• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1:tocdepth: 3
2
3.. _module-pw_tokenizer-tokenization:
4
5============
6Tokenization
7============
8.. pigweed-module-subpage::
9   :name: pw_tokenizer
10
11Tokenization converts a string literal to a token. If it's a printf-style
12string, its arguments are encoded along with it. The results of tokenization can
13be sent off device or stored in place of a full string.
14
15--------
16Concepts
17--------
18See :ref:`module-pw_tokenizer-get-started-overview` for a high-level
19explanation of how ``pw_tokenizer`` works.
20
21Token generation: fixed length hashing at compile time
22======================================================
23String tokens are generated using a modified version of the x65599 hash used by
24the SDBM project. All hashing is done at compile time.
25
26In C code, strings are hashed with a preprocessor macro. For compatibility with
27macros, the hash must be limited to a fixed maximum number of characters. This
28value is set by ``PW_TOKENIZER_CFG_C_HASH_LENGTH``. Increasing
29``PW_TOKENIZER_CFG_C_HASH_LENGTH`` increases the compilation time for C due to
30the complexity of the hashing macros.
31
32C++ macros use a constexpr function instead of a macro. This function works with
33any length of string and has lower compilation time impact than the C macros.
34For consistency, C++ tokenization uses the same hash algorithm, but the
35calculated values will differ between C and C++ for strings longer than
36``PW_TOKENIZER_CFG_C_HASH_LENGTH`` characters.
37
38Token encoding
39==============
40The token is a 32-bit hash calculated during compilation. The string is encoded
41little-endian with the token followed by arguments, if any. For example, the
4231-byte string ``You can go about your business.`` hashes to 0xdac9a244.
43This is encoded as 4 bytes: ``44 a2 c9 da``.
44
45Arguments are encoded as follows:
46
47* **Integers**  (1--10 bytes) --
48  `ZagZag and varint encoded <https://developers.google.com/protocol-buffers/docs/encoding#signed-integers>`_,
49  similarly to Protocol Buffers. Smaller values take fewer bytes.
50* **Floating point numbers** (4 bytes) -- Single precision floating point.
51* **Strings** (1--128 bytes) -- Length byte followed by the string contents.
52  The top bit of the length whether the string was truncated or not. The
53  remaining 7 bits encode the string length, with a maximum of 127 bytes.
54
55.. TODO(hepler): insert diagram here!
56
57.. tip::
58   ``%s`` arguments can quickly fill a tokenization buffer. Keep ``%s``
59   arguments short or avoid encoding them as strings (e.g. encode an enum as an
60   integer instead of a string). See also
61   :ref:`module-pw_tokenizer-nested-arguments`.
62
63.. _module-pw_tokenizer-proto:
64
65Tokenized fields in protocol buffers
66====================================
67Text may be represented in a few different ways:
68
69- Plain ASCII or UTF-8 text (``This is plain text``)
70- Base64-encoded tokenized message (``$ibafcA==``)
71- Binary-encoded tokenized message (``89 b6 9f 70``)
72- Little-endian 32-bit integer token (``0x709fb689``)
73
74``pw_tokenizer`` provides the ``pw.tokenizer.format`` protobuf field option.
75This option may be applied to a protobuf field to indicate that it may contain a
76tokenized string. A string that is optionally tokenized is represented with a
77single ``bytes`` field annotated with ``(pw.tokenizer.format) =
78TOKENIZATION_OPTIONAL``.
79
80For example, the following protobuf has one field that may contain a tokenized
81string.
82
83.. code-block:: protobuf
84
85   import "pw_tokenizer_proto/options.proto";
86
87   message MessageWithOptionallyTokenizedField {
88     bytes just_bytes = 1;
89     bytes maybe_tokenized = 2 [(pw.tokenizer.format) = TOKENIZATION_OPTIONAL];
90     string just_text = 3;
91   }
92
93-----------------------
94Tokenization in C++ / C
95-----------------------
96To tokenize a string, include ``pw_tokenizer/tokenize.h`` and invoke one of the
97``PW_TOKENIZE_*`` macros.
