• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  *  Constant-time functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  * The following functions are implemented without using comparison operators, as those
10  * might be translated to branches by some compilers on some platforms.
11  */
12 
13 #include "common.h"
14 #include "constant_time_internal.h"
15 #include "mbedtls/constant_time.h"
16 #include "mbedtls/error.h"
17 #include "mbedtls/platform_util.h"
18 
19 #if defined(MBEDTLS_BIGNUM_C)
20 #include "mbedtls/bignum.h"
21 #endif
22 
23 #if defined(MBEDTLS_SSL_TLS_C)
24 #include "mbedtls/ssl_internal.h"
25 #endif
26 
27 #if defined(MBEDTLS_RSA_C)
28 #include "mbedtls/rsa.h"
29 #endif
30 
31 #if defined(MBEDTLS_BASE64_C)
32 #include "constant_time_invasive.h"
33 #endif
34 
35 #include <string.h>
36 
mbedtls_ct_memcmp(const void * a,const void * b,size_t n)37 int mbedtls_ct_memcmp(const void *a,
38                       const void *b,
39                       size_t n)
40 {
41     size_t i;
42     volatile const unsigned char *A = (volatile const unsigned char *) a;
43     volatile const unsigned char *B = (volatile const unsigned char *) b;
44     volatile unsigned char diff = 0;
45 
46     for (i = 0; i < n; i++) {
47         /* Read volatile data in order before computing diff.
48          * This avoids IAR compiler warning:
49          * 'the order of volatile accesses is undefined ..' */
50         unsigned char x = A[i], y = B[i];
51         diff |= x ^ y;
52     }
53 
54     return (int) diff;
55 }
56 
mbedtls_ct_uint_mask(unsigned value)57 unsigned mbedtls_ct_uint_mask(unsigned value)
58 {
59     /* MSVC has a warning about unary minus on unsigned, but this is
60      * well-defined and precisely what we want to do here */
61 #if defined(_MSC_VER)
62 #pragma warning( push )
63 #pragma warning( disable : 4146 )
64 #endif
65     return -((value | -value) >> (sizeof(value) * 8 - 1));
66 #if defined(_MSC_VER)
67 #pragma warning( pop )
68 #endif
69 }
70 
71 #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) || defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || \
72     defined(MBEDTLS_NIST_KW_C) || defined(MBEDTLS_CIPHER_MODE_CBC)
73 
mbedtls_ct_size_mask(size_t value)74 size_t mbedtls_ct_size_mask(size_t value)
75 {
76     /* MSVC has a warning about unary minus on unsigned integer types,
77      * but this is well-defined and precisely what we want to do here. */
78 #if defined(_MSC_VER)
79 #pragma warning( push )
80 #pragma warning( disable : 4146 )
81 #endif
82     return -((value | -value) >> (sizeof(value) * 8 - 1));
83 #if defined(_MSC_VER)
84 #pragma warning( pop )
85 #endif
86 }
87 
88 #endif /* defined(MBEDTLS_SSL_SOME_MODES_USE_MAC) || defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) ||
89           defined(MBEDTLS_NIST_KW_C) || defined(MBEDTLS_CIPHER_MODE_CBC) */
90 
91 #if defined(MBEDTLS_BIGNUM_C)
92 
mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)93 mbedtls_mpi_uint mbedtls_ct_mpi_uint_mask(mbedtls_mpi_uint value)
94 {
95     /* MSVC has a warning about unary minus on unsigned, but this is
96      * well-defined and precisely what we want to do here */
97 #if defined(_MSC_VER)
98 #pragma warning( push )
99 #pragma warning( disable : 4146 )
100 #endif
101     return -((value | -value) >> (sizeof(value) * 8 - 1));
102 #if defined(_MSC_VER)
103 #pragma warning( pop )
104 #endif
105 }
106 
107 #endif /* MBEDTLS_BIGNUM_C */
108 
109 #if defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || defined(MBEDTLS_NIST_KW_C) || \
110     defined(MBEDTLS_CIPHER_MODE_CBC)
111 
112 /** Constant-flow mask generation for "less than" comparison:
113  * - if \p x < \p y, return all-bits 1, that is (size_t) -1
114  * - otherwise, return all bits 0, that is 0
115  *
116  * This function can be used to write constant-time code by replacing branches
117  * with bit operations using masks.
