1 //! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate) 2 //! 3 //! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github 4 //! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust 5 //! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs 6 //! 7 //! <br> 8 //! 9 //! A wrapper around the procedural macro API of the compiler's [`proc_macro`] 10 //! crate. This library serves two purposes: 11 //! 12 //! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/ 13 //! 14 //! - **Bring proc-macro-like functionality to other contexts like build.rs and 15 //! main.rs.** Types from `proc_macro` are entirely specific to procedural 16 //! macros and cannot ever exist in code outside of a procedural macro. 17 //! Meanwhile `proc_macro2` types may exist anywhere including non-macro code. 18 //! By developing foundational libraries like [syn] and [quote] against 19 //! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem 20 //! becomes easily applicable to many other use cases and we avoid 21 //! reimplementing non-macro equivalents of those libraries. 22 //! 23 //! - **Make procedural macros unit testable.** As a consequence of being 24 //! specific to procedural macros, nothing that uses `proc_macro` can be 25 //! executed from a unit test. In order for helper libraries or components of 26 //! a macro to be testable in isolation, they must be implemented using 27 //! `proc_macro2`. 28 //! 29 //! [syn]: https://github.com/dtolnay/syn 30 //! [quote]: https://github.com/dtolnay/quote 31 //! 32 //! # Usage 33 //! 34 //! The skeleton of a typical procedural macro typically looks like this: 35 //! 36 //! ``` 37 //! extern crate proc_macro; 38 //! 39 //! # const IGNORE: &str = stringify! { 40 //! #[proc_macro_derive(MyDerive)] 41 //! # }; 42 //! # #[cfg(wrap_proc_macro)] 43 //! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream { 44 //! let input = proc_macro2::TokenStream::from(input); 45 //! 46 //! let output: proc_macro2::TokenStream = { 47 //! /* transform input */ 48 //! # input 49 //! }; 50 //! 51 //! proc_macro::TokenStream::from(output) 52 //! } 53 //! ``` 54 //! 55 //! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to 56 //! propagate parse errors correctly back to the compiler when parsing fails. 57 //! 58 //! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html 59 //! 60 //! # Unstable features 61 //! 62 //! The default feature set of proc-macro2 tracks the most recent stable 63 //! compiler API. Functionality in `proc_macro` that is not yet stable is not 64 //! exposed by proc-macro2 by default. 65 //! 66 //! To opt into the additional APIs available in the most recent nightly 67 //! compiler, the `procmacro2_semver_exempt` config flag must be passed to 68 //! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As 69 //! these are unstable APIs that track the nightly compiler, minor versions of 70 //! proc-macro2 may make breaking changes to them at any time. 71 //! 72 //! ```sh 73 //! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build 74 //! ``` 75 //! 76 //! Note that this must not only be done for your crate, but for any crate that 77 //! depends on your crate. This infectious nature is intentional, as it serves 78 //! as a reminder that you are outside of the normal semver guarantees. 79 //! 80 //! Semver exempt methods are marked as such in the proc-macro2 documentation. 81 //! 82 //! # Thread-Safety 83 //! 84 //! Most types in this crate are `!Sync` because the underlying compiler 85 //! types make use of thread-local memory, meaning they cannot be accessed from 86 //! a different thread. 87 88 // Proc-macro2 types in rustdoc of other crates get linked to here. 89 #![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.69")] 90 #![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))] 91 #![cfg_attr(super_unstable, feature(proc_macro_def_site))] 92 #![cfg_attr(doc_cfg, feature(doc_cfg))] 93 #![allow( 94 clippy::cast_lossless, 95 clippy::cast_possible_truncation, 96 clippy::doc_markdown, 97 clippy::items_after_statements, 98 clippy::iter_without_into_iter, 99 clippy::let_underscore_untyped, 100 clippy::manual_assert, 101 clippy::manual_range_contains, 102 clippy::missing_safety_doc, 103 clippy::must_use_candidate, 104 clippy::needless_doctest_main, 105 clippy::new_without_default, 106 clippy::return_self_not_must_use, 107 clippy::shadow_unrelated, 108 clippy::trivially_copy_pass_by_ref, 109 clippy::unnecessary_wraps, 110 clippy::unused_self, 111 clippy::used_underscore_binding, 112 clippy::vec_init_then_push 113 )] 114 115 #[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))] 116 compile_error! {"\ 117 Something is not right. If you've tried to turn on \ 118 procmacro2_semver_exempt, you need to ensure that it \ 119 is turned on for the compilation of the proc-macro2 \ 120 build script as well. 121 "} 122 123 extern crate alloc; 124 125 #[cfg(feature = "proc-macro")] 126 extern crate proc_macro; 127 128 mod marker; 129 mod parse; 130 mod rcvec; 131 132 #[cfg(wrap_proc_macro)] 133 mod detection; 134 135 // Public for proc_macro2::fallback::force() and unforce(), but those are quite 136 // a niche use case so we omit it from rustdoc. 137 #[doc(hidden)] 138 pub mod fallback; 139 140 pub mod extra; 141 142 #[cfg(not(wrap_proc_macro))] 143 use crate::fallback as imp; 144 #[path = "wrapper.rs"] 145 #[cfg(wrap_proc_macro)] 146 mod imp; 147 148 #[cfg(span_locations)] 149 mod location; 150 151 use crate::extra::DelimSpan; 152 use crate::marker::Marker; 153 use core::cmp::Ordering; 154 use core::fmt::{self, Debug, Display}; 155 use core::hash::{Hash, Hasher}; 156 use core::ops::RangeBounds; 157 use core::str::FromStr; 158 use std::error::Error; 159 #[cfg(procmacro2_semver_exempt)] 160 use std::path::PathBuf; 161 162 #[cfg(span_locations)] 163 pub use crate::location::LineColumn; 164 165 /// An abstract stream of tokens, or more concretely a sequence of token trees. 