98
99Tokenize string literals outside of expressions
100===============================================
101``pw_tokenizer`` provides macros for tokenizing string literals with no
102arguments:
103
104* :c:macro:`PW_TOKENIZE_STRING`
105* :c:macro:`PW_TOKENIZE_STRING_DOMAIN`
106* :c:macro:`PW_TOKENIZE_STRING_MASK`
107
108The tokenization macros above cannot be used inside other expressions.
109
110.. admonition:: **Yes**: Assign :c:macro:`PW_TOKENIZE_STRING` to a ``constexpr`` variable.
111  :class: checkmark
112
113  .. code-block:: cpp
114
115     constexpr uint32_t kGlobalToken = PW_TOKENIZE_STRING("Wowee Zowee!");
116
117     void Function() {
118       constexpr uint32_t local_token = PW_TOKENIZE_STRING("Wowee Zowee?");
119     }
120
121.. admonition:: **No**: Use :c:macro:`PW_TOKENIZE_STRING` in another expression.
122  :class: error
123
124  .. code-block:: cpp
125
126     void BadExample() {
127       ProcessToken(PW_TOKENIZE_STRING("This won't compile!"));
128     }
129
130  Use :c:macro:`PW_TOKENIZE_STRING_EXPR` instead.
131
132Tokenize inside expressions
133===========================
134An alternate set of macros are provided for use inside expressions. These make
135use of lambda functions, so while they can be used inside expressions, they
136require C++ and cannot be assigned to constexpr variables or be used with
137special function variables like ``__func__``.
138
139* :c:macro:`PW_TOKENIZE_STRING_EXPR`
140* :c:macro:`PW_TOKENIZE_STRING_DOMAIN_EXPR`
141* :c:macro:`PW_TOKENIZE_STRING_MASK_EXPR`
142
143.. admonition:: When to use these macros
144
145  Use :c:macro:`PW_TOKENIZE_STRING` and related macros to tokenize string
146  literals that do not need %-style arguments encoded.
147
148.. admonition:: **Yes**: Use :c:macro:`PW_TOKENIZE_STRING_EXPR` within other expressions.
149  :class: checkmark
150
151  .. code-block:: cpp
152
153     void GoodExample() {
154       ProcessToken(PW_TOKENIZE_STRING_EXPR("This will compile!"));
155     }
156
157.. admonition:: **No**: Assign :c:macro:`PW_TOKENIZE_STRING_EXPR` to a ``constexpr`` variable.
158  :class: error
159
160  .. code-block:: cpp
161
162     constexpr uint32_t wont_work = PW_TOKENIZE_STRING_EXPR("This won't compile!"));
163
164  Instead, use :c:macro:`PW_TOKENIZE_STRING` to assign to a ``constexpr`` variable.
165
166.. admonition:: **No**: Tokenize ``__func__`` in :c:macro:`PW_TOKENIZE_STRING_EXPR`.
167  :class: error
168
169  .. code-block:: cpp
170
171     void BadExample() {
172       // This compiles, but __func__ will not be the outer function's name, and
173       // there may be compiler warnings.
174       constexpr uint32_t wont_work = PW_TOKENIZE_STRING_EXPR(__func__);
175     }
176
177  Instead, use :c:macro:`PW_TOKENIZE_STRING` to tokenize ``__func__`` or similar macros.
178
179Tokenize a message with arguments to a buffer
180=============================================
181* :c:macro:`PW_TOKENIZE_TO_BUFFER`
182* :c:macro:`PW_TOKENIZE_TO_BUFFER_DOMAIN`
183* :c:macro:`PW_TOKENIZE_TO_BUFFER_MASK`
184
185.. admonition:: Why use this macro
186
187   - Encode a tokenized message for consumption within a function.
188   - Encode a tokenized message into an existing buffer.
189
190   Avoid using ``PW_TOKENIZE_TO_BUFFER`` in widely expanded macros, such as a
191   logging macro, because it will result in larger code size than passing the
192   tokenized data to a function.
193
194.. _module-pw_tokenizer-nested-arguments:
195
196Tokenize nested arguments
197=========================
198Encoding ``%s`` string arguments is inefficient, since ``%s`` strings are
199encoded 1:1, with no tokenization. Tokens can therefore be used to replace
200string arguments to tokenized format strings.
