• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! A queue of delayed elements.
2 //!
3 //! See [`DelayQueue`] for more details.
4 //!
5 //! [`DelayQueue`]: struct@DelayQueue
6 
7 use crate::time::wheel::{self, Wheel};
8 
9 use futures_core::ready;
10 use tokio::time::{sleep_until, Duration, Instant, Sleep};
11 
12 use core::ops::{Index, IndexMut};
13 use slab::Slab;
14 use std::cmp;
15 use std::collections::HashMap;
16 use std::convert::From;
17 use std::fmt;
18 use std::fmt::Debug;
19 use std::future::Future;
20 use std::marker::PhantomData;
21 use std::pin::Pin;
22 use std::task::{self, Poll, Waker};
23 
24 /// A queue of delayed elements.
25 ///
26 /// Once an element is inserted into the `DelayQueue`, it is yielded once the
27 /// specified deadline has been reached.
28 ///
29 /// # Usage
30 ///
31 /// Elements are inserted into `DelayQueue` using the [`insert`] or
32 /// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
33 /// returned. The key is used to remove the entry or to change the deadline at
34 /// which it should be yielded back.
35 ///
36 /// Once delays have been configured, the `DelayQueue` is used via its
37 /// [`Stream`] implementation. [`poll_expired`] is called. If an entry has reached its
38 /// deadline, it is returned. If not, `Poll::Pending` is returned indicating that the
39 /// current task will be notified once the deadline has been reached.
40 ///
41 /// # `Stream` implementation
42 ///
43 /// Items are retrieved from the queue via [`DelayQueue::poll_expired`]. If no delays have
44 /// expired, no items are returned. In this case, `Poll::Pending` is returned and the
45 /// current task is registered to be notified once the next item's delay has
46 /// expired.
47 ///
48 /// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
49 /// returns `Poll::Ready(None)`. This indicates that the stream has reached an end.
50 /// However, if a new item is inserted *after*, `poll` will once again start
51 /// returning items or `Poll::Pending`.
52 ///
53 /// Items are returned ordered by their expirations. Items that are configured
54 /// to expire first will be returned first. There are no ordering guarantees
55 /// for items configured to expire at the same instant. Also note that delays are
56 /// rounded to the closest millisecond.
57 ///
58 /// # Implementation
59 ///
60 /// The [`DelayQueue`] is backed by a separate instance of a timer wheel similar to that used internally
61 /// by Tokio's standalone timer utilities such as [`sleep`]. Because of this, it offers the same
62 /// performance and scalability benefits.
63 ///
64 /// State associated with each entry is stored in a [`slab`]. This amortizes the cost of allocation,
65 /// and allows reuse of the memory allocated for expired entries.
66 ///
67 /// Capacity can be checked using [`capacity`] and allocated preemptively by using
68 /// the [`reserve`] method.
69 ///
70 /// # Usage
71 ///
72 /// Using `DelayQueue` to manage cache entries.
73 ///
74 /// ```rust,no_run
75 /// use tokio_util::time::{DelayQueue, delay_queue};
76 ///
77 /// use futures::ready;
78 /// use std::collections::HashMap;
79 /// use std::task::{Context, Poll};
80 /// use std::time::Duration;
81 /// # type CacheKey = String;
82 /// # type Value = String;
83 ///
84 /// struct Cache {
85 ///     entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
86 ///     expirations: DelayQueue<CacheKey>,
87 /// }
88 ///
89 /// const TTL_SECS: u64 = 30;
90 ///
91 /// impl Cache {
92 ///     fn insert(&mut self, key: CacheKey, value: Value) {
93 ///         let delay = self.expirations
94 ///             .insert(key.clone(), Duration::from_secs(TTL_SECS));
95 ///
96 ///         self.entries.insert(key, (value, delay));
97 ///     }
98 ///
99 ///     fn get(&self, key: &CacheKey) -> Option<&Value> {
100 ///         self.entries.get(key)
101 ///             .map(|&(ref v, _)| v)
102 ///     }
103 ///
104 ///     fn remove(&mut self, key: &CacheKey) {
105 ///         if let Some((_, cache_key)) = self.entries.remove(key) {
106 ///             self.expirations.remove(&cache_key);
107 ///         }
108 ///     }
109 ///
110 ///     fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<()> {
111 ///         while let Some(entry) = ready!(self.expirations.poll_expired(cx)) {
112 ///             self.entries.remove(entry.get_ref());
113 ///         }
114 ///
115 ///         Poll::Ready(())
116 ///     }
117 /// }
118 /// ```
119 ///
120 /// [`insert`]: method@Self::insert
121 /// [`insert_at`]: method@Self::insert_at
122 /// [`Key`]: struct@Key
123 /// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
124 /// [`poll_expired`]: method@Self::poll_expired
125 /// [`Stream::poll_expired`]: method@Self::poll_expired
126 /// [`DelayQueue`]: struct@DelayQueue
127 /// [`sleep`]: fn@tokio::time::sleep
128 /// [`slab`]: slab
129 /// [`capacity`]: method@Self::capacity
130 /// [`reserve`]: method@Self::reserve
131 #[derive(Debug)]
132 pub struct DelayQueue<T> {
133     /// Stores data associated with entries
134     slab: SlabStorage<T>,
135 
136     /// Lookup structure tracking all delays in the queue
137     wheel: Wheel<Stack<T>>,
138 
139     /// Delays that were inserted when already expired. These cannot be stored
140     /// in the wheel
141     expired: Stack<T>,
142 
143     /// Delay expiring when the *first* item in the queue expires
144     delay: Option<Pin<Box<Sleep>>>,
145 
146     /// Wheel polling state
147     wheel_now: u64,
148 
149     /// Instant at which the timer starts
150     start: Instant,
151 
152     /// Waker that is invoked when we potentially need to reset the timer.
