• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! An unbounded set of futures.
2 //!
3 //! This module is only available when the `std` or `alloc` feature of this
4 //! library is activated, and it is activated by default.
5 
6 use crate::task::AtomicWaker;
7 use alloc::sync::{Arc, Weak};
8 use core::cell::UnsafeCell;
9 use core::fmt::{self, Debug};
10 use core::iter::FromIterator;
11 use core::marker::PhantomData;
12 use core::mem;
13 use core::pin::Pin;
14 use core::ptr;
15 use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst};
16 use core::sync::atomic::{AtomicBool, AtomicPtr};
17 use futures_core::future::Future;
18 use futures_core::stream::{FusedStream, Stream};
19 use futures_core::task::{Context, Poll};
20 use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError};
21 
22 mod abort;
23 
24 mod iter;
25 #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352
26 pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef};
27 
28 mod task;
29 use self::task::Task;
30 
31 mod ready_to_run_queue;
32 use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue};
33 
34 /// A set of futures which may complete in any order.
35 ///
36 /// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this
37 /// type that preserves a FIFO order.
38 ///
39 /// This structure is optimized to manage a large number of futures.
40 /// Futures managed by [`FuturesUnordered`] will only be polled when they
41 /// generate wake-up notifications. This reduces the required amount of work
42 /// needed to poll large numbers of futures.
43 ///
44 /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an
45 /// iterator of futures into a [`FuturesUnordered`], or by
46 /// [`push`](FuturesUnordered::push)ing futures onto an existing
47 /// [`FuturesUnordered`]. When new futures are added,
48 /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving
49 /// wake-ups for new futures.
50 ///
51 /// Note that you can create a ready-made [`FuturesUnordered`] via the
52 /// [`collect`](Iterator::collect) method, or you can start with an empty set
53 /// with the [`FuturesUnordered::new`] constructor.
54 ///
55 /// This type is only available when the `std` or `alloc` feature of this
56 /// library is activated, and it is activated by default.
57 #[must_use = "streams do nothing unless polled"]
58 pub struct FuturesUnordered<Fut> {
59     ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>,
60     head_all: AtomicPtr<Task<Fut>>,
61     is_terminated: AtomicBool,
62 }
63 
64 unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {}
65 unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {}
66 impl<Fut> Unpin for FuturesUnordered<Fut> {}
67 
68 impl Spawn for FuturesUnordered<FutureObj<'_, ()>> {
spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError>69     fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> {
70         self.push(future_obj);
71         Ok(())
72     }
73 }
74 
75 impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> {
spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError>76     fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> {
77         self.push(future_obj);
78         Ok(())
79     }
80 }
81 
82 // FuturesUnordered is implemented using two linked lists. One which links all
83 // futures managed by a `FuturesUnordered` and one that tracks futures that have
84 // been scheduled for polling. The first linked list allows for thread safe
85 // insertion of nodes at the head as well as forward iteration, but is otherwise
86 // not thread safe and is only accessed by the thread that owns the
87 // `FuturesUnordered` value for any other operations. The second linked list is
88 // an implementation of the intrusive MPSC queue algorithm described by
89 // 1024cores.net.
90 //
91 // When a future is submitted to the set, a task is allocated and inserted in
92 // both linked lists. The next call to `poll_next` will (eventually) see this
93 // task and call `poll` on the future.
94 //
95 // Before a managed future is polled, the current context's waker is replaced
96 // with one that is aware of the specific future being run. This ensures that
97 // wake-up notifications generated by that specific future are visible to
98 // `FuturesUnordered`. When a wake-up notification is received, the task is
99 // inserted into the ready to run queue, so that its future can be polled later.
100 //
101 // Each task is wrapped in an `Arc` and thereby atomically reference counted.
102 // Also, each task contains an `AtomicBool` which acts as a flag that indicates
103 // whether the task is currently inserted in the atomic queue. When a wake-up
104 // notification is received, the task will only be inserted into the ready to
105 // run queue if it isn't inserted already.