201
202* :c:macro:`PW_TOKEN_FMT`
203
204.. admonition:: Logging nested tokens
205
206  Users will typically interact with nested token arguments during logging.
207  In this case there is a slightly different interface described by
208  :ref:`module-pw_log-tokenized-args` that does not generally invoke
209  ``PW_TOKEN_FMT`` directly.
210
211The format specifier for a token is given by PRI-style macro ``PW_TOKEN_FMT()``,
212which is concatenated to the rest of the format string by the C preprocessor.
213
214.. code-block:: cpp
215
216   PW_TOKENIZE_FORMAT_STRING("margarine_domain",
217                             UINT32_MAX,
218                             "I can't believe it's not " PW_TOKEN_FMT() "!",
219                             PW_TOKENIZE_STRING_EXPR("butter"));
220
221This feature is currently only supported by the Python detokenizer.
222
223Nested token format
224-------------------
225Nested tokens have the following format within strings:
226
227.. code-block::
228
229   $[BASE#]TOKEN
230
231The ``$`` is a common prefix required for all nested tokens. It is possible to
232configure a different common prefix if necessary, but using the default ``$``
233character is strongly recommended.
234
235The optional ``BASE`` defines the numeric base encoding of the token. Accepted
236values are 8, 10, 16, and 64. If the hash symbol ``#`` is used without
237specifying a number, the base is assumed to be 16. If the base option is
238omitted entirely, the base defaults to 64 for backward compatibility. All
239encodings except Base64 are not case sensitive. This may be expanded to support
240other bases in the future.
241
242Non-Base64 tokens are encoded strictly as 32-bit integers with padding.
243Base64 data may additionally encode string arguments for the detokenized token,
244and therefore does not have a maximum width.
245
246The meaning of ``TOKEN`` depends on the current phase of transformation for the
247current tokenized format string. Within the format string's entry in the token
248database, when the actual value of the token argument is not known, ``TOKEN`` is
249a printf argument specifier (e.g. ``%08x`` for a base-16 token with correct
250padding). The actual tokens that will be used as arguments have separate
251entries in the token database.
252
253After the top-level format string has been detokenized and formatted, ``TOKEN``
254should be the value of the token argument in the specified base, with any
255necessary padding. This is the final format of a nested token if it cannot be
256tokenized.
257
258.. list-table:: Example tokens
259   :widths: 10 25 25
260
261   * - Base
262     - | Token database
263       | (within format string entry)
264     - Partially detokenized
265   * - 10
266     - ``$10#%010d``
267     - ``$10#0086025943``
268   * - 16
269     - ``$#%08x``
270     - ``$#0000001A``
271   * - 64
272     - ``%s``
273     - ``$QA19pfEQ``
274
275.. _module-pw_tokenizer-custom-macro:
276
277Tokenize a message with arguments in a custom macro
278===================================================
279Projects can leverage the tokenization machinery in whichever way best suits
280their needs. The most efficient way to use ``pw_tokenizer`` is to pass tokenized
281data to a global handler function. A project's custom tokenization macro can
282handle tokenized data in a function of their choosing. The function may accept
283any arguments, but its final arguments must be:
284
285* The 32-bit token (:cpp:type:`pw_tokenizer_Token`)
286* The argument types (:cpp:type:`pw_tokenizer_ArgTypes`)
287* Variadic arguments, if any
288
289``pw_tokenizer`` provides two low-level macros to help projects create custom
290tokenization macros:
291
292* :c:macro:`PW_TOKENIZE_FORMAT_STRING`
293* :c:macro:`PW_TOKENIZER_REPLACE_FORMAT_STRING`
294
295.. caution::
296
297   Note the spelling difference! The first macro begins with ``PW_TOKENIZE_``
298   (no ``R``) whereas the second begins with ``PW_TOKENIZER_``.
299
300Use these macros to invoke an encoding function with the token, argument types,
301and variadic arguments. The function can then encode the tokenized message to a
302buffer using helpers in ``pw_tokenizer/encode_args.h``:
303
304.. Note: pw_tokenizer_EncodeArgs is a C function so you would expect to
305.. reference it as :c:func:`pw_tokenizer_EncodeArgs`. That doesn't work because
306.. it's defined in a header file that mixes C and C++.
