• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * \file psa/crypto_se_driver.h
3  * \brief PSA external cryptoprocessor driver module
4  *
5  * This header declares types and function signatures for cryptography
6  * drivers that access key material via opaque references.
7  * This is meant for cryptoprocessors that have a separate key storage from the
8  * space in which the PSA Crypto implementation runs, typically secure
9  * elements (SEs).
10  *
11  * This file is part of the PSA Crypto Driver HAL (hardware abstraction layer),
12  * containing functions for driver developers to implement to enable hardware
13  * to be called in a standardized way by a PSA Cryptography API
14  * implementation. The functions comprising the driver HAL, which driver
15  * authors implement, are not intended to be called by application developers.
16  */
17 
18 /*
19  *  Copyright The Mbed TLS Contributors
20  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
21  */
22 #ifndef PSA_CRYPTO_SE_DRIVER_H
23 #define PSA_CRYPTO_SE_DRIVER_H
24 
25 #include "crypto_driver_common.h"
26 
27 #ifdef __cplusplus
28 extern "C" {
29 #endif
30 
31 /** \defgroup se_init Secure element driver initialization
32  */
33 /**@{*/
34 
35 /** \brief Driver context structure
36  *
37  * Driver functions receive a pointer to this structure.
38  * Each registered driver has one instance of this structure.
39  *
40  * Implementations must include the fields specified here and
41  * may include other fields.
42  */
43 typedef struct {
44     /** A read-only pointer to the driver's persistent data.
45      *
46      * Drivers typically use this persistent data to keep track of
47      * which slot numbers are available. This is only a guideline:
48      * drivers may use the persistent data for any purpose, keeping
49      * in mind the restrictions on when the persistent data is saved
50      * to storage: the persistent data is only saved after calling
51      * certain functions that receive a writable pointer to the
52      * persistent data.
53      *
54      * The core allocates a memory buffer for the persistent data.
55      * The pointer is guaranteed to be suitably aligned for any data type,
56      * like a pointer returned by `malloc` (but the core can use any
57      * method to allocate the buffer, not necessarily `malloc`).
58      *
59      * The size of this buffer is in the \c persistent_data_size field of
60      * this structure.
61      *
62      * Before the driver is initialized for the first time, the content of
63      * the persistent data is all-bits-zero. After a driver upgrade, if the
64      * size of the persistent data has increased, the original data is padded
65      * on the right with zeros; if the size has decreased, the original data
66      * is truncated to the new size.
67      *
68      * This pointer is to read-only data. Only a few driver functions are
69      * allowed to modify the persistent data. These functions receive a
70      * writable pointer. These functions are:
71      * - psa_drv_se_t::p_init
72      * - psa_drv_se_key_management_t::p_allocate
73      * - psa_drv_se_key_management_t::p_destroy
74      *
75      * The PSA Cryptography core saves the persistent data from one
76      * session to the next. It does this before returning from API functions
77      * that call a driver method that is allowed to modify the persistent
78      * data, specifically:
79      * - psa_crypto_init() causes a call to psa_drv_se_t::p_init, and may call
80      *   psa_drv_se_key_management_t::p_destroy to complete an action
81      *   that was interrupted by a power failure.
82      * - Key creation functions cause a call to
83      *   psa_drv_se_key_management_t::p_allocate, and may cause a call to
84      *   psa_drv_se_key_management_t::p_destroy in case an error occurs.
85      * - psa_destroy_key() causes a call to
86      *   psa_drv_se_key_management_t::p_destroy.
87      */
88     const void *const persistent_data;
89 
90     /** The size of \c persistent_data in bytes.
91      *
92      * This is always equal to the value of the `persistent_data_size` field
93      * of the ::psa_drv_se_t structure when the driver is registered.
94      */
95     const size_t persistent_data_size;
96 
97     /** Driver transient data.
98      *
99      * The core initializes this value to 0 and does not read or modify it
100      * afterwards. The driver may store whatever it wants in this field.
101      */
102     uintptr_t transient_data;
103 } psa_drv_se_context_t;
104 
105 /** \brief A driver initialization function.
106  *
107  * \param[in,out] drv_context       The driver context structure.
108  * \param[in,out] persistent_data   A pointer to the persistent data
109  *                                  that allows writing.
110  * \param location                  The location value for which this driver
111  *                                  is registered. The driver will be invoked
112  *                                  for all keys whose lifetime is in this
113  *                                  location.
114  *
115  * \retval #PSA_SUCCESS
116  *         The driver is operational.
117  *         The core will update the persistent data in storage.
118  * \return
119  *         Any other return value prevents the driver from being used in
120  *         this session.
121  *         The core will NOT update the persistent data in storage.
122  */
123 typedef psa_status_t (*psa_drv_se_init_t)(psa_drv_se_context_t *drv_context,
124                                           void *persistent_data,
125                                           psa_key_location_t location);
126 
127 #if defined(__DOXYGEN_ONLY__) || !defined(MBEDTLS_PSA_CRYPTO_SE_C)
128 /* Mbed TLS with secure element support enabled defines this type in
129  * crypto_types.h because it is also visible to applications through an
130  * implementation-specific extension.
131  * For the PSA Cryptography specification, this type is only visible
132  * via crypto_se_driver.h. */
133 /** An internal designation of a key slot between the core part of the
134  * PSA Crypto implementation and the driver. The meaning of this value
135  * is driver-dependent. */
136 typedef uint64_t psa_key_slot_number_t;
137 #endif /* __DOXYGEN_ONLY__ || !MBEDTLS_PSA_CRYPTO_SE_C */
138 
139 /**@}*/
140 
141 /** \defgroup se_mac Secure Element Message Authentication Codes
142  * Generation and authentication of Message Authentication Codes (MACs) using
143  * a secure element can be done either as a single function call (via the
144  * `psa_drv_se_mac_generate_t` or `psa_drv_se_mac_verify_t` functions), or in
145  * parts using the following sequence:
146  * - `psa_drv_se_mac_setup_t`
147  * - `psa_drv_se_mac_update_t`
148  * - `psa_drv_se_mac_update_t`
149  * - ...
150  * - `psa_drv_se_mac_finish_t` or `psa_drv_se_mac_finish_verify_t`
151  *
152  * If a previously started secure element MAC operation needs to be terminated,
153  * it should be done so by the `psa_drv_se_mac_abort_t`. Failure to do so may
154  * result in allocated resources not being freed or in other undefined
155  * behavior.
156  */
157 /**@{*/
158 /** \brief A function that starts a secure element  MAC operation for a PSA
159  * Crypto Driver implementation
160  *
161  * \param[in,out] drv_context   The driver context structure.
162  * \param[in,out] op_context    A structure that will contain the
163  *                              hardware-specific MAC context
164  * \param[in] key_slot          The slot of the key to be used for the
165  *                              operation
166  * \param[in] algorithm         The algorithm to be used to underly the MAC
167  *                              operation
168  *
169  * \retval  #PSA_SUCCESS
170  *          Success.
171  */
172 typedef psa_status_t (*psa_drv_se_mac_setup_t)(psa_drv_se_context_t *drv_context,
173                                                void *op_context,
174                                                psa_key_slot_number_t key_slot,
175                                                psa_algorithm_t algorithm);
176 
177 /** \brief A function that continues a previously started secure element MAC
178  * operation
179  *
180  * \param[in,out] op_context    A hardware-specific structure for the
181  *                              previously-established MAC operation to be
182  *                              updated
183  * \param[in] p_input           A buffer containing the message to be appended
184  *                              to the MAC operation
185  * \param[in] input_length      The size in bytes of the input message buffer
186  */
187 typedef psa_status_t (*psa_drv_se_mac_update_t)(void *op_context,
188                                                 const uint8_t *p_input,
189                                                 size_t input_length);
190 
191 /** \brief a function that completes a previously started secure element MAC
192  * operation by returning the resulting MAC.
