• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
16 #define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
17 
18 #include <algorithm>
19 #include <initializer_list>
20 #include <iterator>
21 #include <utility>
22 
23 #include "absl/base/attributes.h"
24 #include "absl/base/internal/throw_delegate.h"
25 #include "absl/container/internal/btree.h"  // IWYU pragma: export
26 #include "absl/container/internal/common.h"
27 #include "absl/memory/memory.h"
28 #include "absl/meta/type_traits.h"
29 
30 namespace absl {
31 ABSL_NAMESPACE_BEGIN
32 namespace container_internal {
33 
34 // A common base class for btree_set, btree_map, btree_multiset, and
35 // btree_multimap.
36 template <typename Tree>
37 class btree_container {
38   using params_type = typename Tree::params_type;
39 
40  protected:
41   // Alias used for heterogeneous lookup functions.
42   // `key_arg<K>` evaluates to `K` when the functors are transparent and to
43   // `key_type` otherwise. It permits template argument deduction on `K` for the
44   // transparent case.
45   template <class K>
46   using key_arg =
47       typename KeyArg<params_type::kIsKeyCompareTransparent>::template type<
48           K, typename Tree::key_type>;
49 
50  public:
51   using key_type = typename Tree::key_type;
52   using value_type = typename Tree::value_type;
53   using size_type = typename Tree::size_type;
54   using difference_type = typename Tree::difference_type;
55   using key_compare = typename Tree::original_key_compare;
56   using value_compare = typename Tree::value_compare;
57   using allocator_type = typename Tree::allocator_type;
58   using reference = typename Tree::reference;
59   using const_reference = typename Tree::const_reference;
60   using pointer = typename Tree::pointer;
61   using const_pointer = typename Tree::const_pointer;
62   using iterator = typename Tree::iterator;
63   using const_iterator = typename Tree::const_iterator;
64   using reverse_iterator = typename Tree::reverse_iterator;
65   using const_reverse_iterator = typename Tree::const_reverse_iterator;
66   using node_type = typename Tree::node_handle_type;
67 
68   struct extract_and_get_next_return_type {
69     node_type node;
70     iterator next;
71   };
72 
73   // Constructors/assignments.
btree_container()74   btree_container() : tree_(key_compare(), allocator_type()) {}
75   explicit btree_container(const key_compare &comp,
76                            const allocator_type &alloc = allocator_type())
tree_(comp,alloc)77       : tree_(comp, alloc) {}
btree_container(const allocator_type & alloc)78   explicit btree_container(const allocator_type &alloc)
79       : tree_(key_compare(), alloc) {}
80 
btree_container(const btree_container & other)81   btree_container(const btree_container &other)
82       : btree_container(other, absl::allocator_traits<allocator_type>::
83                                    select_on_container_copy_construction(
84                                        other.get_allocator())) {}
btree_container(const btree_container & other,const allocator_type & alloc)85   btree_container(const btree_container &other, const allocator_type &alloc)
86       : tree_(other.tree_, alloc) {}
87 
88   btree_container(btree_container &&other) noexcept(
89       std::is_nothrow_move_constructible<Tree>::value) = default;
btree_container(btree_container && other,const allocator_type & alloc)90   btree_container(btree_container &&other, const allocator_type &alloc)
91       : tree_(std::move(other.tree_), alloc) {}
92 
93   btree_container &operator=(const btree_container &other) = default;
94   btree_container &operator=(btree_container &&other) noexcept(
95       std::is_nothrow_move_assignable<Tree>::value) = default;
96 
97   // Iterator routines.
begin()98   iterator begin() { return tree_.begin(); }
begin()99   const_iterator begin() const { return tree_.begin(); }
cbegin()100   const_iterator cbegin() const { return tree_.begin(); }
end()101   iterator end() { return tree_.end(); }
end()102   const_iterator end() const { return tree_.end(); }
cend()103   const_iterator cend() const { return tree_.end(); }
rbegin()104   reverse_iterator rbegin() { return tree_.rbegin(); }
rbegin()105   const_reverse_iterator rbegin() const { return tree_.rbegin(); }
crbegin()106   const_reverse_iterator crbegin() const { return tree_.rbegin(); }
rend()107   reverse_iterator rend() { return tree_.rend(); }
rend()108   const_reverse_iterator rend() const { return tree_.rend(); }
crend()109   const_reverse_iterator crend() const { return tree_.rend(); }
110 
111   // Lookup routines.