153     /// Because we lazily create the timer when the first entry is created, we
154     /// need to awaken any poller that polled us before that point.
155     waker: Option<Waker>,
156 }
157 
158 #[derive(Default)]
159 struct SlabStorage<T> {
160     inner: Slab<Data<T>>,
161 
162     // A `compact` call requires a re-mapping of the `Key`s that were changed
163     // during the `compact` call of the `slab`. Since the keys that were given out
164     // cannot be changed retroactively we need to keep track of these re-mappings.
165     // The keys of `key_map` correspond to the old keys that were given out and
166     // the values to the `Key`s that were re-mapped by the `compact` call.
167     key_map: HashMap<Key, KeyInternal>,
168 
169     // Index used to create new keys to hand out.
170     next_key_index: usize,
171 
172     // Whether `compact` has been called, necessary in order to decide whether
173     // to include keys in `key_map`.
174     compact_called: bool,
175 }
176 
177 impl<T> SlabStorage<T> {
with_capacity(capacity: usize) -> SlabStorage<T>178     pub(crate) fn with_capacity(capacity: usize) -> SlabStorage<T> {
179         SlabStorage {
180             inner: Slab::with_capacity(capacity),
181             key_map: HashMap::new(),
182             next_key_index: 0,
183             compact_called: false,
184         }
185     }
186 
187     // Inserts data into the inner slab and re-maps keys if necessary
insert(&mut self, val: Data<T>) -> Key188     pub(crate) fn insert(&mut self, val: Data<T>) -> Key {
189         let mut key = KeyInternal::new(self.inner.insert(val));
190         let key_contained = self.key_map.contains_key(&key.into());
191 
192         if key_contained {
193             // It's possible that a `compact` call creates capacity in `self.inner` in
194             // such a way that a `self.inner.insert` call creates a `key` which was
195             // previously given out during an `insert` call prior to the `compact` call.
196             // If `key` is contained in `self.key_map`, we have encountered this exact situation,
197             // We need to create a new key `key_to_give_out` and include the relation
198             // `key_to_give_out` -> `key` in `self.key_map`.
199             let key_to_give_out = self.create_new_key();
200             assert!(!self.key_map.contains_key(&key_to_give_out.into()));
201             self.key_map.insert(key_to_give_out.into(), key);
202             key = key_to_give_out;
203         } else if self.compact_called {
204             // Include an identity mapping in `self.key_map` in order to allow us to
205             // panic if a key that was handed out is removed more than once.
206             self.key_map.insert(key.into(), key);
207         }
208 
209         key.into()
210     }
211 
212     // Re-map the key in case compact was previously called.
213     // Note: Since we include identity mappings in key_map after compact was called,
214     // we have information about all keys that were handed out. In the case in which
215     // compact was called and we try to remove a Key that was previously removed
216     // we can detect invalid keys if no key is found in `key_map`. This is necessary
217     // in order to prevent situations in which a previously removed key
218     // corresponds to a re-mapped key internally and which would then be incorrectly
219     // removed from the slab.
220     //
221     // Example to illuminate this problem:
222     //
223     // Let's assume our `key_map` is {1 -> 2, 2 -> 1} and we call remove(1). If we
224     // were to remove 1 again, we would not find it inside `key_map` anymore.
225     // If we were to imply from this that no re-mapping was necessary, we would
226     // incorrectly remove 1 from `self.slab.inner`, which corresponds to the
227     // handed-out key 2.
remove(&mut self, key: &Key) -> Data<T>228     pub(crate) fn remove(&mut self, key: &Key) -> Data<T> {
229         let remapped_key = if self.compact_called {
230             match self.key_map.remove(key) {
231                 Some(key_internal) => key_internal,
232                 None => panic!("invalid key"),
233             }
234         } else {
235             (*key).into()
236         };
237 
238         self.inner.remove(remapped_key.index)
239     }
240 
shrink_to_fit(&mut self)241     pub(crate) fn shrink_to_fit(&mut self) {
242         self.inner.shrink_to_fit();
243         self.key_map.shrink_to_fit();
244     }
245 
compact(&mut self)246     pub(crate) fn compact(&mut self) {
247         if !self.compact_called {
248             for (key, _) in self.inner.iter() {
249                 self.key_map.insert(Key::new(key), KeyInternal::new(key));
250             }
251         }
252 
253         let mut remapping = HashMap::new();
254         self.inner.compact(|_, from, to| {
255             remapping.insert(from, to);
256             true
257         });
258 
259         // At this point `key_map` contains a mapping for every element.
260         for internal_key in self.key_map.values_mut() {
261             if let Some(new_internal_key) = remapping.get(&internal_key.index) {
262                 *internal_key = KeyInternal::new(*new_internal_key);
263             }
264         }
265 
266         if self.key_map.capacity() > 2 * self.key_map.len() {
267             self.key_map.shrink_to_fit();
268         }
269 
270         self.compact_called = true;
271     }
272 
273     // Tries to re-map a `Key` that was given out to the user to its
274     // corresponding internal key.
