1 //! An unbounded set of futures. 2 //! 3 //! This module is only available when the `std` or `alloc` feature of this 4 //! library is activated, and it is activated by default. 5 6 use crate::task::AtomicWaker; 7 use alloc::sync::{Arc, Weak}; 8 use core::cell::UnsafeCell; 9 use core::fmt::{self, Debug}; 10 use core::iter::FromIterator; 11 use core::marker::PhantomData; 12 use core::mem; 13 use core::pin::Pin; 14 use core::ptr; 15 use core::sync::atomic::Ordering::{AcqRel, Acquire, Relaxed, Release, SeqCst}; 16 use core::sync::atomic::{AtomicBool, AtomicPtr}; 17 use futures_core::future::Future; 18 use futures_core::stream::{FusedStream, Stream}; 19 use futures_core::task::{Context, Poll}; 20 use futures_task::{FutureObj, LocalFutureObj, LocalSpawn, Spawn, SpawnError}; 21 22 mod abort; 23 24 mod iter; 25 #[allow(unreachable_pub)] // https://github.com/rust-lang/rust/issues/102352 26 pub use self::iter::{IntoIter, Iter, IterMut, IterPinMut, IterPinRef}; 27 28 mod task; 29 use self::task::Task; 30 31 mod ready_to_run_queue; 32 use self::ready_to_run_queue::{Dequeue, ReadyToRunQueue}; 33 34 /// A set of futures which may complete in any order. 35 /// 36 /// See [`FuturesOrdered`](crate::stream::FuturesOrdered) for a version of this 37 /// type that preserves a FIFO order. 38 /// 39 /// This structure is optimized to manage a large number of futures. 40 /// Futures managed by [`FuturesUnordered`] will only be polled when they 41 /// generate wake-up notifications. This reduces the required amount of work 42 /// needed to poll large numbers of futures. 43 /// 44 /// [`FuturesUnordered`] can be filled by [`collect`](Iterator::collect)ing an 45 /// iterator of futures into a [`FuturesUnordered`], or by 46 /// [`push`](FuturesUnordered::push)ing futures onto an existing 47 /// [`FuturesUnordered`]. When new futures are added, 48 /// [`poll_next`](Stream::poll_next) must be called in order to begin receiving 49 /// wake-ups for new futures. 50 /// 51 /// Note that you can create a ready-made [`FuturesUnordered`] via the 52 /// [`collect`](Iterator::collect) method, or you can start with an empty set 53 /// with the [`FuturesUnordered::new`] constructor. 54 /// 55 /// This type is only available when the `std` or `alloc` feature of this 56 /// library is activated, and it is activated by default. 57 #[must_use = "streams do nothing unless polled"] 58 pub struct FuturesUnordered<Fut> { 59 ready_to_run_queue: Arc<ReadyToRunQueue<Fut>>, 60 head_all: AtomicPtr<Task<Fut>>, 61 is_terminated: AtomicBool, 62 } 63 64 unsafe impl<Fut: Send> Send for FuturesUnordered<Fut> {} 65 unsafe impl<Fut: Send + Sync> Sync for FuturesUnordered<Fut> {} 66 impl<Fut> Unpin for FuturesUnordered<Fut> {} 67 68 impl Spawn for FuturesUnordered<FutureObj<'_, ()>> { spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError>69 fn spawn_obj(&self, future_obj: FutureObj<'static, ()>) -> Result<(), SpawnError> { 70 self.push(future_obj); 71 Ok(()) 72 } 73 } 74 75 impl LocalSpawn for FuturesUnordered<LocalFutureObj<'_, ()>> { spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError>76 fn spawn_local_obj(&self, future_obj: LocalFutureObj<'static, ()>) -> Result<(), SpawnError> { 77 self.push(future_obj); 78 Ok(()) 79 } 80 } 81 82 // FuturesUnordered is implemented using two linked lists. One which links all 83 // futures managed by a `FuturesUnordered` and one that tracks futures that have 84 // been scheduled for polling. The first linked list allows for thread safe 85 // insertion of nodes at the head as well as forward iteration, but is otherwise 86 // not thread safe and is only accessed by the thread that owns the 87 // `FuturesUnordered` value for any other operations. The second linked list is 88 // an implementation of the intrusive MPSC queue algorithm described by 89 // 1024cores.net. 90 // 91 // When a future is submitted to the set, a task is allocated and inserted in 92 // both linked lists. The next call to `poll_next` will (eventually) see this 93 // task and call `poll` on the future. 94 // 95 // Before a managed future is polled, the current context's waker is replaced 96 // with one that is aware of the specific future being run. This ensures that 97 // wake-up notifications generated by that specific future are visible to 98 // `FuturesUnordered`. When a wake-up notification is received, the task is 99 // inserted into the ready to run queue, so that its future can be polled later. 