• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2020, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // An implementation of the NIST P-256 elliptic curve point multiplication.
16 // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by
17 // Fiat, which lives in //third_party/fiat.
18 
19 #include <ring-core/base.h>
20 
21 #include "../../limbs/limbs.h"
22 #include "../../limbs/limbs.inl"
23 
24 #include "p256_shared.h"
25 
26 #include "../../internal.h"
27 #include "./util.h"
28 
29 #if !defined(OPENSSL_USE_NISTZ256)
30 
31 #if defined(_MSC_VER) && !defined(__clang__)
32 // '=': conversion from 'int64_t' to 'int32_t', possible loss of data
33 #pragma warning(disable: 4242)
34 // '=': conversion from 'int32_t' to 'uint8_t', possible loss of data
35 #pragma warning(disable: 4244)
36 // 'initializing': conversion from 'size_t' to 'fiat_p256_limb_t'
37 #pragma warning(disable: 4267)
38 #endif
39 
40 #if defined(__GNUC__)
41 #pragma GCC diagnostic ignored "-Wconversion"
42 #pragma GCC diagnostic ignored "-Wsign-conversion"
43 #endif
44 
45 // MSVC does not implement uint128_t, and crashes with intrinsics
46 #if defined(BORINGSSL_HAS_UINT128)
47 #if defined(__GNUC__)
48 #pragma GCC diagnostic ignored "-Wpedantic"
49 #endif
50 #define BORINGSSL_NISTP256_64BIT 1
51 #include "../../../third_party/fiat/p256_64.h"
52 #else
53 #include "../../../third_party/fiat/p256_32.h"
54 #endif
55 
56 
57 // utility functions, handwritten
58 
59 #if defined(BORINGSSL_NISTP256_64BIT)
60 #define FIAT_P256_NLIMBS 4
61 typedef uint64_t fiat_p256_limb_t;
62 typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS];
63 static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000,
64                                               0xffffffffffffffff, 0xfffffffe};
65 #else  // 64BIT; else 32BIT
66 #define FIAT_P256_NLIMBS 8
67 typedef uint32_t fiat_p256_limb_t;
68 typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS];
69 static const fiat_p256_felem fiat_p256_one = {
70     0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0};
71 #endif  // 64BIT
72 
73 
fiat_p256_nz(const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])74 static fiat_p256_limb_t fiat_p256_nz(
75     const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
76   fiat_p256_limb_t ret;
77   fiat_p256_nonzero(&ret, in1);
78   return ret;
79 }
80 
fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],const fiat_p256_limb_t in1[FIAT_P256_NLIMBS])81 static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
82                            const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) {
83   for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) {
84     out[i] = in1[i];
85   }
86 }
87 
fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],fiat_p256_limb_t t,const fiat_p256_limb_t z[FIAT_P256_NLIMBS],const fiat_p256_limb_t nz[FIAT_P256_NLIMBS])88 static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS],
89                               fiat_p256_limb_t t,
90                               const fiat_p256_limb_t z[FIAT_P256_NLIMBS],
91                               const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) {
92   fiat_p256_selectznz(out, !!t, z, nz);
93 }
94 
95 // Group operations
96 // ----------------
97 //
98 // Building on top of the field operations we have the operations on the
99 // elliptic curve group itself. Points on the curve are represented in Jacobian
100 // coordinates.
101 //
102 // Both operations were transcribed to Coq and proven to correspond to naive
103 // implementations using Affine coordinates, for all suitable fields.  In the
104 // Coq proofs, issues of constant-time execution and memory layout (aliasing)
105 // conventions were not considered. Specification of affine coordinates:
106 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28>
107 // As a sanity check, a proof that these points form a commutative group:
108 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33>
109 
110 // fiat_p256_point_double calculates 2*(x_in, y_in, z_in)
111 //
112 // The method is taken from:
113 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
114 //
115 // Coq transcription and correctness proof:
116 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
117 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
118 //
119 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
120 // while x_out == y_in is not (maybe this works, but it's not tested).