remap_key(&self, key: &Key) -> Option<KeyInternal>275     fn remap_key(&self, key: &Key) -> Option<KeyInternal> {
276         let key_map = &self.key_map;
277         if self.compact_called {
278             key_map.get(key).copied()
279         } else {
280             Some((*key).into())
281         }
282     }
283 
create_new_key(&mut self) -> KeyInternal284     fn create_new_key(&mut self) -> KeyInternal {
285         while self.key_map.contains_key(&Key::new(self.next_key_index)) {
286             self.next_key_index = self.next_key_index.wrapping_add(1);
287         }
288 
289         KeyInternal::new(self.next_key_index)
290     }
291 
len(&self) -> usize292     pub(crate) fn len(&self) -> usize {
293         self.inner.len()
294     }
295 
capacity(&self) -> usize296     pub(crate) fn capacity(&self) -> usize {
297         self.inner.capacity()
298     }
299 
clear(&mut self)300     pub(crate) fn clear(&mut self) {
301         self.inner.clear();
302         self.key_map.clear();
303         self.compact_called = false;
304     }
305 
reserve(&mut self, additional: usize)306     pub(crate) fn reserve(&mut self, additional: usize) {
307         self.inner.reserve(additional);
308 
309         if self.compact_called {
310             self.key_map.reserve(additional);
311         }
312     }
313 
is_empty(&self) -> bool314     pub(crate) fn is_empty(&self) -> bool {
315         self.inner.is_empty()
316     }
317 
contains(&self, key: &Key) -> bool318     pub(crate) fn contains(&self, key: &Key) -> bool {
319         let remapped_key = self.remap_key(key);
320 
321         match remapped_key {
322             Some(internal_key) => self.inner.contains(internal_key.index),
323             None => false,
324         }
325     }
326 }
327 
328 impl<T> fmt::Debug for SlabStorage<T>
329 where
330     T: fmt::Debug,
331 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result332     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
333         if fmt.alternate() {
334             fmt.debug_map().entries(self.inner.iter()).finish()
335         } else {
336             fmt.debug_struct("Slab")
337                 .field("len", &self.len())
338                 .field("cap", &self.capacity())
339                 .finish()
340         }
341     }
342 }
343 
344 impl<T> Index<Key> for SlabStorage<T> {
345     type Output = Data<T>;
346 
index(&self, key: Key) -> &Self::Output347     fn index(&self, key: Key) -> &Self::Output {
348         let remapped_key = self.remap_key(&key);
349 
350         match remapped_key {
351             Some(internal_key) => &self.inner[internal_key.index],
352             None => panic!("Invalid index {}", key.index),
353         }
354     }
355 }
356 
357 impl<T> IndexMut<Key> for SlabStorage<T> {
index_mut(&mut self, key: Key) -> &mut Data<T>358     fn index_mut(&mut self, key: Key) -> &mut Data<T> {
359         let remapped_key = self.remap_key(&key);
360 
361         match remapped_key {
362             Some(internal_key) => &mut self.inner[internal_key.index],
363             None => panic!("Invalid index {}", key.index),
364         }
365     }
366 }
367 
368 /// An entry in `DelayQueue` that has expired and been removed.
369 ///
370 /// Values are returned by [`DelayQueue::poll_expired`].
371 ///
372 /// [`DelayQueue::poll_expired`]: method@DelayQueue::poll_expired
373 #[derive(Debug)]
374 pub struct Expired<T> {
375     /// The data stored in the queue
376     data: T,
377 
378     /// The expiration time
379     deadline: Instant,
380 
381     /// The key associated with the entry
382     key: Key,
383 }
384 
385 /// Token to a value stored in a `DelayQueue`.
386 ///
387 /// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
388 /// documentation for more details.
389 ///
390 /// [`DelayQueue`]: struct@DelayQueue
391 /// [`DelayQueue::insert`]: method@DelayQueue::insert
392 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
393 pub struct Key {
394     index: usize,
395 }
396 
397 // Whereas `Key` is given out to users that use `DelayQueue`, internally we use
398 // `KeyInternal` as the key type in order to make the logic of mapping between keys
399 // as a result of `compact` calls clearer.
400 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
401 struct KeyInternal {
402     index: usize,
403 }
404 
405 #[derive(Debug)]
406 struct Stack<T> {
407     /// Head of the stack
408     head: Option<Key>,
409     _p: PhantomData<fn() -> T>,
410 }
411 
412 #[derive(Debug)]
413 struct Data<T> {
414     /// The data being stored in the queue and will be returned at the requested
415     /// instant.
416     inner: T,
417 
418     /// The instant at which the item is returned.
419     when: u64,
420 
421     /// Set to true when stored in the `expired` queue
422     expired: bool,
423 
424     /// Next entry in the stack
425     next: Option<Key>,
426 
427     /// Previous entry in the stack
428     prev: Option<Key>,
429 }
430 
431 /// Maximum number of entries the queue can handle
432 const MAX_ENTRIES: usize = (1 << 30) - 1;
433 
434 impl<T> DelayQueue<T> {
435     /// Creates a new, empty, `DelayQueue`.
436     ///
437     /// The queue will not allocate storage until items are inserted into it.
438     ///
439     /// # Examples
440     ///
441     /// ```rust
442     /// # use tokio_util::time::DelayQueue;
443     /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
444     /// ```
new() -> DelayQueue<T>445     pub fn new() -> DelayQueue<T> {
446         DelayQueue::with_capacity(0)
447     }
448 
449     /// Creates a new, empty, `DelayQueue` with the specified capacity.
450     ///
451     /// The queue will be able to hold at least `capacity` elements without
452     /// reallocating. If `capacity` is 0, the queue will not allocate for
453     /// storage.
454     ///
455     /// # Examples
456     ///
457     /// ```rust
458     /// # use tokio_util::time::DelayQueue;
459     /// # use std::time::Duration;
460     ///
461     /// # #[tokio::main]
462     /// # async fn main() {
463     /// let mut delay_queue = DelayQueue::with_capacity(10);
464     ///
465     /// // These insertions are done without further allocation
466     /// for i in 0..10 {
467     ///     delay_queue.insert(i, Duration::from_secs(i));
468     /// }
469     ///
470     /// // This will make the queue allocate additional storage
471     /// delay_queue.insert(11, Duration::from_secs(11));
472     /// # }
473     /// ```
with_capacity(capacity: usize) -> DelayQueue<T>474     pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
475         DelayQueue {
476             wheel: Wheel::new(),
477             slab: SlabStorage::with_capacity(capacity),
478             expired: Stack::default(),
479             delay: None,
480             wheel_now: 0,
481             start: Instant::now(),
482             waker: None,
483         }
484     }
485 
486     /// Inserts `value` into the queue set to expire at a specific instant in
487     /// time.
