• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! The task module.
2 //!
3 //! The task module contains the code that manages spawned tasks and provides a
4 //! safe API for the rest of the runtime to use. Each task in a runtime is
5 //! stored in an OwnedTasks or LocalOwnedTasks object.
6 //!
7 //! # Task reference types
8 //!
9 //! A task is usually referenced by multiple handles, and there are several
10 //! types of handles.
11 //!
12 //!  * OwnedTask - tasks stored in an OwnedTasks or LocalOwnedTasks are of this
13 //!    reference type.
14 //!
15 //!  * JoinHandle - each task has a JoinHandle that allows access to the output
16 //!    of the task.
17 //!
18 //!  * Waker - every waker for a task has this reference type. There can be any
19 //!    number of waker references.
20 //!
21 //!  * Notified - tracks whether the task is notified.
22 //!
23 //!  * Unowned - this task reference type is used for tasks not stored in any
24 //!    runtime. Mainly used for blocking tasks, but also in tests.
25 //!
26 //! The task uses a reference count to keep track of how many active references
27 //! exist. The Unowned reference type takes up two ref-counts. All other
28 //! reference types take up a single ref-count.
29 //!
30 //! Besides the waker type, each task has at most one of each reference type.
31 //!
32 //! # State
33 //!
34 //! The task stores its state in an atomic usize with various bitfields for the
35 //! necessary information. The state has the following bitfields:
36 //!
37 //!  * RUNNING - Tracks whether the task is currently being polled or cancelled.
38 //!    This bit functions as a lock around the task.
39 //!
40 //!  * COMPLETE - Is one once the future has fully completed and has been
41 //!    dropped. Never unset once set. Never set together with RUNNING.
42 //!
43 //!  * NOTIFIED - Tracks whether a Notified object currently exists.
44 //!
45 //!  * CANCELLED - Is set to one for tasks that should be cancelled as soon as
46 //!    possible. May take any value for completed tasks.
47 //!
48 //!  * JOIN_INTEREST - Is set to one if there exists a JoinHandle.
49 //!
50 //!  * JOIN_WAKER - Acts as an access control bit for the join handle waker. The
51 //!    protocol for its usage is described below.
52 //!
53 //! The rest of the bits are used for the ref-count.
54 //!
55 //! # Fields in the task
56 //!
57 //! The task has various fields. This section describes how and when it is safe
58 //! to access a field.
59 //!
60 //!  * The state field is accessed with atomic instructions.
61 //!
62 //!  * The OwnedTask reference has exclusive access to the `owned` field.
63 //!
64 //!  * The Notified reference has exclusive access to the `queue_next` field.
65 //!
66 //!  * The `owner_id` field can be set as part of construction of the task, but
67 //!    is otherwise immutable and anyone can access the field immutably without
68 //!    synchronization.
69 //!
70 //!  * If COMPLETE is one, then the JoinHandle has exclusive access to the
71 //!    stage field. If COMPLETE is zero, then the RUNNING bitfield functions as
72 //!    a lock for the stage field, and it can be accessed only by the thread
73 //!    that set RUNNING to one.
74 //!
75 //!  * The waker field may be concurrently accessed by different threads: in one
76 //!    thread the runtime may complete a task and *read* the waker field to
77 //!    invoke the waker, and in another thread the task's JoinHandle may be
78 //!    polled, and if the task hasn't yet completed, the JoinHandle may *write*
79 //!    a waker to the waker field. The JOIN_WAKER bit ensures safe access by
80 //!    multiple threads to the waker field using the following rules:
81 //!
82 //!    1. JOIN_WAKER is initialized to zero.
83 //!
84 //!    2. If JOIN_WAKER is zero, then the JoinHandle has exclusive (mutable)
85 //!       access to the waker field.
86 //!
87 //!    3. If JOIN_WAKER is one, then the JoinHandle has shared (read-only)
88 //!       access to the waker field.
89 //!
90 //!    4. If JOIN_WAKER is one and COMPLETE is one, then the runtime has shared
91 //!       (read-only) access to the waker field.
92 //!
93 //!    5. If the JoinHandle needs to write to the waker field, then the
94 //!       JoinHandle needs to (i) successfully set JOIN_WAKER to zero if it is
95 //!       not already zero to gain exclusive access to the waker field per rule
96 //!       2, (ii) write a waker, and (iii) successfully set JOIN_WAKER to one.
97 //!
98 //!    6. The JoinHandle can change JOIN_WAKER only if COMPLETE is zero (i.e.
99 //!       the task hasn't yet completed).
100 //!
101 //!    Rule 6 implies that the steps (i) or (iii) of rule 5 may fail due to a
102 //!    race. If step (i) fails, then the attempt to write a waker is aborted. If
103 //!    step (iii) fails because COMPLETE is set to one by another thread after
104 //!    step (i), then the waker field is cleared. Once COMPLETE is one (i.e.