307
308* :cpp:func:`pw::tokenizer::EncodeArgs`
309* :cpp:class:`pw::tokenizer::EncodedMessage`
310* :cpp:func:`pw_tokenizer_EncodeArgs`
311
312Example
313-------
314The following example implements a custom tokenization macro similar to
315:ref:`module-pw_log_tokenized`.
316
317.. code-block:: cpp
318
319   #include "pw_tokenizer/tokenize.h"
320
321   #ifndef __cplusplus
322   extern "C" {
323   #endif
324
325   void EncodeTokenizedMessage(uint32_t metadata,
326                               pw_tokenizer_Token token,
327                               pw_tokenizer_ArgTypes types,
328                               ...);
329
330   #ifndef __cplusplus
331   }  // extern "C"
332   #endif
333
334   #define PW_LOG_TOKENIZED_ENCODE_MESSAGE(metadata, format, ...)          \
335     do {                                                                  \
336       PW_TOKENIZE_FORMAT_STRING("logs", UINT32_MAX, format, __VA_ARGS__); \
337       EncodeTokenizedMessage(                                             \
338           metadata, PW_TOKENIZER_REPLACE_FORMAT_STRING(__VA_ARGS__));     \
339     } while (0)
340
341In this example, the ``EncodeTokenizedMessage`` function would handle encoding
342and processing the message. Encoding is done by the
343:cpp:class:`pw::tokenizer::EncodedMessage` class or
344:cpp:func:`pw::tokenizer::EncodeArgs` function from
345``pw_tokenizer/encode_args.h``. The encoded message can then be transmitted or
346stored as needed.
347
348.. code-block:: cpp
349
350   #include "pw_log_tokenized/log_tokenized.h"
351   #include "pw_tokenizer/encode_args.h"
352
353   void HandleTokenizedMessage(pw::log_tokenized::Metadata metadata,
354                               pw::span<std::byte> message);
355
356   extern "C" void EncodeTokenizedMessage(const uint32_t metadata,
357                                          const pw_tokenizer_Token token,
358                                          const pw_tokenizer_ArgTypes types,
359                                          ...) {
360     va_list args;
361     va_start(args, types);
362     pw::tokenizer::EncodedMessage<kLogBufferSize> encoded_message(token, types, args);
363     va_end(args);
364
365     HandleTokenizedMessage(metadata, encoded_message);
366   }
367
368.. admonition:: Why use a custom macro
369
370   - Optimal code size. Invoking a free function with the tokenized data results
371     in the smallest possible call site.
372   - Pass additional arguments, such as metadata, with the tokenized message.
373   - Integrate ``pw_tokenizer`` with other systems.
374
375Tokenizing function names
376=========================
377The string literal tokenization functions support tokenizing string literals or
378constexpr character arrays (``constexpr const char[]``). In GCC and Clang, the
379special ``__func__`` variable and ``__PRETTY_FUNCTION__`` extension are declared
380as ``static constexpr char[]`` in C++ instead of the standard ``static const
381char[]``. This means that ``__func__`` and ``__PRETTY_FUNCTION__`` can be
382tokenized while compiling C++ with GCC or Clang.
383
384.. code-block:: cpp
385
386   // Tokenize the special function name variables.
387   constexpr uint32_t function = PW_TOKENIZE_STRING(__func__);
388   constexpr uint32_t pretty_function = PW_TOKENIZE_STRING(__PRETTY_FUNCTION__);
389
390Note that ``__func__`` and ``__PRETTY_FUNCTION__`` are not string literals.
391They are defined as static character arrays, so they cannot be implicitly
392concatentated with string literals. For example, ``printf(__func__ ": %d",
393123);`` will not compile.
394
395Calculate minimum required buffer size
396======================================
397See :cpp:func:`pw::tokenizer::MinEncodingBufferSizeBytes`.
398
399.. _module-pw_tokenizer-base64-format:
400
401Encoding Base64
402===============
403The tokenizer encodes messages to a compact binary representation. Applications
404may desire a textual representation of tokenized strings. This makes it easy to
405use tokenized messages alongside plain text messages, but comes at a small
406efficiency cost: encoded Base64 messages occupy about 4/3 (133%) as much memory
407as binary messages.