488     ///
489     /// This function is identical to `insert`, but takes an `Instant` instead
490     /// of a `Duration`.
491     ///
492     /// `value` is stored in the queue until `when` is reached. At which point,
493     /// `value` will be returned from [`poll_expired`]. If `when` has already been
494     /// reached, then `value` is immediately made available to poll.
495     ///
496     /// The return value represents the insertion and is used as an argument to
497     /// [`remove`] and [`reset`]. Note that [`Key`] is a token and is reused once
498     /// `value` is removed from the queue either by calling [`poll_expired`] after
499     /// `when` is reached or by calling [`remove`]. At this point, the caller
500     /// must take care to not use the returned [`Key`] again as it may reference
501     /// a different item in the queue.
502     ///
503     /// See [type] level documentation for more details.
504     ///
505     /// # Panics
506     ///
507     /// This function panics if `when` is too far in the future.
508     ///
509     /// # Examples
510     ///
511     /// Basic usage
512     ///
513     /// ```rust
514     /// use tokio::time::{Duration, Instant};
515     /// use tokio_util::time::DelayQueue;
516     ///
517     /// # #[tokio::main]
518     /// # async fn main() {
519     /// let mut delay_queue = DelayQueue::new();
520     /// let key = delay_queue.insert_at(
521     ///     "foo", Instant::now() + Duration::from_secs(5));
522     ///
523     /// // Remove the entry
524     /// let item = delay_queue.remove(&key);
525     /// assert_eq!(*item.get_ref(), "foo");
526     /// # }
527     /// ```
528     ///
529     /// [`poll_expired`]: method@Self::poll_expired
530     /// [`remove`]: method@Self::remove
531     /// [`reset`]: method@Self::reset
532     /// [`Key`]: struct@Key
533     /// [type]: #
534     #[track_caller]
insert_at(&mut self, value: T, when: Instant) -> Key535     pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
536         assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
537 
538         // Normalize the deadline. Values cannot be set to expire in the past.
539         let when = self.normalize_deadline(when);
540 
541         // Insert the value in the store
542         let key = self.slab.insert(Data {
543             inner: value,
544             when,
545             expired: false,
546             next: None,
547             prev: None,
548         });
549 
550         self.insert_idx(when, key);
551 
552         // Set a new delay if the current's deadline is later than the one of the new item
553         let should_set_delay = if let Some(ref delay) = self.delay {
554             let current_exp = self.normalize_deadline(delay.deadline());
555             current_exp > when
556         } else {
557             true
558         };
559 
560         if should_set_delay {
561             if let Some(waker) = self.waker.take() {
562                 waker.wake();
563             }
564 
565             let delay_time = self.start + Duration::from_millis(when);
566             if let Some(ref mut delay) = &mut self.delay {
567                 delay.as_mut().reset(delay_time);
568             } else {
569                 self.delay = Some(Box::pin(sleep_until(delay_time)));
570             }
571         }
572 
573         key
574     }
575 
576     /// Attempts to pull out the next value of the delay queue, registering the
577     /// current task for wakeup if the value is not yet available, and returning
578     /// `None` if the queue is exhausted.
poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>>579     pub fn poll_expired(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Expired<T>>> {
580         if !self
581             .waker
582             .as_ref()
583             .map(|w| w.will_wake(cx.waker()))
584             .unwrap_or(false)
585         {
586             self.waker = Some(cx.waker().clone());
587         }
588 
589         let item = ready!(self.poll_idx(cx));
590         Poll::Ready(item.map(|key| {
591             let data = self.slab.remove(&key);
592             debug_assert!(data.next.is_none());
593             debug_assert!(data.prev.is_none());
594 
595             Expired {
596                 key,
597                 data: data.inner,
598                 deadline: self.start + Duration::from_millis(data.when),
599             }
600         }))
601     }
602 
603     /// Inserts `value` into the queue set to expire after the requested duration
604     /// elapses.
605     ///
606     /// This function is identical to `insert_at`, but takes a `Duration`
607     /// instead of an `Instant`.
608     ///
609     /// `value` is stored in the queue until `timeout` duration has
610     /// elapsed after `insert` was called. At that point, `value` will
611     /// be returned from [`poll_expired`]. If `timeout` is a `Duration` of
612     /// zero, then `value` is immediately made available to poll.
613     ///
614     /// The return value represents the insertion and is used as an
615     /// argument to [`remove`] and [`reset`]. Note that [`Key`] is a
616     /// token and is reused once `value` is removed from the queue
617     /// either by calling [`poll_expired`] after `timeout` has elapsed
618     /// or by calling [`remove`]. At this point, the caller must not
619     /// use the returned [`Key`] again as it may reference a different
620     /// item in the queue.
621     ///
622     /// See [type] level documentation for more details.
623     ///
624     /// # Panics
625     ///
626     /// This function panics if `timeout` is greater than the maximum
627     /// duration supported by the timer in the current `Runtime`.