193  *
194  * \param[in,out] op_context    A hardware-specific structure for the
195  *                              previously started MAC operation to be
196  *                              finished
197  * \param[out] p_mac            A buffer where the generated MAC will be
198  *                              placed
199  * \param[in] mac_size          The size in bytes of the buffer that has been
200  *                              allocated for the `output` buffer
201  * \param[out] p_mac_length     After completion, will contain the number of
202  *                              bytes placed in the `p_mac` buffer
203  *
204  * \retval  #PSA_SUCCESS
205  *          Success.
206  */
207 typedef psa_status_t (*psa_drv_se_mac_finish_t)(void *op_context,
208                                                 uint8_t *p_mac,
209                                                 size_t mac_size,
210                                                 size_t *p_mac_length);
211 
212 /** \brief A function that completes a previously started secure element MAC
213  * operation by comparing the resulting MAC against a provided value
214  *
215  * \param[in,out] op_context    A hardware-specific structure for the previously
216  *                              started MAC operation to be finished
217  * \param[in] p_mac             The MAC value against which the resulting MAC
218  *                              will be compared against
219  * \param[in] mac_length        The size in bytes of the value stored in `p_mac`
220  *
221  * \retval #PSA_SUCCESS
222  *         The operation completed successfully and the MACs matched each
223  *         other
224  * \retval #PSA_ERROR_INVALID_SIGNATURE
225  *         The operation completed successfully, but the calculated MAC did
226  *         not match the provided MAC
227  */
228 typedef psa_status_t (*psa_drv_se_mac_finish_verify_t)(void *op_context,
229                                                        const uint8_t *p_mac,
230                                                        size_t mac_length);
231 
232 /** \brief A function that aborts a previous started secure element MAC
233  * operation
234  *
235  * \param[in,out] op_context    A hardware-specific structure for the previously
236  *                              started MAC operation to be aborted
237  */
238 typedef psa_status_t (*psa_drv_se_mac_abort_t)(void *op_context);
239 
240 /** \brief A function that performs a secure element MAC operation in one
241  * command and returns the calculated MAC
242  *
243  * \param[in,out] drv_context   The driver context structure.
244  * \param[in] p_input           A buffer containing the message to be MACed
245  * \param[in] input_length      The size in bytes of `p_input`
246  * \param[in] key_slot          The slot of the key to be used
247  * \param[in] alg               The algorithm to be used to underlie the MAC
248  *                              operation
249  * \param[out] p_mac            A buffer where the generated MAC will be
250  *                              placed
251  * \param[in] mac_size          The size in bytes of the `p_mac` buffer
252  * \param[out] p_mac_length     After completion, will contain the number of
253  *                              bytes placed in the `output` buffer
254  *
255  * \retval #PSA_SUCCESS
256  *         Success.
257  */
258 typedef psa_status_t (*psa_drv_se_mac_generate_t)(psa_drv_se_context_t *drv_context,
259                                                   const uint8_t *p_input,
260                                                   size_t input_length,
261                                                   psa_key_slot_number_t key_slot,
262                                                   psa_algorithm_t alg,
263                                                   uint8_t *p_mac,
264                                                   size_t mac_size,
265                                                   size_t *p_mac_length);
266 
267 /** \brief A function that performs a secure element MAC operation in one
268  * command and compares the resulting MAC against a provided value
269  *
270  * \param[in,out] drv_context       The driver context structure.
271  * \param[in] p_input       A buffer containing the message to be MACed
272  * \param[in] input_length  The size in bytes of `input`
273  * \param[in] key_slot      The slot of the key to be used
274  * \param[in] alg           The algorithm to be used to underlie the MAC
275  *                          operation
276  * \param[in] p_mac         The MAC value against which the resulting MAC will
277  *                          be compared against
278  * \param[in] mac_length   The size in bytes of `mac`
279  *
280  * \retval #PSA_SUCCESS
281  *         The operation completed successfully and the MACs matched each
282  *         other
283  * \retval #PSA_ERROR_INVALID_SIGNATURE
284  *         The operation completed successfully, but the calculated MAC did
285  *         not match the provided MAC
286  */
287 typedef psa_status_t (*psa_drv_se_mac_verify_t)(psa_drv_se_context_t *drv_context,
288                                                 const uint8_t *p_input,
289                                                 size_t input_length,
290                                                 psa_key_slot_number_t key_slot,
291                                                 psa_algorithm_t alg,
292                                                 const uint8_t *p_mac,
293                                                 size_t mac_length);
294 
295 /** \brief A struct containing all of the function pointers needed to
296  * perform secure element MAC operations
297  *
298  * PSA Crypto API implementations should populate the table as appropriate
299  * upon startup.
300  *
301  * If one of the functions is not implemented (such as
302  * `psa_drv_se_mac_generate_t`), it should be set to NULL.
303  *
304  * Driver implementers should ensure that they implement all of the functions
305  * that make sense for their hardware, and that they provide a full solution
306  * (for example, if they support `p_setup`, they should also support
307  * `p_update` and at least one of `p_finish` or `p_finish_verify`).
308  *
309  */
310 typedef struct {
311     /**The size in bytes of the hardware-specific secure element MAC context
312      * structure
313      */
314     size_t                    context_size;
315     /** Function that performs a MAC setup operation
316      */
317     psa_drv_se_mac_setup_t          p_setup;
318     /** Function that performs a MAC update operation
319      */
320     psa_drv_se_mac_update_t         p_update;
321     /** Function that completes a MAC operation
322      */
323     psa_drv_se_mac_finish_t         p_finish;
324     /** Function that completes a MAC operation with a verify check
325      */
326     psa_drv_se_mac_finish_verify_t  p_finish_verify;
327     /** Function that aborts a previously started MAC operation
328      */
329     psa_drv_se_mac_abort_t          p_abort;
330     /** Function that performs a MAC operation in one call
331      */
332     psa_drv_se_mac_generate_t       p_mac;
333     /** Function that performs a MAC and verify operation in one call
334      */
335     psa_drv_se_mac_verify_t         p_mac_verify;
336 } psa_drv_se_mac_t;
337 /**@}*/
338 
339 /** \defgroup se_cipher Secure Element Symmetric Ciphers
340  *
341  * Encryption and Decryption using secure element keys in block modes other
342  * than ECB must be done in multiple parts, using the following flow:
343  * - `psa_drv_se_cipher_setup_t`
344  * - `psa_drv_se_cipher_set_iv_t` (optional depending upon block mode)
345  * - `psa_drv_se_cipher_update_t`
346  * - `psa_drv_se_cipher_update_t`
347  * - ...
348  * - `psa_drv_se_cipher_finish_t`
349  *
350  * If a previously started secure element Cipher operation needs to be
351  * terminated, it should be done so by the `psa_drv_se_cipher_abort_t`. Failure
352  * to do so may result in allocated resources not being freed or in other
353  * undefined behavior.
354  *
355  * In situations where a PSA Cryptographic API implementation is using a block
356  * mode not-supported by the underlying hardware or driver, it can construct
357  * the block mode itself, while calling the `psa_drv_se_cipher_ecb_t` function
358  * for the cipher operations.