100 // 101 // Each task is wrapped in an `Arc` and thereby atomically reference counted. 102 // Also, each task contains an `AtomicBool` which acts as a flag that indicates 103 // whether the task is currently inserted in the atomic queue. When a wake-up 104 // notification is received, the task will only be inserted into the ready to 105 // run queue if it isn't inserted already. 106 107 impl<Fut> Default for FuturesUnordered<Fut> { default() -> Self108 fn default() -> Self { 109 Self::new() 110 } 111 } 112 113 impl<Fut> FuturesUnordered<Fut> { 114 /// Constructs a new, empty [`FuturesUnordered`]. 115 /// 116 /// The returned [`FuturesUnordered`] does not contain any futures. 117 /// In this state, [`FuturesUnordered::poll_next`](Stream::poll_next) will 118 /// return [`Poll::Ready(None)`](Poll::Ready). new() -> Self119 pub fn new() -> Self { 120 let stub = Arc::new(Task { 121 future: UnsafeCell::new(None), 122 next_all: AtomicPtr::new(ptr::null_mut()), 123 prev_all: UnsafeCell::new(ptr::null()), 124 len_all: UnsafeCell::new(0), 125 next_ready_to_run: AtomicPtr::new(ptr::null_mut()), 126 queued: AtomicBool::new(true), 127 ready_to_run_queue: Weak::new(), 128 woken: AtomicBool::new(false), 129 }); 130 let stub_ptr = Arc::as_ptr(&stub); 131 let ready_to_run_queue = Arc::new(ReadyToRunQueue { 132 waker: AtomicWaker::new(), 133 head: AtomicPtr::new(stub_ptr as *mut _), 134 tail: UnsafeCell::new(stub_ptr), 135 stub, 136 }); 137 138 Self { 139 head_all: AtomicPtr::new(ptr::null_mut()), 140 ready_to_run_queue, 141 is_terminated: AtomicBool::new(false), 142 } 143 } 144 145 /// Returns the number of futures contained in the set. 146 /// 147 /// This represents the total number of in-flight futures. len(&self) -> usize148 pub fn len(&self) -> usize { 149 let (_, len) = self.atomic_load_head_and_len_all(); 150 len 151 } 152 153 /// Returns `true` if the set contains no futures. is_empty(&self) -> bool154 pub fn is_empty(&self) -> bool { 155 // Relaxed ordering can be used here since we don't need to read from 156 // the head pointer, only check whether it is null. 157 self.head_all.load(Relaxed).is_null() 158 } 159 160 /// Push a future into the set. 161 /// 162 /// This method adds the given future to the set. This method will not 163 /// call [`poll`](core::future::Future::poll) on the submitted future. The caller must 164 /// ensure that [`FuturesUnordered::poll_next`](Stream::poll_next) is called 165 /// in order to receive wake-up notifications for the given future. push(&self, future: Fut)166 pub fn push(&self, future: Fut) { 167 let task = Arc::new(Task { 168 future: UnsafeCell::new(Some(future)), 169 next_all: AtomicPtr::new(self.pending_next_all()), 170 prev_all: UnsafeCell::new(ptr::null_mut()), 171 len_all: UnsafeCell::new(0), 172 next_ready_to_run: AtomicPtr::new(ptr::null_mut()), 173 queued: AtomicBool::new(true), 174 ready_to_run_queue: Arc::downgrade(&self.ready_to_run_queue), 175 woken: AtomicBool::new(false), 176 }); 177 178 // Reset the `is_terminated` flag if we've previously marked ourselves 179 // as terminated. 180 self.is_terminated.store(false, Relaxed); 181 182 // Right now our task has a strong reference count of 1. We transfer 183 // ownership of this reference count to our internal linked list 184 // and we'll reclaim ownership through the `unlink` method below. 185 let ptr = self.link(task); 186 187 // We'll need to get the future "into the system" to start tracking it, 188 // e.g. getting its wake-up notifications going to us tracking which 189 // futures are ready. To do that we unconditionally enqueue it for 190 // polling here. 191 self.ready_to_run_queue.enqueue(ptr); 192 } 193 194 /// Returns an iterator that allows inspecting each future in the set. iter(&self) -> Iter<'_, Fut> where Fut: Unpin,195 pub fn iter(&self) -> Iter<'_, Fut> 196 where 197 Fut: Unpin, 198 { 199 Iter(Pin::new(self).iter_pin_ref()) 200 } 201 202 /// Returns an iterator that allows inspecting each future in the set. iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut>203 pub fn iter_pin_ref(self: Pin<&Self>) -> IterPinRef<'_, Fut> { 