408
409The Base64 format is comprised of a ``$`` character followed by the
410Base64-encoded contents of the tokenized message. For example, consider
411tokenizing the string ``This is an example: %d!`` with the argument -1. The
412string's token is 0x4b016e66.
413
414.. code-block:: text
415
416   Source code: PW_LOG("This is an example: %d!", -1);
417
418    Plain text: This is an example: -1! [23 bytes]
419
420        Binary: 66 6e 01 4b 01          [ 5 bytes]
421
422        Base64: $Zm4BSwE=               [ 9 bytes]
423
424To encode with the Base64 format, add a call to
425``pw::tokenizer::PrefixedBase64Encode`` or ``pw_tokenizer_PrefixedBase64Encode``
426in the tokenizer handler function. For example,
427
428.. code-block:: cpp
429
430   void TokenizedMessageHandler(const uint8_t encoded_message[],
431                                size_t size_bytes) {
432     pw::InlineBasicString base64 = pw::tokenizer::PrefixedBase64Encode(
433         pw::span(encoded_message, size_bytes));
434
435     TransmitLogMessage(base64.data(), base64.size());
436   }
437
438.. _module-pw_tokenizer-masks:
439
440Reduce token size with masking
441==============================
442``pw_tokenizer`` uses 32-bit tokens. On 32-bit or 64-bit architectures, using
443fewer than 32 bits does not improve runtime or code size efficiency. However,
444when tokens are packed into data structures or stored in arrays, the size of the
445token directly affects memory usage. In those cases, every bit counts, and it
446may be desireable to use fewer bits for the token.
447
448``pw_tokenizer`` allows users to provide a mask to apply to the token. This
449masked token is used in both the token database and the code. The masked token
450is not a masked version of the full 32-bit token, the masked token is the token.
451This makes it trivial to decode tokens that use fewer than 32 bits.
452
453Masking functionality is provided through the ``*_MASK`` versions of the macros:
454
455* :c:macro:`PW_TOKENIZE_STRING_MASK`
456* :c:macro:`PW_TOKENIZE_STRING_MASK_EXPR`
457* :c:macro:`PW_TOKENIZE_TO_BUFFER_MASK`
458
459For example, the following generates 16-bit tokens and packs them into an
460existing value.
461
462.. code-block:: cpp
463
464   constexpr uint32_t token = PW_TOKENIZE_STRING_MASK("domain", 0xFFFF, "Pigweed!");
465   uint32_t packed_word = (other_bits << 16) | token;
466
467Tokens are hashes, so tokens of any size have a collision risk. The fewer bits
468used for tokens, the more likely two strings are to hash to the same token. See
469:ref:`module-pw_tokenizer-collisions`.
470
471Masked tokens without arguments may be encoded in fewer bytes. For example, the
47216-bit token ``0x1234`` may be encoded as two little-endian bytes (``34 12``)
473rather than four (``34 12 00 00``). The detokenizer tools zero-pad data smaller
474than four bytes. Tokens with arguments must always be encoded as four bytes.
475
476.. _module-pw_tokenizer-domains:
477
478Keep tokens from different sources separate with domains
479========================================================
480``pw_tokenizer`` supports having multiple tokenization domains. Domains are a
481string label associated with each tokenized string. This allows projects to keep
482tokens from different sources separate. Potential use cases include the
483following:
484
485* Keep large sets of tokenized strings separate to avoid collisions.
486* Create a separate database for a small number of strings that use truncated
487  tokens, for example only 10 or 16 bits instead of the full 32 bits.
488
489If no domain is specified, the domain is empty (``""``). For many projects, this
490default domain is sufficient, so no additional configuration is required.
491
492.. code-block:: cpp
493
494   // Tokenizes this string to the default ("") domain.
495   PW_TOKENIZE_STRING("Hello, world!");
496
497   // Tokenizes this string to the "my_custom_domain" domain.
498   PW_TOKENIZE_STRING_DOMAIN("my_custom_domain", "Hello, world!");
499
500The database and detokenization command line tools default to reading from the
501default domain. The domain may be specified for ELF files by appending
502``#DOMAIN_NAME`` to the file path. Use ``#.*`` to read from all domains. For
503example, the following reads strings in ``some_domain`` from ``my_image.elf``.