359  */
360 /**@{*/
361 
362 /** \brief A function that provides the cipher setup function for a
363  * secure element driver
364  *
365  * \param[in,out] drv_context   The driver context structure.
366  * \param[in,out] op_context    A structure that will contain the
367  *                              hardware-specific cipher context.
368  * \param[in] key_slot          The slot of the key to be used for the
369  *                              operation
370  * \param[in] algorithm         The algorithm to be used in the cipher
371  *                              operation
372  * \param[in] direction         Indicates whether the operation is an encrypt
373  *                              or decrypt
374  *
375  * \retval #PSA_SUCCESS \emptydescription
376  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
377  */
378 typedef psa_status_t (*psa_drv_se_cipher_setup_t)(psa_drv_se_context_t *drv_context,
379                                                   void *op_context,
380                                                   psa_key_slot_number_t key_slot,
381                                                   psa_algorithm_t algorithm,
382                                                   psa_encrypt_or_decrypt_t direction);
383 
384 /** \brief A function that sets the initialization vector (if
385  * necessary) for a secure element cipher operation
386  *
387  * Rationale: The `psa_se_cipher_*` operation in the PSA Cryptographic API has
388  * two IV functions: one to set the IV, and one to generate it internally. The
389  * generate function is not necessary for the drivers to implement as the PSA
390  * Crypto implementation can do the generation using its RNG features.
391  *
392  * \param[in,out] op_context    A structure that contains the previously set up
393  *                              hardware-specific cipher context
394  * \param[in] p_iv              A buffer containing the initialization vector
395  * \param[in] iv_length         The size (in bytes) of the `p_iv` buffer
396  *
397  * \retval #PSA_SUCCESS \emptydescription
398  */
399 typedef psa_status_t (*psa_drv_se_cipher_set_iv_t)(void *op_context,
400                                                    const uint8_t *p_iv,
401                                                    size_t iv_length);
402 
403 /** \brief A function that continues a previously started secure element cipher
404  * operation
405  *
406  * \param[in,out] op_context        A hardware-specific structure for the
407  *                                  previously started cipher operation
408  * \param[in] p_input               A buffer containing the data to be
409  *                                  encrypted/decrypted
410  * \param[in] input_size            The size in bytes of the buffer pointed to
411  *                                  by `p_input`
412  * \param[out] p_output             The caller-allocated buffer where the
413  *                                  output will be placed
414  * \param[in] output_size           The allocated size in bytes of the
415  *                                  `p_output` buffer
416  * \param[out] p_output_length      After completion, will contain the number
417  *                                  of bytes placed in the `p_output` buffer
418  *
419  * \retval #PSA_SUCCESS \emptydescription
420  */
421 typedef psa_status_t (*psa_drv_se_cipher_update_t)(void *op_context,
422                                                    const uint8_t *p_input,
423                                                    size_t input_size,
424                                                    uint8_t *p_output,
425                                                    size_t output_size,
426                                                    size_t *p_output_length);
427 
428 /** \brief A function that completes a previously started secure element cipher
429  * operation
430  *
431  * \param[in,out] op_context    A hardware-specific structure for the
432  *                              previously started cipher operation
433  * \param[out] p_output         The caller-allocated buffer where the output
434  *                              will be placed
435  * \param[in] output_size       The allocated size in bytes of the `p_output`
436  *                              buffer
437  * \param[out] p_output_length  After completion, will contain the number of
438  *                              bytes placed in the `p_output` buffer
439  *
440  * \retval #PSA_SUCCESS \emptydescription
441  */
442 typedef psa_status_t (*psa_drv_se_cipher_finish_t)(void *op_context,
443                                                    uint8_t *p_output,
444                                                    size_t output_size,
445                                                    size_t *p_output_length);
446 
447 /** \brief A function that aborts a previously started secure element cipher
448  * operation
449  *
450  * \param[in,out] op_context    A hardware-specific structure for the
451  *                              previously started cipher operation
452  */
453 typedef psa_status_t (*psa_drv_se_cipher_abort_t)(void *op_context);
454 
455 /** \brief A function that performs the ECB block mode for secure element
456  * cipher operations
457  *
458  * Note: this function should only be used with implementations that do not
459  * provide a needed higher-level operation.
460  *
461  * \param[in,out] drv_context   The driver context structure.
462  * \param[in] key_slot          The slot of the key to be used for the operation
463  * \param[in] algorithm         The algorithm to be used in the cipher operation
464  * \param[in] direction         Indicates whether the operation is an encrypt or
465  *                              decrypt
466  * \param[in] p_input           A buffer containing the data to be
467  *                              encrypted/decrypted
468  * \param[in] input_size        The size in bytes of the buffer pointed to by
469  *                              `p_input`
470  * \param[out] p_output         The caller-allocated buffer where the output
471  *                              will be placed
472  * \param[in] output_size       The allocated size in bytes of the `p_output`
473  *                              buffer
474  *
475  * \retval #PSA_SUCCESS \emptydescription
476  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
477  */
478 typedef psa_status_t (*psa_drv_se_cipher_ecb_t)(psa_drv_se_context_t *drv_context,
479                                                 psa_key_slot_number_t key_slot,
480                                                 psa_algorithm_t algorithm,
481                                                 psa_encrypt_or_decrypt_t direction,
482                                                 const uint8_t *p_input,
483                                                 size_t input_size,
484                                                 uint8_t *p_output,
485                                                 size_t output_size);
486 
487 /**
488  * \brief A struct containing all of the function pointers needed to implement
489  * cipher operations using secure elements.
490  *
491  * PSA Crypto API implementations should populate instances of the table as
492  * appropriate upon startup or at build time.
493  *
494  * If one of the functions is not implemented (such as
495  * `psa_drv_se_cipher_ecb_t`), it should be set to NULL.
496  */
497 typedef struct {
498     /** The size in bytes of the hardware-specific secure element cipher
499      * context structure
500      */
501     size_t               context_size;
502     /** Function that performs a cipher setup operation */
503     psa_drv_se_cipher_setup_t  p_setup;
504     /** Function that sets a cipher IV (if necessary) */
505     psa_drv_se_cipher_set_iv_t p_set_iv;
506     /** Function that performs a cipher update operation */
507     psa_drv_se_cipher_update_t p_update;
508     /** Function that completes a cipher operation */
509     psa_drv_se_cipher_finish_t p_finish;
510     /** Function that aborts a cipher operation */
511     psa_drv_se_cipher_abort_t  p_abort;
512     /** Function that performs ECB mode for a cipher operation
513      * (Danger: ECB mode should not be used directly by clients of the PSA
514      * Crypto Client API)
515      */
516     psa_drv_se_cipher_ecb_t    p_ecb;
517 } psa_drv_se_cipher_t;
518 
519 /**@}*/
520 
521 /** \defgroup se_asymmetric Secure Element Asymmetric Cryptography
522  *
523  * Since the amount of data that can (or should) be encrypted or signed using
524  * asymmetric keys is limited by the key size, asymmetric key operations using
525  * keys in a secure element must be done in single function calls.
526  */
527 /**@{*/
528 
529 /**
530  * \brief A function that signs a hash or short message with a private key in
531  * a secure element
532  *
533  * \param[in,out] drv_context       The driver context structure.