166 /// 167 /// This type provides interfaces for iterating over token trees and for 168 /// collecting token trees into one stream. 169 /// 170 /// Token stream is both the input and output of `#[proc_macro]`, 171 /// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions. 172 #[derive(Clone)] 173 pub struct TokenStream { 174 inner: imp::TokenStream, 175 _marker: Marker, 176 } 177 178 /// Error returned from `TokenStream::from_str`. 179 pub struct LexError { 180 inner: imp::LexError, 181 _marker: Marker, 182 } 183 184 impl TokenStream { _new(inner: imp::TokenStream) -> Self185 fn _new(inner: imp::TokenStream) -> Self { 186 TokenStream { 187 inner, 188 _marker: Marker, 189 } 190 } 191 _new_fallback(inner: fallback::TokenStream) -> Self192 fn _new_fallback(inner: fallback::TokenStream) -> Self { 193 TokenStream { 194 inner: inner.into(), 195 _marker: Marker, 196 } 197 } 198 199 /// Returns an empty `TokenStream` containing no token trees. new() -> Self200 pub fn new() -> Self { 201 TokenStream::_new(imp::TokenStream::new()) 202 } 203 204 /// Checks if this `TokenStream` is empty. is_empty(&self) -> bool205 pub fn is_empty(&self) -> bool { 206 self.inner.is_empty() 207 } 208 } 209 210 /// `TokenStream::default()` returns an empty stream, 211 /// i.e. this is equivalent with `TokenStream::new()`. 212 impl Default for TokenStream { default() -> Self213 fn default() -> Self { 214 TokenStream::new() 215 } 216 } 217 218 /// Attempts to break the string into tokens and parse those tokens into a token 219 /// stream. 220 /// 221 /// May fail for a number of reasons, for example, if the string contains 222 /// unbalanced delimiters or characters not existing in the language. 223 /// 224 /// NOTE: Some errors may cause panics instead of returning `LexError`. We 225 /// reserve the right to change these errors into `LexError`s later. 226 impl FromStr for TokenStream { 227 type Err = LexError; 228 from_str(src: &str) -> Result<TokenStream, LexError>229 fn from_str(src: &str) -> Result<TokenStream, LexError> { 230 let e = src.parse().map_err(|e| LexError { 231 inner: e, 232 _marker: Marker, 233 })?; 234 Ok(TokenStream::_new(e)) 235 } 236 } 237 238 #[cfg(feature = "proc-macro")] 239 #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))] 240 impl From<proc_macro::TokenStream> for TokenStream { from(inner: proc_macro::TokenStream) -> Self241 fn from(inner: proc_macro::TokenStream) -> Self { 242 TokenStream::_new(inner.into()) 243 } 244 } 245 246 #[cfg(feature = "proc-macro")] 247 #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))] 248 impl From<TokenStream> for proc_macro::TokenStream { from(inner: TokenStream) -> Self249 fn from(inner: TokenStream) -> Self { 250 inner.inner.into() 251 } 252 } 253 254 impl From<TokenTree> for TokenStream { from(token: TokenTree) -> Self255 fn from(token: TokenTree) -> Self { 256 TokenStream::_new(imp::TokenStream::from(token)) 257 } 258 } 259 260 impl Extend<TokenTree> for TokenStream { extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I)261 fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) { 262 self.inner.extend(streams); 263 } 264 } 265 266 impl Extend<TokenStream> for TokenStream { extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I)267 fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) { 268 self.inner 269 .extend(streams.into_iter().map(|stream| stream.inner)); 270 } 271 } 272 273 /// Collects a number of token trees into a single stream. 274 impl FromIterator<TokenTree> for TokenStream { from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self275 fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self { 276 TokenStream::_new(streams.into_iter().collect()) 277 } 278 } 279 impl FromIterator<TokenStream> for TokenStream { from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self280 fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self { 281 TokenStream::_new(streams.into_iter().map(|i| i.inner).collect()) 282 } 283 } 284 285 /// Prints the token stream as a string that is supposed to be losslessly 286 /// convertible back into the same token stream (modulo spans), except for 287 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative 288 /// numeric literals. 289 impl Display for TokenStream { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result290 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 291 Display::fmt(&self.inner, f) 292 } 293 } 294 295 /// Prints token in a form convenient for debugging. 296 impl Debug for TokenStream { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result297 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 298 Debug::fmt(&self.inner, f) 299 } 300 } 301 302 impl LexError { span(&self) -> Span303 pub fn span(&self) -> Span { 304 Span::_new(self.inner.span()) 305 } 306 } 307 308 impl Debug for LexError { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result309 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 310 Debug::fmt(&self.inner, f) 311 } 312 } 313 314 impl Display for LexError { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result315 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 316 Display::fmt(&self.inner, f) 317 } 318 } 319 320 impl Error for LexError {} 321 322 /// The source file of a given `Span`. 323 /// 324 /// This type is semver exempt and not exposed by default. 325 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] 326 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] 327 #[derive(Clone, PartialEq, Eq)] 328 pub struct SourceFile { 329 inner: imp::SourceFile, 330 _marker: Marker, 331 } 332 333 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] 334 impl SourceFile { _new(inner: imp::SourceFile) -> Self335 fn _new(inner: imp::SourceFile) -> Self { 336 SourceFile { 337 inner, 338 _marker: Marker, 339 } 340 } 341 342 /// Get the path to this source file. 343 /// 344 /// ### Note 345 /// 346 /// If the code span associated with this `SourceFile` was generated by an 347 /// external macro, this may not be an actual path on the filesystem. Use 348 /// [`is_real`] to check. 