504
505.. code-block:: sh
506
507   ./database.py create --database my_db.csv path/to/my_image.elf#some_domain
508
509See :ref:`module-pw_tokenizer-managing-token-databases` for information about
510the ``database.py`` command line tool.
511
512Limitations, bugs, and future work
513==================================
514
515.. _module-pw_tokenizer-gcc-template-bug:
516
517GCC bug: tokenization in template functions
518-------------------------------------------
519GCC releases prior to 14 incorrectly ignore the section attribute for template
520`functions <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70435>`_ and `variables
521<https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88061>`_. The bug causes tokenized
522strings in template functions to be emitted into ``.rodata`` instead of the
523tokenized string section, so they cannot be extracted for detokenization.
524
525Fortunately, this is simple to work around in the linker script.
526``pw_tokenizer_linker_sections.ld`` includes a statement that pulls tokenized
527string entries from ``.rodata`` into the tokenized string section. See
528`b/321306079 <https://issues.pigweed.dev/issues/321306079>`_ for details.
529
530If tokenization is working, but strings in templates are not appearing in token
531databases, check the following:
532
533- The full contents of the latest version of ``pw_tokenizer_linker_sections.ld``
534  are included with the linker script. The linker script was updated in
535  `pwrev.dev/188424 <http://pwrev.dev/188424>`_.
536- The ``-fdata-sections`` compilation option is in use. This places each
537  variable in its own section, which is necessary for pulling tokenized string
538  entries from ``.rodata`` into the proper section.
539
54064-bit tokenization
541-------------------
542The Python and C++ detokenizing libraries currently assume that strings were
543tokenized on a system with 32-bit ``long``, ``size_t``, ``intptr_t``, and
544``ptrdiff_t``. Decoding may not work correctly for these types if a 64-bit
545device performed the tokenization.
546
547Supporting detokenization of strings tokenized on 64-bit targets would be
548simple. This could be done by adding an option to switch the 32-bit types to
54964-bit. The tokenizer stores the sizes of these types in the
550``.pw_tokenizer.info`` ELF section, so the sizes of these types can be verified
551by checking the ELF file, if necessary.
552
553Tokenization in headers
554-----------------------
555Tokenizing code in header files (inline functions or templates) may trigger
556warnings such as ``-Wlto-type-mismatch`` under certain conditions. That
557is because tokenization requires declaring a character array for each tokenized
558string. If the tokenized string includes macros that change value, the size of
559this character array changes, which means the same static variable is defined
560with different sizes. It should be safe to suppress these warnings, but, when
561possible, code that tokenizes strings with macros that can change value should
562be moved to source files rather than headers.
563
564----------------------
565Tokenization in Python
566----------------------
567The Python ``pw_tokenizer.encode`` module has limited support for encoding
568tokenized messages with the :func:`pw_tokenizer.encode.encode_token_and_args`
569function. This function requires a string's token is already calculated.
570Typically these tokens are provided by a database, but they can be manually
571created using the tokenizer hash.
572
573:func:`pw_tokenizer.tokens.pw_tokenizer_65599_hash` is particularly useful
574for offline token database generation in cases where tokenized strings in a
575binary cannot be embedded as parsable pw_tokenizer entries.
576
577.. note::
578   In C, the hash length of a string has a fixed limit controlled by
579   ``PW_TOKENIZER_CFG_C_HASH_LENGTH``. To match tokens produced by C (as opposed
580   to C++) code, ``pw_tokenizer_65599_hash()`` should be called with a matching
581   hash length limit. When creating an offline database, it's a good idea to
582   generate tokens for both, and merge the databases.
583
584.. _module-pw_tokenizer-cli-encoding:
585
586-----------------
587Encoding CLI tool
588-----------------
589The ``pw_tokenizer.encode`` command line tool can be used to encode
590format strings and optional arguments.
591
592.. code-block:: bash
593
594   python -m pw_tokenizer.encode [-h] FORMAT_STRING [ARG ...]