534  * \param[in] key_slot              Key slot of an asymmetric key pair
535  * \param[in] alg                   A signature algorithm that is compatible
536  *                                  with the type of `key`
537  * \param[in] p_hash                The hash to sign
538  * \param[in] hash_length           Size of the `p_hash` buffer in bytes
539  * \param[out] p_signature          Buffer where the signature is to be written
540  * \param[in] signature_size        Size of the `p_signature` buffer in bytes
541  * \param[out] p_signature_length   On success, the number of bytes
542  *                                  that make up the returned signature value
543  *
544  * \retval #PSA_SUCCESS \emptydescription
545  */
546 typedef psa_status_t (*psa_drv_se_asymmetric_sign_t)(psa_drv_se_context_t *drv_context,
547                                                      psa_key_slot_number_t key_slot,
548                                                      psa_algorithm_t alg,
549                                                      const uint8_t *p_hash,
550                                                      size_t hash_length,
551                                                      uint8_t *p_signature,
552                                                      size_t signature_size,
553                                                      size_t *p_signature_length);
554 
555 /**
556  * \brief A function that verifies the signature a hash or short message using
557  * an asymmetric public key in a secure element
558  *
559  * \param[in,out] drv_context   The driver context structure.
560  * \param[in] key_slot          Key slot of a public key or an asymmetric key
561  *                              pair
562  * \param[in] alg               A signature algorithm that is compatible with
563  *                              the type of `key`
564  * \param[in] p_hash            The hash whose signature is to be verified
565  * \param[in] hash_length       Size of the `p_hash` buffer in bytes
566  * \param[in] p_signature       Buffer containing the signature to verify
567  * \param[in] signature_length  Size of the `p_signature` buffer in bytes
568  *
569  * \retval #PSA_SUCCESS
570  *         The signature is valid.
571  */
572 typedef psa_status_t (*psa_drv_se_asymmetric_verify_t)(psa_drv_se_context_t *drv_context,
573                                                        psa_key_slot_number_t key_slot,
574                                                        psa_algorithm_t alg,
575                                                        const uint8_t *p_hash,
576                                                        size_t hash_length,
577                                                        const uint8_t *p_signature,
578                                                        size_t signature_length);
579 
580 /**
581  * \brief A function that encrypts a short message with an asymmetric public
582  * key in a secure element
583  *
584  * \param[in,out] drv_context   The driver context structure.
585  * \param[in] key_slot          Key slot of a public key or an asymmetric key
586  *                              pair
587  * \param[in] alg               An asymmetric encryption algorithm that is
588  *                              compatible with the type of `key`
589  * \param[in] p_input           The message to encrypt
590  * \param[in] input_length      Size of the `p_input` buffer in bytes
591  * \param[in] p_salt            A salt or label, if supported by the
592  *                              encryption algorithm
593  *                              If the algorithm does not support a
594  *                              salt, pass `NULL`.
595  *                              If the algorithm supports an optional
596  *                              salt and you do not want to pass a salt,
597  *                              pass `NULL`.
598  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
599  *                              supported.
600  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
601  *                              If `p_salt` is `NULL`, pass 0.
602  * \param[out] p_output         Buffer where the encrypted message is to
603  *                              be written
604  * \param[in] output_size       Size of the `p_output` buffer in bytes
605  * \param[out] p_output_length  On success, the number of bytes that make up
606  *                              the returned output
607  *
608  * \retval #PSA_SUCCESS \emptydescription
609  */
610 typedef psa_status_t (*psa_drv_se_asymmetric_encrypt_t)(psa_drv_se_context_t *drv_context,
611                                                         psa_key_slot_number_t key_slot,
612                                                         psa_algorithm_t alg,
613                                                         const uint8_t *p_input,
614                                                         size_t input_length,
615                                                         const uint8_t *p_salt,
616                                                         size_t salt_length,
617                                                         uint8_t *p_output,
618                                                         size_t output_size,
619                                                         size_t *p_output_length);
620 
621 /**
622  * \brief A function that decrypts a short message with an asymmetric private
623  * key in a secure element.
624  *
625  * \param[in,out] drv_context   The driver context structure.
626  * \param[in] key_slot          Key slot of an asymmetric key pair
627  * \param[in] alg               An asymmetric encryption algorithm that is
628  *                              compatible with the type of `key`
629  * \param[in] p_input           The message to decrypt
630  * \param[in] input_length      Size of the `p_input` buffer in bytes
631  * \param[in] p_salt            A salt or label, if supported by the
632  *                              encryption algorithm
633  *                              If the algorithm does not support a
634  *                              salt, pass `NULL`.
635  *                              If the algorithm supports an optional
636  *                              salt and you do not want to pass a salt,
637  *                              pass `NULL`.
638  *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
639  *                              supported.
640  * \param[in] salt_length       Size of the `p_salt` buffer in bytes
641  *                              If `p_salt` is `NULL`, pass 0.
642  * \param[out] p_output         Buffer where the decrypted message is to
643  *                              be written
644  * \param[in] output_size       Size of the `p_output` buffer in bytes
645  * \param[out] p_output_length  On success, the number of bytes
646  *                              that make up the returned output
647  *
648  * \retval #PSA_SUCCESS \emptydescription
649  */
650 typedef psa_status_t (*psa_drv_se_asymmetric_decrypt_t)(psa_drv_se_context_t *drv_context,
651                                                         psa_key_slot_number_t key_slot,
652                                                         psa_algorithm_t alg,
653                                                         const uint8_t *p_input,
654                                                         size_t input_length,
655                                                         const uint8_t *p_salt,
656                                                         size_t salt_length,
657                                                         uint8_t *p_output,
658                                                         size_t output_size,
659                                                         size_t *p_output_length);
660 
661 /**
662  * \brief A struct containing all of the function pointers needed to implement
663  * asymmetric cryptographic operations using secure elements.
664  *
665  * PSA Crypto API implementations should populate instances of the table as
666  * appropriate upon startup or at build time.
667  *
668  * If one of the functions is not implemented, it should be set to NULL.
669  */
670 typedef struct {
671     /** Function that performs an asymmetric sign operation */
672     psa_drv_se_asymmetric_sign_t    p_sign;
673     /** Function that performs an asymmetric verify operation */
674     psa_drv_se_asymmetric_verify_t  p_verify;
675     /** Function that performs an asymmetric encrypt operation */
676     psa_drv_se_asymmetric_encrypt_t p_encrypt;
677     /** Function that performs an asymmetric decrypt operation */
678     psa_drv_se_asymmetric_decrypt_t p_decrypt;
679 } psa_drv_se_asymmetric_t;
680 
681 /**@}*/
682 
683 /** \defgroup se_aead Secure Element Authenticated Encryption with Additional Data
684  * Authenticated Encryption with Additional Data (AEAD) operations with secure
685  * elements must be done in one function call. While this creates a burden for
686  * implementers as there must be sufficient space in memory for the entire
687  * message, it prevents decrypted data from being made available before the
688  * authentication operation is complete and the data is known to be authentic.
689  */
690 /**@{*/
691 
692 /** \brief A function that performs a secure element authenticated encryption
693  * operation
694  *
695  * \param[in,out] drv_context           The driver context structure.
696  * \param[in] key_slot                  Slot containing the key to use.
697  * \param[in] algorithm                 The AEAD algorithm to compute
698  *                                      (\c PSA_ALG_XXX value such that
699  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
700  * \param[in] p_nonce                   Nonce or IV to use
701  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
702  * \param[in] p_additional_data         Additional data that will be
703  *                                      authenticated but not encrypted
704  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
705  * \param[in] p_plaintext               Data that will be authenticated and
706  *                                      encrypted
707  * \param[in] plaintext_length          Size of `p_plaintext` in bytes
708  * \param[out] p_ciphertext             Output buffer for the authenticated and
709  *                                      encrypted data. The additional data is
710  *                                      not part of this output. For algorithms
711  *                                      where the encrypted data and the
712  *                                      authentication tag are defined as
713  *                                      separate outputs, the authentication
714  *                                      tag is appended to the encrypted data.