118  *
119  * \param x     The first value to analyze.
120  * \param y     The second value to analyze.
121  *
122  * \return      All-bits-one if \p x is less than \p y, otherwise zero.
123  */
mbedtls_ct_size_mask_lt(size_t x,size_t y)124 static size_t mbedtls_ct_size_mask_lt(size_t x,
125                                       size_t y)
126 {
127     /* This has the most significant bit set if and only if x < y */
128     const size_t sub = x - y;
129 
130     /* sub1 = (x < y) ? 1 : 0 */
131     const size_t sub1 = sub >> (sizeof(sub) * 8 - 1);
132 
133     /* mask = (x < y) ? 0xff... : 0x00... */
134     const size_t mask = mbedtls_ct_size_mask(sub1);
135 
136     return mask;
137 }
138 
mbedtls_ct_size_mask_ge(size_t x,size_t y)139 size_t mbedtls_ct_size_mask_ge(size_t x,
140                                size_t y)
141 {
142     return ~mbedtls_ct_size_mask_lt(x, y);
143 }
144 
145 #endif /* defined(MBEDTLS_SSL_SOME_SUITES_USE_TLS_CBC) || defined(MBEDTLS_NIST_KW_C) ||
146           defined(MBEDTLS_CIPHER_MODE_CBC) */
147 
148 #if defined(MBEDTLS_BASE64_C)
149 
150 /* Return 0xff if low <= c <= high, 0 otherwise.
151  *
152  * Constant flow with respect to c.
153  */
154 MBEDTLS_STATIC_TESTABLE
mbedtls_ct_uchar_mask_of_range(unsigned char low,unsigned char high,unsigned char c)155 unsigned char mbedtls_ct_uchar_mask_of_range(unsigned char low,
156                                              unsigned char high,
157                                              unsigned char c)
158 {
159     /* low_mask is: 0 if low <= c, 0x...ff if low > c */
160     unsigned low_mask = ((unsigned) c - low) >> 8;
161     /* high_mask is: 0 if c <= high, 0x...ff if c > high */
162     unsigned high_mask = ((unsigned) high - c) >> 8;
163     return ~(low_mask | high_mask) & 0xff;
164 }
165 
166 #endif /* MBEDTLS_BASE64_C */
167 
mbedtls_ct_size_bool_eq(size_t x,size_t y)168 unsigned mbedtls_ct_size_bool_eq(size_t x,
169                                  size_t y)
170 {
171     /* diff = 0 if x == y, non-zero otherwise */
172     const size_t diff = x ^ y;
173 
174     /* MSVC has a warning about unary minus on unsigned integer types,
175      * but this is well-defined and precisely what we want to do here. */
176 #if defined(_MSC_VER)
177 #pragma warning( push )
178 #pragma warning( disable : 4146 )
179 #endif
180 
181     /* diff_msb's most significant bit is equal to x != y */
182     const size_t diff_msb = (diff | (size_t) -diff);
183 
184 #if defined(_MSC_VER)
185 #pragma warning( pop )
186 #endif
187 
188     /* diff1 = (x != y) ? 1 : 0 */
189     const unsigned diff1 = diff_msb >> (sizeof(diff_msb) * 8 - 1);
190 
191     return 1 ^ diff1;
192 }
193 
194 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
195 
196 /** Constant-flow "greater than" comparison:
197  * return x > y
198  *
199  * This is equivalent to \p x > \p y, but is likely to be compiled
200  * to code using bitwise operation rather than a branch.
201  *
202  * \param x     The first value to analyze.
203  * \param y     The second value to analyze.
204  *
205  * \return      1 if \p x greater than \p y, otherwise 0.