204 let (task, len) = self.atomic_load_head_and_len_all(); 205 let pending_next_all = self.pending_next_all(); 206 207 IterPinRef { task, len, pending_next_all, _marker: PhantomData } 208 } 209 210 /// Returns an iterator that allows modifying each future in the set. iter_mut(&mut self) -> IterMut<'_, Fut> where Fut: Unpin,211 pub fn iter_mut(&mut self) -> IterMut<'_, Fut> 212 where 213 Fut: Unpin, 214 { 215 IterMut(Pin::new(self).iter_pin_mut()) 216 } 217 218 /// Returns an iterator that allows modifying each future in the set. iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut>219 pub fn iter_pin_mut(mut self: Pin<&mut Self>) -> IterPinMut<'_, Fut> { 220 // `head_all` can be accessed directly and we don't need to spin on 221 // `Task::next_all` since we have exclusive access to the set. 222 let task = *self.head_all.get_mut(); 223 let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; 224 225 IterPinMut { task, len, _marker: PhantomData } 226 } 227 228 /// Returns the current head node and number of futures in the list of all 229 /// futures within a context where access is shared with other threads 230 /// (mostly for use with the `len` and `iter_pin_ref` methods). atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize)231 fn atomic_load_head_and_len_all(&self) -> (*const Task<Fut>, usize) { 232 let task = self.head_all.load(Acquire); 233 let len = if task.is_null() { 234 0 235 } else { 236 unsafe { 237 (*task).spin_next_all(self.pending_next_all(), Acquire); 238 *(*task).len_all.get() 239 } 240 }; 241 242 (task, len) 243 } 244 245 /// Releases the task. It destroys the future inside and either drops 246 /// the `Arc<Task>` or transfers ownership to the ready to run queue. 247 /// The task this method is called on must have been unlinked before. release_task(&mut self, task: Arc<Task<Fut>>)248 fn release_task(&mut self, task: Arc<Task<Fut>>) { 249 // `release_task` must only be called on unlinked tasks 250 debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); 251 unsafe { 252 debug_assert!((*task.prev_all.get()).is_null()); 253 } 254 255 // The future is done, try to reset the queued flag. This will prevent 256 // `wake` from doing any work in the future 257 let prev = task.queued.swap(true, SeqCst); 258 259 // Drop the future, even if it hasn't finished yet. This is safe 260 // because we're dropping the future on the thread that owns 261 // `FuturesUnordered`, which correctly tracks `Fut`'s lifetimes and 262 // such. 263 unsafe { 264 // Set to `None` rather than `take()`ing to prevent moving the 265 // future. 266 *task.future.get() = None; 267 } 268 269 // If the queued flag was previously set, then it means that this task 270 // is still in our internal ready to run queue. We then transfer 271 // ownership of our reference count to the ready to run queue, and it'll 272 // come along and free it later, noticing that the future is `None`. 273 // 274 // If, however, the queued flag was *not* set then we're safe to 275 // release our reference count on the task. The queued flag was set 276 // above so all future `enqueue` operations will not actually 277 // enqueue the task, so our task will never see the ready to run queue 278 // again. The task itself will be deallocated once all reference counts 279 // have been dropped elsewhere by the various wakers that contain it. 280 if prev { 281 mem::forget(task); 282 } 283 } 284 285 /// Insert a new task into the internal linked list. link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut>286 fn link(&self, task: Arc<Task<Fut>>) -> *const Task<Fut> { 287 // `next_all` should already be reset to the pending state before this 288 // function is called. 289 debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); 290 let ptr = Arc::into_raw(task); 291 292 // Atomically swap out the old head node to get the node that should be 293 // assigned to `next_all`. 294 let next = self.head_all.swap(ptr as *mut _, AcqRel); 295 296 unsafe { 297 // Store the new list length in the new node. 298 let new_len = if next.is_null() { 299 1 300 } else { 301 // Make sure `next_all` has been written to signal that it is 302 // safe to read `len_all`. 