fiat_p256_point_double(fiat_p256_felem x_out,fiat_p256_felem y_out,fiat_p256_felem z_out,const fiat_p256_felem x_in,const fiat_p256_felem y_in,const fiat_p256_felem z_in)121 static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out,
122                                    fiat_p256_felem z_out,
123                                    const fiat_p256_felem x_in,
124                                    const fiat_p256_felem y_in,
125                                    const fiat_p256_felem z_in) {
126   fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
127   // delta = z^2
128   fiat_p256_square(delta, z_in);
129   // gamma = y^2
130   fiat_p256_square(gamma, y_in);
131   // beta = x*gamma
132   fiat_p256_mul(beta, x_in, gamma);
133 
134   // alpha = 3*(x-delta)*(x+delta)
135   fiat_p256_sub(ftmp, x_in, delta);
136   fiat_p256_add(ftmp2, x_in, delta);
137 
138   fiat_p256_add(tmptmp, ftmp2, ftmp2);
139   fiat_p256_add(ftmp2, ftmp2, tmptmp);
140   fiat_p256_mul(alpha, ftmp, ftmp2);
141 
142   // x' = alpha^2 - 8*beta
143   fiat_p256_square(x_out, alpha);
144   fiat_p256_add(fourbeta, beta, beta);
145   fiat_p256_add(fourbeta, fourbeta, fourbeta);
146   fiat_p256_add(tmptmp, fourbeta, fourbeta);
147   fiat_p256_sub(x_out, x_out, tmptmp);
148 
149   // z' = (y + z)^2 - gamma - delta
150   fiat_p256_add(delta, gamma, delta);
151   fiat_p256_add(ftmp, y_in, z_in);
152   fiat_p256_square(z_out, ftmp);
153   fiat_p256_sub(z_out, z_out, delta);
154 
155   // y' = alpha*(4*beta - x') - 8*gamma^2
156   fiat_p256_sub(y_out, fourbeta, x_out);
157   fiat_p256_add(gamma, gamma, gamma);
158   fiat_p256_square(gamma, gamma);
159   fiat_p256_mul(y_out, alpha, y_out);
160   fiat_p256_add(gamma, gamma, gamma);
161   fiat_p256_sub(y_out, y_out, gamma);
162 }
163 
164 // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2)
165 //
166 // The method is taken from:
167 //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
168 // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
169 //
170 // Coq transcription and correctness proof:
171 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135>
172 // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205>
173 //
174 // This function includes a branch for checking whether the two input points
175 // are equal, (while not equal to the point at infinity). This case never
176 // happens during single point multiplication, so there is no timing leak for
177 // ECDH or ECDSA signing.
fiat_p256_point_add(fiat_p256_felem x3,fiat_p256_felem y3,fiat_p256_felem z3,const fiat_p256_felem x1,const fiat_p256_felem y1,const fiat_p256_felem z1,const int mixed,const fiat_p256_felem x2,const fiat_p256_felem y2,const fiat_p256_felem z2)178 static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3,
179                                 fiat_p256_felem z3, const fiat_p256_felem x1,
180                                 const fiat_p256_felem y1,
181                                 const fiat_p256_felem z1, const int mixed,
182                                 const fiat_p256_felem x2,
183                                 const fiat_p256_felem y2,
184                                 const fiat_p256_felem z2) {
185   fiat_p256_felem x_out, y_out, z_out;
186   fiat_p256_limb_t z1nz = fiat_p256_nz(z1);
187   fiat_p256_limb_t z2nz = fiat_p256_nz(z2);
188 
189   // z1z1 = z1z1 = z1**2
190   fiat_p256_felem z1z1;
191   fiat_p256_square(z1z1, z1);
192 
193   fiat_p256_felem u1, s1, two_z1z2;
194   if (!mixed) {
195     // z2z2 = z2**2
196     fiat_p256_felem z2z2;
197     fiat_p256_square(z2z2, z2);
198 
199     // u1 = x1*z2z2
200     fiat_p256_mul(u1, x1, z2z2);
201 
202     // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
203     fiat_p256_add(two_z1z2, z1, z2);
204     fiat_p256_square(two_z1z2, two_z1z2);
205     fiat_p256_sub(two_z1z2, two_z1z2, z1z1);
206     fiat_p256_sub(two_z1z2, two_z1z2, z2z2);
207 
208     // s1 = y1 * z2**3
209     fiat_p256_mul(s1, z2, z2z2);
210     fiat_p256_mul(s1, s1, y1);
211   } else {
212     // We'll assume z2 = 1 (special case z2 = 0 is handled later).