206  */
mbedtls_ct_size_gt(size_t x,size_t y)207 static unsigned mbedtls_ct_size_gt(size_t x,
208                                    size_t y)
209 {
210     /* Return the sign bit (1 for negative) of (y - x). */
211     return (y - x) >> (sizeof(size_t) * 8 - 1);
212 }
213 
214 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
215 
216 #if defined(MBEDTLS_BIGNUM_C)
217 
mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,const mbedtls_mpi_uint y)218 unsigned mbedtls_ct_mpi_uint_lt(const mbedtls_mpi_uint x,
219                                 const mbedtls_mpi_uint y)
220 {
221     mbedtls_mpi_uint ret;
222     mbedtls_mpi_uint cond;
223 
224     /*
225      * Check if the most significant bits (MSB) of the operands are different.
226      */
227     cond = (x ^ y);
228     /*
229      * If the MSB are the same then the difference x-y will be negative (and
230      * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
231      */
232     ret = (x - y) & ~cond;
233     /*
234      * If the MSB are different, then the operand with the MSB of 1 is the
235      * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
236      * the MSB of y is 0.)
237      */
238     ret |= y & cond;
239 
240 
241     ret = ret >> (sizeof(mbedtls_mpi_uint) * 8 - 1);
242 
243     return (unsigned) ret;
244 }
245 
246 #endif /* MBEDTLS_BIGNUM_C */
247 
mbedtls_ct_uint_if(unsigned condition,unsigned if1,unsigned if0)248 unsigned mbedtls_ct_uint_if(unsigned condition,
249                             unsigned if1,
250                             unsigned if0)
251 {
252     unsigned mask = mbedtls_ct_uint_mask(condition);
253     return (mask & if1) | (~mask & if0);
254 }
255 
256 #if defined(MBEDTLS_BIGNUM_C)
257 
mbedtls_ct_mpi_uint_cond_assign(size_t n,mbedtls_mpi_uint * dest,const mbedtls_mpi_uint * src,unsigned char condition)258 void mbedtls_ct_mpi_uint_cond_assign(size_t n,
259                                      mbedtls_mpi_uint *dest,
260                                      const mbedtls_mpi_uint *src,
261                                      unsigned char condition)
262 {
263     size_t i;
264 
265     /* MSVC has a warning about unary minus on unsigned integer types,
266      * but this is well-defined and precisely what we want to do here. */
267 #if defined(_MSC_VER)
268 #pragma warning( push )
269 #pragma warning( disable : 4146 )
270 #endif
271 
272     /* all-bits 1 if condition is 1, all-bits 0 if condition is 0 */
273     const mbedtls_mpi_uint mask = -condition;
274 
275 #if defined(_MSC_VER)
276 #pragma warning( pop )
277 #endif
278 
279     for (i = 0; i < n; i++) {
280         dest[i] = (src[i] & mask) | (dest[i] & ~mask);
281     }
282 }
283 
284 #endif /* MBEDTLS_BIGNUM_C */
285 
286 #if defined(MBEDTLS_BASE64_C)
287 
mbedtls_ct_base64_enc_char(unsigned char value)288 unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
289 {
290     unsigned char digit = 0;
291     /* For each range of values, if value is in that range, mask digit with
292      * the corresponding value. Since value can only be in a single range,
293      * only at most one masking will change digit. */
294     digit |= mbedtls_ct_uchar_mask_of_range(0, 25, value) & ('A' + value);
295     digit |= mbedtls_ct_uchar_mask_of_range(26, 51, value) & ('a' + value - 26);
296     digit |= mbedtls_ct_uchar_mask_of_range(52, 61, value) & ('0' + value - 52);
297     digit |= mbedtls_ct_uchar_mask_of_range(62, 62, value) & '+';
298     digit |= mbedtls_ct_uchar_mask_of_range(63, 63, value) & '/';
299     return digit;
300 }
301 
mbedtls_ct_base64_dec_value(unsigned char c)302 signed char mbedtls_ct_base64_dec_value(unsigned char c)
303 {
304     unsigned char val = 0;
305     /* For each range of digits, if c is in that range, mask val with
306      * the corresponding value. Since c can only be in a single range,
307      * only at most one masking will change val. Set val to one plus
308      * the desired value so that it stays 0 if c is in none of the ranges. */
309     val |= mbedtls_ct_uchar_mask_of_range('A', 'Z', c) & (c - 'A' +  0 + 1);
310     val |= mbedtls_ct_uchar_mask_of_range('a', 'z', c) & (c - 'a' + 26 + 1);
311     val |= mbedtls_ct_uchar_mask_of_range('0', '9', c) & (c - '0' + 52 + 1);
312     val |= mbedtls_ct_uchar_mask_of_range('+', '+', c) & (c - '+' + 62 + 1);
313     val |= mbedtls_ct_uchar_mask_of_range('/', '/', c) & (c - '/' + 63 + 1);
314     /* At this point, val is 0 if c is an invalid digit and v+1 if c is
315      * a digit with the value v. */
316     return val - 1;
317 }
318 
319 #endif /* MBEDTLS_BASE64_C */
320 
321 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
322 
323 /** Shift some data towards the left inside a buffer.