112   template <typename K = key_type>
count(const key_arg<K> & key)113   size_type count(const key_arg<K> &key) const {
114     auto equal_range = this->equal_range(key);
115     return equal_range.second - equal_range.first;
116   }
117   template <typename K = key_type>
find(const key_arg<K> & key)118   iterator find(const key_arg<K> &key) {
119     return tree_.find(key);
120   }
121   template <typename K = key_type>
find(const key_arg<K> & key)122   const_iterator find(const key_arg<K> &key) const {
123     return tree_.find(key);
124   }
125   template <typename K = key_type>
contains(const key_arg<K> & key)126   bool contains(const key_arg<K> &key) const {
127     return find(key) != end();
128   }
129   template <typename K = key_type>
lower_bound(const key_arg<K> & key)130   iterator lower_bound(const key_arg<K> &key) {
131     return tree_.lower_bound(key);
132   }
133   template <typename K = key_type>
lower_bound(const key_arg<K> & key)134   const_iterator lower_bound(const key_arg<K> &key) const {
135     return tree_.lower_bound(key);
136   }
137   template <typename K = key_type>
upper_bound(const key_arg<K> & key)138   iterator upper_bound(const key_arg<K> &key) {
139     return tree_.upper_bound(key);
140   }
141   template <typename K = key_type>
upper_bound(const key_arg<K> & key)142   const_iterator upper_bound(const key_arg<K> &key) const {
143     return tree_.upper_bound(key);
144   }
145   template <typename K = key_type>
equal_range(const key_arg<K> & key)146   std::pair<iterator, iterator> equal_range(const key_arg<K> &key) {
147     return tree_.equal_range(key);
148   }
149   template <typename K = key_type>
equal_range(const key_arg<K> & key)150   std::pair<const_iterator, const_iterator> equal_range(
151       const key_arg<K> &key) const {
152     return tree_.equal_range(key);
153   }
154 
155   // Deletion routines. Note that there is also a deletion routine that is
156   // specific to btree_set_container/btree_multiset_container.
157 
158   // Erase the specified iterator from the btree. The iterator must be valid
159   // (i.e. not equal to end()).  Return an iterator pointing to the node after
160   // the one that was erased (or end() if none exists).
erase(const_iterator iter)161   iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); }
erase(iterator iter)162   iterator erase(iterator iter) { return tree_.erase(iter); }
erase(const_iterator first,const_iterator last)163   iterator erase(const_iterator first, const_iterator last) {
164     return tree_.erase_range(iterator(first), iterator(last)).second;
165   }
166   template <typename K = key_type>
erase(const key_arg<K> & key)167   size_type erase(const key_arg<K> &key) {
168     auto equal_range = this->equal_range(key);
169     return tree_.erase_range(equal_range.first, equal_range.second).first;
170   }
171 
172   // Extract routines.
extract_and_get_next(const_iterator position)173   extract_and_get_next_return_type extract_and_get_next(
174       const_iterator position) {
175     // Use Construct instead of Transfer because the rebalancing code will
176     // destroy the slot later.
177     // Note: we rely on erase() taking place after Construct().
178     return {CommonAccess::Construct<node_type>(get_allocator(),
179                                                iterator(position).slot()),
180             erase(position)};
181   }
extract(iterator position)182   node_type extract(iterator position) {
183     // Use Construct instead of Transfer because the rebalancing code will
184     // destroy the slot later.
185     auto node =
186         CommonAccess::Construct<node_type>(get_allocator(), position.slot());
187     erase(position);
188     return node;
189   }
extract(const_iterator position)190   node_type extract(const_iterator position) {
191     return extract(iterator(position));
192   }
193 
194   // Utility routines.
clear()195   ABSL_ATTRIBUTE_REINITIALIZES void clear() { tree_.clear(); }
swap(btree_container & other)196   void swap(btree_container &other) { tree_.swap(other.tree_); }
verify()197   void verify() const { tree_.verify(); }
198 
199   // Size routines.
