) == 0);
463 
464             bi_flow(ctx, bi_before_instr(I), I->flow);
465             I->flow = 0;
466          }
467       }
468 
469       /* Terminate helpers after the last use */
470       if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend &&
471           block->pass_flags && bi_block_terminates_helpers(block)) {
472 
473          bi_foreach_instr_in_block_safe_rev(block, I) {
474             if (bi_instr_uses_helpers(I)) {
475                bi_flow(ctx, bi_after_instr(I), VA_FLOW_DISCARD);
476                break;
477             }
478          }
479       }
480 
481       /* End exeuction at the end of the block if needed, or reconverge if we
482        * continue but we don't need to end execution.
483        */
484       if (va_should_end(block) || block->needs_nop) {
485          /* Don't bother adding a NOP into an unreachable block */
486          if (block == bi_start_block(&ctx->blocks) ||
487              bi_num_predecessors(block))
488             bi_flow(ctx, bi_after_block(block), VA_FLOW_END);
489       } else if (bi_reconverge_branches(block)) {
490          /* TODO: Do we have ever need to reconverge from an empty block? */
491          if (!list_is_empty(&block->instructions))
492             bi_flow(ctx, bi_after_block(block), VA_FLOW_RECONVERGE);
493       }
494    }
495 
496    /* If helpers are not used anywhere, they are not used at the start, so we
497     * terminate at the start. Else, helpers are used somewhere in the shader and
498     * are terminated after last use.
499     */
500    bi_block *start = bi_start_block(&ctx->blocks);
501    bool frag = (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend);
502 
503    if (frag && !start->pass_flags)
504       bi_flow(ctx, bi_before_block(start), VA_FLOW_DISCARD);
505 }
506 
507 /*
508  * Assign slots to all asynchronous instructions. A few special instructions
509  * require specific slots. For the rest, we assign slots in a round-robin
510  * fashion to reduce false dependencies when encoding waits.
511  *
512  * This should be called before va_insert_flow_control_nops.
513  */
514 void
va_assign_slots(bi_context * ctx)515 va_assign_slots(bi_context *ctx)
516 {
517    unsigned counter = 0;
518 
519    bi_foreach_instr_global(ctx, I) {
520       if (I->op == BI_OPCODE_BARRIER) {
521          I->slot = 7;
522       } else if (I->op == BI_OPCODE_ZS_EMIT || I->op == BI_OPCODE_ATEST) {
523          I->slot = 0;
524       } else if (bi_opcode_props[I->op].message) {
525          I->slot = counter++;
526 
527          if (counter == 3)
528             counter = 0;
529       }
530    }
531 }
532