715  * \param[in] ciphertext_size           Size of the `p_ciphertext` buffer in
716  *                                      bytes
717  * \param[out] p_ciphertext_length      On success, the size of the output in
718  *                                      the `p_ciphertext` buffer
719  *
720  * \retval #PSA_SUCCESS
721  *         Success.
722  */
723 typedef psa_status_t (*psa_drv_se_aead_encrypt_t)(psa_drv_se_context_t *drv_context,
724                                                   psa_key_slot_number_t key_slot,
725                                                   psa_algorithm_t algorithm,
726                                                   const uint8_t *p_nonce,
727                                                   size_t nonce_length,
728                                                   const uint8_t *p_additional_data,
729                                                   size_t additional_data_length,
730                                                   const uint8_t *p_plaintext,
731                                                   size_t plaintext_length,
732                                                   uint8_t *p_ciphertext,
733                                                   size_t ciphertext_size,
734                                                   size_t *p_ciphertext_length);
735 
736 /** A function that performs a secure element authenticated decryption operation
737  *
738  * \param[in,out] drv_context           The driver context structure.
739  * \param[in] key_slot                  Slot containing the key to use
740  * \param[in] algorithm                 The AEAD algorithm to compute
741  *                                      (\c PSA_ALG_XXX value such that
742  *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
743  * \param[in] p_nonce                   Nonce or IV to use
744  * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
745  * \param[in] p_additional_data         Additional data that has been
746  *                                      authenticated but not encrypted
747  * \param[in] additional_data_length    Size of `p_additional_data` in bytes
748  * \param[in] p_ciphertext              Data that has been authenticated and
749  *                                      encrypted.
750  *                                      For algorithms where the encrypted data
751  *                                      and the authentication tag are defined
752  *                                      as separate inputs, the buffer must
753  *                                      contain the encrypted data followed by
754  *                                      the authentication tag.
755  * \param[in] ciphertext_length         Size of `p_ciphertext` in bytes
756  * \param[out] p_plaintext              Output buffer for the decrypted data
757  * \param[in] plaintext_size            Size of the `p_plaintext` buffer in
758  *                                      bytes
759  * \param[out] p_plaintext_length       On success, the size of the output in
760  *                                      the `p_plaintext` buffer
761  *
762  * \retval #PSA_SUCCESS
763  *         Success.
764  */
765 typedef psa_status_t (*psa_drv_se_aead_decrypt_t)(psa_drv_se_context_t *drv_context,
766                                                   psa_key_slot_number_t key_slot,
767                                                   psa_algorithm_t algorithm,
768                                                   const uint8_t *p_nonce,
769                                                   size_t nonce_length,
770                                                   const uint8_t *p_additional_data,
771                                                   size_t additional_data_length,
772                                                   const uint8_t *p_ciphertext,
773                                                   size_t ciphertext_length,
774                                                   uint8_t *p_plaintext,
775                                                   size_t plaintext_size,
776                                                   size_t *p_plaintext_length);
777 
778 /**
779  * \brief A struct containing all of the function pointers needed to implement
780  * secure element Authenticated Encryption with Additional Data operations
781  *
782  * PSA Crypto API implementations should populate instances of the table as
783  * appropriate upon startup.
784  *
785  * If one of the functions is not implemented, it should be set to NULL.
786  */
787 typedef struct {
788     /** Function that performs the AEAD encrypt operation */
789     psa_drv_se_aead_encrypt_t p_encrypt;
790     /** Function that performs the AEAD decrypt operation */
791     psa_drv_se_aead_decrypt_t p_decrypt;
792 } psa_drv_se_aead_t;
793 /**@}*/
794 
795 /** \defgroup se_key_management Secure Element Key Management
796  * Currently, key management is limited to importing keys in the clear,
797  * destroying keys, and exporting keys in the clear.
798  * Whether a key may be exported is determined by the key policies in place
799  * on the key slot.
800  */
801 /**@{*/
802 
803 /** An enumeration indicating how a key is created.
804  */
805 typedef enum {
806     PSA_KEY_CREATION_IMPORT, /**< During psa_import_key() */
807     PSA_KEY_CREATION_GENERATE, /**< During psa_generate_key() */
808     PSA_KEY_CREATION_DERIVE, /**< During psa_key_derivation_output_key() */
809     PSA_KEY_CREATION_COPY, /**< During psa_copy_key() */
810 
811 #ifndef __DOXYGEN_ONLY__
812     /** A key is being registered with mbedtls_psa_register_se_key().
813      *
814      * The core only passes this value to
815      * psa_drv_se_key_management_t::p_validate_slot_number, not to
816      * psa_drv_se_key_management_t::p_allocate. The call to
817      * `p_validate_slot_number` is not followed by any other call to the
818      * driver: the key is considered successfully registered if the call to
819      * `p_validate_slot_number` succeeds, or if `p_validate_slot_number` is
820      * null.
821      *
822      * With this creation method, the driver must return #PSA_SUCCESS if
823      * the given attributes are compatible with the existing key in the slot,
824      * and #PSA_ERROR_DOES_NOT_EXIST if the driver can determine that there
825      * is no key with the specified slot number.
826      *
827      * This is an Mbed TLS extension.
828      */
829     PSA_KEY_CREATION_REGISTER,
830 #endif
831 } psa_key_creation_method_t;
832 
833 /** \brief A function that allocates a slot for a key.
834  *
835  * To create a key in a specific slot in a secure element, the core
836  * first calls this function to determine a valid slot number,
837  * then calls a function to create the key material in that slot.
838  * In nominal conditions (that is, if no error occurs),
839  * the effect of a call to a key creation function in the PSA Cryptography
840  * API with a lifetime that places the key in a secure element is the
841  * following:
842  * -# The core calls psa_drv_se_key_management_t::p_allocate
843  *    (or in some implementations
844  *    psa_drv_se_key_management_t::p_validate_slot_number). The driver
845  *    selects (or validates) a suitable slot number given the key attributes
846  *    and the state of the secure element.
847  * -# The core calls a key creation function in the driver.
848  *
849  * The key creation functions in the PSA Cryptography API are:
850  * - psa_import_key(), which causes
851  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_IMPORT
852  *   then a call to psa_drv_se_key_management_t::p_import.
853  * - psa_generate_key(), which causes
854  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_GENERATE
855  *   then a call to psa_drv_se_key_management_t::p_import.
856  * - psa_key_derivation_output_key(), which causes
857  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_DERIVE
858  *   then a call to psa_drv_se_key_derivation_t::p_derive.
859  * - psa_copy_key(), which causes
860  *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_COPY
861  *   then a call to psa_drv_se_key_management_t::p_export.
862  *
863  * In case of errors, other behaviors are possible.
864  * - If the PSA Cryptography subsystem dies after the first step,
865  *   for example because the device has lost power abruptly,
866  *   the second step may never happen, or may happen after a reset
867  *   and re-initialization. Alternatively, after a reset and
868  *   re-initialization, the core may call
869  *   psa_drv_se_key_management_t::p_destroy on the slot number that
870  *   was allocated (or validated) instead of calling a key creation function.