size()200   size_type size() const { return tree_.size(); }
max_size()201   size_type max_size() const { return tree_.max_size(); }
empty()202   bool empty() const { return tree_.empty(); }
203 
204   friend bool operator==(const btree_container &x, const btree_container &y) {
205     if (x.size() != y.size()) return false;
206     return std::equal(x.begin(), x.end(), y.begin());
207   }
208 
209   friend bool operator!=(const btree_container &x, const btree_container &y) {
210     return !(x == y);
211   }
212 
213   friend bool operator<(const btree_container &x, const btree_container &y) {
214     return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
215   }
216 
217   friend bool operator>(const btree_container &x, const btree_container &y) {
218     return y < x;
219   }
220 
221   friend bool operator<=(const btree_container &x, const btree_container &y) {
222     return !(y < x);
223   }
224 
225   friend bool operator>=(const btree_container &x, const btree_container &y) {
226     return !(x < y);
227   }
228 
229   // The allocator used by the btree.
get_allocator()230   allocator_type get_allocator() const { return tree_.get_allocator(); }
231 
232   // The key comparator used by the btree.
key_comp()233   key_compare key_comp() const { return key_compare(tree_.key_comp()); }
value_comp()234   value_compare value_comp() const { return tree_.value_comp(); }
235 
236   // Support absl::Hash.
237   template <typename State>
AbslHashValue(State h,const btree_container & b)238   friend State AbslHashValue(State h, const btree_container &b) {
239     for (const auto &v : b) {
240       h = State::combine(std::move(h), v);
241     }
242     return State::combine(std::move(h), b.size());
243   }
244 
245  protected:
246   friend struct btree_access;
247   Tree tree_;
248 };
249 
250 // A common base class for btree_set and btree_map.
251 template <typename Tree>
252 class btree_set_container : public btree_container<Tree> {
253   using super_type = btree_container<Tree>;
254   using params_type = typename Tree::params_type;
255   using init_type = typename params_type::init_type;
256   using is_key_compare_to = typename params_type::is_key_compare_to;
257   friend class BtreeNodePeer;
258 
259  protected:
260   template <class K>
261   using key_arg = typename super_type::template key_arg<K>;
262 
263  public:
264   using key_type = typename Tree::key_type;
265   using value_type = typename Tree::value_type;
266   using size_type = typename Tree::size_type;
267   using key_compare = typename Tree::original_key_compare;
268   using allocator_type = typename Tree::allocator_type;
269   using iterator = typename Tree::iterator;
270   using const_iterator = typename Tree::const_iterator;
271   using node_type = typename super_type::node_type;
272   using insert_return_type = InsertReturnType<iterator, node_type>;
273 
274   // Inherit constructors.
275   using super_type::super_type;
btree_set_container()276   btree_set_container() {}
277 
278   // Range constructors.
279   template <class InputIterator>
280   btree_set_container(InputIterator b, InputIterator e,
281                       const key_compare &comp = key_compare(),
282                       const allocator_type &alloc = allocator_type())
super_type(comp,alloc)283       : super_type(comp, alloc) {
284     insert(b, e);
285   }
286   template <class InputIterator>
btree_set_container(InputIterator b,InputIterator e,const allocator_type & alloc)287   btree_set_container(InputIterator b, InputIterator e,
288                       const allocator_type &alloc)
289       : btree_set_container(b, e, key_compare(), alloc) {}
290 
291   // Initializer list constructors.
292   btree_set_container(std::initializer_list<init_type> init,
293                       const key_compare &comp = key_compare(),
294                       const allocator_type &alloc = allocator_type())
295       : btree_set_container(init.begin(), init.end(), comp, alloc) {}
btree_set_container(std::initializer_list<init_type> init,const allocator_type & alloc)296   btree_set_container(std::initializer_list<init_type> init,
297                       const allocator_type &alloc)
298       : btree_set_container(init.begin(), init.end(), alloc) {}
299 
300   // Insertion routines.
insert(const value_type & v)301   std::pair<iterator, bool> insert(const value_type &v) {
302     return this->tree_.insert_unique(params_type::key(v), v);
303   }
insert(value_type && v)304   std::pair<iterator, bool> insert(value_type &&v) {
305     return this->tree_.insert_unique(params_type::key(v), std::move(v));
306   }
307   template <typename... Args>
emplace(Args &&...args)308   std::pair<iterator, bool> emplace(Args &&... args) {
309     // Use a node handle to manage a temp slot.