106 
107 impl<Fut> Default for FuturesUnordered<Fut> {
default() -> Self108     fn default() -> Self {
109         Self::new()
110     }
111 }
112 
113 impl<Fut> FuturesUnordered<Fut> {
114     /// Constructs a new, empty [`FuturesUnordered`].
115     ///
116     /// The returned [`FuturesUnordered`] does not contain any futures.
117     /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will
118     /// return [`Poll::Ready(None)`](Poll::Ready).
new() -> Self119     pub fn new() -> Self {
120         let stub = Arc::new(Task {
121             future: UnsafeCell::new(None),
122             next_all: AtomicPtr::new(ptr::null_mut()),
123             prev_all: UnsafeCell::new(ptr::null()),
124             len_all: UnsafeCell::new(0),
125             next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
126             queued: AtomicBool::new(true),
127             ready_to_run_queue: Weak::new(),
128             woken: AtomicBool::new(false),
129         });
130         let stub_ptr = Arc::as_ptr(&stub);
131         let ready_to_run_queue = Arc::new(ReadyToRunQueue {
132             waker: AtomicWaker::new(),
133             head: AtomicPtr::new(stub_ptr as *mut _),
134             tail: UnsafeCell::new(stub_ptr),
135             stub,
136         });
137 
138         Self {
139             head_all: AtomicPtr::new(ptr::null_mut()),
140             ready_to_run_queue,
141             is_terminated: AtomicBool::new(false),
142         }
143     }
144 
145     /// Returns the number of futures contained in the set.
146     ///
147     /// This represents the total number of in-flight futures.
len(&self) -> usize148     pub fn len(&self) -> usize {
149         let (_, len) = self.atomic_load_head_and_len_all();
150         len
151     }
152 
153     /// Returns `true` if the set contains no futures.
is_empty(&self) -> bool154     pub fn is_empty(&self) -> bool {
155         // Relaxed ordering can be used here since we don't need to read from
156         // the head pointer, only check whether it is null.
157         self.head_all.load(Relaxed).is_null()
158     }
159 
160     /// Push a future into the set.
161     ///
162     /// This method adds the given future to the set. This method will not
163     /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must
164     /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called
165     /// in order to receive wake-up notifications for the given future.
push(&self, future: Fut)166     pub fn push(&self, future: Fut) {
167         let task = Arc::new(Task {
168             future: UnsafeCell::new(Some(future)),
169             next_all: AtomicPtr::new(self.pending_next_all()),
170             prev_all: UnsafeCell::new(ptr::null_mut()),
171             len_all: UnsafeCell::new(0),
172             next_ready_to_run: AtomicPtr::new(ptr::null_mut()),
173             queued: AtomicBool::new(true),
174             ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue),
175             woken: AtomicBool::new(false),
176         });
177 
178         // Reset the `is_terminated` flag if we've previously marked ourselves
179         // as terminated.
180         self.is_terminated.store(false, Relaxed);
181 
182         // Right now our task has a strong reference count of 1. We transfer
183         // ownership of this reference count to our internal linked list
184         // and we'll reclaim ownership through the `unlink` method below.
185         let ptr = self.link(task);
186 
187         // We'll need to get the future "into the system" to start tracking it,
188         // e.g. getting its wake-up notifications going to us tracking which
189         // futures are ready. To do that we unconditionally enqueue it for
190         // polling here.
191         self.ready_to_run_queue.enqueue(ptr);
192     }
193 
194     /// Returns an iterator that allows inspecting each future in the set.
iter(&self) -> Iter<'_, Fut> where Fut: Unpin,195     pub fn iter(&self) -> Iter<'_, Fut>
196     where
197         Fut: Unpin,
198     {
199         Iter(Pin::new(self).iter_pin_ref())
200     }
201 
202     /// Returns an iterator that allows inspecting each future in the set.
iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut>203     pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> {
204         let (task, len) = self.atomic_load_head_and_len_all();
205         let pending_next_all = self.pending_next_all();
206 
207         IterPinRef { task, len, pending_next_all, _marker: PhantomData }
208     }
209 
210     /// Returns an iterator that allows modifying each future in the set.
iter_mut(&mut self) -> IterMut<'_, Fut> where Fut: Unpin,211     pub fn iter_mut(&mut self) -> IterMut<'_, Fut>
212     where
213         Fut: Unpin,
214     {
215         IterMut(Pin::new(self).iter_pin_mut())
216     }
217 
218     /// Returns an iterator that allows modifying each future in the set.
iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut>219     pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> {
220         // `head_all` can be accessed directly and we don't need to spin on
221         // `Task::next_all` since we have exclusive access to the set.