628     ///
629     /// # Examples
630     ///
631     /// Basic usage
632     ///
633     /// ```rust
634     /// use tokio_util::time::DelayQueue;
635     /// use std::time::Duration;
636     ///
637     /// # #[tokio::main]
638     /// # async fn main() {
639     /// let mut delay_queue = DelayQueue::new();
640     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
641     ///
642     /// // Remove the entry
643     /// let item = delay_queue.remove(&key);
644     /// assert_eq!(*item.get_ref(), "foo");
645     /// # }
646     /// ```
647     ///
648     /// [`poll_expired`]: method@Self::poll_expired
649     /// [`remove`]: method@Self::remove
650     /// [`reset`]: method@Self::reset
651     /// [`Key`]: struct@Key
652     /// [type]: #
653     #[track_caller]
insert(&mut self, value: T, timeout: Duration) -> Key654     pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
655         self.insert_at(value, Instant::now() + timeout)
656     }
657 
658     #[track_caller]
insert_idx(&mut self, when: u64, key: Key)659     fn insert_idx(&mut self, when: u64, key: Key) {
660         use self::wheel::{InsertError, Stack};
661 
662         // Register the deadline with the timer wheel
663         match self.wheel.insert(when, key, &mut self.slab) {
664             Ok(_) => {}
665             Err((_, InsertError::Elapsed)) => {
666                 self.slab[key].expired = true;
667                 // The delay is already expired, store it in the expired queue
668                 self.expired.push(key, &mut self.slab);
669             }
670             Err((_, err)) => panic!("invalid deadline; err={:?}", err),
671         }
672     }
673 
674     /// Removes the key from the expired queue or the timer wheel
675     /// depending on its expiration status.
676     ///
677     /// # Panics
678     ///
679     /// Panics if the key is not contained in the expired queue or the wheel.
680     #[track_caller]
remove_key(&mut self, key: &Key)681     fn remove_key(&mut self, key: &Key) {
682         use crate::time::wheel::Stack;
683 
684         // Special case the `expired` queue
685         if self.slab[*key].expired {
686             self.expired.remove(key, &mut self.slab);
687         } else {
688             self.wheel.remove(key, &mut self.slab);
689         }
690     }
691 
692     /// Removes the item associated with `key` from the queue.
693     ///
694     /// There must be an item associated with `key`. The function returns the
695     /// removed item as well as the `Instant` at which it will the delay will
696     /// have expired.
697     ///
698     /// # Panics
699     ///
700     /// The function panics if `key` is not contained by the queue.
701     ///
702     /// # Examples
703     ///
704     /// Basic usage
705     ///
706     /// ```rust
707     /// use tokio_util::time::DelayQueue;
708     /// use std::time::Duration;
709     ///
710     /// # #[tokio::main]
711     /// # async fn main() {
712     /// let mut delay_queue = DelayQueue::new();
713     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
714     ///
715     /// // Remove the entry
716     /// let item = delay_queue.remove(&key);
717     /// assert_eq!(*item.get_ref(), "foo");
718     /// # }
719     /// ```
720     #[track_caller]
remove(&mut self, key: &Key) -> Expired<T>721     pub fn remove(&mut self, key: &Key) -> Expired<T> {
722         let prev_deadline = self.next_deadline();
723 
724         self.remove_key(key);
725         let data = self.slab.remove(key);
726 
727         let next_deadline = self.next_deadline();
728         if prev_deadline != next_deadline {
729             match (next_deadline, &mut self.delay) {
730                 (None, _) => self.delay = None,
731                 (Some(deadline), Some(delay)) => delay.as_mut().reset(deadline),
732                 (Some(deadline), None) => self.delay = Some(Box::pin(sleep_until(deadline))),
733             }
734         }
735 
736         Expired {
737             key: Key::new(key.index),
738             data: data.inner,
739             deadline: self.start + Duration::from_millis(data.when),
740         }
741     }
742 
743     /// Attempts to remove the item associated with `key` from the queue.
744     ///
745     /// Removes the item associated with `key`, and returns it along with the
746     /// `Instant` at which it would have expired, if it exists.
747     ///
748     /// Returns `None` if `key` is not in the queue.
749     ///
750     /// # Examples
751     ///
752     /// Basic usage
753     ///
754     /// ```rust
755     /// use tokio_util::time::DelayQueue;
756     /// use std::time::Duration;
757     ///
758     /// # #[tokio::main(flavor = "current_thread")]
759     /// # async fn main() {
760     /// let mut delay_queue = DelayQueue::new();
761     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
762     ///
763     /// // The item is in the queue, `try_remove` returns `Some(Expired("foo"))`.
764     /// let item = delay_queue.try_remove(&key);
765     /// assert_eq!(item.unwrap().into_inner(), "foo");
766     ///
767     /// // The item is not in the queue anymore, `try_remove` returns `None`.
768     /// let item = delay_queue.try_remove(&key);
769     /// assert!(item.is_none());
770     /// # }
771     /// ```
try_remove(&mut self, key: &Key) -> Option<Expired<T>>772     pub fn try_remove(&mut self, key: &Key) -> Option<Expired<T>> {
773         if self.slab.contains(key) {
774             Some(self.remove(key))
775         } else {
776             None
777         }
778     }
779 
780     /// Sets the delay of the item associated with `key` to expire at `when`.
781     ///
782     /// This function is identical to `reset` but takes an `Instant` instead of
783     /// a `Duration`.
784     ///
785     /// The item remains in the queue but the delay is set to expire at `when`.
786     /// If `when` is in the past, then the item is immediately made available to
787     /// the caller.
788     ///
789     /// # Panics
790     ///
791     /// This function panics if `when` is too far in the future or if `key` is
792     /// not contained by the queue.