213 
214     // u1 = x1*z2z2
215     fiat_p256_copy(u1, x1);
216     // two_z1z2 = 2z1z2
217     fiat_p256_add(two_z1z2, z1, z1);
218     // s1 = y1 * z2**3
219     fiat_p256_copy(s1, y1);
220   }
221 
222   // u2 = x2*z1z1
223   fiat_p256_felem u2;
224   fiat_p256_mul(u2, x2, z1z1);
225 
226   // h = u2 - u1
227   fiat_p256_felem h;
228   fiat_p256_sub(h, u2, u1);
229 
230   fiat_p256_limb_t xneq = fiat_p256_nz(h);
231 
232   // z_out = two_z1z2 * h
233   fiat_p256_mul(z_out, h, two_z1z2);
234 
235   // z1z1z1 = z1 * z1z1
236   fiat_p256_felem z1z1z1;
237   fiat_p256_mul(z1z1z1, z1, z1z1);
238 
239   // s2 = y2 * z1**3
240   fiat_p256_felem s2;
241   fiat_p256_mul(s2, y2, z1z1z1);
242 
243   // r = (s2 - s1)*2
244   fiat_p256_felem r;
245   fiat_p256_sub(r, s2, s1);
246   fiat_p256_add(r, r, r);
247 
248   fiat_p256_limb_t yneq = fiat_p256_nz(r);
249 
250   fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) &
251                                           ~constant_time_is_zero_w(z1nz) &
252                                           ~constant_time_is_zero_w(z2nz);
253   if (is_nontrivial_double) {
254     fiat_p256_point_double(x3, y3, z3, x1, y1, z1);
255     return;
256   }
257 
258   // I = (2h)**2
259   fiat_p256_felem i;
260   fiat_p256_add(i, h, h);
261   fiat_p256_square(i, i);
262 
263   // J = h * I
264   fiat_p256_felem j;
265   fiat_p256_mul(j, h, i);
266 
267   // V = U1 * I
268   fiat_p256_felem v;
269   fiat_p256_mul(v, u1, i);
270 
271   // x_out = r**2 - J - 2V
272   fiat_p256_square(x_out, r);
273   fiat_p256_sub(x_out, x_out, j);
274   fiat_p256_sub(x_out, x_out, v);
275   fiat_p256_sub(x_out, x_out, v);
276 
277   // y_out = r(V-x_out) - 2 * s1 * J
278   fiat_p256_sub(y_out, v, x_out);
279   fiat_p256_mul(y_out, y_out, r);
280   fiat_p256_felem s1j;
281   fiat_p256_mul(s1j, s1, j);
282   fiat_p256_sub(y_out, y_out, s1j);
283   fiat_p256_sub(y_out, y_out, s1j);
284 
285   fiat_p256_cmovznz(x_out, z1nz, x2, x_out);
286   fiat_p256_cmovznz(x3, z2nz, x1, x_out);
287   fiat_p256_cmovznz(y_out, z1nz, y2, y_out);
288   fiat_p256_cmovznz(y3, z2nz, y1, y_out);
289   fiat_p256_cmovznz(z_out, z1nz, z2, z_out);
290   fiat_p256_cmovznz(z3, z2nz, z1, z_out);
291 }
292 
293 #include "./p256_table.h"
294 
295 // fiat_p256_select_point_affine selects the |idx-1|th point from a
296 // precomputation table and copies it to out. If |idx| is zero, the output is
297 // the point at infinity.
fiat_p256_select_point_affine(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][2],fiat_p256_felem out[3])298 static void fiat_p256_select_point_affine(
299     const fiat_p256_limb_t idx, size_t size,
300     const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) {
301   OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
302   for (size_t i = 0; i < size; i++) {
303     fiat_p256_limb_t mismatch = i ^ (idx - 1);
304     fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
305     fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
306   }
307   fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one);
308 }
309 
310 // fiat_p256_select_point selects the |idx|th point from a precomputation table
311 // and copies it to out.