222         let task = *self.head_all.get_mut();
223         let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
224 
225         IterPinMut { task, len, _marker: PhantomData }
226     }
227 
228     /// Returns the current head node and number of futures in the list of all
229     /// futures within a context where access is shared with other threads
230     /// (mostly for use with the `len` and `iter_pin_ref` methods).
atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize)231     fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) {
232         let task = self.head_all.load(Acquire);
233         let len = if task.is_null() {
234             0
235         } else {
236             unsafe {
237                 (*task).spin_next_all(self.pending_next_all(), Acquire);
238                 *(*task).len_all.get()
239             }
240         };
241 
242         (task, len)
243     }
244 
245     /// Releases the task. It destroys the future inside and either drops
246     /// the `Arc<Task>` or transfers ownership to the ready to run queue.
247     /// The task this method is called on must have been unlinked before.
release_task(&mut self, task: Arc<Task<Fut>>)248     fn release_task(&mut self, task: Arc<Task<Fut>>) {
249         // `release_task` must only be called on unlinked tasks
250         debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
251         unsafe {
252             debug_assert!((*task.prev_all.get()).is_null());
253         }
254 
255         // The future is done, try to reset the queued flag. This will prevent
256         // `wake` from doing any work in the future
257         let prev = task.queued.swap(true, SeqCst);
258 
259         // Drop the future, even if it hasn't finished yet. This is safe
260         // because we're dropping the future on the thread that owns
261         // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and
262         // such.
263         unsafe {
264             // Set to `None` rather than `take()`ing to prevent moving the
265             // future.
266             *task.future.get() = None;
267         }
268 
269         // If the queued flag was previously set, then it means that this task
270         // is still in our internal ready to run queue. We then transfer
271         // ownership of our reference count to the ready to run queue, and it'll
272         // come along and free it later, noticing that the future is `None`.
273         //
274         // If, however, the queued flag was *not* set then we're safe to
275         // release our reference count on the task. The queued flag was set
276         // above so all future `enqueue` operations will not actually
277         // enqueue the task, so our task will never see the ready to run queue
278         // again. The task itself will be deallocated once all reference counts
279         // have been dropped elsewhere by the various wakers that contain it.
280         if prev {
281             mem::forget(task);
282         }
283     }
284 
285     /// Insert a new task into the internal linked list.
link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut>286     fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> {
287         // `next_all` should already be reset to the pending state before this
288         // function is called.
289         debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
290         let ptr = Arc::into_raw(task);
291 
292         // Atomically swap out the old head node to get the node that should be
293         // assigned to `next_all`.
294         let next = self.head_all.swap(ptr as *mut _, AcqRel);
295 
296         unsafe {
297             // Store the new list length in the new node.
298             let new_len = if next.is_null() {
299                 1
300             } else {
301                 // Make sure `next_all` has been written to signal that it is
302                 // safe to read `len_all`.
303                 (*next).spin_next_all(self.pending_next_all(), Acquire);
304                 *(*next).len_all.get() + 1
305             };
306             *(*ptr).len_all.get() = new_len;
307 
308             // Write the old head as the next node pointer, signaling to other
309             // threads that `len_all` and `next_all` are ready to read.
310             (*ptr).next_all.store(next, Release);
311 
312             // `prev_all` updates don't need to be synchronized, as the field is
313             // only ever used after exclusive access has been acquired.
314             if !next.is_null() {
315                 *(*next).prev_all.get() = ptr;
316             }
317         }
318 
319         ptr
320     }
321 
322     /// Remove the task from the linked list tracking all tasks currently
323     /// managed by `FuturesUnordered`.