793     ///
794     /// # Examples
795     ///
796     /// Basic usage
797     ///
798     /// ```rust
799     /// use tokio::time::{Duration, Instant};
800     /// use tokio_util::time::DelayQueue;
801     ///
802     /// # #[tokio::main]
803     /// # async fn main() {
804     /// let mut delay_queue = DelayQueue::new();
805     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
806     ///
807     /// // "foo" is scheduled to be returned in 5 seconds
808     ///
809     /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
810     ///
811     /// // "foo" is now scheduled to be returned in 10 seconds
812     /// # }
813     /// ```
814     #[track_caller]
reset_at(&mut self, key: &Key, when: Instant)815     pub fn reset_at(&mut self, key: &Key, when: Instant) {
816         self.remove_key(key);
817 
818         // Normalize the deadline. Values cannot be set to expire in the past.
819         let when = self.normalize_deadline(when);
820 
821         self.slab[*key].when = when;
822         self.slab[*key].expired = false;
823 
824         self.insert_idx(when, *key);
825 
826         let next_deadline = self.next_deadline();
827         if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
828             // This should awaken us if necessary (ie, if already expired)
829             delay.as_mut().reset(deadline);
830         }
831     }
832 
833     /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation.
834     /// This function is not guaranteed to, and in most cases, won't decrease the capacity of the slab
835     /// to the number of elements still contained in it, because elements cannot be moved to a different
836     /// index. To decrease the capacity to the size of the slab use [`compact`].
837     ///
838     /// This function can take O(n) time even when the capacity cannot be reduced or the allocation is
839     /// shrunk in place. Repeated calls run in O(1) though.
840     ///
841     /// [`compact`]: method@Self::compact
shrink_to_fit(&mut self)842     pub fn shrink_to_fit(&mut self) {
843         self.slab.shrink_to_fit();
844     }
845 
846     /// Shrink the capacity of the slab, which `DelayQueue` uses internally for storage allocation,
847     /// to the number of elements that are contained in it.
848     ///
849     /// This methods runs in O(n).
850     ///
851     /// # Examples
852     ///
853     /// Basic usage
854     ///
855     /// ```rust
856     /// use tokio_util::time::DelayQueue;
857     /// use std::time::Duration;
858     ///
859     /// # #[tokio::main]
860     /// # async fn main() {
861     /// let mut delay_queue = DelayQueue::with_capacity(10);
862     ///
863     /// let key1 = delay_queue.insert(5, Duration::from_secs(5));
864     /// let key2 = delay_queue.insert(10, Duration::from_secs(10));
865     /// let key3 = delay_queue.insert(15, Duration::from_secs(15));
866     ///
867     /// delay_queue.remove(&key2);
868     ///
869     /// delay_queue.compact();
870     /// assert_eq!(delay_queue.capacity(), 2);
871     /// # }
872     /// ```
compact(&mut self)873     pub fn compact(&mut self) {
874         self.slab.compact();
875     }
876 
877     /// Gets the [`Key`] that [`poll_expired`] will pull out of the queue next, without
878     /// pulling it out or waiting for the deadline to expire.
879     ///
880     /// Entries that have already expired may be returned in any order, but it is
881     /// guaranteed that this method returns them in the same order as when items
882     /// are popped from the `DelayQueue`.
883     ///
884     /// # Examples
885     ///
886     /// Basic usage
887     ///
888     /// ```rust
889     /// use tokio_util::time::DelayQueue;
890     /// use std::time::Duration;
891     ///
892     /// # #[tokio::main]
893     /// # async fn main() {
894     /// let mut delay_queue = DelayQueue::new();
895     ///
896     /// let key1 = delay_queue.insert("foo", Duration::from_secs(10));
897     /// let key2 = delay_queue.insert("bar", Duration::from_secs(5));
898     /// let key3 = delay_queue.insert("baz", Duration::from_secs(15));
899     ///
900     /// assert_eq!(delay_queue.peek().unwrap(), key2);
901     /// # }
902     /// ```
903     ///
904     /// [`Key`]: struct@Key
905     /// [`poll_expired`]: method@Self::poll_expired
peek(&self) -> Option<Key>906     pub fn peek(&self) -> Option<Key> {
907         use self::wheel::Stack;
908 
909         self.expired.peek().or_else(|| self.wheel.peek())
910     }
911 
912     /// Returns the next time to poll as determined by the wheel
next_deadline(&mut self) -> Option<Instant>913     fn next_deadline(&mut self) -> Option<Instant> {
914         self.wheel
915             .poll_at()
916             .map(|poll_at| self.start + Duration::from_millis(poll_at))
917     }
918 
919     /// Sets the delay of the item associated with `key` to expire after
920     /// `timeout`.
921     ///
922     /// This function is identical to `reset_at` but takes a `Duration` instead
923     /// of an `Instant`.
924     ///
925     /// The item remains in the queue but the delay is set to expire after
926     /// `timeout`. If `timeout` is zero, then the item is immediately made
927     /// available to the caller.
928     ///
929     /// # Panics
930     ///
931     /// This function panics if `timeout` is greater than the maximum supported
932     /// duration or if `key` is not contained by the queue.
933     ///
934     /// # Examples
935     ///
936     /// Basic usage
937     ///
938     /// ```rust
939     /// use tokio_util::time::DelayQueue;
940     /// use std::time::Duration;
941     ///
942     /// # #[tokio::main]
943     /// # async fn main() {
944     /// let mut delay_queue = DelayQueue::new();
945     /// let key = delay_queue.insert("foo", Duration::from_secs(5));
946     ///
947     /// // "foo" is scheduled to be returned in 5 seconds
948     ///
949     /// delay_queue.reset(&key, Duration::from_secs(10));
950     ///
951     /// // "foo"is now scheduled to be returned in 10 seconds
952     /// # }
953     /// ```
954     #[track_caller]
reset(&mut self, key: &Key, timeout: Duration)955     pub fn reset(&mut self, key: &Key, timeout: Duration) {
956         self.reset_at(key, Instant::now() + timeout);
957     }
958 
959     /// Clears the queue, removing all items.