349 /// 350 /// Also note that even if `is_real` returns `true`, if 351 /// `--remap-path-prefix` was passed on the command line, the path as given 352 /// may not actually be valid. 353 /// 354 /// [`is_real`]: #method.is_real path(&self) -> PathBuf355 pub fn path(&self) -> PathBuf { 356 self.inner.path() 357 } 358 359 /// Returns `true` if this source file is a real source file, and not 360 /// generated by an external macro's expansion. is_real(&self) -> bool361 pub fn is_real(&self) -> bool { 362 self.inner.is_real() 363 } 364 } 365 366 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] 367 impl Debug for SourceFile { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result368 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 369 Debug::fmt(&self.inner, f) 370 } 371 } 372 373 /// A region of source code, along with macro expansion information. 374 #[derive(Copy, Clone)] 375 pub struct Span { 376 inner: imp::Span, 377 _marker: Marker, 378 } 379 380 impl Span { _new(inner: imp::Span) -> Self381 fn _new(inner: imp::Span) -> Self { 382 Span { 383 inner, 384 _marker: Marker, 385 } 386 } 387 _new_fallback(inner: fallback::Span) -> Self388 fn _new_fallback(inner: fallback::Span) -> Self { 389 Span { 390 inner: inner.into(), 391 _marker: Marker, 392 } 393 } 394 395 /// The span of the invocation of the current procedural macro. 396 /// 397 /// Identifiers created with this span will be resolved as if they were 398 /// written directly at the macro call location (call-site hygiene) and 399 /// other code at the macro call site will be able to refer to them as well. call_site() -> Self400 pub fn call_site() -> Self { 401 Span::_new(imp::Span::call_site()) 402 } 403 404 /// The span located at the invocation of the procedural macro, but with 405 /// local variables, labels, and `$crate` resolved at the definition site 406 /// of the macro. This is the same hygiene behavior as `macro_rules`. mixed_site() -> Self407 pub fn mixed_site() -> Self { 408 Span::_new(imp::Span::mixed_site()) 409 } 410 411 /// A span that resolves at the macro definition site. 412 /// 413 /// This method is semver exempt and not exposed by default. 414 #[cfg(procmacro2_semver_exempt)] 415 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] def_site() -> Self416 pub fn def_site() -> Self { 417 Span::_new(imp::Span::def_site()) 418 } 419 420 /// Creates a new span with the same line/column information as `self` but 421 /// that resolves symbols as though it were at `other`. resolved_at(&self, other: Span) -> Span422 pub fn resolved_at(&self, other: Span) -> Span { 423 Span::_new(self.inner.resolved_at(other.inner)) 424 } 425 426 /// Creates a new span with the same name resolution behavior as `self` but 427 /// with the line/column information of `other`. located_at(&self, other: Span) -> Span428 pub fn located_at(&self, other: Span) -> Span { 429 Span::_new(self.inner.located_at(other.inner)) 430 } 431 432 /// Convert `proc_macro2::Span` to `proc_macro::Span`. 433 /// 434 /// This method is available when building with a nightly compiler, or when 435 /// building with rustc 1.29+ *without* semver exempt features. 436 /// 437 /// # Panics 438 /// 439 /// Panics if called from outside of a procedural macro. Unlike 440 /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within 441 /// the context of a procedural macro invocation. 442 #[cfg(wrap_proc_macro)] unwrap(self) -> proc_macro::Span443 pub fn unwrap(self) -> proc_macro::Span { 444 self.inner.unwrap() 445 } 446 447 // Soft deprecated. Please use Span::unwrap. 448 #[cfg(wrap_proc_macro)] 449 #[doc(hidden)] unstable(self) -> proc_macro::Span450 pub fn unstable(self) -> proc_macro::Span { 451 self.unwrap() 452 } 453 454 /// The original source file into which this span points. 455 /// 456 /// This method is semver exempt and not exposed by default. 457 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))] 458 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] source_file(&self) -> SourceFile459 pub fn source_file(&self) -> SourceFile { 460 SourceFile::_new(self.inner.source_file()) 461 } 462 463 /// Get the starting line/column in the source file for this span. 464 /// 465 /// This method requires the `"span-locations"` feature to be enabled. 466 /// 467 /// When executing in a procedural macro context, the returned line/column 468 /// are only meaningful if compiled with a nightly toolchain. The stable 469 /// toolchain does not have this information available. When executing 470 /// outside of a procedural macro, such as main.rs or build.rs, the 471 /// line/column are always meaningful regardless of toolchain. 472 #[cfg(span_locations)] 473 #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] start(&self) -> LineColumn474 pub fn start(&self) -> LineColumn { 475 self.inner.start() 476 } 477 478 /// Get the ending line/column in the source file for this span. 479 /// 480 /// This method requires the `"span-locations"` feature to be enabled. 481 /// 482 /// When executing in a procedural macro context, the returned line/column 483 /// are only meaningful if compiled with a nightly toolchain. The stable 484 /// toolchain does not have this information available. When executing 485 /// outside of a procedural macro, such as main.rs or build.rs, the 486 /// line/column are always meaningful regardless of toolchain. 487 #[cfg(span_locations)] 488 #[cfg_attr(doc_cfg, doc(cfg(feature = "span-locations")))] end(&self) -> LineColumn489 pub fn end(&self) -> LineColumn { 490 self.inner.end() 491 } 492 493 /// Create a new span encompassing `self` and `other`. 494 /// 495 /// Returns `None` if `self` and `other` are from different files. 