324  *
325  * `mbedtls_ct_mem_move_to_left(start, total, offset)` is functionally
326  * equivalent to
327  * ```
328  * memmove(start, start + offset, total - offset);
329  * memset(start + offset, 0, total - offset);
330  * ```
331  * but it strives to use a memory access pattern (and thus total timing)
332  * that does not depend on \p offset. This timing independence comes at
333  * the expense of performance.
334  *
335  * \param start     Pointer to the start of the buffer.
336  * \param total     Total size of the buffer.
337  * \param offset    Offset from which to copy \p total - \p offset bytes.
338  */
mbedtls_ct_mem_move_to_left(void * start,size_t total,size_t offset)339 static void mbedtls_ct_mem_move_to_left(void *start,
340                                         size_t total,
341                                         size_t offset)
342 {
343     volatile unsigned char *buf = start;
344     size_t i, n;
345     if (total == 0) {
346         return;
347     }
348     for (i = 0; i < total; i++) {
349         unsigned no_op = mbedtls_ct_size_gt(total - offset, i);
350         /* The first `total - offset` passes are a no-op. The last
351          * `offset` passes shift the data one byte to the left and
352          * zero out the last byte. */
353         for (n = 0; n < total - 1; n++) {
354             unsigned char current = buf[n];
355             unsigned char next = buf[n+1];
356             buf[n] = mbedtls_ct_uint_if(no_op, current, next);
357         }
358         buf[total-1] = mbedtls_ct_uint_if(no_op, buf[total-1], 0);
359     }
360 }
361 
362 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
363 
364 #if defined(MBEDTLS_SSL_SOME_MODES_USE_MAC)
mbedtls_ct_memcpy_if_eq(unsigned char * dest,const unsigned char * src,size_t len,size_t c1,size_t c2)365 void mbedtls_ct_memcpy_if_eq(unsigned char *dest,
366                              const unsigned char *src,
367                              size_t len,
368                              size_t c1,
369                              size_t c2)
370 {
371     /* mask = c1 == c2 ? 0xff : 0x00 */
372     const size_t equal = mbedtls_ct_size_bool_eq(c1, c2);
373     const unsigned char mask = (unsigned char) mbedtls_ct_size_mask(equal);
374 
375     /* dest[i] = c1 == c2 ? src[i] : dest[i] */
376     for (size_t i = 0; i < len; i++) {
377         dest[i] = (src[i] & mask) | (dest[i] & ~mask);
378     }
379 }
380 
mbedtls_ct_memcpy_offset(unsigned char * dest,const unsigned char * src,size_t offset,size_t offset_min,size_t offset_max,size_t len)381 void mbedtls_ct_memcpy_offset(unsigned char *dest,
382                               const unsigned char *src,
383                               size_t offset,
384                               size_t offset_min,
385                               size_t offset_max,
386                               size_t len)
387 {
388     size_t offsetval;
389 
390     for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
391         mbedtls_ct_memcpy_if_eq(dest, src + offsetval, len,
392                                 offsetval, offset);
393     }
394 }
395 
mbedtls_ct_hmac(mbedtls_md_context_t * ctx,const unsigned char * add_data,size_t add_data_len,const unsigned char * data,size_t data_len_secret,size_t min_data_len,size_t max_data_len,unsigned char * output)396 int mbedtls_ct_hmac(mbedtls_md_context_t *ctx,
397                     const unsigned char *add_data,
398                     size_t add_data_len,
399                     const unsigned char *data,
400                     size_t data_len_secret,
401                     size_t min_data_len,
402                     size_t max_data_len,
403                     unsigned char *output)
404 {
405     /*
406      * This function breaks the HMAC abstraction and uses the md_clone()
407      * extension to the MD API in order to get constant-flow behaviour.