303 (*next).spin_next_all(self.pending_next_all(), Acquire); 304 *(*next).len_all.get() + 1 305 }; 306 *(*ptr).len_all.get() = new_len; 307 308 // Write the old head as the next node pointer, signaling to other 309 // threads that `len_all` and `next_all` are ready to read. 310 (*ptr).next_all.store(next, Release); 311 312 // `prev_all` updates don't need to be synchronized, as the field is 313 // only ever used after exclusive access has been acquired. 314 if !next.is_null() { 315 *(*next).prev_all.get() = ptr; 316 } 317 } 318 319 ptr 320 } 321 322 /// Remove the task from the linked list tracking all tasks currently 323 /// managed by `FuturesUnordered`. 324 /// This method is unsafe because it has be guaranteed that `task` is a 325 /// valid pointer. unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>>326 unsafe fn unlink(&mut self, task: *const Task<Fut>) -> Arc<Task<Fut>> { 327 // Compute the new list length now in case we're removing the head node 328 // and won't be able to retrieve the correct length later. 329 let head = *self.head_all.get_mut(); 330 debug_assert!(!head.is_null()); 331 let new_len = *(*head).len_all.get() - 1; 332 333 let task = Arc::from_raw(task); 334 let next = task.next_all.load(Relaxed); 335 let prev = *task.prev_all.get(); 336 task.next_all.store(self.pending_next_all(), Relaxed); 337 *task.prev_all.get() = ptr::null_mut(); 338 339 if !next.is_null() { 340 *(*next).prev_all.get() = prev; 341 } 342 343 if !prev.is_null() { 344 (*prev).next_all.store(next, Relaxed); 345 } else { 346 *self.head_all.get_mut() = next; 347 } 348 349 // Store the new list length in the head node. 350 let head = *self.head_all.get_mut(); 351 if !head.is_null() { 352 *(*head).len_all.get() = new_len; 353 } 354 355 task 356 } 357 358 /// Returns the reserved value for `Task::next_all` to indicate a pending 359 /// assignment from the thread that inserted the task. 360 /// 361 /// `FuturesUnordered::link` needs to update `Task` pointers in an order 362 /// that ensures any iterators created on other threads can correctly 363 /// traverse the entire `Task` list using the chain of `next_all` pointers. 364 /// This could be solved with a compare-exchange loop that stores the 365 /// current `head_all` in `next_all` and swaps out `head_all` with the new 366 /// `Task` pointer if the head hasn't already changed. Under heavy thread 367 /// contention, this compare-exchange loop could become costly. 368 /// 369 /// An alternative is to initialize `next_all` to a reserved pending state 370 /// first, perform an atomic swap on `head_all`, and finally update 371 /// `next_all` with the old head node. Iterators will then either see the 372 /// pending state value or the correct next node pointer, and can reload 373 /// `next_all` as needed until the correct value is loaded. The number of 374 /// retries needed (if any) would be small and will always be finite, so 375 /// this should generally perform better than the compare-exchange loop. 376 /// 377 /// A valid `Task` pointer in the `head_all` list is guaranteed to never be 378 /// this value, so it is safe to use as a reserved value until the correct 379 /// value can be written. pending_next_all(&self) -> *mut Task<Fut>380 fn pending_next_all(&self) -> *mut Task<Fut> { 381 // The `ReadyToRunQueue` stub is never inserted into the `head_all` 382 // list, and its pointer value will remain valid for the lifetime of 383 // this `FuturesUnordered`, so we can make use of its value here. 384 Arc::as_ptr(&self.ready_to_run_queue.stub) as *mut _ 385 } 386 } 387 388 impl<Fut: Future> Stream for FuturesUnordered<Fut> { 389 type Item = Fut::Output; 390 poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>391 fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { 392 let len = self.len(); 393 394 // Keep track of how many child futures we have polled, 395 // in case we want to forcibly yield. 396 let mut polled = 0; 397 let mut yielded = 0; 398 399 // Ensure `parent` is correctly set. 400 self.ready_to_run_queue.waker.register(cx.waker()); 401 402 loop { 403 // Safety: &mut self guarantees the mutual exclusion `dequeue` 404 // expects 405 let task = match unsafe { self.ready_to_run_queue.dequeue() } { 406 Dequeue::Empty => { 407 if self.is_empty() { 408 // We can only consider ourselves terminated once we 409 // have yielded a `None` 410 *self.is_terminated.get_mut() = true; 411 return Poll::Ready(None); 412 } else { 413 return Poll::Pending; 414 } 415 } 416 Dequeue::Inconsistent => { 417 // At this point, it may be worth yielding the thread & 418 // spinning a few times... but for now, just yield using the 419 // task system. 