324     /// This method is unsafe because it has be guaranteed that `task` is a
325     /// valid pointer.
unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>>326     unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> {
327         // Compute the new list length now in case we're removing the head node
328         // and won't be able to retrieve the correct length later.
329         let head = *self.head_all.get_mut();
330         debug_assert!(!head.is_null());
331         let new_len = *(*head).len_all.get() - 1;
332 
333         let task = Arc::from_raw(task);
334         let next = task.next_all.load(Relaxed);
335         let prev = *task.prev_all.get();
336         task.next_all.store(self.pending_next_all(), Relaxed);
337         *task.prev_all.get() = ptr::null_mut();
338 
339         if !next.is_null() {
340             *(*next).prev_all.get() = prev;
341         }
342 
343         if !prev.is_null() {
344             (*prev).next_all.store(next, Relaxed);
345         } else {
346             *self.head_all.get_mut() = next;
347         }
348 
349         // Store the new list length in the head node.
350         let head = *self.head_all.get_mut();
351         if !head.is_null() {
352             *(*head).len_all.get() = new_len;
353         }
354 
355         task
356     }
357 
358     /// Returns the reserved value for `Task::next_all` to indicate a pending
359     /// assignment from the thread that inserted the task.
360     ///
361     /// `FuturesUnordered::link` needs to update `Task` pointers in an order
362     /// that ensures any iterators created on other threads can correctly
363     /// traverse the entire `Task` list using the chain of `next_all` pointers.
364     /// This could be solved with a compare-exchange loop that stores the
365     /// current `head_all` in `next_all` and swaps out `head_all` with the new
366     /// `Task` pointer if the head hasn't already changed. Under heavy thread
367     /// contention, this compare-exchange loop could become costly.
368     ///
369     /// An alternative is to initialize `next_all` to a reserved pending state
370     /// first, perform an atomic swap on `head_all`, and finally update
371     /// `next_all` with the old head node. Iterators will then either see the
372     /// pending state value or the correct next node pointer, and can reload
373     /// `next_all` as needed until the correct value is loaded. The number of
374     /// retries needed (if any) would be small and will always be finite, so
375     /// this should generally perform better than the compare-exchange loop.
376     ///
377     /// A valid `Task` pointer in the `head_all` list is guaranteed to never be
378     /// this value, so it is safe to use as a reserved value until the correct
379     /// value can be written.
pending_next_all(&self) -> *mut Task<Fut>380     fn pending_next_all(&self) -> *mut Task<Fut> {
381         // The `ReadyToRunQueue` stub is never inserted into the `head_all`
382         // list, and its pointer value will remain valid for the lifetime of
383         // this `FuturesUnordered`, so we can make use of its value here.
384         Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _
385     }
386 }
387 
388 impl<Fut: Future> Stream for FuturesUnordered<Fut> {
389     type Item = Fut::Output;
390 
poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>391     fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
392         let len = self.len();
393 
394         // Keep track of how many child futures we have polled,
395         // in case we want to forcibly yield.
396         let mut polled = 0;
397         let mut yielded = 0;
398 
399         // Ensure `parent` is correctly set.
400         self.ready_to_run_queue.waker.register(cx.waker());
401 
402         loop {
403             // Safety: &mut self guarantees the mutual exclusion `dequeue`
404             // expects
405             let task = match unsafe { self.ready_to_run_queue.dequeue() } {
406                 Dequeue::Empty => {
407                     if self.is_empty() {
408                         // We can only consider ourselves terminated once we
409                         // have yielded a `None`
410                         *self.is_terminated.get_mut() = true;
411                         return Poll::Ready(None);
412                     } else {
413                         return Poll::Pending;
414                     }
415                 }
416                 Dequeue::Inconsistent => {
417                     // At this point, it may be worth yielding the thread &
418                     // spinning a few times... but for now, just yield using the
419                     // task system.
420                     cx.waker().wake_by_ref();
421                     return Poll::Pending;
422                 }
423                 Dequeue::Data(task) => task,
424             };
425 
426             debug_assert!(task != self.ready_to_run_queue.stub());
427 
428             // Safety:
429             // - `task` is a valid pointer.