408      *
409      * HMAC(msg) is defined as HASH(okey + HASH(ikey + msg)) where + means
410      * concatenation, and okey/ikey are the XOR of the key with some fixed bit
411      * patterns (see RFC 2104, sec. 2), which are stored in ctx->hmac_ctx.
412      *
413      * We'll first compute inner_hash = HASH(ikey + msg) by hashing up to
414      * minlen, then cloning the context, and for each byte up to maxlen
415      * finishing up the hash computation, keeping only the correct result.
416      *
417      * Then we only need to compute HASH(okey + inner_hash) and we're done.
418      */
419     const mbedtls_md_type_t md_alg = mbedtls_md_get_type(ctx->md_info);
420     /* TLS 1.0-1.2 only support SHA-384, SHA-256, SHA-1, MD-5,
421      * all of which have the same block size except SHA-384. */
422     const size_t block_size = md_alg == MBEDTLS_MD_SHA384 ? 128 : 64;
423     const unsigned char * const ikey = ctx->hmac_ctx;
424     const unsigned char * const okey = ikey + block_size;
425     const size_t hash_size = mbedtls_md_get_size(ctx->md_info);
426 
427     unsigned char aux_out[MBEDTLS_MD_MAX_SIZE];
428     mbedtls_md_context_t aux;
429     size_t offset;
430     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
431 
432     mbedtls_md_init(&aux);
433 
434 #define MD_CHK(func_call) \
435     do {                    \
436         ret = (func_call);  \
437         if (ret != 0)      \
438         goto cleanup;   \
439     } while (0)
440 
441     MD_CHK(mbedtls_md_setup(&aux, ctx->md_info, 0));
442 
443     /* After hmac_start() of hmac_reset(), ikey has already been hashed,
444      * so we can start directly with the message */
445     MD_CHK(mbedtls_md_update(ctx, add_data, add_data_len));
446     MD_CHK(mbedtls_md_update(ctx, data, min_data_len));
447 
448     /* Fill the hash buffer in advance with something that is
449      * not a valid hash (barring an attack on the hash and
450      * deliberately-crafted input), in case the caller doesn't
451      * check the return status properly. */
452     memset(output, '!', hash_size);
453 
454     /* For each possible length, compute the hash up to that point */
455     for (offset = min_data_len; offset <= max_data_len; offset++) {
456         MD_CHK(mbedtls_md_clone(&aux, ctx));
457         MD_CHK(mbedtls_md_finish(&aux, aux_out));
458         /* Keep only the correct inner_hash in the output buffer */
459         mbedtls_ct_memcpy_if_eq(output, aux_out, hash_size,
460                                 offset, data_len_secret);
461 
462         if (offset < max_data_len) {
463             MD_CHK(mbedtls_md_update(ctx, data + offset, 1));
464         }
465     }
466 
467     /* The context needs to finish() before it starts() again */
468     MD_CHK(mbedtls_md_finish(ctx, aux_out));
469 
470     /* Now compute HASH(okey + inner_hash) */
471     MD_CHK(mbedtls_md_starts(ctx));
472     MD_CHK(mbedtls_md_update(ctx, okey, block_size));
473     MD_CHK(mbedtls_md_update(ctx, output, hash_size));
474     MD_CHK(mbedtls_md_finish(ctx, output));
475 
476     /* Done, get ready for next time */
477     MD_CHK(mbedtls_md_hmac_reset(ctx));
478 
479 #undef MD_CHK
480 
481 cleanup:
482     mbedtls_md_free(&aux);
483     return ret;
484 }
485 
486 #endif /* MBEDTLS_SSL_SOME_MODES_USE_MAC */
487 
488 #if defined(MBEDTLS_BIGNUM_C)
489 
490 #define MPI_VALIDATE_RET(cond)                                       \
491     MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
492 
493 /*
494  * Conditionally assign X = Y, without leaking information
495  * about whether the assignment was made or not.