420 cx.waker().wake_by_ref(); 421 return Poll::Pending; 422 } 423 Dequeue::Data(task) => task, 424 }; 425 426 debug_assert!(task != self.ready_to_run_queue.stub()); 427 428 // Safety: 429 // - `task` is a valid pointer. 430 // - We are the only thread that accesses the `UnsafeCell` that 431 // contains the future 432 let future = match unsafe { &mut *(*task).future.get() } { 433 Some(future) => future, 434 435 // If the future has already gone away then we're just 436 // cleaning out this task. See the comment in 437 // `release_task` for more information, but we're basically 438 // just taking ownership of our reference count here. 439 None => { 440 // This case only happens when `release_task` was called 441 // for this task before and couldn't drop the task 442 // because it was already enqueued in the ready to run 443 // queue. 444 445 // Safety: `task` is a valid pointer 446 let task = unsafe { Arc::from_raw(task) }; 447 448 // Double check that the call to `release_task` really 449 // happened. Calling it required the task to be unlinked. 450 debug_assert_eq!(task.next_all.load(Relaxed), self.pending_next_all()); 451 unsafe { 452 debug_assert!((*task.prev_all.get()).is_null()); 453 } 454 continue; 455 } 456 }; 457 458 // Safety: `task` is a valid pointer 459 let task = unsafe { self.unlink(task) }; 460 461 // Unset queued flag: This must be done before polling to ensure 462 // that the future's task gets rescheduled if it sends a wake-up 463 // notification **during** the call to `poll`. 464 let prev = task.queued.swap(false, SeqCst); 465 assert!(prev); 466 467 // We're going to need to be very careful if the `poll` 468 // method below panics. We need to (a) not leak memory and 469 // (b) ensure that we still don't have any use-after-frees. To 470 // manage this we do a few things: 471 // 472 // * A "bomb" is created which if dropped abnormally will call 473 // `release_task`. That way we'll be sure the memory management 474 // of the `task` is managed correctly. In particular 475 // `release_task` will drop the future. This ensures that it is 476 // dropped on this thread and not accidentally on a different 477 // thread (bad). 478 // * We unlink the task from our internal queue to preemptively 479 // assume it'll panic, in which case we'll want to discard it 480 // regardless. 481 struct Bomb<'a, Fut> { 482 queue: &'a mut FuturesUnordered<Fut>, 483 task: Option<Arc<Task<Fut>>>, 484 } 485 486 impl<Fut> Drop for Bomb<'_, Fut> { 487 fn drop(&mut self) { 488 if let Some(task) = self.task.take() { 489 self.queue.release_task(task); 490 } 491 } 492 } 493 494 let mut bomb = Bomb { task: Some(task), queue: &mut *self }; 495 496 // Poll the underlying future with the appropriate waker 497 // implementation. This is where a large bit of the unsafety 498 // starts to stem from internally. The waker is basically just 499 // our `Arc<Task<Fut>>` and can schedule the future for polling by 500 // enqueuing itself in the ready to run queue. 501 // 502 // Critically though `Task<Fut>` won't actually access `Fut`, the 503 // future, while it's floating around inside of wakers. 504 // These structs will basically just use `Fut` to size 505 // the internal allocation, appropriately accessing fields and 506 // deallocating the task if need be. 507 let res = { 508 let task = bomb.task.as_ref().unwrap(); 509 // We are only interested in whether the future is awoken before it 510 // finishes polling, so reset the flag here. 511 task.woken.store(false, Relaxed); 512 let waker = Task::waker_ref(task); 513 let mut cx = Context::from_waker(&waker); 514 515 // Safety: We won't move the future ever again 516 let future = unsafe { Pin::new_unchecked(future) }; 517 518 future.poll(&mut cx) 519 }; 520 polled += 1; 521 522 match res { 523 Poll::Pending => { 524 let task = bomb.task.take().unwrap(); 525 // If the future was awoken during polling, we assume 526 // the future wanted to explicitly yield. 