496 /// 497 /// Warning: the underlying [`proc_macro::Span::join`] method is 498 /// nightly-only. When called from within a procedural macro not using a 499 /// nightly compiler, this method will always return `None`. 500 /// 501 /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join join(&self, other: Span) -> Option<Span>502 pub fn join(&self, other: Span) -> Option<Span> { 503 self.inner.join(other.inner).map(Span::_new) 504 } 505 506 /// Compares two spans to see if they're equal. 507 /// 508 /// This method is semver exempt and not exposed by default. 509 #[cfg(procmacro2_semver_exempt)] 510 #[cfg_attr(doc_cfg, doc(cfg(procmacro2_semver_exempt)))] eq(&self, other: &Span) -> bool511 pub fn eq(&self, other: &Span) -> bool { 512 self.inner.eq(&other.inner) 513 } 514 515 /// Returns the source text behind a span. This preserves the original 516 /// source code, including spaces and comments. It only returns a result if 517 /// the span corresponds to real source code. 518 /// 519 /// Note: The observable result of a macro should only rely on the tokens 520 /// and not on this source text. The result of this function is a best 521 /// effort to be used for diagnostics only. source_text(&self) -> Option<String>522 pub fn source_text(&self) -> Option<String> { 523 self.inner.source_text() 524 } 525 } 526 527 /// Prints a span in a form convenient for debugging. 528 impl Debug for Span { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result529 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 530 Debug::fmt(&self.inner, f) 531 } 532 } 533 534 /// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`). 535 #[derive(Clone)] 536 pub enum TokenTree { 537 /// A token stream surrounded by bracket delimiters. 538 Group(Group), 539 /// An identifier. 540 Ident(Ident), 541 /// A single punctuation character (`+`, `,`, `$`, etc.). 542 Punct(Punct), 543 /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc. 544 Literal(Literal), 545 } 546 547 impl TokenTree { 548 /// Returns the span of this tree, delegating to the `span` method of 549 /// the contained token or a delimited stream. span(&self) -> Span550 pub fn span(&self) -> Span { 551 match self { 552 TokenTree::Group(t) => t.span(), 553 TokenTree::Ident(t) => t.span(), 554 TokenTree::Punct(t) => t.span(), 555 TokenTree::Literal(t) => t.span(), 556 } 557 } 558 559 /// Configures the span for *only this token*. 560 /// 561 /// Note that if this token is a `Group` then this method will not configure 562 /// the span of each of the internal tokens, this will simply delegate to 563 /// the `set_span` method of each variant. set_span(&mut self, span: Span)564 pub fn set_span(&mut self, span: Span) { 565 match self { 566 TokenTree::Group(t) => t.set_span(span), 567 TokenTree::Ident(t) => t.set_span(span), 568 TokenTree::Punct(t) => t.set_span(span), 569 TokenTree::Literal(t) => t.set_span(span), 570 } 571 } 572 } 573 574 impl From<Group> for TokenTree { from(g: Group) -> Self575 fn from(g: Group) -> Self { 576 TokenTree::Group(g) 577 } 578 } 579 580 impl From<Ident> for TokenTree { from(g: Ident) -> Self581 fn from(g: Ident) -> Self { 582 TokenTree::Ident(g) 583 } 584 } 585 586 impl From<Punct> for TokenTree { from(g: Punct) -> Self587 fn from(g: Punct) -> Self { 588 TokenTree::Punct(g) 589 } 590 } 591 592 impl From<Literal> for TokenTree { from(g: Literal) -> Self593 fn from(g: Literal) -> Self { 594 TokenTree::Literal(g) 595 } 596 } 597 598 /// Prints the token tree as a string that is supposed to be losslessly 599 /// convertible back into the same token tree (modulo spans), except for 600 /// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative 601 /// numeric literals. 602 impl Display for TokenTree { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result603 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 604 match self { 605 TokenTree::Group(t) => Display::fmt(t, f), 606 TokenTree::Ident(t) => Display::fmt(t, f), 607 TokenTree::Punct(t) => Display::fmt(t, f), 608 TokenTree::Literal(t) => Display::fmt(t, f), 609 } 610 } 611 } 612 613 /// Prints token tree in a form convenient for debugging. 614 impl Debug for TokenTree { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result615 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 616 // Each of these has the name in the struct type in the derived debug, 617 // so don't bother with an extra layer of indirection 618 match self { 619 TokenTree::Group(t) => Debug::fmt(t, f), 620 TokenTree::Ident(t) => { 621 let mut debug = f.debug_struct("Ident"); 622 debug.field("sym", &format_args!("{}", t)); 623 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner); 624 debug.finish() 625 } 626 TokenTree::Punct(t) => Debug::fmt(t, f), 627 TokenTree::Literal(t) => Debug::fmt(t, f), 628 } 629 } 630 } 631 632 /// A delimited token stream. 633 /// 634 /// A `Group` internally contains a `TokenStream` which is surrounded by 635 /// `Delimiter`s. 636 #[derive(Clone)] 637 pub struct Group { 638 inner: imp::Group, 639 } 640 641 /// Describes how a sequence of token trees is delimited. 642 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 643 pub enum Delimiter { 644 /// `( ... )` 645 Parenthesis, 646 /// `{ ... }` 647 Brace, 648 /// `[ ... ]` 649 Bracket, 650 /// `Ø ... Ø` 651 /// 652 /// An implicit delimiter, that may, for example, appear around tokens 653 /// coming from a "macro variable" `$var`. It is important to preserve 654 /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`. 655 /// Implicit delimiters may not survive roundtrip of a token stream through 656 /// a string. 657 None, 658 } 659 660 impl Group { _new(inner: imp::Group) -> Self661 fn _new(inner: imp::Group) -> Self { 662 Group { inner } 663 } 664 _new_fallback(inner: fallback::Group) -> Self665 fn _new_fallback(inner: fallback::Group) -> Self { 666 Group { 667 inner: inner.into(), 668 } 669 } 670 671 /// Creates a new `Group` with the given delimiter and token stream. 