430             // - We are the only thread that accesses the `UnsafeCell` that
431             //   contains the future
432             let future = match unsafe { &mut *(*task).future.get() } {
433                 Some(future) => future,
434 
435                 // If the future has already gone away then we're just
436                 // cleaning out this task. See the comment in
437                 // `release_task` for more information, but we're basically
438                 // just taking ownership of our reference count here.
439                 None => {
440                     // This case only happens when `release_task` was called
441                     // for this task before and couldn't drop the task
442                     // because it was already enqueued in the ready to run
443                     // queue.
444 
445                     // Safety: `task` is a valid pointer
446                     let task = unsafe { Arc::from_raw(task) };
447 
448                     // Double check that the call to `release_task` really
449                     // happened. Calling it required the task to be unlinked.
450                     debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all());
451                     unsafe {
452                         debug_assert!((*task.prev_all.get()).is_null());
453                     }
454                     continue;
455                 }
456             };
457 
458             // Safety: `task` is a valid pointer
459             let task = unsafe { self.unlink(task) };
460 
461             // Unset queued flag: This must be done before polling to ensure
462             // that the future's task gets rescheduled if it sends a wake-up
463             // notification **during** the call to `poll`.
464             let prev = task.queued.swap(false, SeqCst);
465             assert!(prev);
466 
467             // We're going to need to be very careful if the `poll`
468             // method below panics. We need to (a) not leak memory and
469             // (b) ensure that we still don't have any use-after-frees. To
470             // manage this we do a few things:
471             //
472             // * A "bomb" is created which if dropped abnormally will call
473             //   `release_task`. That way we'll be sure the memory management
474             //   of the `task` is managed correctly. In particular
475             //   `release_task` will drop the future. This ensures that it is
476             //   dropped on this thread and not accidentally on a different
477             //   thread (bad).
478             // * We unlink the task from our internal queue to preemptively
479             //   assume it'll panic, in which case we'll want to discard it
480             //   regardless.
481             struct Bomb<'a, Fut> {
482                 queue: &'a mut FuturesUnordered<Fut>,
483                 task: Option<Arc<Task<Fut>>>,
484             }
485 
486             impl<Fut> Drop for Bomb<'_, Fut> {
487                 fn drop(&mut self) {
488                     if let Some(task) = self.task.take() {
489                         self.queue.release_task(task);
490                     }
491                 }
492             }
493 
494             let mut bomb = Bomb { task: Some(task), queue: &mut *self };
495 
496             // Poll the underlying future with the appropriate waker
497             // implementation. This is where a large bit of the unsafety
498             // starts to stem from internally. The waker is basically just
499             // our `Arc<Task<Fut>>` and can schedule the future for polling by
500             // enqueuing itself in the ready to run queue.
501             //
502             // Critically though `Task<Fut>` won't actually access `Fut`, the
503             // future, while it's floating around inside of wakers.
504             // These structs will basically just use `Fut` to size
505             // the internal allocation, appropriately accessing fields and
506             // deallocating the task if need be.
507             let res = {
508                 let task = bomb.task.as_ref().unwrap();
509                 // We are only interested in whether the future is awoken before it
510                 // finishes polling, so reset the flag here.
511                 task.woken.store(false, Relaxed);
512                 let waker = Task::waker_ref(task);
513                 let mut cx = Context::from_waker(&waker);
514 
515                 // Safety: We won't move the future ever again
516                 let future = unsafe { Pin::new_unchecked(future) };
517 
518                 future.poll(&mut cx)
519             };
520             polled += 1;
521 
522             match res {
523                 Poll::Pending => {
524                     let task = bomb.task.take().unwrap();
525                     // If the future was awoken during polling, we assume
526                     // the future wanted to explicitly yield.
527                     yielded += task.woken.load(Relaxed) as usize;
528                     bomb.queue.link(task);
529 
530                     // If a future yields, we respect it and yield here.
531                     // If all futures have been polled, we also yield here to
532                     // avoid starving other tasks waiting on the executor.