527 yielded += task.woken.load(Relaxed) as usize; 528 bomb.queue.link(task); 529 530 // If a future yields, we respect it and yield here. 531 // If all futures have been polled, we also yield here to 532 // avoid starving other tasks waiting on the executor. 533 // (polling the same future twice per iteration may cause 534 // the problem: https://github.com/rust-lang/futures-rs/pull/2333) 535 if yielded >= 2 || polled == len { 536 cx.waker().wake_by_ref(); 537 return Poll::Pending; 538 } 539 continue; 540 } 541 Poll::Ready(output) => return Poll::Ready(Some(output)), 542 } 543 } 544 } 545 size_hint(&self) -> (usize, Option<usize>)546 fn size_hint(&self) -> (usize, Option<usize>) { 547 let len = self.len(); 548 (len, Some(len)) 549 } 550 } 551 552 impl<Fut> Debug for FuturesUnordered<Fut> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result553 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 554 write!(f, "FuturesUnordered {{ ... }}") 555 } 556 } 557 558 impl<Fut> FuturesUnordered<Fut> { 559 /// Clears the set, removing all futures. clear(&mut self)560 pub fn clear(&mut self) { 561 *self = Self::new(); 562 } 563 } 564 565 impl<Fut> Drop for FuturesUnordered<Fut> { drop(&mut self)566 fn drop(&mut self) { 567 // When a `FuturesUnordered` is dropped we want to drop all futures 568 // associated with it. At the same time though there may be tons of 569 // wakers flying around which contain `Task<Fut>` references 570 // inside them. We'll let those naturally get deallocated. 571 while !self.head_all.get_mut().is_null() { 572 let head = *self.head_all.get_mut(); 573 let task = unsafe { self.unlink(head) }; 574 self.release_task(task); 575 } 576 577 // Note that at this point we could still have a bunch of tasks in the 578 // ready to run queue. None of those tasks, however, have futures 579 // associated with them so they're safe to destroy on any thread. At 580 // this point the `FuturesUnordered` struct, the owner of the one strong 581 // reference to the ready to run queue will drop the strong reference. 582 // At that point whichever thread releases the strong refcount last (be 583 // it this thread or some other thread as part of an `upgrade`) will 584 // clear out the ready to run queue and free all remaining tasks. 585 // 586 // While that freeing operation isn't guaranteed to happen here, it's 587 // guaranteed to happen "promptly" as no more "blocking work" will 588 // happen while there's a strong refcount held. 589 } 590 } 591 592 impl<'a, Fut: Unpin> IntoIterator for &'a FuturesUnordered<Fut> { 593 type Item = &'a Fut; 594 type IntoIter = Iter<'a, Fut>; 595 into_iter(self) -> Self::IntoIter596 fn into_iter(self) -> Self::IntoIter { 597 self.iter() 598 } 599 } 600 601 impl<'a, Fut: Unpin> IntoIterator for &'a mut FuturesUnordered<Fut> { 602 type Item = &'a mut Fut; 603 type IntoIter = IterMut<'a, Fut>; 604 into_iter(self) -> Self::IntoIter605 fn into_iter(self) -> Self::IntoIter { 606 self.iter_mut() 607 } 608 } 609 610 impl<Fut: Unpin> IntoIterator for FuturesUnordered<Fut> { 611 type Item = Fut; 612 type IntoIter = IntoIter<Fut>; 613 into_iter(mut self) -> Self::IntoIter614 fn into_iter(mut self) -> Self::IntoIter { 615 // `head_all` can be accessed directly and we don't need to spin on 616 // `Task::next_all` since we have exclusive access to the set. 617 let task = *self.head_all.get_mut(); 618 let len = if task.is_null() { 0 } else { unsafe { *(*task).len_all.get() } }; 619 620 IntoIter { len, inner: self } 621 } 622 } 623 624 impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut> { from_iter<I>(iter: I) -> Self where I: IntoIterator<Item = Fut>,625 fn from_iter<I>(iter: I) -> Self 626 where 627 I: IntoIterator<Item = Fut>, 628 { 629 let acc = Self::new(); 630 iter.into_iter().fold(acc, |acc, item| { 631 acc.push(item); 632 acc 633 }) 634 } 635 } 636 637 impl<Fut: Future> FusedStream for FuturesUnordered<Fut> { is_terminated(&self) -> bool638 fn is_terminated(&self) -> bool { 639 self.is_terminated.load(Relaxed) 640 } 641 } 642 643 impl<Fut> Extend<Fut> for FuturesUnordered<Fut> { extend<I>(&mut self, iter: I) where I: IntoIterator<Item = Fut>,644 fn extend<I>(&mut self, iter: I) 645 where 646 I: IntoIterator<Item = Fut>, 647 { 648 for item in iter { 649 self.push(item); 650 } 651 } 652 } 653