672 /// 673 /// This constructor will set the span for this group to 674 /// `Span::call_site()`. To change the span you can use the `set_span` 675 /// method below. new(delimiter: Delimiter, stream: TokenStream) -> Self676 pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self { 677 Group { 678 inner: imp::Group::new(delimiter, stream.inner), 679 } 680 } 681 682 /// Returns the punctuation used as the delimiter for this group: a set of 683 /// parentheses, square brackets, or curly braces. delimiter(&self) -> Delimiter684 pub fn delimiter(&self) -> Delimiter { 685 self.inner.delimiter() 686 } 687 688 /// Returns the `TokenStream` of tokens that are delimited in this `Group`. 689 /// 690 /// Note that the returned token stream does not include the delimiter 691 /// returned above. stream(&self) -> TokenStream692 pub fn stream(&self) -> TokenStream { 693 TokenStream::_new(self.inner.stream()) 694 } 695 696 /// Returns the span for the delimiters of this token stream, spanning the 697 /// entire `Group`. 698 /// 699 /// ```text 700 /// pub fn span(&self) -> Span { 701 /// ^^^^^^^ 702 /// ``` span(&self) -> Span703 pub fn span(&self) -> Span { 704 Span::_new(self.inner.span()) 705 } 706 707 /// Returns the span pointing to the opening delimiter of this group. 708 /// 709 /// ```text 710 /// pub fn span_open(&self) -> Span { 711 /// ^ 712 /// ``` span_open(&self) -> Span713 pub fn span_open(&self) -> Span { 714 Span::_new(self.inner.span_open()) 715 } 716 717 /// Returns the span pointing to the closing delimiter of this group. 718 /// 719 /// ```text 720 /// pub fn span_close(&self) -> Span { 721 /// ^ 722 /// ``` span_close(&self) -> Span723 pub fn span_close(&self) -> Span { 724 Span::_new(self.inner.span_close()) 725 } 726 727 /// Returns an object that holds this group's `span_open()` and 728 /// `span_close()` together (in a more compact representation than holding 729 /// those 2 spans individually). delim_span(&self) -> DelimSpan730 pub fn delim_span(&self) -> DelimSpan { 731 DelimSpan::new(&self.inner) 732 } 733 734 /// Configures the span for this `Group`'s delimiters, but not its internal 735 /// tokens. 736 /// 737 /// This method will **not** set the span of all the internal tokens spanned 738 /// by this group, but rather it will only set the span of the delimiter 739 /// tokens at the level of the `Group`. set_span(&mut self, span: Span)740 pub fn set_span(&mut self, span: Span) { 741 self.inner.set_span(span.inner); 742 } 743 } 744 745 /// Prints the group as a string that should be losslessly convertible back 746 /// into the same group (modulo spans), except for possibly `TokenTree::Group`s 747 /// with `Delimiter::None` delimiters. 748 impl Display for Group { fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result749 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { 750 Display::fmt(&self.inner, formatter) 751 } 752 } 753 754 impl Debug for Group { fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result755 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result { 756 Debug::fmt(&self.inner, formatter) 757 } 758 } 759 760 /// A `Punct` is a single punctuation character like `+`, `-` or `#`. 761 /// 762 /// Multicharacter operators like `+=` are represented as two instances of 763 /// `Punct` with different forms of `Spacing` returned. 764 #[derive(Clone)] 765 pub struct Punct { 766 ch: char, 767 spacing: Spacing, 768 span: Span, 769 } 770 771 /// Whether a `Punct` is followed immediately by another `Punct` or followed by 772 /// another token or whitespace. 773 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 774 pub enum Spacing { 775 /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`. 776 Alone, 777 /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`. 778 /// 779 /// Additionally, single quote `'` can join with identifiers to form 780 /// lifetimes `'ident`. 781 Joint, 782 } 783 784 impl Punct { 785 /// Creates a new `Punct` from the given character and spacing. 786 /// 787 /// The `ch` argument must be a valid punctuation character permitted by the 788 /// language, otherwise the function will panic. 789 /// 790 /// The returned `Punct` will have the default span of `Span::call_site()` 791 /// which can be further configured with the `set_span` method below. new(ch: char, spacing: Spacing) -> Self792 pub fn new(ch: char, spacing: Spacing) -> Self { 793 Punct { 794 ch, 795 spacing, 796 span: Span::call_site(), 797 } 798 } 799 800 /// Returns the value of this punctuation character as `char`. as_char(&self) -> char801 pub fn as_char(&self) -> char { 802 self.ch 803 } 804 805 /// Returns the spacing of this punctuation character, indicating whether 806 /// it's immediately followed by another `Punct` in the token stream, so 807 /// they can potentially be combined into a multicharacter operator 808 /// (`Joint`), or it's followed by some other token or whitespace (`Alone`) 809 /// so the operator has certainly ended. spacing(&self) -> Spacing810 pub fn spacing(&self) -> Spacing { 811 self.spacing 812 } 813 814 /// Returns the span for this punctuation character. span(&self) -> Span815 pub fn span(&self) -> Span { 816 self.span 817 } 818 819 /// Configure the span for this punctuation character. set_span(&mut self, span: Span)820 pub fn set_span(&mut self, span: Span) { 821 self.span = span; 822 } 823 } 824 825 /// Prints the punctuation character as a string that should be losslessly 826 /// convertible back into the same character. 