310     auto node = CommonAccess::Construct<node_type>(this->get_allocator(),
311                                                    std::forward<Args>(args)...);
312     auto *slot = CommonAccess::GetSlot(node);
313     return this->tree_.insert_unique(params_type::key(slot), slot);
314   }
insert(const_iterator hint,const value_type & v)315   iterator insert(const_iterator hint, const value_type &v) {
316     return this->tree_
317         .insert_hint_unique(iterator(hint), params_type::key(v), v)
318         .first;
319   }
insert(const_iterator hint,value_type && v)320   iterator insert(const_iterator hint, value_type &&v) {
321     return this->tree_
322         .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v))
323         .first;
324   }
325   template <typename... Args>
emplace_hint(const_iterator hint,Args &&...args)326   iterator emplace_hint(const_iterator hint, Args &&... args) {
327     // Use a node handle to manage a temp slot.
328     auto node = CommonAccess::Construct<node_type>(this->get_allocator(),
329                                                    std::forward<Args>(args)...);
330     auto *slot = CommonAccess::GetSlot(node);
331     return this->tree_
332         .insert_hint_unique(iterator(hint), params_type::key(slot), slot)
333         .first;
334   }
335   template <typename InputIterator>
insert(InputIterator b,InputIterator e)336   void insert(InputIterator b, InputIterator e) {
337     this->tree_.insert_iterator_unique(b, e, 0);
338   }
insert(std::initializer_list<init_type> init)339   void insert(std::initializer_list<init_type> init) {
340     this->tree_.insert_iterator_unique(init.begin(), init.end(), 0);
341   }
insert(node_type && node)342   insert_return_type insert(node_type &&node) {
343     if (!node) return {this->end(), false, node_type()};
344     std::pair<iterator, bool> res =
345         this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)),
346                                   CommonAccess::GetSlot(node));
347     if (res.second) {
348       CommonAccess::Destroy(&node);
349       return {res.first, true, node_type()};
350     } else {
351       return {res.first, false, std::move(node)};
352     }
353   }
insert(const_iterator hint,node_type && node)354   iterator insert(const_iterator hint, node_type &&node) {
355     if (!node) return this->end();
356     std::pair<iterator, bool> res = this->tree_.insert_hint_unique(
357         iterator(hint), params_type::key(CommonAccess::GetSlot(node)),
358         CommonAccess::GetSlot(node));
359     if (res.second) CommonAccess::Destroy(&node);
360     return res.first;
361   }
362 
363   // Node extraction routines.
364   template <typename K = key_type>
extract(const key_arg<K> & key)365   node_type extract(const key_arg<K> &key) {
366     const std::pair<iterator, bool> lower_and_equal =
367         this->tree_.lower_bound_equal(key);
368     return lower_and_equal.second ? extract(lower_and_equal.first)
369                                   : node_type();
370   }
371   using super_type::extract;
372 
373   // Merge routines.
374   // Moves elements from `src` into `this`. If the element already exists in
375   // `this`, it is left unmodified in `src`.
376   template <
377       typename T,
378       typename absl::enable_if_t<
379           absl::conjunction<
380               std::is_same<value_type, typename T::value_type>,
381               std::is_same<allocator_type, typename T::allocator_type>,
382               std::is_same<typename params_type::is_map_container,
383                            typename T::params_type::is_map_container>>::value,
384           int> = 0>
merge(btree_container<T> & src)385   void merge(btree_container<T> &src) {  // NOLINT
386     for (auto src_it = src.begin(); src_it != src.end();) {
387       if (insert(std::move(params_type::element(src_it.slot()))).second) {
388         src_it = src.erase(src_it);
389       } else {
390         ++src_it;
391       }
392     }
393   }
394 
395   template <
396       typename T,
397       typename absl::enable_if_t<
398           absl::conjunction<
399               std::is_same<value_type, typename T::value_type>,
400               std::is_same<allocator_type, typename T::allocator_type>,
401               std::is_same<typename params_type::is_map_container,
402                            typename T::params_type::is_map_container>>::value,
403           int> = 0>
merge(btree_container<T> && src)404   void merge(btree_container<T> &&src) {
405     merge(src);
406   }
407 };
408 
409 // Base class for btree_map.