533                     // (polling the same future twice per iteration may cause
534                     // the problem: https://github.com/rust-lang/futures-rs/pull/2333)
535                     if yielded >= 2 || polled == len {
536                         cx.waker().wake_by_ref();
537                         return Poll::Pending;
538                     }
539                     continue;
540                 }
541                 Poll::Ready(output) => return Poll::Ready(Some(output)),
542             }
543         }
544     }
545 
size_hint(&self) -> (usize, Option<usize>)546     fn size_hint(&self) -> (usize, Option<usize>) {
547         let len = self.len();
548         (len, Some(len))
549     }
550 }
551 
552 impl<Fut> Debug for FuturesUnordered<Fut> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result553     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
554         write!(f, "FuturesUnordered {{ ... }}")
555     }
556 }
557 
558 impl<Fut> FuturesUnordered<Fut> {
559     /// Clears the set, removing all futures.
clear(&mut self)560     pub fn clear(&mut self) {
561         *self = Self::new();
562     }
563 }
564 
565 impl<Fut> Drop for FuturesUnordered<Fut> {
drop(&mut self)566     fn drop(&mut self) {
567         // When a `FuturesUnordered` is dropped we want to drop all futures
568         // associated with it. At the same time though there may be tons of
569         // wakers flying around which contain `Task<Fut>` references
570         // inside them. We'll let those naturally get deallocated.
571         while !self.head_all.get_mut().is_null() {
572             let head = *self.head_all.get_mut();
573             let task = unsafe { self.unlink(head) };
574             self.release_task(task);
575         }
576 
577         // Note that at this point we could still have a bunch of tasks in the
578         // ready to run queue. None of those tasks, however, have futures
579         // associated with them so they're safe to destroy on any thread. At
580         // this point the `FuturesUnordered` struct, the owner of the one strong
581         // reference to the ready to run queue will drop the strong reference.
582         // At that point whichever thread releases the strong refcount last (be
583         // it this thread or some other thread as part of an `upgrade`) will
584         // clear out the ready to run queue and free all remaining tasks.
585         //
586         // While that freeing operation isn't guaranteed to happen here, it's
587         // guaranteed to happen "promptly" as no more "blocking work" will
588         // happen while there's a strong refcount held.
589     }
590 }
591 
592 impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> {
593     type Item = &'a Fut;
594     type IntoIter = Iter<'a, Fut>;
595 
into_iter(self) -> Self::IntoIter596     fn into_iter(self) -> Self::IntoIter {
597         self.iter()
598     }
599 }
600 
601 impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> {
602     type Item = &'a mut Fut;
603     type IntoIter = IterMut<'a, Fut>;
604 
into_iter(self) -> Self::IntoIter605     fn into_iter(self) -> Self::IntoIter {
606         self.iter_mut()
607     }
608 }
609 
610 impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> {
611     type Item = Fut;
612     type IntoIter = IntoIter<Fut>;
613 
into_iter(mut self) -> Self::IntoIter614     fn into_iter(mut self) -> Self::IntoIter {
615         // `head_all` can be accessed directly and we don't need to spin on
616         // `Task::next_all` since we have exclusive access to the set.
617         let task = *self.head_all.get_mut();
618         let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } };
619 
620         IntoIter { len, inner: self }
621     }
622 }
623 
624 impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> {
from_iter<I>(iter: I) -> Self where I: IntoIterator<Item = Fut>,625     fn from_iter<I>(iter: I) -> Self
626     where
627         I: IntoIterator<Item = Fut>,
628     {
629         let acc = Self::new();
630         iter.into_iter().fold(acc, |acc, item| {
631             acc.push(item);
632             acc
633         })
634     }
635 }
636 
637 impl<Fut: Future> FusedStream for FuturesUnordered<Fut> {
is_terminated(&self) -> bool638     fn is_terminated(&self) -> bool {
639         self.is_terminated.load(Relaxed)
640     }
641 }
642 
643 impl<Fut> Extend<Fut> for FuturesUnordered<Fut> {
extend<I>(&mut self, iter: I) where I: IntoIterator<Item = Fut>,644     fn extend<I>(&mut self, iter: I)
645     where
646         I: IntoIterator<Item = Fut>,
647     {
648         for item in iter {
649             self.push(item);
650         }
651     }
652 }
653