fiat_p256_select_point(const fiat_p256_limb_t idx,size_t size,const fiat_p256_felem pre_comp[][3],fiat_p256_felem out[3])312 static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size,
313                                    const fiat_p256_felem pre_comp[/*size*/][3],
314                                    fiat_p256_felem out[3]) {
315   OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3);
316   for (size_t i = 0; i < size; i++) {
317     fiat_p256_limb_t mismatch = i ^ idx;
318     fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]);
319     fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]);
320     fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]);
321   }
322 }
323 
324 // fiat_p256_get_bit returns the |i|th bit in |in|
fiat_p256_get_bit(const uint8_t * in,int i)325 static crypto_word fiat_p256_get_bit(const uint8_t *in, int i) {
326   if (i < 0 || i >= 256) {
327     return 0;
328   }
329   return (in[i >> 3] >> (i & 7)) & 1;
330 }
331 
p256_point_mul(P256_POINT * r,const Limb scalar[P256_LIMBS],const Limb p_x[P256_LIMBS],const Limb p_y[P256_LIMBS])332 void p256_point_mul(P256_POINT *r, const Limb scalar[P256_LIMBS],
333                         const Limb p_x[P256_LIMBS], const Limb p_y[P256_LIMBS]) {
334   debug_assert_nonsecret(r != NULL);
335   debug_assert_nonsecret(scalar != NULL);
336   debug_assert_nonsecret(p_x != NULL);
337   debug_assert_nonsecret(p_y != NULL);
338 
339   P256_SCALAR_BYTES scalar_bytes;
340   p256_scalar_bytes_from_limbs(scalar_bytes, scalar);
341 
342   fiat_p256_felem p_pre_comp[17][3];
343   OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
344 
345   // Precompute multiples.
346   limbs_copy(&p_pre_comp[1][0][0], p_x, P256_LIMBS);
347   limbs_copy(&p_pre_comp[1][1][0], p_y, P256_LIMBS);
348   limbs_copy(&p_pre_comp[1][2][0], fiat_p256_one, P256_LIMBS);
349 
350   for (size_t j = 2; j <= 16; ++j) {
351     if (j & 1) {
352       fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
353                           p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2],
354                           0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
355                           p_pre_comp[j - 1][2]);
356     } else {
357       fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1],
358                              p_pre_comp[j][2], p_pre_comp[j / 2][0],
359                              p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]);
360     }
361   }
362 
363   // Set nq to the point at infinity.
364   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3];
365 
366   // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round.
367   int skip = 1;  // Save two point operations in the first round.
368   for (size_t i = 255; i < 256; i--) {
369     // double
370     if (!skip) {
371       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
372     }
373 
374     // do other additions every 5 doublings
375     if (i % 5 == 0) {
376       crypto_word bits = fiat_p256_get_bit(scalar_bytes, i + 4) << 5;
377       bits |= fiat_p256_get_bit(scalar_bytes, i + 3) << 4;
378       bits |= fiat_p256_get_bit(scalar_bytes, i + 2) << 3;
379       bits |= fiat_p256_get_bit(scalar_bytes, i + 1) << 2;
380       bits |= fiat_p256_get_bit(scalar_bytes, i) << 1;
381       bits |= fiat_p256_get_bit(scalar_bytes, i - 1);
382       crypto_word sign, digit;
383       recode_scalar_bits(&sign, &digit, bits);
384 
385       // select the point to add or subtract, in constant time.
386       fiat_p256_select_point(digit, 17,
387         RING_CORE_POINTLESS_ARRAY_CONST_CAST((const fiat_p256_felem(*)[3]))p_pre_comp,
388         tmp);
389       fiat_p256_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point.
390       fiat_p256_cmovznz(tmp[1], sign, tmp[1], ftmp);
391 
392       if (!skip) {
393         fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
394                             0 /* mixed */, tmp[0], tmp[1], tmp[2]);
395       } else {
396         fiat_p256_copy(nq[0], tmp[0]);
397         fiat_p256_copy(nq[1], tmp[1]);
398         fiat_p256_copy(nq[2], tmp[2]);
399         skip = 0;
400       }
401     }
402   }
403 
404   limbs_copy(r->X, nq[0], P256_LIMBS);
405   limbs_copy(r->Y, nq[1], P256_LIMBS);
406   limbs_copy(r->Z, nq[2], P256_LIMBS);
407 }
408 
p256_point_mul_base(P256_POINT * r,const Limb scalar[P256_LIMBS])409 void p256_point_mul_base(P256_POINT *r, const Limb scalar[P256_LIMBS]) {
410   P256_SCALAR_BYTES scalar_bytes;
411   p256_scalar_bytes_from_limbs(scalar_bytes, scalar);
412 
413   // Set nq to the point at infinity.