827 impl Display for Punct { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result828 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 829 Display::fmt(&self.ch, f) 830 } 831 } 832 833 impl Debug for Punct { fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result834 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { 835 let mut debug = fmt.debug_struct("Punct"); 836 debug.field("char", &self.ch); 837 debug.field("spacing", &self.spacing); 838 imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner); 839 debug.finish() 840 } 841 } 842 843 /// A word of Rust code, which may be a keyword or legal variable name. 844 /// 845 /// An identifier consists of at least one Unicode code point, the first of 846 /// which has the XID_Start property and the rest of which have the XID_Continue 847 /// property. 848 /// 849 /// - The empty string is not an identifier. Use `Option<Ident>`. 850 /// - A lifetime is not an identifier. Use `syn::Lifetime` instead. 851 /// 852 /// An identifier constructed with `Ident::new` is permitted to be a Rust 853 /// keyword, though parsing one through its [`Parse`] implementation rejects 854 /// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the 855 /// behaviour of `Ident::new`. 856 /// 857 /// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html 858 /// 859 /// # Examples 860 /// 861 /// A new ident can be created from a string using the `Ident::new` function. 862 /// A span must be provided explicitly which governs the name resolution 863 /// behavior of the resulting identifier. 864 /// 865 /// ``` 866 /// use proc_macro2::{Ident, Span}; 867 /// 868 /// fn main() { 869 /// let call_ident = Ident::new("calligraphy", Span::call_site()); 870 /// 871 /// println!("{}", call_ident); 872 /// } 873 /// ``` 874 /// 875 /// An ident can be interpolated into a token stream using the `quote!` macro. 876 /// 877 /// ``` 878 /// use proc_macro2::{Ident, Span}; 879 /// use quote::quote; 880 /// 881 /// fn main() { 882 /// let ident = Ident::new("demo", Span::call_site()); 883 /// 884 /// // Create a variable binding whose name is this ident. 885 /// let expanded = quote! { let #ident = 10; }; 886 /// 887 /// // Create a variable binding with a slightly different name. 888 /// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site()); 889 /// let expanded = quote! { let #temp_ident = 10; }; 890 /// } 891 /// ``` 892 /// 893 /// A string representation of the ident is available through the `to_string()` 894 /// method. 895 /// 896 /// ``` 897 /// # use proc_macro2::{Ident, Span}; 898 /// # 899 /// # let ident = Ident::new("another_identifier", Span::call_site()); 900 /// # 901 /// // Examine the ident as a string. 902 /// let ident_string = ident.to_string(); 903 /// if ident_string.len() > 60 { 904 /// println!("Very long identifier: {}", ident_string) 905 /// } 906 /// ``` 907 #[derive(Clone)] 908 pub struct Ident { 909 inner: imp::Ident, 910 _marker: Marker, 911 } 912 913 impl Ident { _new(inner: imp::Ident) -> Self914 fn _new(inner: imp::Ident) -> Self { 915 Ident { 916 inner, 917 _marker: Marker, 918 } 919 } 920 921 /// Creates a new `Ident` with the given `string` as well as the specified 922 /// `span`. 923 /// 924 /// The `string` argument must be a valid identifier permitted by the 925 /// language, otherwise the function will panic. 926 /// 927 /// Note that `span`, currently in rustc, configures the hygiene information 928 /// for this identifier. 929 /// 930 /// As of this time `Span::call_site()` explicitly opts-in to "call-site" 931 /// hygiene meaning that identifiers created with this span will be resolved 932 /// as if they were written directly at the location of the macro call, and 933 /// other code at the macro call site will be able to refer to them as well. 934 /// 935 /// Later spans like `Span::def_site()` will allow to opt-in to 936 /// "definition-site" hygiene meaning that identifiers created with this 937 /// span will be resolved at the location of the macro definition and other 938 /// code at the macro call site will not be able to refer to them. 939 /// 940 /// Due to the current importance of hygiene this constructor, unlike other 941 /// tokens, requires a `Span` to be specified at construction. 942 /// 943 /// # Panics 944 /// 945 /// Panics if the input string is neither a keyword nor a legal variable 946 /// name. If you are not sure whether the string contains an identifier and 947 /// need to handle an error case, use 948 /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code 949 /// style="padding-right:0;">syn::parse_str</code></a><code 950 /// style="padding-left:0;">::<Ident></code> 951 /// rather than `Ident::new`. new(string: &str, span: Span) -> Self952 pub fn new(string: &str, span: Span) -> Self { 953 Ident::_new(imp::Ident::new(string, span.inner)) 954 } 955 956 /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The 957 /// `string` argument must be a valid identifier permitted by the language 958 /// (including keywords, e.g. `fn`). Keywords which are usable in path 959 /// segments (e.g. `self`, `super`) are not supported, and will cause a 960 /// panic. new_raw(string: &str, span: Span) -> Self961 pub fn new_raw(string: &str, span: Span) -> Self { 962 Ident::_new_raw(string, span) 963 } 964 _new_raw(string: &str, span: Span) -> Self965 fn _new_raw(string: &str, span: Span) -> Self { 966 Ident::_new(imp::Ident::new_raw(string, span.inner)) 967 } 968 969 /// Returns the span of this `Ident`. span(&self) -> Span970 pub fn span(&self) -> Span { 971 Span::_new(self.inner.span()) 972 } 973 974 /// Configures the span of this `Ident`, possibly changing its hygiene 975 /// context. set_span(&mut self, span: Span)976 pub fn set_span(&mut self, span: Span) { 977 self.inner.set_span(span.inner); 978 } 979 } 980 981 impl PartialEq for Ident { eq(&self, other: &Ident) -> bool982 fn eq(&self, other: &Ident) -> bool { 983 self.inner == other.inner 984 } 985 } 986 987 impl<T> PartialEq<T> for Ident 988 where 989 T: ?Sized + AsRef<str>, 990 { eq(&self, other: &T) -> bool991 fn eq(&self, other: &T) -> bool { 992 self.inner == other 993 } 994 } 995 996 impl Eq for Ident {} 997 998 impl PartialOrd for Ident { partial_cmp(&self, other: &Ident) -> Option<Ordering>999 fn partial_cmp(&self, other: &Ident) -> Option<Ordering> { 1000 Some(self.cmp(other)) 1001 } 1002 } 1003 1004 impl Ord for Ident { cmp(&self, other: &Ident) -> Ordering1005 fn cmp(&self, other: &Ident) -> Ordering { 1006 self.to_string().cmp(&other.to_string()) 1007 } 1008 } 1009 1010 impl Hash for Ident { hash<H: Hasher>(&self, hasher: &mut H)1011 fn hash<H: Hasher>(&self, hasher: &mut H) { 1012 self.to_string().hash(hasher); 1013 } 1014 } 1015 1016 /// Prints the identifier as a string that should be losslessly convertible back 1017 /// into the same identifier. 