410 template <typename Tree>
411 class btree_map_container : public btree_set_container<Tree> {
412   using super_type = btree_set_container<Tree>;
413   using params_type = typename Tree::params_type;
414   friend class BtreeNodePeer;
415 
416  private:
417   template <class K>
418   using key_arg = typename super_type::template key_arg<K>;
419 
420  public:
421   using key_type = typename Tree::key_type;
422   using mapped_type = typename params_type::mapped_type;
423   using value_type = typename Tree::value_type;
424   using key_compare = typename Tree::original_key_compare;
425   using allocator_type = typename Tree::allocator_type;
426   using iterator = typename Tree::iterator;
427   using const_iterator = typename Tree::const_iterator;
428 
429   // Inherit constructors.
430   using super_type::super_type;
btree_map_container()431   btree_map_container() {}
432 
433   // Insertion routines.
434   // Note: the nullptr template arguments and extra `const M&` overloads allow
435   // for supporting bitfield arguments.
436   template <typename K = key_type, class M>
insert_or_assign(const key_arg<K> & k,const M & obj)437   std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k,
438                                              const M &obj) {
439     return insert_or_assign_impl(k, obj);
440   }
441   template <typename K = key_type, class M, K * = nullptr>
insert_or_assign(key_arg<K> && k,const M & obj)442   std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) {
443     return insert_or_assign_impl(std::forward<K>(k), obj);
444   }
445   template <typename K = key_type, class M, M * = nullptr>
insert_or_assign(const key_arg<K> & k,M && obj)446   std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) {
447     return insert_or_assign_impl(k, std::forward<M>(obj));
448   }
449   template <typename K = key_type, class M, K * = nullptr, M * = nullptr>
insert_or_assign(key_arg<K> && k,M && obj)450   std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) {
451     return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj));
452   }
453   template <typename K = key_type, class M>
insert_or_assign(const_iterator hint,const key_arg<K> & k,const M & obj)454   iterator insert_or_assign(const_iterator hint, const key_arg<K> &k,
455                             const M &obj) {
456     return insert_or_assign_hint_impl(hint, k, obj);
457   }
458   template <typename K = key_type, class M, K * = nullptr>
insert_or_assign(const_iterator hint,key_arg<K> && k,const M & obj)459   iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) {
460     return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj);
461   }
462   template <typename K = key_type, class M, M * = nullptr>
insert_or_assign(const_iterator hint,const key_arg<K> & k,M && obj)463   iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) {
464     return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj));
465   }
466   template <typename K = key_type, class M, K * = nullptr, M * = nullptr>
insert_or_assign(const_iterator hint,key_arg<K> && k,M && obj)467   iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) {
468     return insert_or_assign_hint_impl(hint, std::forward<K>(k),
469                                       std::forward<M>(obj));
470   }
471 
472   template <typename K = key_type, typename... Args,
473             typename absl::enable_if_t<
474                 !std::is_convertible<K, const_iterator>::value, int> = 0>
try_emplace(const key_arg<K> & k,Args &&...args)475   std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) {
476     return try_emplace_impl(k, std::forward<Args>(args)...);
477   }
478   template <typename K = key_type, typename... Args,
479             typename absl::enable_if_t<
480                 !std::is_convertible<K, const_iterator>::value, int> = 0>
try_emplace(key_arg<K> && k,Args &&...args)481   std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) {
482     return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
483   }
484   template <typename K = key_type, typename... Args>
try_emplace(const_iterator hint,const key_arg<K> & k,Args &&...args)485   iterator try_emplace(const_iterator hint, const key_arg<K> &k,
486                        Args &&... args) {
487     return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...);
488   }
489   template <typename K = key_type, typename... Args>
try_emplace(const_iterator hint,key_arg<K> && k,Args &&...args)490   iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) {
491     return try_emplace_hint_impl(hint, std::forward<K>(k),
492                                  std::forward<Args>(args)...);
493   }
494 
495   template <typename K = key_type>
496   mapped_type &operator[](const key_arg<K> &k) {
497     return try_emplace(k).first->second;
498   }
499   template <typename K = key_type>
500   mapped_type &operator[](key_arg<K> &&k) {
501     return try_emplace(std::forward<K>(k)).first->second;
502   }
503 
504   template <typename K = key_type>
at(const key_arg<K> & key)505   mapped_type &at(const key_arg<K> &key) {
506     auto it = this->find(key);
507     if (it == this->end())
508       base_internal::ThrowStdOutOfRange("absl::btree_map::at");
509     return it->second;
510   }
511   template <typename K = key_type>
at(const key_arg<K> & key)512   const mapped_type &at(const key_arg<K> &key) const {
513     auto it = this->find(key);
514     if (it == this->end())
515       base_internal::ThrowStdOutOfRange("absl::btree_map::at");
516     return it->second;
517   }
518 
519  private:
520   // Note: when we call `std::forward<M>(obj)` twice, it's safe because
521   // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when
522   // `ret.second` is false.