871  * - If an error occurs, the core may call
872  *   psa_drv_se_key_management_t::p_destroy on the slot number that
873  *   was allocated (or validated) instead of calling a key creation function.
874  *
875  * Errors and system resets also have an impact on the driver's persistent
876  * data. If a reset happens before the overall key creation process is
877  * completed (before or after the second step above), it is unspecified
878  * whether the persistent data after the reset is identical to what it
879  * was before or after the call to `p_allocate` (or `p_validate_slot_number`).
880  *
881  * \param[in,out] drv_context       The driver context structure.
882  * \param[in,out] persistent_data   A pointer to the persistent data
883  *                                  that allows writing.
884  * \param[in] attributes            Attributes of the key.
885  * \param method                    The way in which the key is being created.
886  * \param[out] key_slot             Slot where the key will be stored.
887  *                                  This must be a valid slot for a key of the
888  *                                  chosen type. It must be unoccupied.
889  *
890  * \retval #PSA_SUCCESS
891  *         Success.
892  *         The core will record \c *key_slot as the key slot where the key
893  *         is stored and will update the persistent data in storage.
894  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
895  * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
896  */
897 typedef psa_status_t (*psa_drv_se_allocate_key_t)(
898     psa_drv_se_context_t *drv_context,
899     void *persistent_data,
900     const psa_key_attributes_t *attributes,
901     psa_key_creation_method_t method,
902     psa_key_slot_number_t *key_slot);
903 
904 /** \brief A function that determines whether a slot number is valid
905  * for a key.
906  *
907  * To create a key in a specific slot in a secure element, the core
908  * first calls this function to validate the choice of slot number,
909  * then calls a function to create the key material in that slot.
910  * See the documentation of #psa_drv_se_allocate_key_t for more details.
911  *
912  * As of the PSA Cryptography API specification version 1.0, there is no way
913  * for applications to trigger a call to this function. However some
914  * implementations offer the capability to create or declare a key in
915  * a specific slot via implementation-specific means, generally for the
916  * sake of initial device provisioning or onboarding. Such a mechanism may
917  * be added to a future version of the PSA Cryptography API specification.
918  *
919  * This function may update the driver's persistent data through
920  * \p persistent_data. The core will save the updated persistent data at the
921  * end of the key creation process. See the description of
922  * ::psa_drv_se_allocate_key_t for more information.
923  *
924  * \param[in,out] drv_context   The driver context structure.
925  * \param[in,out] persistent_data   A pointer to the persistent data
926  *                                  that allows writing.
927  * \param[in] attributes        Attributes of the key.
928  * \param method                The way in which the key is being created.
929  * \param[in] key_slot          Slot where the key is to be stored.
930  *
931  * \retval #PSA_SUCCESS
932  *         The given slot number is valid for a key with the given
933  *         attributes.
934  * \retval #PSA_ERROR_INVALID_ARGUMENT
935  *         The given slot number is not valid for a key with the
936  *         given attributes. This includes the case where the slot
937  *         number is not valid at all.
938  * \retval #PSA_ERROR_ALREADY_EXISTS
939  *         There is already a key with the specified slot number.
940  *         Drivers may choose to return this error from the key
941  *         creation function instead.
942  */
943 typedef psa_status_t (*psa_drv_se_validate_slot_number_t)(
944     psa_drv_se_context_t *drv_context,
945     void *persistent_data,
946     const psa_key_attributes_t *attributes,
947     psa_key_creation_method_t method,
948     psa_key_slot_number_t key_slot);
949 
950 /** \brief A function that imports a key into a secure element in binary format
951  *
952  * This function can support any output from psa_export_key(). Refer to the
953  * documentation of psa_export_key() for the format for each key type.
954  *
955  * \param[in,out] drv_context   The driver context structure.
956  * \param key_slot              Slot where the key will be stored.
957  *                              This must be a valid slot for a key of the
958  *                              chosen type. It must be unoccupied.
959  * \param[in] attributes        The key attributes, including the lifetime,
960  *                              the key type and the usage policy.
961  *                              Drivers should not access the key size stored
962  *                              in the attributes: it may not match the
963  *                              data passed in \p data.
964  *                              Drivers can call psa_get_key_lifetime(),
965  *                              psa_get_key_type(),
966  *                              psa_get_key_usage_flags() and
967  *                              psa_get_key_algorithm() to access this
968  *                              information.
969  * \param[in] data              Buffer containing the key data.
970  * \param[in] data_length       Size of the \p data buffer in bytes.
971  * \param[out] bits             On success, the key size in bits. The driver
972  *                              must determine this value after parsing the
973  *                              key according to the key type.
974  *                              This value is not used if the function fails.
975  *
976  * \retval #PSA_SUCCESS
977  *         Success.
978  */
979 typedef psa_status_t (*psa_drv_se_import_key_t)(
980     psa_drv_se_context_t *drv_context,
981     psa_key_slot_number_t key_slot,
982     const psa_key_attributes_t *attributes,
983     const uint8_t *data,
984     size_t data_length,
985     size_t *bits);
986 
987 /**
988  * \brief A function that destroys a secure element key and restore the slot to
989  * its default state
990  *
991  * This function destroys the content of the key from a secure element.
992  * Implementations shall make a best effort to ensure that any previous content
993  * of the slot is unrecoverable.
994  *
995  * This function returns the specified slot to its default state.
996  *
997  * \param[in,out] drv_context       The driver context structure.
998  * \param[in,out] persistent_data   A pointer to the persistent data
999  *                                  that allows writing.
1000  * \param key_slot                  The key slot to erase.
1001  *
1002  * \retval #PSA_SUCCESS
1003  *         The slot's content, if any, has been erased.
1004  */
1005 typedef psa_status_t (*psa_drv_se_destroy_key_t)(
1006     psa_drv_se_context_t *drv_context,
1007     void *persistent_data,
1008     psa_key_slot_number_t key_slot);
1009 
1010 /**
1011  * \brief A function that exports a secure element key in binary format
1012  *
1013  * The output of this function can be passed to psa_import_key() to
1014  * create an equivalent object.
1015  *
1016  * If a key is created with `psa_import_key()` and then exported with
1017  * this function, it is not guaranteed that the resulting data is
1018  * identical: the implementation may choose a different representation
1019  * of the same key if the format permits it.
1020  *
1021  * This function should generate output in the same format that
1022  * `psa_export_key()` does. Refer to the
1023  * documentation of `psa_export_key()` for the format for each key type.
1024  *
1025  * \param[in,out] drv_context   The driver context structure.
1026  * \param[in] key               Slot whose content is to be exported. This must
1027  *                              be an occupied key slot.
1028  * \param[out] p_data           Buffer where the key data is to be written.
1029  * \param[in] data_size         Size of the `p_data` buffer in bytes.
1030  * \param[out] p_data_length    On success, the number of bytes
1031  *                              that make up the key data.
1032  *
1033  * \retval #PSA_SUCCESS \emptydescription
1034  * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
1035  * \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
1036  * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
1037  * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
1038  * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
1039  * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
1040  */
1041 typedef psa_status_t (*psa_drv_se_export_key_t)(psa_drv_se_context_t *drv_context,
1042                                                 psa_key_slot_number_t key,
1043                                                 uint8_t *p_data,
1044                                                 size_t data_size,
1045                                                 size_t *p_data_length);
1046 
1047 /**
1048  * \brief A function that generates a symmetric or asymmetric key on a secure
1049  * element
1050  *
1051  * If the key type \c type recorded in \p attributes
1052  * is asymmetric (#PSA_KEY_TYPE_IS_ASYMMETRIC(\c type) = 1),
1053  * the driver may export the public key at the time of generation,
1054  * in the format documented for psa_export_public_key() by writing it
1055  * to the \p pubkey buffer.
