• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 Google LLC
2 //
3 // Use of this source code is governed by an MIT-style
4 // license that can be found in the LICENSE file or at
5 // https://opensource.org/licenses/MIT.
6 
7 /* This is a wrapper for the Google range-sse.cc algorithm which checks whether a
8  * sequence of bytes is a valid UTF-8 sequence and finds the longest valid prefix of
9  * the UTF-8 sequence.
10  *
11  * The key difference is that it checks for as much ASCII symbols as possible
12  * and then falls back to the range-sse.cc algorithm. The changes to the
13  * algorithm are cosmetic, mostly to trick the clang compiler to produce optimal
14  * code.
15  *
16  * For API see the utf8_validity.h header.
17  */
18 #include "utf8_validity.h"
19 
20 #include <cstddef>
21 #include <cstdint>
22 
23 #include "absl/strings/ascii.h"
24 #include "absl/strings/string_view.h"
25 
26 #ifdef __SSE4_1__
27 #include <emmintrin.h>
28 #include <smmintrin.h>
29 #include <tmmintrin.h>
30 #endif
31 
32 namespace utf8_range {
33 namespace {
34 
UNALIGNED_LOAD64(const void * p)35 inline uint64_t UNALIGNED_LOAD64(const void* p) {
36   uint64_t t;
37   memcpy(&t, p, sizeof t);
38   return t;
39 }
40 
TrailByteOk(const char c)41 inline bool TrailByteOk(const char c) {
42   return static_cast<int8_t>(c) <= static_cast<int8_t>(0xBF);
43 }
44 
45 /* If ReturnPosition is false then it returns 1 if |data| is a valid utf8
46  * sequence, otherwise returns 0.
47  * If ReturnPosition is set to true, returns the length in bytes of the prefix
48    of |data| that is all structurally valid UTF-8.
49  */
50 template <bool ReturnPosition>
ValidUTF8Span(const char * data,const char * end)51 size_t ValidUTF8Span(const char* data, const char* end) {
52   /* We return err_pos in the loop which is always 0 if !ReturnPosition */
53   size_t err_pos = 0;
54   size_t codepoint_bytes = 0;
55   /* The early check is done because of early continue's on codepoints of all
56    * sizes, i.e. we first check for ascii and if it is, we call continue, then
57    * for 2 byte codepoints, etc. This is done in order to reduce indentation and
58    * improve readability of the codepoint validity check.
59    */
60   while (data + codepoint_bytes < end) {
61     if (ReturnPosition) {
62       err_pos += codepoint_bytes;
63     }
64     data += codepoint_bytes;
65     const size_t len = end - data;
66     const unsigned char byte1 = data[0];
67 
68     /* We do not skip many ascii bytes at the same time as this function is
69        used for tail checking (< 16 bytes) and for non x86 platforms. We also
70        don't think that cases where non-ASCII codepoints are followed by ascii
71        happen often. For small strings it also introduces some penalty. For
72        purely ascii UTF8 strings (which is the overwhelming case) we call
73        SkipAscii function which is multiplatform and extremely fast.
74      */
75     /* [00..7F] ASCII -> 1 byte */
76     if (absl::ascii_isascii(byte1)) {
77       codepoint_bytes = 1;
78       continue;
79     }
80     /* [C2..DF], [80..BF] -> 2 bytes */
81     if (len >= 2 && byte1 >= 0xC2 && byte1 <= 0xDF && TrailByteOk(data[1])) {
82       codepoint_bytes = 2;
83       continue;
84     }
85     if (len >= 3) {
86       const unsigned char byte2 = data[1];
87       const unsigned char byte3 = data[2];
88 
89       /* Is byte2, byte3 between [0x80, 0xBF]
90        * Check for 0x80 was done above.