1018 impl Display for Ident { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1019 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 1020 Display::fmt(&self.inner, f) 1021 } 1022 } 1023 1024 impl Debug for Ident { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1025 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 1026 Debug::fmt(&self.inner, f) 1027 } 1028 } 1029 1030 /// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`), 1031 /// byte character (`b'a'`), an integer or floating point number with or without 1032 /// a suffix (`1`, `1u8`, `2.3`, `2.3f32`). 1033 /// 1034 /// Boolean literals like `true` and `false` do not belong here, they are 1035 /// `Ident`s. 1036 #[derive(Clone)] 1037 pub struct Literal { 1038 inner: imp::Literal, 1039 _marker: Marker, 1040 } 1041 1042 macro_rules! suffixed_int_literals { 1043 ($($name:ident => $kind:ident,)*) => ($( 1044 /// Creates a new suffixed integer literal with the specified value. 1045 /// 1046 /// This function will create an integer like `1u32` where the integer 1047 /// value specified is the first part of the token and the integral is 1048 /// also suffixed at the end. Literals created from negative numbers may 1049 /// not survive roundtrips through `TokenStream` or strings and may be 1050 /// broken into two tokens (`-` and positive literal). 1051 /// 1052 /// Literals created through this method have the `Span::call_site()` 1053 /// span by default, which can be configured with the `set_span` method 1054 /// below. 1055 pub fn $name(n: $kind) -> Literal { 1056 Literal::_new(imp::Literal::$name(n)) 1057 } 1058 )*) 1059 } 1060 1061 macro_rules! unsuffixed_int_literals { 1062 ($($name:ident => $kind:ident,)*) => ($( 1063 /// Creates a new unsuffixed integer literal with the specified value. 1064 /// 1065 /// This function will create an integer like `1` where the integer 1066 /// value specified is the first part of the token. No suffix is 1067 /// specified on this token, meaning that invocations like 1068 /// `Literal::i8_unsuffixed(1)` are equivalent to 1069 /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers 1070 /// may not survive roundtrips through `TokenStream` or strings and may 1071 /// be broken into two tokens (`-` and positive literal). 1072 /// 1073 /// Literals created through this method have the `Span::call_site()` 1074 /// span by default, which can be configured with the `set_span` method 1075 /// below. 1076 pub fn $name(n: $kind) -> Literal { 1077 Literal::_new(imp::Literal::$name(n)) 1078 } 1079 )*) 1080 } 1081 1082 impl Literal { _new(inner: imp::Literal) -> Self1083 fn _new(inner: imp::Literal) -> Self { 1084 Literal { 1085 inner, 1086 _marker: Marker, 1087 } 1088 } 1089 _new_fallback(inner: fallback::Literal) -> Self1090 fn _new_fallback(inner: fallback::Literal) -> Self { 1091 Literal { 1092 inner: inner.into(), 1093 _marker: Marker, 1094 } 1095 } 1096 1097 suffixed_int_literals! { 1098 u8_suffixed => u8, 1099 u16_suffixed => u16, 1100 u32_suffixed => u32, 1101 u64_suffixed => u64, 1102 u128_suffixed => u128, 1103 usize_suffixed => usize, 1104 i8_suffixed => i8, 1105 i16_suffixed => i16, 1106 i32_suffixed => i32, 1107 i64_suffixed => i64, 1108 i128_suffixed => i128, 1109 isize_suffixed => isize, 1110 } 1111 1112 unsuffixed_int_literals! { 1113 u8_unsuffixed => u8, 1114 u16_unsuffixed => u16, 1115 u32_unsuffixed => u32, 1116 u64_unsuffixed => u64, 1117 u128_unsuffixed => u128, 1118 usize_unsuffixed => usize, 1119 i8_unsuffixed => i8, 1120 i16_unsuffixed => i16, 1121 i32_unsuffixed => i32, 1122 i64_unsuffixed => i64, 1123 i128_unsuffixed => i128, 1124 isize_unsuffixed => isize, 1125 } 1126 1127 /// Creates a new unsuffixed floating-point literal. 1128 /// 1129 /// This constructor is similar to those like `Literal::i8_unsuffixed` where 1130 /// the float's value is emitted directly into the token but no suffix is 1131 /// used, so it may be inferred to be a `f64` later in the compiler. 1132 /// Literals created from negative numbers may not survive round-trips 1133 /// through `TokenStream` or strings and may be broken into two tokens (`-` 1134 /// and positive literal). 1135 /// 1136 /// # Panics 1137 /// 1138 /// This function requires that the specified float is finite, for example 1139 /// if it is infinity or NaN this function will panic. f64_unsuffixed(f: f64) -> Literal1140 pub fn f64_unsuffixed(f: f64) -> Literal { 1141 assert!(f.is_finite()); 1142 Literal::_new(imp::Literal::f64_unsuffixed(f)) 1143 } 1144 1145 /// Creates a new suffixed floating-point literal. 1146 /// 1147 /// This constructor will create a literal like `1.0f64` where the value 1148 /// specified is the preceding part of the token and `f64` is the suffix of 1149 /// the token. This token will always be inferred to be an `f64` in the 1150 /// compiler. Literals created from negative numbers may not survive 1151 /// round-trips through `TokenStream` or strings and may be broken into two 1152 /// tokens (`-` and positive literal). 1153 /// 1154 /// # Panics 1155 /// 1156 /// This function requires that the specified float is finite, for example 1157 /// if it is infinity or NaN this function will panic. f64_suffixed(f: f64) -> Literal1158 pub fn f64_suffixed(f: f64) -> Literal { 1159 assert!