496  * (Leaking information about the respective sizes of X and Y is ok however.)
497  */
498 #if defined(_MSC_VER) && defined(_M_ARM64) && (_MSC_FULL_VER < 193131103)
499 /*
500  * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
501  * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
502  */
503 __declspec(noinline)
504 #endif
mbedtls_mpi_safe_cond_assign(mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned char assign)505 int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
506                                  const mbedtls_mpi *Y,
507                                  unsigned char assign)
508 {
509     int ret = 0;
510     size_t i;
511     mbedtls_mpi_uint limb_mask;
512     MPI_VALIDATE_RET(X != NULL);
513     MPI_VALIDATE_RET(Y != NULL);
514 
515     /* all-bits 1 if assign is 1, all-bits 0 if assign is 0 */
516     limb_mask = mbedtls_ct_mpi_uint_mask(assign);;
517 
518     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
519 
520     X->s = (int) mbedtls_ct_uint_if(assign, Y->s, X->s);
521 
522     mbedtls_ct_mpi_uint_cond_assign(Y->n, X->p, Y->p, assign);
523 
524     for (i = Y->n; i < X->n; i++) {
525         X->p[i] &= ~limb_mask;
526     }
527 
528 cleanup:
529     return ret;
530 }
531 
532 /*
533  * Conditionally swap X and Y, without leaking information
534  * about whether the swap was made or not.
535  * Here it is not ok to simply swap the pointers, which would lead to
536  * different memory access patterns when X and Y are used afterwards.
537  */
mbedtls_mpi_safe_cond_swap(mbedtls_mpi * X,mbedtls_mpi * Y,unsigned char swap)538 int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
539                                mbedtls_mpi *Y,
540                                unsigned char swap)
541 {
542     int ret, s;
543     size_t i;
544     mbedtls_mpi_uint limb_mask;
545     mbedtls_mpi_uint tmp;
546     MPI_VALIDATE_RET(X != NULL);
547     MPI_VALIDATE_RET(Y != NULL);
548 
549     if (X == Y) {
550         return 0;
551     }
552 
553     /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
554     limb_mask = mbedtls_ct_mpi_uint_mask(swap);
555 
556     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
557     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
558 
559     s = X->s;
560     X->s = (int) mbedtls_ct_uint_if(swap, Y->s, X->s);
561     Y->s = (int) mbedtls_ct_uint_if(swap, s, Y->s);
562 
563 
564     for (i = 0; i < X->n; i++) {
565         tmp = X->p[i];
566         X->p[i] = (X->p[i] & ~limb_mask) | (Y->p[i] & limb_mask);
567         Y->p[i] = (Y->p[i] & ~limb_mask) | (tmp & limb_mask);
568     }
569 
570 cleanup:
571     return ret;
572 }
573 
574 /*
575  * Compare signed values in constant time
576  */
mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi * X,const mbedtls_mpi * Y,unsigned * ret)577 int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
578                           const mbedtls_mpi *Y,
579                           unsigned *ret)
580 {
581     size_t i;
582     /* The value of any of these variables is either 0 or 1 at all times. */
583     unsigned cond, done, X_is_negative, Y_is_negative;
584 
585     MPI_VALIDATE_RET(X != NULL);
586     MPI_VALIDATE_RET(Y != NULL);
587     MPI_VALIDATE_RET(ret != NULL);
588 
589     if (X->n != Y->n) {
590         return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
591     }
592 
593     /*
594      * Set sign_N to 1 if N >= 0, 0 if N < 0.