960     ///
961     /// After calling `clear`, [`poll_expired`] will return `Ok(Ready(None))`.
962     ///
963     /// Note that this method has no effect on the allocated capacity.
964     ///
965     /// [`poll_expired`]: method@Self::poll_expired
966     ///
967     /// # Examples
968     ///
969     /// ```rust
970     /// use tokio_util::time::DelayQueue;
971     /// use std::time::Duration;
972     ///
973     /// # #[tokio::main]
974     /// # async fn main() {
975     /// let mut delay_queue = DelayQueue::new();
976     ///
977     /// delay_queue.insert("foo", Duration::from_secs(5));
978     ///
979     /// assert!(!delay_queue.is_empty());
980     ///
981     /// delay_queue.clear();
982     ///
983     /// assert!(delay_queue.is_empty());
984     /// # }
985     /// ```
clear(&mut self)986     pub fn clear(&mut self) {
987         self.slab.clear();
988         self.expired = Stack::default();
989         self.wheel = Wheel::new();
990         self.delay = None;
991     }
992 
993     /// Returns the number of elements the queue can hold without reallocating.
994     ///
995     /// # Examples
996     ///
997     /// ```rust
998     /// use tokio_util::time::DelayQueue;
999     ///
1000     /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1001     /// assert_eq!(delay_queue.capacity(), 10);
1002     /// ```
capacity(&self) -> usize1003     pub fn capacity(&self) -> usize {
1004         self.slab.capacity()
1005     }
1006 
1007     /// Returns the number of elements currently in the queue.
1008     ///
1009     /// # Examples
1010     ///
1011     /// ```rust
1012     /// use tokio_util::time::DelayQueue;
1013     /// use std::time::Duration;
1014     ///
1015     /// # #[tokio::main]
1016     /// # async fn main() {
1017     /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
1018     /// assert_eq!(delay_queue.len(), 0);
1019     /// delay_queue.insert(3, Duration::from_secs(5));
1020     /// assert_eq!(delay_queue.len(), 1);
1021     /// # }
1022     /// ```
len(&self) -> usize1023     pub fn len(&self) -> usize {
1024         self.slab.len()
1025     }
1026 
1027     /// Reserves capacity for at least `additional` more items to be queued
1028     /// without allocating.
1029     ///
1030     /// `reserve` does nothing if the queue already has sufficient capacity for
1031     /// `additional` more values. If more capacity is required, a new segment of
1032     /// memory will be allocated and all existing values will be copied into it.
1033     /// As such, if the queue is already very large, a call to `reserve` can end
1034     /// up being expensive.
1035     ///
1036     /// The queue may reserve more than `additional` extra space in order to
1037     /// avoid frequent reallocations.
1038     ///
1039     /// # Panics
1040     ///
1041     /// Panics if the new capacity exceeds the maximum number of entries the
1042     /// queue can contain.
1043     ///
1044     /// # Examples
1045     ///
1046     /// ```
1047     /// use tokio_util::time::DelayQueue;
1048     /// use std::time::Duration;
1049     ///
1050     /// # #[tokio::main]
1051     /// # async fn main() {
1052     /// let mut delay_queue = DelayQueue::new();
1053     ///
1054     /// delay_queue.insert("hello", Duration::from_secs(10));
1055     /// delay_queue.reserve(10);
1056     ///
1057     /// assert!(delay_queue.capacity() >= 11);
1058     /// # }
1059     /// ```
1060     #[track_caller]
reserve(&mut self, additional: usize)1061     pub fn reserve(&mut self, additional: usize) {
1062         assert!(
1063             self.slab.capacity() + additional <= MAX_ENTRIES,
1064             "max queue capacity exceeded"
1065         );
1066         self.slab.reserve(additional);
1067     }
1068 
1069     /// Returns `true` if there are no items in the queue.
1070     ///
1071     /// Note that this function returns `false` even if all items have not yet
1072     /// expired and a call to `poll` will return `Poll::Pending`.
1073     ///
1074     /// # Examples
1075     ///
1076     /// ```
1077     /// use tokio_util::time::DelayQueue;
1078     /// use std::time::Duration;
1079     ///
1080     /// # #[tokio::main]
1081     /// # async fn main() {
1082     /// let mut delay_queue = DelayQueue::new();
1083     /// assert!(delay_queue.is_empty());
1084     ///
1085     /// delay_queue.insert("hello", Duration::from_secs(5));
1086     /// assert!(!delay_queue.is_empty());
1087     /// # }
1088     /// ```
is_empty(&self) -> bool1089     pub fn is_empty(&self) -> bool {
1090         self.slab.is_empty()
1091     }
1092 
1093     /// Polls the queue, returning the index of the next slot in the slab that
1094     /// should be returned.
1095     ///
1096     /// A slot should be returned when the associated deadline has been reached.
poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>>1097     fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Key>> {
1098         use self::wheel::Stack;
1099 
1100         let expired = self.expired.pop(&mut self.slab);
1101 
1102         if expired.is_some() {
1103             return Poll::Ready(expired);
1104         }
1105 
1106         loop {
1107             if let Some(ref mut delay) = self.delay {
1108                 if !delay.is_elapsed() {
1109                     ready!(Pin::new(&mut *delay).poll(cx));
1110                 }
1111 
1112                 let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
1113 
1114                 self.wheel_now = now;
1115             }
1116 
1117             // We poll the wheel to get the next value out before finding the next deadline.