(f.is_finite()); 1160 Literal::_new(imp::Literal::f64_suffixed(f)) 1161 } 1162 1163 /// Creates a new unsuffixed floating-point literal. 1164 /// 1165 /// This constructor is similar to those like `Literal::i8_unsuffixed` where 1166 /// the float's value is emitted directly into the token but no suffix is 1167 /// used, so it may be inferred to be a `f64` later in the compiler. 1168 /// Literals created from negative numbers may not survive round-trips 1169 /// through `TokenStream` or strings and may be broken into two tokens (`-` 1170 /// and positive literal). 1171 /// 1172 /// # Panics 1173 /// 1174 /// This function requires that the specified float is finite, for example 1175 /// if it is infinity or NaN this function will panic. f32_unsuffixed(f: f32) -> Literal1176 pub fn f32_unsuffixed(f: f32) -> Literal { 1177 assert!(f.is_finite()); 1178 Literal::_new(imp::Literal::f32_unsuffixed(f)) 1179 } 1180 1181 /// Creates a new suffixed floating-point literal. 1182 /// 1183 /// This constructor will create a literal like `1.0f32` where the value 1184 /// specified is the preceding part of the token and `f32` is the suffix of 1185 /// the token. This token will always be inferred to be an `f32` in the 1186 /// compiler. Literals created from negative numbers may not survive 1187 /// round-trips through `TokenStream` or strings and may be broken into two 1188 /// tokens (`-` and positive literal). 1189 /// 1190 /// # Panics 1191 /// 1192 /// This function requires that the specified float is finite, for example 1193 /// if it is infinity or NaN this function will panic. f32_suffixed(f: f32) -> Literal1194 pub fn f32_suffixed(f: f32) -> Literal { 1195 assert!(f.is_finite()); 1196 Literal::_new(imp::Literal::f32_suffixed(f)) 1197 } 1198 1199 /// String literal. string(string: &str) -> Literal1200 pub fn string(string: &str) -> Literal { 1201 Literal::_new(imp::Literal::string(string)) 1202 } 1203 1204 /// Character literal. character(ch: char) -> Literal1205 pub fn character(ch: char) -> Literal { 1206 Literal::_new(imp::Literal::character(ch)) 1207 } 1208 1209 /// Byte string literal. byte_string(s: &[u8]) -> Literal1210 pub fn byte_string(s: &[u8]) -> Literal { 1211 Literal::_new(imp::Literal::byte_string(s)) 1212 } 1213 1214 /// Returns the span encompassing this literal. span(&self) -> Span1215 pub fn span(&self) -> Span { 1216 Span::_new(self.inner.span()) 1217 } 1218 1219 /// Configures the span associated for this literal. set_span(&mut self, span: Span)1220 pub fn set_span(&mut self, span: Span) { 1221 self.inner.set_span(span.inner); 1222 } 1223 1224 /// Returns a `Span` that is a subset of `self.span()` containing only 1225 /// the source bytes in range `range`. Returns `None` if the would-be 1226 /// trimmed span is outside the bounds of `self`. 1227 /// 1228 /// Warning: the underlying [`proc_macro::Literal::subspan`] method is 1229 /// nightly-only. When called from within a procedural macro not using a 1230 /// nightly compiler, this method will always return `None`. 1231 /// 1232 /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span>1233 pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> { 1234 self.inner.subspan(range).map(Span::_new) 1235 } 1236 1237 // Intended for the `quote!` macro to use when constructing a proc-macro2 1238 // token out of a macro_rules $:literal token, which is already known to be 1239 // a valid literal. This avoids reparsing/validating the literal's string 1240 // representation. This is not public API other than for quote. 1241 #[doc(hidden)] from_str_unchecked(repr: &str) -> Self1242 pub unsafe fn from_str_unchecked(repr: &str) -> Self { 1243 Literal::_new(imp::Literal::from_str_unchecked(repr)) 1244 } 1245 } 1246 1247 impl FromStr for Literal { 1248 type Err = LexError; 1249 from_str(repr: &str) -> Result<Self, LexError>1250 fn from_str(repr: &str) -> Result<Self, LexError> { 1251 repr.parse().map(Literal::_new).map_err(|inner| LexError { 1252 inner, 1253 _marker: Marker, 1254 }) 1255 } 1256 } 1257 1258 impl Debug for Literal { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1259 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 1260 Debug::fmt(&self.inner, f) 1261 } 1262 } 1263 1264 impl Display for Literal { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1265 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 1266 Display::fmt(&self.inner, f) 1267 } 1268 } 1269 1270 /// Public implementation details for the `TokenStream` type, such as iterators. 1271 pub mod token_stream { 1272 use crate::marker::Marker; 1273 use crate::{imp, TokenTree}; 1274 use core::fmt::{self, Debug}; 1275 1276 pub use crate::TokenStream; 1277 1278 /// An iterator over `TokenStream`'s `TokenTree`s. 1279 /// 1280 /// The iteration is "shallow", e.g. the iterator doesn't recurse into 1281 /// delimited groups, and returns whole groups as token trees. 1282 #[derive(Clone)] 1283 pub struct IntoIter { 1284 inner: imp::TokenTreeIter, 1285 _marker: Marker, 1286 } 1287 1288 impl Iterator for IntoIter { 1289 type Item = TokenTree; 1290 next(&mut self) -> Option<TokenTree>1291 fn next(&mut self) -> Option<TokenTree> { 1292 self.inner.next() 1293 } 1294 size_hint(&self) -> (usize, Option<usize>)1295 fn size_hint(&self) -> (usize, Option<usize>) { 1296 self.inner.size_hint() 1297 } 1298 } 1299 1300 impl Debug for IntoIter { fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1301 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { 1302 f.write_str("TokenStream ")?; 1303 f.debug_list().entries(self.clone()).finish() 1304 } 1305 } 1306 1307 impl IntoIterator for TokenStream { 1308 type Item = TokenTree; 1309 type IntoIter = IntoIter; 1310 into_iter(self) -> IntoIter1311 fn into_iter(self) -> IntoIter { 1312 IntoIter { 1313 inner: self.inner.into_iter(), 1314 _marker: Marker, 1315 } 1316 } 1317 } 1318 } 1319