1056  * This is optional, intended for secure elements that output the
1057  * public key at generation time and that cannot export the public key
1058  * later. Drivers that do not need this feature should leave
1059  * \p *pubkey_length set to 0 and should
1060  * implement the psa_drv_key_management_t::p_export_public function.
1061  * Some implementations do not support this feature, in which case
1062  * \p pubkey is \c NULL and \p pubkey_size is 0.
1063  *
1064  * \param[in,out] drv_context   The driver context structure.
1065  * \param key_slot              Slot where the key will be stored.
1066  *                              This must be a valid slot for a key of the
1067  *                              chosen type. It must be unoccupied.
1068  * \param[in] attributes        The key attributes, including the lifetime,
1069  *                              the key type and size, and the usage policy.
1070  *                              Drivers can call psa_get_key_lifetime(),
1071  *                              psa_get_key_type(), psa_get_key_bits(),
1072  *                              psa_get_key_usage_flags() and
1073  *                              psa_get_key_algorithm() to access this
1074  *                              information.
1075  * \param[out] pubkey           A buffer where the driver can write the
1076  *                              public key, when generating an asymmetric
1077  *                              key pair.
1078  *                              This is \c NULL when generating a symmetric
1079  *                              key or if the core does not support
1080  *                              exporting the public key at generation time.
1081  * \param pubkey_size           The size of the `pubkey` buffer in bytes.
1082  *                              This is 0 when generating a symmetric
1083  *                              key or if the core does not support
1084  *                              exporting the public key at generation time.
1085  * \param[out] pubkey_length    On entry, this is always 0.
1086  *                              On success, the number of bytes written to
1087  *                              \p pubkey. If this is 0 or unchanged on return,
1088  *                              the core will not read the \p pubkey buffer,
1089  *                              and will instead call the driver's
1090  *                              psa_drv_key_management_t::p_export_public
1091  *                              function to export the public key when needed.
1092  */
1093 typedef psa_status_t (*psa_drv_se_generate_key_t)(
1094     psa_drv_se_context_t *drv_context,
1095     psa_key_slot_number_t key_slot,
1096     const psa_key_attributes_t *attributes,
1097     uint8_t *pubkey, size_t pubkey_size, size_t *pubkey_length);
1098 
1099 /**
1100  * \brief A struct containing all of the function pointers needed to for secure
1101  * element key management
1102  *
1103  * PSA Crypto API implementations should populate instances of the table as
1104  * appropriate upon startup or at build time.
1105  *
1106  * If one of the functions is not implemented, it should be set to NULL.
1107  */
1108 typedef struct {
1109     /** Function that allocates a slot for a key. */
1110     psa_drv_se_allocate_key_t   p_allocate;
1111     /** Function that checks the validity of a slot for a key. */
1112     psa_drv_se_validate_slot_number_t p_validate_slot_number;
1113     /** Function that performs a key import operation */
1114     psa_drv_se_import_key_t     p_import;
1115     /** Function that performs a generation */
1116     psa_drv_se_generate_key_t   p_generate;
1117     /** Function that performs a key destroy operation */
1118     psa_drv_se_destroy_key_t    p_destroy;
1119     /** Function that performs a key export operation */
1120     psa_drv_se_export_key_t     p_export;
1121     /** Function that performs a public key export operation */
1122     psa_drv_se_export_key_t     p_export_public;
1123 } psa_drv_se_key_management_t;
1124 
1125 /**@}*/
1126 
1127 /** \defgroup driver_derivation Secure Element Key Derivation and Agreement
1128  * Key derivation is the process of generating new key material using an
1129  * existing key and additional parameters, iterating through a basic
1130  * cryptographic function, such as a hash.
1131  * Key agreement is a part of cryptographic protocols that allows two parties
1132  * to agree on the same key value, but starting from different original key
1133  * material.
1134  * The flows are similar, and the PSA Crypto Driver Model uses the same functions
1135  * for both of the flows.
1136  *
1137  * There are two different final functions for the flows,
1138  * `psa_drv_se_key_derivation_derive` and `psa_drv_se_key_derivation_export`.
1139  * `psa_drv_se_key_derivation_derive` is used when the key material should be
1140  * placed in a slot on the hardware and not exposed to the caller.
1141  * `psa_drv_se_key_derivation_export` is used when the key material should be
1142  * returned to the PSA Cryptographic API implementation.
1143  *
1144  * Different key derivation algorithms require a different number of inputs.
1145  * Instead of having an API that takes as input variable length arrays, which
1146  * can be problematic to manage on embedded platforms, the inputs are passed
1147  * to the driver via a function, `psa_drv_se_key_derivation_collateral`, that
1148  * is called multiple times with different `collateral_id`s. Thus, for a key
1149  * derivation algorithm that required 3 parameter inputs, the flow would look
1150  * something like:
1151  * ~~~~~~~~~~~~~{.c}
1152  * psa_drv_se_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
1153  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_0,
1154  *                                      p_collateral_0,
1155  *                                      collateral_0_size);
1156  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_1,
1157  *                                      p_collateral_1,
1158  *                                      collateral_1_size);
1159  * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_2,
1160  *                                      p_collateral_2,
1161  *                                      collateral_2_size);
1162  * psa_drv_se_key_derivation_derive();
1163  * ~~~~~~~~~~~~~
1164  *
1165  * key agreement example:
1166  * ~~~~~~~~~~~~~{.c}
1167  * psa_drv_se_key_derivation_setup(alg, source_key. dest_key_size_bytes);
1168  * psa_drv_se_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
1169  * psa_drv_se_key_derivation_export(p_session_key,
1170  *                                  session_key_size,
1171  *                                  &session_key_length);
1172  * ~~~~~~~~~~~~~
1173  */
1174 /**@{*/
1175 
1176 /** \brief A function that Sets up a secure element key derivation operation by
1177  * specifying the algorithm and the source key sot
1178  *
1179  * \param[in,out] drv_context   The driver context structure.