91        */
92       if (!TrailByteOk(byte2) || !TrailByteOk(byte3)) {
93         return err_pos;
94       }
95 
96       if (/* E0, A0..BF, 80..BF */
97           ((byte1 == 0xE0 && byte2 >= 0xA0) ||
98            /* E1..EC, 80..BF, 80..BF */
99            (byte1 >= 0xE1 && byte1 <= 0xEC) ||
100            /* ED, 80..9F, 80..BF */
101            (byte1 == 0xED && byte2 <= 0x9F) ||
102            /* EE..EF, 80..BF, 80..BF */
103            (byte1 >= 0xEE && byte1 <= 0xEF))) {
104         codepoint_bytes = 3;
105         continue;
106       }
107       if (len >= 4) {
108         const unsigned char byte4 = data[3];
109         /* Is byte4 between 0x80 ~ 0xBF */
110         if (!TrailByteOk(byte4)) {
111           return err_pos;
112         }
113 
114         if (/* F0, 90..BF, 80..BF, 80..BF */
115             ((byte1 == 0xF0 && byte2 >= 0x90) ||
116              /* F1..F3, 80..BF, 80..BF, 80..BF */
117              (byte1 >= 0xF1 && byte1 <= 0xF3) ||
118              /* F4, 80..8F, 80..BF, 80..BF */
119              (byte1 == 0xF4 && byte2 <= 0x8F))) {
120           codepoint_bytes = 4;
121           continue;
122         }
123       }
124     }
125     return err_pos;
126   }
127   if (ReturnPosition) {
128     err_pos += codepoint_bytes;
129   }
130   /* if ReturnPosition is false, this returns 1.
131    * if ReturnPosition is true, this returns err_pos.
132    */
133   return err_pos + (1 - ReturnPosition);
134 }
135 
136 /* Returns the number of bytes needed to skip backwards to get to the first
137    byte of codepoint.
138  */
CodepointSkipBackwards(int32_t codepoint_word)139 inline int CodepointSkipBackwards(int32_t codepoint_word) {
140   const int8_t* const codepoint =
141       reinterpret_cast<const int8_t*>(&codepoint_word);
142   if (!TrailByteOk(codepoint[3])) {
143     return 1;
144   } else if (!TrailByteOk(codepoint[2])) {
145     return 2;
146   } else if (!TrailByteOk(codepoint[1])) {
147     return 3;
148   }
149   return 0;
150 }
151 
152 /* Skipping over ASCII as much as possible, per 8 bytes. It is intentional
153    as most strings to check for validity consist only of 1 byte codepoints.
154  */
SkipAscii(const char * data,const char * end)155 inline const char* SkipAscii(const char* data, const char* end) {
156   while (8 <= end - data &&
157          (UNALIGNED_LOAD64(data) & 0x8080808080808080) == 0) {
158     data += 8;
159   }
160   while (data < end && absl::ascii_isascii(*data)) {
161     ++data;
162   }
163   return data;
164 }
165 
166 template <bool ReturnPosition>
ValidUTF8(const char * data,size_t len)167 size_t ValidUTF8(const char* data, size_t len) {
168   if (len == 0) return 1 - ReturnPosition;
169   const char* const end = data + len;
170   data = SkipAscii(data, end);
171   /* SIMD algorithm always outperforms the naive version for any data of
172      length >=16.
173    */
174   if (end - data < 16) {
175     return (ReturnPosition ? (data - (end - len)) : 0) +
176            ValidUTF8Span<ReturnPosition>(data, end);
177   }
178 #ifndef __SSE4_1__
179   return (ReturnPosition ? (data - (end - len)) : 0) +
180          ValidUTF8Span<ReturnPosition>(data, end);
181 #else
182   /* This code checks that utf-8 ranges are structurally valid 16 bytes at once
183    * using superscalar instructions.
184    * The mapping between ranges of codepoint and their corresponding utf-8
185    * sequences is below.