105 //!    task has completed), the JoinHandle will not modify JOIN_WAKER. After the
106 //!    runtime sets COMPLETE to one, it invokes the waker if there is one.
107 //!
108 //! All other fields are immutable and can be accessed immutably without
109 //! synchronization by anyone.
110 //!
111 //! # Safety
112 //!
113 //! This section goes through various situations and explains why the API is
114 //! safe in that situation.
115 //!
116 //! ## Polling or dropping the future
117 //!
118 //! Any mutable access to the future happens after obtaining a lock by modifying
119 //! the RUNNING field, so exclusive access is ensured.
120 //!
121 //! When the task completes, exclusive access to the output is transferred to
122 //! the JoinHandle. If the JoinHandle is already dropped when the transition to
123 //! complete happens, the thread performing that transition retains exclusive
124 //! access to the output and should immediately drop it.
125 //!
126 //! ## Non-Send futures
127 //!
128 //! If a future is not Send, then it is bound to a LocalOwnedTasks.  The future
129 //! will only ever be polled or dropped given a LocalNotified or inside a call
130 //! to LocalOwnedTasks::shutdown_all. In either case, it is guaranteed that the
131 //! future is on the right thread.
132 //!
133 //! If the task is never removed from the LocalOwnedTasks, then it is leaked, so
134 //! there is no risk that the task is dropped on some other thread when the last
135 //! ref-count drops.
136 //!
137 //! ## Non-Send output
138 //!
139 //! When a task completes, the output is placed in the stage of the task. Then,
140 //! a transition that sets COMPLETE to true is performed, and the value of
141 //! JOIN_INTEREST when this transition happens is read.
142 //!
143 //! If JOIN_INTEREST is zero when the transition to COMPLETE happens, then the
144 //! output is immediately dropped.
145 //!
146 //! If JOIN_INTEREST is one when the transition to COMPLETE happens, then the
147 //! JoinHandle is responsible for cleaning up the output. If the output is not
148 //! Send, then this happens:
149 //!
150 //!  1. The output is created on the thread that the future was polled on. Since
151 //!     only non-Send futures can have non-Send output, the future was polled on
152 //!     the thread that the future was spawned from.
153 //!  2. Since `JoinHandle<Output>` is not Send if Output is not Send, the
154 //!     JoinHandle is also on the thread that the future was spawned from.
155 //!  3. Thus, the JoinHandle will not move the output across threads when it
156 //!     takes or drops the output.
157 //!
158 //! ## Recursive poll/shutdown
159 //!
160 //! Calling poll from inside a shutdown call or vice-versa is not prevented by
161 //! the API exposed by the task module, so this has to be safe. In either case,
162 //! the lock in the RUNNING bitfield makes the inner call return immediately. If
163 //! the inner call is a `shutdown` call, then the CANCELLED bit is set, and the
164 //! poll call will notice it when the poll finishes, and the task is cancelled
165 //! at that point.
166 
167 // Some task infrastructure is here to support `JoinSet`, which is currently
168 // unstable. This should be removed once `JoinSet` is stabilized.
169 #![cfg_attr(not(tokio_unstable), allow(dead_code))]
170 
171 mod core;
172 use self::core::Cell;
173 use self::core::Header;
174 
175 mod error;
176 pub use self::error::JoinError;
177 
178 mod harness;
179 use self::harness::Harness;
180 
181 mod id;
182 #[cfg_attr(not(tokio_unstable), allow(unreachable_pub))]
183 pub use id::{id, try_id, Id};
184 
185 #[cfg(feature = "rt")]
186 mod abort;
187 mod join;
188 
189 #[cfg(feature = "rt")]
190 pub use self::abort::AbortHandle;
191 
192 pub use self::join::JoinHandle;
193 
194 mod list;
195 pub(crate) use self::list::{LocalOwnedTasks, OwnedTasks};
196 
197 mod raw;
198 pub(crate) use self::raw::RawTask;
199 
200 mod state;
201 use self::state::State;
202 
203 mod waker;
204 
205 cfg_taskdump! {
206     pub(crate) mod trace;
207 }
208 
209 use crate::future::Future;
210 use crate::util::linked_list;
211 
212 use std::marker::PhantomData;
213 use std::ptr::NonNull;
214 use std::{fmt, mem};
215 
216 /// An owned handle to the task, tracked by ref count.
217 #[repr(transparent)]
218 pub(crate) struct Task<S: 'static> {
219     raw: RawTask,
220     _p: PhantomData<S>,
221 }
222 
223 unsafe impl<S> Send for Task<S> {}
224 unsafe impl<S> Sync for Task<S> {}
225 
226 /// A task was notified.