523   template <class K, class M>
insert_or_assign_impl(K && k,M && obj)524   std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) {
525     const std::pair<iterator, bool> ret =
526         this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj));
527     if (!ret.second) ret.first->second = std::forward<M>(obj);
528     return ret;
529   }
530   template <class K, class M>
insert_or_assign_hint_impl(const_iterator hint,K && k,M && obj)531   iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) {
532     const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique(
533         iterator(hint), k, std::forward<K>(k), std::forward<M>(obj));
534     if (!ret.second) ret.first->second = std::forward<M>(obj);
535     return ret.first;
536   }
537 
538   template <class K, class... Args>
try_emplace_impl(K && k,Args &&...args)539   std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) {
540     return this->tree_.insert_unique(
541         k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)),
542         std::forward_as_tuple(std::forward<Args>(args)...));
543   }
544   template <class K, class... Args>
try_emplace_hint_impl(const_iterator hint,K && k,Args &&...args)545   iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) {
546     return this->tree_
547         .insert_hint_unique(iterator(hint), k, std::piecewise_construct,
548                             std::forward_as_tuple(std::forward<K>(k)),
549                             std::forward_as_tuple(std::forward<Args>(args)...))
550         .first;
551   }
552 };
553 
554 // A common base class for btree_multiset and btree_multimap.
555 template <typename Tree>
556 class btree_multiset_container : public btree_container<Tree> {
557   using super_type = btree_container<Tree>;
558   using params_type = typename Tree::params_type;
559   using init_type = typename params_type::init_type;
560   using is_key_compare_to = typename params_type::is_key_compare_to;
561   friend class BtreeNodePeer;
562 
563   template <class K>
564   using key_arg = typename super_type::template key_arg<K>;
565 
566  public:
567   using key_type = typename Tree::key_type;
568   using value_type = typename Tree::value_type;
569   using size_type = typename Tree::size_type;
570   using key_compare = typename Tree::original_key_compare;
571   using allocator_type = typename Tree::allocator_type;
572   using iterator = typename Tree::iterator;
573   using const_iterator = typename Tree::const_iterator;
574   using node_type = typename super_type::node_type;
575 
576   // Inherit constructors.
577   using super_type::super_type;
btree_multiset_container()578   btree_multiset_container() {}
579 
580   // Range constructors.
581   template <class InputIterator>
582   btree_multiset_container(InputIterator b, InputIterator e,
583                            const key_compare &comp = key_compare(),
584                            const allocator_type &alloc = allocator_type())
super_type(comp,alloc)585       : super_type(comp, alloc) {
586     insert(b, e);
587   }
588   template <class InputIterator>
btree_multiset_container(InputIterator b,InputIterator e,const allocator_type & alloc)589   btree_multiset_container(InputIterator b, InputIterator e,
590                            const allocator_type &alloc)
591       : btree_multiset_container(b, e, key_compare(), alloc) {}
592 
593   // Initializer list constructors.
594   btree_multiset_container(std::initializer_list<init_type> init,
595                            const key_compare &comp = key_compare(),
596                            const allocator_type &alloc = allocator_type())
597       : btree_multiset_container(init.begin(), init.end(), comp, alloc) {}
btree_multiset_container(std::initializer_list<init_type> init,const allocator_type & alloc)598   btree_multiset_container(std::initializer_list<init_type> init,
599                            const allocator_type &alloc)
600       : btree_multiset_container(init.begin(), init.end(), alloc) {}
601 
602   // Insertion routines.