186    */
187 
188   /*
189    * U+0000...U+007F     00...7F
190    * U+0080...U+07FF     C2...DF 80...BF
191    * U+0800...U+0FFF     E0      A0...BF 80...BF
192    * U+1000...U+CFFF     E1...EC 80...BF 80...BF
193    * U+D000...U+D7FF     ED      80...9F 80...BF
194    * U+E000...U+FFFF     EE...EF 80...BF 80...BF
195    * U+10000...U+3FFFF   F0      90...BF 80...BF 80...BF
196    * U+40000...U+FFFFF   F1...F3 80...BF 80...BF 80...BF
197    * U+100000...U+10FFFF F4      80...8F 80...BF 80...BF
198    */
199 
200   /* First we compute the type for each byte, as given by the table below.
201    * This type will be used as an index later on.
202    */
203 
204   /*
205    * Index  Min Max Byte Type
206    *  0     00  7F  Single byte sequence
207    *  1,2,3 80  BF  Second, third and fourth byte for many of the sequences.
208    *  4     A0  BF  Second byte after E0
209    *  5     80  9F  Second byte after ED
210    *  6     90  BF  Second byte after F0
211    *  7     80  8F  Second byte after F4
212    *  8     C2  F4  First non ASCII byte
213    *  9..15 7F  80  Invalid byte
214    */
215 
216   /* After the first step we compute the index for all bytes, then we permute
217      the bytes according to their indices to check the ranges from the range
218      table.
219    * The range for a given type can be found in the range_min_table and
220      range_max_table, the range for type/index X is in range_min_table[X] ...
221      range_max_table[X].
222    */
223 
224   /* Algorithm:
225    * Put index zero to all bytes.
226    * Find all non ASCII characters, give them index 8.
227    * For each tail byte in a codepoint sequence, give it an index corresponding
228      to the 1 based index from the end.
229    * If the first byte of the codepoint is in the [C0...DF] range, we write
230      index 1 in the following byte.
231    * If the first byte of the codepoint is in the range [E0...EF], we write
232      indices 2 and 1 in the next two bytes.
233    * If the first byte of the codepoint is in the range [F0...FF] we write
234      indices 3,2,1 into the next three bytes.
235    * For finding the number of bytes we need to look at high nibbles (4 bits)
236      and do the lookup from the table, it can be done with shift by 4 + shuffle
237      instructions. We call it `first_len`.
238    * Then we shift first_len by 8 bits to get the indices of the 2nd bytes.
239    * Saturating sub 1 and shift by 8 bits to get the indices of the 3rd bytes.
240    * Again to get the indices of the 4th bytes.
241    * Take OR of all that 4 values and check within range.
242    */
243   /* For example:
244    * input       C3 80 68 E2 80 20 A6 F0 A0 80 AC 20 F0 93 80 80
245    * first_len   1  0  0  2  0  0  0  3  0  0  0  0  3  0  0  0
246    * 1st byte    8  0  0  8  0  0  0  8  0  0  0  0  8  0  0  0
247    * 2nd byte    0  1  0  0  2  0  0  0  3  0  0  0  0  3  0  0 // Shift + sub
248    * 3rd byte    0  0  0  0  0  1  0  0  0  2  0  0  0  0  2  0 // Shift + sub
249    * 4th byte    0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  1 // Shift + sub
250    * Index       8  1  0  8  2  1  0  8  3  2  1  0  8  3  2  1 // OR of results
251    */
252 
253   /* Checking for errors:
254    * Error checking is done by looking up the high nibble (4 bits) of each byte
255      against an error checking table.
256    * Because the lookup value for the second byte depends of the value of the
257      first byte in codepoint, we use saturated operations to adjust the index.
258    * Specifically we need to add 2 for E0, 3 for ED, 3 for F0 and 4 for F4 to
259      match the correct index.
260        * If we subtract from all bytes EF then EO -> 241, ED -> 254, F0 -> 1,
261          F4 -> 5
262        * Do saturating sub 240, then E0 -> 1, ED -> 14 and we can do lookup to
263          match the adjustment
264        * Add saturating 112, then F0 -> 113, F4 -> 117, all that were > 16 will
265          be more 128 and lookup in ef_fe_table will return 0 but for F0
266          and F4 it will be 4 and 5 accordingly
267    */
268   /*
269    * Then just check the appropriate ranges with greater/smaller equal
270      instructions. Check tail with a naive algorithm.