227 #[repr(transparent)]
228 pub(crate) struct Notified<S: 'static>(Task<S>);
229 
230 // safety: This type cannot be used to touch the task without first verifying
231 // that the value is on a thread where it is safe to poll the task.
232 unsafe impl<S: Schedule> Send for Notified<S> {}
233 unsafe impl<S: Schedule> Sync for Notified<S> {}
234 
235 /// A non-Send variant of Notified with the invariant that it is on a thread
236 /// where it is safe to poll it.
237 #[repr(transparent)]
238 pub(crate) struct LocalNotified<S: 'static> {
239     task: Task<S>,
240     _not_send: PhantomData<*const ()>,
241 }
242 
243 /// A task that is not owned by any OwnedTasks. Used for blocking tasks.
244 /// This type holds two ref-counts.
245 pub(crate) struct UnownedTask<S: 'static> {
246     raw: RawTask,
247     _p: PhantomData<S>,
248 }
249 
250 // safety: This type can only be created given a Send task.
251 unsafe impl<S> Send for UnownedTask<S> {}
252 unsafe impl<S> Sync for UnownedTask<S> {}
253 
254 /// Task result sent back.
255 pub(crate) type Result<T> = std::result::Result<T, JoinError>;
256 
257 pub(crate) trait Schedule: Sync + Sized + 'static {
258     /// The task has completed work and is ready to be released. The scheduler
259     /// should release it immediately and return it. The task module will batch
260     /// the ref-dec with setting other options.
261     ///
262     /// If the scheduler has already released the task, then None is returned.
release(&self, task: &Task<Self>) -> Option<Task<Self>>263     fn release(&self, task: &Task<Self>) -> Option<Task<Self>>;
264 
265     /// Schedule the task
schedule(&self, task: Notified<Self>)266     fn schedule(&self, task: Notified<Self>);
267 
268     /// Schedule the task to run in the near future, yielding the thread to
269     /// other tasks.
yield_now(&self, task: Notified<Self>)270     fn yield_now(&self, task: Notified<Self>) {
271         self.schedule(task);
272     }
273 
274     /// Polling the task resulted in a panic. Should the runtime shutdown?
unhandled_panic(&self)275     fn unhandled_panic(&self) {
276         // By default, do nothing. This maintains the 1.0 behavior.
277     }
278 }
279 
280 cfg_rt! {
281     /// This is the constructor for a new task. Three references to the task are
282     /// created. The first task reference is usually put into an OwnedTasks
283     /// immediately. The Notified is sent to the scheduler as an ordinary
284     /// notification.
285     fn new_task<T, S>(
286         task: T,
287         scheduler: S,
288         id: Id,
289     ) -> (Task<S>, Notified<S>, JoinHandle<T::Output>)
290     where
291         S: Schedule,
292         T: Future + 'static,
293         T::Output: 'static,
294     {
295         let raw = RawTask::new::<T, S>(task, scheduler, id);
296         let task = Task {
297             raw,
298             _p: PhantomData,
299         };
300         let notified = Notified(Task {
301             raw,
302             _p: PhantomData,
303         });
304         let join = JoinHandle::new(raw);
305 
306         (task, notified, join)
307     }
308 
309     /// Creates a new task with an associated join handle. This method is used
310     /// only when the task is not going to be stored in an `OwnedTasks` list.
311     ///
312     /// Currently only blocking tasks use this method.
313     pub(crate) fn unowned<T, S>(task: T, scheduler: S, id: Id) -> (UnownedTask<S>, JoinHandle<T::Output>)
314     where
315         S: Schedule,
316         T: Send + Future + 'static,
317         T::Output: Send + 'static,
318     {
319         let (task, notified, join) = new_task(task, scheduler, id);
320 
321         // This transfers the ref-count of task and notified into an UnownedTask.
322         // This is valid because an UnownedTask holds two ref-counts.