1180  * \param[in,out] op_context    A hardware-specific structure containing any
1181  *                              context information for the implementation
1182  * \param[in] kdf_alg           The algorithm to be used for the key derivation
1183  * \param[in] source_key        The key to be used as the source material for
1184  *                              the key derivation
1185  *
1186  * \retval #PSA_SUCCESS \emptydescription
1187  */
1188 typedef psa_status_t (*psa_drv_se_key_derivation_setup_t)(psa_drv_se_context_t *drv_context,
1189                                                           void *op_context,
1190                                                           psa_algorithm_t kdf_alg,
1191                                                           psa_key_slot_number_t source_key);
1192 
1193 /** \brief A function that provides collateral (parameters) needed for a secure
1194  * element key derivation or key agreement operation
1195  *
1196  * Since many key derivation algorithms require multiple parameters, it is
1197  * expected that this function may be called multiple times for the same
1198  * operation, each with a different algorithm-specific `collateral_id`
1199  *
1200  * \param[in,out] op_context    A hardware-specific structure containing any
1201  *                              context information for the implementation
1202  * \param[in] collateral_id     An ID for the collateral being provided
1203  * \param[in] p_collateral      A buffer containing the collateral data
1204  * \param[in] collateral_size   The size in bytes of the collateral
1205  *
1206  * \retval #PSA_SUCCESS \emptydescription
1207  */
1208 typedef psa_status_t (*psa_drv_se_key_derivation_collateral_t)(void *op_context,
1209                                                                uint32_t collateral_id,
1210                                                                const uint8_t *p_collateral,
1211                                                                size_t collateral_size);
1212 
1213 /** \brief A function that performs the final secure element key derivation
1214  * step and place the generated key material in a slot
1215  *
1216  * \param[in,out] op_context    A hardware-specific structure containing any
1217  *                              context information for the implementation
1218  * \param[in] dest_key          The slot where the generated key material
1219  *                              should be placed
1220  *
1221  * \retval #PSA_SUCCESS \emptydescription
1222  */
1223 typedef psa_status_t (*psa_drv_se_key_derivation_derive_t)(void *op_context,
1224                                                            psa_key_slot_number_t dest_key);
1225 
1226 /** \brief A function that performs the final step of a secure element key
1227  * agreement and place the generated key material in a buffer
1228  *
1229  * \param[out] p_output         Buffer in which to place the generated key
1230  *                              material
1231  * \param[in] output_size       The size in bytes of `p_output`
1232  * \param[out] p_output_length  Upon success, contains the number of bytes of
1233  *                              key material placed in `p_output`
1234  *
1235  * \retval #PSA_SUCCESS \emptydescription
1236  */
1237 typedef psa_status_t (*psa_drv_se_key_derivation_export_t)(void *op_context,
1238                                                            uint8_t *p_output,
1239                                                            size_t output_size,
1240                                                            size_t *p_output_length);
1241 
1242 /**
1243  * \brief A struct containing all of the function pointers needed to for secure
1244  * element key derivation and agreement
1245  *
1246  * PSA Crypto API implementations should populate instances of the table as
1247  * appropriate upon startup.
1248  *
1249  * If one of the functions is not implemented, it should be set to NULL.
1250  */
1251 typedef struct {
1252     /** The driver-specific size of the key derivation context */
1253     size_t                           context_size;
1254     /** Function that performs a key derivation setup */
1255     psa_drv_se_key_derivation_setup_t      p_setup;
1256     /** Function that sets key derivation collateral */
1257     psa_drv_se_key_derivation_collateral_t p_collateral;
1258     /** Function that performs a final key derivation step */
1259     psa_drv_se_key_derivation_derive_t     p_derive;
1260     /** Function that performs a final key derivation or agreement and
1261      * exports the key */
1262     psa_drv_se_key_derivation_export_t     p_export;
1263 } psa_drv_se_key_derivation_t;
1264 
1265 /**@}*/
1266 
1267 /** \defgroup se_registration Secure element driver registration
1268  */
1269 /**@{*/
1270 
1271 /** A structure containing pointers to all the entry points of a
1272  * secure element driver.
1273  *
1274  * Future versions of this specification may add extra substructures at
1275  * the end of this structure.
1276  */
1277 typedef struct {
1278     /** The version of the driver HAL that this driver implements.
1279      * This is a protection against loading driver binaries built against
1280      * a different version of this specification.
1281      * Use #PSA_DRV_SE_HAL_VERSION.
1282      */
1283     uint32_t hal_version;
1284 
1285     /** The size of the driver's persistent data in bytes.
1286      *
1287      * This can be 0 if the driver does not need persistent data.
1288      *
1289      * See the documentation of psa_drv_se_context_t::persistent_data
1290      * for more information about why and how a driver can use
1291      * persistent data.
1292      */
1293     size_t persistent_data_size;
1294 
1295     /** The driver initialization function.
1296      *
1297      * This function is called once during the initialization of the
1298      * PSA Cryptography subsystem, before any other function of the
1299      * driver is called. If this function returns a failure status,
1300      * the driver will be unusable, at least until the next system reset.
1301      *
1302      * If this field is \c NULL, it is equivalent to a function that does
1303      * nothing and returns #PSA_SUCCESS.
1304      */
1305     psa_drv_se_init_t p_init;
1306 
1307     const psa_drv_se_key_management_t *key_management;
1308     const psa_drv_se_mac_t *mac;
1309     const psa_drv_se_cipher_t *cipher;
1310     const psa_drv_se_aead_t *aead;
1311     const psa_drv_se_asymmetric_t *asymmetric;
1312     const psa_drv_se_key_derivation_t *derivation;
1313 } psa_drv_se_t;
1314 
1315 /** The current version of the secure element driver HAL.
1316  */
1317 /* 0.0.0 patchlevel 5 */
1318 #define PSA_DRV_SE_HAL_VERSION 0x00000005
1319 
1320 /** Register an external cryptoprocessor (secure element) driver.
1321  *
1322  * This function is only intended to be used by driver code, not by
1323  * application code. In implementations with separation between the
1324  * PSA cryptography module and applications, this function should
1325  * only be available to callers that run in the same memory space as
1326  * the cryptography module, and should not be exposed to applications
1327  * running in a different memory space.
1328  *
1329  * This function may be called before psa_crypto_init(). It is
1330  * implementation-defined whether this function may be called
1331  * after psa_crypto_init().
1332  *
1333  * \note Implementations store metadata about keys including the lifetime
1334  *       value, which contains the driver's location indicator. Therefore,
1335  *       from one instantiation of the PSA Cryptography
1336  *       library to the next one, if there is a key in storage with a certain
1337  *       lifetime value, you must always register the same driver (or an
1338  *       updated version that communicates with the same secure element)
1339  *       with the same location value.
1340  *
1341  * \param location      The location value through which this driver will
1342  *                      be exposed to applications.
1343  *                      This driver will be used for all keys such that
1344  *                      `location == #PSA_KEY_LIFETIME_GET_LOCATION( lifetime )`.
1345  *                      The value #PSA_KEY_LOCATION_LOCAL_STORAGE is reserved
1346  *                      and may not be used for drivers. Implementations
1347  *                      may reserve other values.
1348  * \param[in] methods   The method table of the driver. This structure must
1349  *                      remain valid for as long as the cryptography
1350  *                      module keeps running. It is typically a global
1351  *                      constant.
1352  *
1353  * \return #PSA_SUCCESS
1354  *         The driver was successfully registered. Applications can now
1355  *         use \p location to access keys through the methods passed to
1356  *         this function.
1357  * \return #PSA_ERROR_BAD_STATE
1358  *         This function was called after the initialization of the
1359  *         cryptography module, and this implementation does not support
1360  *         driver registration at this stage.
1361  * \return #PSA_ERROR_ALREADY_EXISTS
1362  *         There is already a registered driver for this value of \p location.
1363  * \return #PSA_ERROR_INVALID_ARGUMENT
1364  *         \p location is a reserved value.
1365  * \return #PSA_ERROR_NOT_SUPPORTED
1366  *         `methods->hal_version` is not supported by this implementation.
1367  * \return #PSA_ERROR_INSUFFICIENT_MEMORY
1368  * \return #PSA_ERROR_NOT_PERMITTED
1369  * \return #PSA_ERROR_STORAGE_FAILURE
1370  * \return #PSA_ERROR_DATA_CORRUPT
1371  */
1372 psa_status_t psa_register_se_driver(
1373     psa_key_location_t location,
1374     const psa_drv_se_t *methods);
1375 
1376 /**@}*/
1377 
1378 #ifdef __cplusplus
1379 }
1380 #endif
1381 
1382 #endif /* PSA_CRYPTO_SE_DRIVER_H */
1383