1118             let wheel_idx = self.wheel.poll(self.wheel_now, &mut self.slab);
1119 
1120             self.delay = self.next_deadline().map(|when| Box::pin(sleep_until(when)));
1121 
1122             if let Some(idx) = wheel_idx {
1123                 return Poll::Ready(Some(idx));
1124             }
1125 
1126             if self.delay.is_none() {
1127                 return Poll::Ready(None);
1128             }
1129         }
1130     }
1131 
normalize_deadline(&self, when: Instant) -> u641132     fn normalize_deadline(&self, when: Instant) -> u64 {
1133         let when = if when < self.start {
1134             0
1135         } else {
1136             crate::time::ms(when - self.start, crate::time::Round::Up)
1137         };
1138 
1139         cmp::max(when, self.wheel.elapsed())
1140     }
1141 }
1142 
1143 // We never put `T` in a `Pin`...
1144 impl<T> Unpin for DelayQueue<T> {}
1145 
1146 impl<T> Default for DelayQueue<T> {
default() -> DelayQueue<T>1147     fn default() -> DelayQueue<T> {
1148         DelayQueue::new()
1149     }
1150 }
1151 
1152 impl<T> futures_core::Stream for DelayQueue<T> {
1153     // DelayQueue seems much more specific, where a user may care that it
1154     // has reached capacity, so return those errors instead of panicking.
1155     type Item = Expired<T>;
1156 
poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>>1157     fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
1158         DelayQueue::poll_expired(self.get_mut(), cx)
1159     }
1160 }
1161 
1162 impl<T> wheel::Stack for Stack<T> {
1163     type Owned = Key;
1164     type Borrowed = Key;
1165     type Store = SlabStorage<T>;
1166 
is_empty(&self) -> bool1167     fn is_empty(&self) -> bool {
1168         self.head.is_none()
1169     }
1170 
push(&mut self, item: Self::Owned, store: &mut Self::Store)1171     fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
1172         // Ensure the entry is not already in a stack.
1173         debug_assert!(store[item].next.is_none());
1174         debug_assert!(store[item].prev.is_none());
1175 
1176         // Remove the old head entry
1177         let old = self.head.take();
1178 
1179         if let Some(idx) = old {
1180             store[idx].prev = Some(item);
1181         }
1182 
1183         store[item].next = old;
1184         self.head = Some(item);
1185     }
1186 
pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned>1187     fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
1188         if let Some(key) = self.head {
1189             self.head = store[key].next;
1190 
1191             if let Some(idx) = self.head {
1192                 store[idx].prev = None;
1193             }
1194 
1195             store[key].next = None;
1196             debug_assert!(store[key].prev.is_none());
1197 
1198             Some(key)
1199         } else {
1200             None
1201         }
1202     }
1203 
peek(&self) -> Option<Self::Owned>1204     fn peek(&self) -> Option<Self::Owned> {
1205         self.head
1206     }
1207 
1208     #[track_caller]
remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store)1209     fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
1210         let key = *item;
1211         assert!(store.contains(item));
1212 
1213         // Ensure that the entry is in fact contained by the stack
1214         debug_assert!({
1215             // This walks the full linked list even if an entry is found.
1216             let mut next = self.head;
1217             let mut contains = false;
1218 
1219             while let Some(idx) = next {
1220                 let data = &store[idx];
1221 
1222                 if idx == *item {
1223                     debug_assert!(!contains);
1224                     contains = true;
1225                 }
1226 
1227                 next = data.next;
1228             }
1229 
1230             contains
1231         });
1232 
1233         if let Some(next) = store[key].next {
1234             store[next].prev = store[key].prev;
1235         }
1236 
1237         if let Some(prev) = store[key].prev {
1238             store[prev].next = store[key].next;
1239         } else {
1240             self.head = store[key].next;
1241         }
1242 
1243         store[key].next = None;
1244         store[key].prev = None;
1245     }
1246 
when(item: &Self::Borrowed, store: &Self::Store) -> u641247     fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
1248         store[*item].when
1249     }
1250 }
1251 
1252 impl<T> Default for Stack<T> {
default() -> Stack<T>1253     fn default() -> Stack<T> {
1254         Stack {
1255             head: None,
1256             _p: PhantomData,
1257         }
1258     }
1259 }
1260 
1261 impl Key {
new(index: usize) -> Key1262     pub(crate) fn new(index: usize) -> Key {
1263         Key { index }
1264     }
1265 }
1266 
1267 impl KeyInternal {
new(index: usize) -> KeyInternal1268     pub(crate) fn new(index: usize) -> KeyInternal {
1269         KeyInternal { index }
1270     }
1271 }
1272 
1273 impl From<Key> for KeyInternal {
from(item: Key) -> Self1274     fn from(item: Key) -> Self {
1275         KeyInternal::new(item.index)
1276     }
1277 }
1278 
1279 impl From<KeyInternal> for Key {
from(item: KeyInternal) -> Self1280     fn from(item: KeyInternal) -> Self {
1281         Key::new(item.index)
1282     }
1283 }
1284 
1285 impl<T> Expired<T> {
1286     /// Returns a reference to the inner value.
get_ref(&self) -> &T1287     pub fn get_ref(&self) -> &T {
1288         &self.data
1289     }
1290 
1291     /// Returns a mutable reference to the inner value.
get_mut(&mut self) -> &mut T1292     pub fn get_mut(&mut self) -> &mut T {
1293         &mut self.data
1294     }
1295 
1296     /// Consumes `self` and returns the inner value.
into_inner(self) -> T1297     pub fn into_inner(self) -> T {
1298         self.data
1299     }
1300 
1301     /// Returns the deadline that the expiration was set to.
deadline(&self) -> Instant1302     pub fn deadline(&self) -> Instant {
1303         self.deadline
1304     }
1305 
1306     /// Returns the key that the expiration is indexed by.
key(&self) -> Key1307     pub fn key(&self) -> Key {
1308         self.key
1309     }
1310 }
1311