insert(const value_type & v)603   iterator insert(const value_type &v) { return this->tree_.insert_multi(v); }
insert(value_type && v)604   iterator insert(value_type &&v) {
605     return this->tree_.insert_multi(std::move(v));
606   }
insert(const_iterator hint,const value_type & v)607   iterator insert(const_iterator hint, const value_type &v) {
608     return this->tree_.insert_hint_multi(iterator(hint), v);
609   }
insert(const_iterator hint,value_type && v)610   iterator insert(const_iterator hint, value_type &&v) {
611     return this->tree_.insert_hint_multi(iterator(hint), std::move(v));
612   }
613   template <typename InputIterator>
insert(InputIterator b,InputIterator e)614   void insert(InputIterator b, InputIterator e) {
615     this->tree_.insert_iterator_multi(b, e);
616   }
insert(std::initializer_list<init_type> init)617   void insert(std::initializer_list<init_type> init) {
618     this->tree_.insert_iterator_multi(init.begin(), init.end());
619   }
620   template <typename... Args>
emplace(Args &&...args)621   iterator emplace(Args &&... args) {
622     // Use a node handle to manage a temp slot.
623     auto node = CommonAccess::Construct<node_type>(this->get_allocator(),
624                                                    std::forward<Args>(args)...);
625     return this->tree_.insert_multi(CommonAccess::GetSlot(node));
626   }
627   template <typename... Args>
emplace_hint(const_iterator hint,Args &&...args)628   iterator emplace_hint(const_iterator hint, Args &&... args) {
629     // Use a node handle to manage a temp slot.
630     auto node = CommonAccess::Construct<node_type>(this->get_allocator(),
631                                                    std::forward<Args>(args)...);
632     return this->tree_.insert_hint_multi(iterator(hint),
633                                          CommonAccess::GetSlot(node));
634   }
insert(node_type && node)635   iterator insert(node_type &&node) {
636     if (!node) return this->end();
637     iterator res =
638         this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)),
639                                  CommonAccess::GetSlot(node));
640     CommonAccess::Destroy(&node);
641     return res;
642   }
insert(const_iterator hint,node_type && node)643   iterator insert(const_iterator hint, node_type &&node) {
644     if (!node) return this->end();
645     iterator res = this->tree_.insert_hint_multi(
646         iterator(hint),
647         std::move(params_type::element(CommonAccess::GetSlot(node))));
648     CommonAccess::Destroy(&node);
649     return res;
650   }
651 
652   // Node extraction routines.
653   template <typename K = key_type>
extract(const key_arg<K> & key)654   node_type extract(const key_arg<K> &key) {
655     const std::pair<iterator, bool> lower_and_equal =
656         this->tree_.lower_bound_equal(key);
657     return lower_and_equal.second ? extract(lower_and_equal.first)
658                                   : node_type();
659   }
660   using super_type::extract;
661 
662   // Merge routines.
663   // Moves all elements from `src` into `this`.
664   template <
665       typename T,
666       typename absl::enable_if_t<
667           absl::conjunction<
668               std::is_same<value_type, typename T::value_type>,
669               std::is_same<allocator_type, typename T::allocator_type>,
670               std::is_same<typename params_type::is_map_container,
671                            typename T::params_type::is_map_container>>::value,
672           int> = 0>
merge(btree_container<T> & src)673   void merge(btree_container<T> &src) {  // NOLINT
674     for (auto src_it = src.begin(), end = src.end(); src_it != end; ++src_it) {
675       insert(std::move(params_type::element(src_it.slot())));
676     }
677     src.clear();
678   }
679 
680   template <
681       typename T,
682       typename absl::enable_if_t<
683           absl::conjunction<
684               std::is_same<value_type, typename T::value_type>,
685               std::is_same<allocator_type, typename T::allocator_type>,
686               std::is_same<typename params_type::is_map_container,
687                            typename T::params_type::is_map_container>>::value,
688           int> = 0>
merge(btree_container<T> && src)689   void merge(btree_container<T> &&src) {
690     merge(src);
691   }
692 };
693 
694 // A base class for btree_multimap.
695 template <typename Tree>
696 class btree_multimap_container : public btree_multiset_container<Tree> {
697   using super_type = btree_multiset_container<Tree>;
698   using params_type = typename Tree::params_type;
699   friend class BtreeNodePeer;
700 
701  public:
702   using mapped_type = typename params_type::mapped_type;
703 
704   // Inherit constructors.
705   using super_type::super_type;
btree_multimap_container()706   btree_multimap_container() {}
707 };
708 
709 }  // namespace container_internal
710 ABSL_NAMESPACE_END
711 }  // namespace absl
712 
713 #endif  // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_
714