595
596Example:
597
598.. code-block:: text
599
600   $ python -m pw_tokenizer.encode "There's... %d many of %s!" 2 them
601         Raw input: "There's... %d many of %s!" % (2, 'them')
602   Formatted input: There's... 2 many of them!
603             Token: 0xb6ef8b2d
604           Encoded: b'-\x8b\xef\xb6\x04\x04them' (2d 8b ef b6 04 04 74 68 65 6d) [10 bytes]
605   Prefixed Base64: $LYvvtgQEdGhlbQ==
606
607See ``--help`` for full usage details.
608
609--------
610Appendix
611--------
612
613Case study
614==========
615.. note:: This section discusses the implementation, results, and lessons
616   learned from a real-world deployment of ``pw_tokenizer``.
617
618The tokenizer module was developed to bring tokenized logging to an
619in-development product. The product already had an established text-based
620logging system. Deploying tokenization was straightforward and had substantial
621benefits.
622
623Results
624-------
625* Log contents shrunk by over 50%, even with Base64 encoding.
626
627  * Significant size savings for encoded logs, even using the less-efficient
628    Base64 encoding required for compatibility with the existing log system.
629  * Freed valuable communication bandwidth.
630  * Allowed storing many more logs in crash dumps.
631
632* Substantial flash savings.
633
634  * Reduced the size firmware images by up to 18%.
635
636* Simpler logging code.
637
638  * Removed CPU-heavy ``snprintf`` calls.
639  * Removed complex code for forwarding log arguments to a low-priority task.
640
641This section describes the tokenizer deployment process and highlights key
642insights.
643
644Firmware deployment
645-------------------
646* In the project's logging macro, calls to the underlying logging function were
647  replaced with a tokenized log macro invocation.
648* The log level was passed as the payload argument to facilitate runtime log
649  level control.
650* For this project, it was necessary to encode the log messages as text. In
651  the handler function the log messages were encoded in the $-prefixed
652  :ref:`module-pw_tokenizer-base64-format`, then dispatched as normal log messages.
653* Asserts were tokenized a callback-based API that has been removed (a
654  :ref:`custom macro <module-pw_tokenizer-custom-macro>` is a better
655  alternative).
656
657.. attention::
658  Do not encode line numbers in tokenized strings. This results in a huge
659  number of lines being added to the database, since every time code moves,
660  new strings are tokenized. If :ref:`module-pw_log_tokenized` is used, line
661  numbers are encoded in the log metadata. Line numbers may also be included by
662  by adding ``"%d"`` to the format string and passing ``__LINE__``.
663
664.. _module-pw_tokenizer-database-management:
665
666Database management
667-------------------
668* The token database was stored as a CSV file in the project's Git repo.
669* The token database was automatically updated as part of the build, and
670  developers were expected to check in the database changes alongside their code
671  changes.
672* A presubmit check verified that all strings added by a change were added to
673  the token database.
674* The token database included logs and asserts for all firmware images in the
675  project.
676* No strings were purged from the token database.
677
678.. tip::
679   Merge conflicts may be a frequent occurrence with an in-source CSV database.
680   Use the :ref:`module-pw_tokenizer-directory-database-format` instead.
681
682Decoding tooling deployment
683---------------------------
684* The Python detokenizer in ``pw_tokenizer`` was deployed to two places:
685
686  * Product-specific Python command line tools, using
687    ``pw_tokenizer.Detokenizer``.
688  * Standalone script for decoding prefixed Base64 tokens in files or
689    live output (e.g. from ``adb``), using ``detokenize.py``'s command line
690    interface.
691
692* The C++ detokenizer library was deployed to two Android apps with a Java
693  Native Interface (JNI) layer.
694
695  * The binary token database was included as a raw resource in the APK.
696  * In one app, the built-in token database could be overridden by copying a
697    file to the phone.
698
699.. tip::
700   Make the tokenized logging tools simple to use for your project.
701
702   * Provide simple wrapper shell scripts that fill in arguments for the
703     project. For example, point ``detokenize.py`` to the project's token
704     databases.
705   * Use ``pw_tokenizer.AutoUpdatingDetokenizer`` to decode in
706     continuously-running tools, so that users don't have to restart the tool
707     when the token database updates.
708   * Integrate detokenization everywhere it is needed. Integrating the tools
709     takes just a few lines of code, and token databases can be embedded in APKs
710     or binaries.
711