323         let unowned = UnownedTask {
324             raw: task.raw,
325             _p: PhantomData,
326         };
327         std::mem::forget(task);
328         std::mem::forget(notified);
329 
330         (unowned, join)
331     }
332 }
333 
334 impl<S: 'static> Task<S> {
new(raw: RawTask) -> Task<S>335     unsafe fn new(raw: RawTask) -> Task<S> {
336         Task {
337             raw,
338             _p: PhantomData,
339         }
340     }
341 
from_raw(ptr: NonNull<Header>) -> Task<S>342     unsafe fn from_raw(ptr: NonNull<Header>) -> Task<S> {
343         Task::new(RawTask::from_raw(ptr))
344     }
345 
346     #[cfg(all(
347         tokio_unstable,
348         tokio_taskdump,
349         feature = "rt",
350         target_os = "linux",
351         any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64")
352     ))]
as_raw(&self) -> RawTask353     pub(super) fn as_raw(&self) -> RawTask {
354         self.raw
355     }
356 
header(&self) -> &Header357     fn header(&self) -> &Header {
358         self.raw.header()
359     }
360 
header_ptr(&self) -> NonNull<Header>361     fn header_ptr(&self) -> NonNull<Header> {
362         self.raw.header_ptr()
363     }
364 }
365 
366 impl<S: 'static> Notified<S> {
header(&self) -> &Header367     fn header(&self) -> &Header {
368         self.0.header()
369     }
370 }
371 
372 impl<S: 'static> Notified<S> {
from_raw(ptr: RawTask) -> Notified<S>373     pub(crate) unsafe fn from_raw(ptr: RawTask) -> Notified<S> {
374         Notified(Task::new(ptr))
375     }
376 }
377 
378 impl<S: 'static> Notified<S> {
into_raw(self) -> RawTask379     pub(crate) fn into_raw(self) -> RawTask {
380         let raw = self.0.raw;
381         mem::forget(self);
382         raw
383     }
384 }
385 
386 impl<S: Schedule> Task<S> {
387     /// Preemptively cancels the task as part of the shutdown process.
shutdown(self)388     pub(crate) fn shutdown(self) {
389         let raw = self.raw;
390         mem::forget(self);
391         raw.shutdown();
392     }
393 }
394 
395 impl<S: Schedule> LocalNotified<S> {
396     /// Runs the task.
run(self)397     pub(crate) fn run(self) {
398         let raw = self.task.raw;
399         mem::forget(self);
400         raw.poll();
401     }
402 }
403 
404 impl<S: Schedule> UnownedTask<S> {
405     // Used in test of the inject queue.
406     #[cfg(test)]
407     #[cfg_attr(target_family = "wasm", allow(dead_code))]
into_notified(self) -> Notified<S>408     pub(super) fn into_notified(self) -> Notified<S> {
409         Notified(self.into_task())
410     }
411 
into_task(self) -> Task<S>412     fn into_task(self) -> Task<S> {
413         // Convert into a task.
414         let task = Task {
415             raw: self.raw,
416             _p: PhantomData,
417         };
418         mem::forget(self);
419 
420         // Drop a ref-count since an UnownedTask holds two.
421         task.header().state.ref_dec();
422 
423         task
424     }
425 
run(self)426     pub(crate) fn run(self) {
427         let raw = self.raw;
428         mem::forget(self);
429 
430         // Transfer one ref-count to a Task object.
431         let task = Task::<S> {
432             raw,
433             _p: PhantomData,
434         };
435 
436         // Use the other ref-count to poll the task.
437         raw.poll();
438         // Decrement our extra ref-count
439         drop(task);
440     }
441 
shutdown(self)442     pub(crate) fn shutdown(self) {
443         self.into_task().shutdown()
444     }
445 }
446 
447 impl<S: 'static> Drop for Task<S> {
drop(&mut self)448     fn drop(&mut self) {
449         // Decrement the ref count
450         if self.header().state.ref_dec() {
451             // Deallocate if this is the final ref count
452             self.raw.dealloc();
453         }
454     }
455 }
456 
457 impl<S: 'static> Drop for UnownedTask<S> {
drop(&mut self)458     fn drop(&mut self) {
459         // Decrement the ref count
460         if self.raw.header().state.ref_dec_twice() {
461             // Deallocate if this is the final ref count
462             self.raw.dealloc();
463         }
464     }
465 }
466 
467 impl<S> fmt::Debug for Task<S> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result468     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
469         write!(fmt, "Task({:p})", self.header())
470     }
471 }
472 
473 impl<S> fmt::Debug for Notified<S> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result474     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
475         write!(fmt, "task::Notified({:p})", self.0.header())
476     }
477 }
478 
479 /// # Safety
480 ///
481 /// Tasks are pinned.
482 unsafe impl<S> linked_list::Link for Task<S> {
483     type Handle = Task<S>;
484     type Target = Header;
485 
as_raw(handle: &Task<S>) -> NonNull<Header>486     fn as_raw(handle: &Task<S>) -> NonNull<Header> {
487         handle.raw.header_ptr()
488     }
489 
from_raw(ptr: NonNull<Header>) -> Task<S>490     unsafe fn from_raw(ptr: NonNull<Header>) -> Task<S> {
491         Task::from_raw(ptr)
492     }
493 
pointers(target: NonNull<Header>) -> NonNull<linked_list::Pointers<Header>>494     unsafe fn pointers(target: NonNull<Header>) -> NonNull<linked_list::Pointers<Header>> {
495         self::core::Trailer::addr_of_owned(Header::get_trailer(target))
496     }
497 }
498