271    * To save from previous 16 byte checks we just align previous_first_len to
272      get correct continuations of the codepoints.
273    */
274 
275   /*
276    * Map high nibble of "First Byte" to legal character length minus 1
277    * 0x00 ~ 0xBF --> 0
278    * 0xC0 ~ 0xDF --> 1
279    * 0xE0 ~ 0xEF --> 2
280    * 0xF0 ~ 0xFF --> 3
281    */
282   const __m128i first_len_table =
283       _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3);
284 
285   /* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
286   const __m128i first_range_table =
287       _mm_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8);
288 
289   /*
290    * Range table, map range index to min and max values
291    */
292   const __m128i range_min_table =
293       _mm_setr_epi8(0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80, 0xC2, 0x7F,
294                     0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F);
295 
296   const __m128i range_max_table =
297       _mm_setr_epi8(0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F, 0xF4, 0x80,
298                     0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
299 
300   /*
301    * Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
302    * which the Second Byte are not 80~BF. It contains "range index adjustment".
303    * +------------+---------------+------------------+----------------+
304    * | First Byte | original range| range adjustment | adjusted range |
305    * +------------+---------------+------------------+----------------+
306    * | E0         | 2             | 2                | 4              |
307    * +------------+---------------+------------------+----------------+
308    * | ED         | 2             | 3                | 5              |
309    * +------------+---------------+------------------+----------------+
310    * | F0         | 3             | 3                | 6              |
311    * +------------+---------------+------------------+----------------+
312    * | F4         | 4             | 4                | 8              |
313    * +------------+---------------+------------------+----------------+
314    */
315 
316   /* df_ee_table[1] -> E0, df_ee_table[14] -> ED as ED - E0 = 13 */
317   // The values represent the adjustment in the Range Index table for a correct
318   // index.
319   const __m128i df_ee_table =
320       _mm_setr_epi8(0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0);
321 
322   /* ef_fe_table[1] -> F0, ef_fe_table[5] -> F4, F4 - F0 = 4 */
323   // The values represent the adjustment in the Range Index table for a correct
324   // index.
325   const __m128i ef_fe_table =
326       _mm_setr_epi8(0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
327 
328   __m128i prev_input = _mm_set1_epi8(0);
329   __m128i prev_first_len = _mm_set1_epi8(0);
330   __m128i error = _mm_set1_epi8(0);
331   while (end - data >= 16) {
332     const __m128i input =
333         _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
334 
335     /* high_nibbles = input >> 4 */
336     const __m128i high_nibbles =
337         _mm_and_si128(_mm_srli_epi16(input, 4), _mm_set1_epi8(0x0F));
338 
339     /* first_len = legal character length minus 1 */
340     /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
341     /* first_len = first_len_table[high_nibbles] */
342     __m128i first_len = _mm_shuffle_epi8(first_len_table, high_nibbles);
343 
344     /* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
345     /* range = first_range_table[high_nibbles] */
346     __m128i range = _mm_shuffle_epi8(first_range_table, high_nibbles);
347 
348     /* Second Byte: set range index to first_len */
349     /* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
350     /* range |= (first_len, prev_first_len) << 1 byte */
351     range = _mm_or_si128(range, _mm_alignr_epi8(first_len, prev_first_len, 15));
352 
353     /* Third Byte: set range index to saturate_sub(first_len, 1) */
354     /* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
355     __m128i tmp1;
356     __m128i tmp2;
357     /* tmp1 = saturate_sub(first_len, 1) */