414   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3];
415 
416   int skip = 1;  // Save two point operations in the first round.
417   for (size_t i = 31; i < 32; i--) {
418     if (!skip) {
419       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
420     }
421 
422     // First, look 32 bits upwards.
423     crypto_word bits = fiat_p256_get_bit(scalar_bytes, i + 224) << 3;
424     bits |= fiat_p256_get_bit(scalar_bytes, i + 160) << 2;
425     bits |= fiat_p256_get_bit(scalar_bytes, i + 96) << 1;
426     bits |= fiat_p256_get_bit(scalar_bytes, i + 32);
427     // Select the point to add, in constant time.
428     fiat_p256_select_point_affine(bits, 15, fiat_p256_g_pre_comp[1], tmp);
429 
430     if (!skip) {
431       fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2],
432                           1 /* mixed */, tmp[0], tmp[1], tmp[2]);
433     } else {
434       fiat_p256_copy(nq[0], tmp[0]);
435       fiat_p256_copy(nq[1], tmp[1]);
436       fiat_p256_copy(nq[2], tmp[2]);
437       skip = 0;
438     }
439 
440     // Second, look at the current position.
441     bits = fiat_p256_get_bit(scalar_bytes, i + 192) << 3;
442     bits |= fiat_p256_get_bit(scalar_bytes, i + 128) << 2;
443     bits |= fiat_p256_get_bit(scalar_bytes, i + 64) << 1;
444     bits |= fiat_p256_get_bit(scalar_bytes, i);
445     // Select the point to add, in constant time.
446     fiat_p256_select_point_affine(bits, 15, fiat_p256_g_pre_comp[0], tmp);
447     fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
448                         tmp[0], tmp[1], tmp[2]);
449   }
450 
451   limbs_copy(r->X, nq[0], P256_LIMBS);
452   limbs_copy(r->Y, nq[1], P256_LIMBS);
453   limbs_copy(r->Z, nq[2], P256_LIMBS);
454 }
455 
p256_mul_mont(Limb r[P256_LIMBS],const Limb a[P256_LIMBS],const Limb b[P256_LIMBS])456 void p256_mul_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS],
457                        const Limb b[P256_LIMBS]) {
458   fiat_p256_mul(r, a, b);
459 }
460 
p256_sqr_mont(Limb r[P256_LIMBS],const Limb a[P256_LIMBS])461 void p256_sqr_mont(Limb r[P256_LIMBS], const Limb a[P256_LIMBS]) {
462   fiat_p256_square(r, a);
463 }
464 
p256_point_add(P256_POINT * r,const P256_POINT * a,const P256_POINT * b)465 void p256_point_add(P256_POINT *r, const P256_POINT *a, const P256_POINT *b) {
466   fiat_p256_point_add(r->X, r->Y, r->Z,
467                       a->X, a->Y, a->Z,
468                       0,
469                       b->X, b->Y, b->Z);
470 }
471 
p256_point_double(P256_POINT * r,const P256_POINT * a)472 void p256_point_double(P256_POINT *r, const P256_POINT *a) {
473   fiat_p256_point_double(r->X, r->Y, r->Z,
474                          a->X, a->Y, a->Z);
475 }
476 
477 // For testing only.
p256_point_add_affine(P256_POINT * r,const P256_POINT * a,const BN_ULONG b[P256_LIMBS * 2])478 void p256_point_add_affine(P256_POINT *r, const P256_POINT *a,
479                                const BN_ULONG b[P256_LIMBS * 2]) {
480   const Limb *b_x = &b[0];
481   const Limb *b_y = &b[P256_LIMBS];
482   fiat_p256_felem b_z = {0};
483   crypto_word b_is_inf = constant_time_select_w(
484       LIMBS_are_zero(b_x, P256_LIMBS), LIMBS_are_zero(b_y, P256_LIMBS), 0);
485   fiat_p256_cmovznz(b_z, constant_time_is_zero_w(b_is_inf), b_z, fiat_p256_one);
486   fiat_p256_point_add(r->X, r->Y, r->Z,
487                       a->X, a->Y, a->Z,
488                       1,
489                       b_x, b_y, b_z);
490 }
491 
492 #undef BORINGSSL_NISTP256_64BIT
493 
494 #endif /* !defined(OPENSSL_USE_NISTZ256) */
495