595      * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
596      */
597     X_is_negative = (X->s & 2) >> 1;
598     Y_is_negative = (Y->s & 2) >> 1;
599 
600     /*
601      * If the signs are different, then the positive operand is the bigger.
602      * That is if X is negative (X_is_negative == 1), then X < Y is true and it
603      * is false if X is positive (X_is_negative == 0).
604      */
605     cond = (X_is_negative ^ Y_is_negative);
606     *ret = cond & X_is_negative;
607 
608     /*
609      * This is a constant-time function. We might have the result, but we still
610      * need to go through the loop. Record if we have the result already.
611      */
612     done = cond;
613 
614     for (i = X->n; i > 0; i--) {
615         /*
616          * If Y->p[i - 1] < X->p[i - 1] then X < Y is true if and only if both
617          * X and Y are negative.
618          *
619          * Again even if we can make a decision, we just mark the result and
620          * the fact that we are done and continue looping.
621          */
622         cond = mbedtls_ct_mpi_uint_lt(Y->p[i - 1], X->p[i - 1]);
623         *ret |= cond & (1 - done) & X_is_negative;
624         done |= cond;
625 
626         /*
627          * If X->p[i - 1] < Y->p[i - 1] then X < Y is true if and only if both
628          * X and Y are positive.
629          *
630          * Again even if we can make a decision, we just mark the result and
631          * the fact that we are done and continue looping.
632          */
633         cond = mbedtls_ct_mpi_uint_lt(X->p[i - 1], Y->p[i - 1]);
634         *ret |= cond & (1 - done) & (1 - X_is_negative);
635         done |= cond;
636     }
637 
638     return 0;
639 }
640 
641 #endif /* MBEDTLS_BIGNUM_C */
642 
643 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
644 
mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode,unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)645 int mbedtls_ct_rsaes_pkcs1_v15_unpadding(int mode,
646                                          unsigned char *input,
647                                          size_t ilen,
648                                          unsigned char *output,
649                                          size_t output_max_len,
650                                          size_t *olen)
651 {
652     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
653     size_t i, plaintext_max_size;
654 
655     /* The following variables take sensitive values: their value must
656      * not leak into the observable behavior of the function other than
657      * the designated outputs (output, olen, return value). Otherwise
658      * this would open the execution of the function to
659      * side-channel-based variants of the Bleichenbacher padding oracle
660      * attack. Potential side channels include overall timing, memory
661      * access patterns (especially visible to an adversary who has access
662      * to a shared memory cache), and branches (especially visible to
663      * an adversary who has access to a shared code cache or to a shared
664      * branch predictor). */
665     size_t pad_count = 0;
666     unsigned bad = 0;
667     unsigned char pad_done = 0;
668     size_t plaintext_size = 0;
669     unsigned output_too_large;
670 
671     plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
672                                                         : output_max_len;
673 
674     /* Check and get padding length in constant time and constant
675      * memory trace. The first byte must be 0. */
676     bad |= input[0];
677 
678     if (mode == MBEDTLS_RSA_PRIVATE) {
679         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
680          * where PS must be at least 8 nonzero bytes. */
681         bad |= input[1] ^ MBEDTLS_RSA_CRYPT;
682 
683         /* Read the whole buffer. Set pad_done to nonzero if we find
684          * the 0x00 byte and remember the padding length in pad_count. */
685         for (i = 2; i < ilen; i++) {
686             pad_done  |= ((input[i] | (unsigned char) -input[i]) >> 7) ^ 1;
687             pad_count += ((pad_done | (unsigned char) -pad_done) >> 7) ^ 1;
688         }
689     } else {
690         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
691          * where PS must be at least 8 bytes with the value 0xFF. */
692         bad |= input[1] ^ MBEDTLS_RSA_SIGN;
693 
694         /* Read the whole buffer. Set pad_done to nonzero if we find
695          * the 0x00 byte and remember the padding length in pad_count.