358     tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(1));
359     /* tmp2 = saturate_sub(prev_first_len, 1) */
360     tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(1));
361     /* range |= (tmp1, tmp2) << 2 bytes */
362     range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 14));
363 
364     /* Fourth Byte: set range index to saturate_sub(first_len, 2) */
365     /* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
366     /* tmp1 = saturate_sub(first_len, 2) */
367     tmp1 = _mm_subs_epu8(first_len, _mm_set1_epi8(2));
368     /* tmp2 = saturate_sub(prev_first_len, 2) */
369     tmp2 = _mm_subs_epu8(prev_first_len, _mm_set1_epi8(2));
370     /* range |= (tmp1, tmp2) << 3 bytes */
371     range = _mm_or_si128(range, _mm_alignr_epi8(tmp1, tmp2, 13));
372 
373     /*
374      * Now we have below range indices calculated
375      * Correct cases:
376      * - 8 for C0~FF
377      * - 3 for 1st byte after F0~FF
378      * - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
379      * - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
380      *         3rd byte after F0~FF
381      * - 0 for others
382      * Error cases:
383      *   >9 for non ascii First Byte overlapping
384      *   E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
385      */
386 
387     /* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
388     /* Overlaps lead to index 9~15, which are illegal in range table */
389     __m128i shift1;
390     __m128i pos;
391     __m128i range2;
392     /* shift1 = (input, prev_input) << 1 byte */
393     shift1 = _mm_alignr_epi8(input, prev_input, 15);
394     pos = _mm_sub_epi8(shift1, _mm_set1_epi8(0xEF));
395     /*
396      * shift1:  | EF  F0 ... FE | FF  00  ... ...  DE | DF  E0 ... EE |
397      * pos:     | 0   1      15 | 16  17           239| 240 241    255|
398      * pos-240: | 0   0      0  | 0   0            0  | 0   1      15 |
399      * pos+112: | 112 113    127|       >= 128        |     >= 128    |
400      */
401     tmp1 = _mm_subs_epu8(pos, _mm_set1_epi8(-16));
402     range2 = _mm_shuffle_epi8(df_ee_table, tmp1);
403     tmp2 = _mm_adds_epu8(pos, _mm_set1_epi8(112));
404     range2 = _mm_add_epi8(range2, _mm_shuffle_epi8(ef_fe_table, tmp2));
405 
406     range = _mm_add_epi8(range, range2);
407 
408     /* Load min and max values per calculated range index */
409     __m128i min_range = _mm_shuffle_epi8(range_min_table, range);
410     __m128i max_range = _mm_shuffle_epi8(range_max_table, range);
411 
412     /* Check value range */
413     if (ReturnPosition) {
414       error = _mm_cmplt_epi8(input, min_range);
415       error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
416       /* 5% performance drop from this conditional branch */
417       if (!_mm_testz_si128(error, error)) {
418         break;
419       }
420     } else {
421       error = _mm_or_si128(error, _mm_cmplt_epi8(input, min_range));
422       error = _mm_or_si128(error, _mm_cmpgt_epi8(input, max_range));
423     }
424 
425     prev_input = input;
426     prev_first_len = first_len;
427 
428     data += 16;
429   }
430   /* If we got to the end, we don't need to skip any bytes backwards */
431   if (ReturnPosition && (data - (end - len)) == 0) {
432     return ValidUTF8Span<true>(data, end);
433   }
434   /* Find previous codepoint (not 80~BF) */
435   data -= CodepointSkipBackwards(_mm_extract_epi32(prev_input, 3));
436   if (ReturnPosition) {
437     return (data - (end - len)) + ValidUTF8Span<true>(data, end);
438   }
439   /* Test if there was any error */
440   if (!_mm_testz_si128(error, error)) {
441     return 0;
442   }
443   /* Check the tail */
444   return ValidUTF8Span<false>(data, end);
445 #endif
446 }
447 
448 }  // namespace
449 
IsStructurallyValid(absl::string_view str)450 bool IsStructurallyValid(absl::string_view str) {
451   return ValidUTF8</*ReturnPosition=*/false>(str.data(), str.size());
452 }
453 
SpanStructurallyValid(absl::string_view str)454 size_t SpanStructurallyValid(absl::string_view str) {
455   return ValidUTF8</*ReturnPosition=*/true>(str.data(), str.size());
456 }
457 
458 }  // namespace utf8_range
459