696          * If there's a non-0xff byte in the padding, the padding is bad. */
697         for (i = 2; i < ilen; i++) {
698             pad_done |= mbedtls_ct_uint_if(input[i], 0, 1);
699             pad_count += mbedtls_ct_uint_if(pad_done, 0, 1);
700             bad |= mbedtls_ct_uint_if(pad_done, 0, input[i] ^ 0xFF);
701         }
702     }
703 
704     /* If pad_done is still zero, there's no data, only unfinished padding. */
705     bad |= mbedtls_ct_uint_if(pad_done, 0, 1);
706 
707     /* There must be at least 8 bytes of padding. */
708     bad |= mbedtls_ct_size_gt(8, pad_count);
709 
710     /* If the padding is valid, set plaintext_size to the number of
711      * remaining bytes after stripping the padding. If the padding
712      * is invalid, avoid leaking this fact through the size of the
713      * output: use the maximum message size that fits in the output
714      * buffer. Do it without branches to avoid leaking the padding
715      * validity through timing. RSA keys are small enough that all the
716      * size_t values involved fit in unsigned int. */
717     plaintext_size = mbedtls_ct_uint_if(
718         bad, (unsigned) plaintext_max_size,
719         (unsigned) (ilen - pad_count - 3));
720 
721     /* Set output_too_large to 0 if the plaintext fits in the output
722      * buffer and to 1 otherwise. */
723     output_too_large = mbedtls_ct_size_gt(plaintext_size,
724                                           plaintext_max_size);
725 
726     /* Set ret without branches to avoid timing attacks. Return:
727      * - INVALID_PADDING if the padding is bad (bad != 0).
728      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
729      *   plaintext does not fit in the output buffer.
730      * - 0 if the padding is correct. */
731     ret = -(int) mbedtls_ct_uint_if(
732         bad, -MBEDTLS_ERR_RSA_INVALID_PADDING,
733         mbedtls_ct_uint_if(output_too_large,
734                            -MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
735                            0));
736 
737     /* If the padding is bad or the plaintext is too large, zero the
738      * data that we're about to copy to the output buffer.
739      * We need to copy the same amount of data
740      * from the same buffer whether the padding is good or not to
741      * avoid leaking the padding validity through overall timing or
742      * through memory or cache access patterns. */
743     bad = mbedtls_ct_uint_mask(bad | output_too_large);
744     for (i = 11; i < ilen; i++) {
745         input[i] &= ~bad;
746     }
747 
748     /* If the plaintext is too large, truncate it to the buffer size.
749      * Copy anyway to avoid revealing the length through timing, because
750      * revealing the length is as bad as revealing the padding validity
751      * for a Bleichenbacher attack. */
752     plaintext_size = mbedtls_ct_uint_if(output_too_large,
753                                         (unsigned) plaintext_max_size,
754                                         (unsigned) plaintext_size);
755 
756     /* Move the plaintext to the leftmost position where it can start in
757      * the working buffer, i.e. make it start plaintext_max_size from
758      * the end of the buffer. Do this with a memory access trace that
759      * does not depend on the plaintext size. After this move, the
760      * starting location of the plaintext is no longer sensitive
761      * information. */
762     mbedtls_ct_mem_move_to_left(input + ilen - plaintext_max_size,
763                                 plaintext_max_size,
764                                 plaintext_max_size - plaintext_size);
765 
766     /* Finally copy the decrypted plaintext plus trailing zeros into the output
767      * buffer. If output_max_len is 0, then output may be an invalid pointer
768      * and the result of memcpy() would be undefined; prevent undefined
769      * behavior making sure to depend only on output_max_len (the size of the
770      * user-provided output buffer), which is independent from plaintext
771      * length, validity of padding, success of the decryption, and other
772      * secrets. */
773     if (output_max_len != 0) {
774         memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
775     }
776 
777     /* Report the amount of data we copied to the output buffer. In case
778      * of errors (bad padding or output too large), the value of *olen
779      * when this function returns is not specified. Making it equivalent
780      * to the good case limits the risks of leaking the padding validity. */
781     *olen = plaintext_size;
782 
783     return ret;
784 }
785 
786 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
787