• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "src/gpu/ganesh/GrFragmentProcessor.h"
9 
10 #include "include/core/SkM44.h"
11 #include "src/base/SkVx.h"
12 #include "src/core/SkRuntimeEffectPriv.h"
13 #include "src/gpu/KeyBuilder.h"
14 #include "src/gpu/ganesh/GrPipeline.h"
15 #include "src/gpu/ganesh/GrProcessorAnalysis.h"
16 #include "src/gpu/ganesh/GrShaderCaps.h"
17 #include "src/gpu/ganesh/effects/GrBlendFragmentProcessor.h"
18 #include "src/gpu/ganesh/effects/GrSkSLFP.h"
19 #include "src/gpu/ganesh/effects/GrTextureEffect.h"
20 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
21 #include "src/gpu/ganesh/glsl/GrGLSLProgramBuilder.h"
22 #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
23 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
24 
isEqual(const GrFragmentProcessor & that) const25 bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
26     if (this->classID() != that.classID()) {
27         return false;
28     }
29     if (this->sampleUsage() != that.sampleUsage()) {
30         return false;
31     }
32     if (!this->onIsEqual(that)) {
33         return false;
34     }
35     if (this->numChildProcessors() != that.numChildProcessors()) {
36         return false;
37     }
38     for (int i = 0; i < this->numChildProcessors(); ++i) {
39         auto thisChild = this->childProcessor(i),
40              thatChild = that .childProcessor(i);
41         if (SkToBool(thisChild) != SkToBool(thatChild)) {
42             return false;
43         }
44         if (thisChild && !thisChild->isEqual(*thatChild)) {
45             return false;
46         }
47     }
48     return true;
49 }
50 
visitProxies(const GrVisitProxyFunc & func) const51 void GrFragmentProcessor::visitProxies(const GrVisitProxyFunc& func) const {
52     this->visitTextureEffects([&func](const GrTextureEffect& te) {
53         func(te.view().proxy(), te.samplerState().mipmapped());
54     });
55 }
56 
visitTextureEffects(const std::function<void (const GrTextureEffect &)> & func) const57 void GrFragmentProcessor::visitTextureEffects(
58         const std::function<void(const GrTextureEffect&)>& func) const {
59     if (auto* te = this->asTextureEffect()) {
60         func(*te);
61     }
62     for (auto& child : fChildProcessors) {
63         if (child) {
64             child->visitTextureEffects(func);
65         }
66     }
67 }
68 
visitWithImpls(const std::function<void (const GrFragmentProcessor &,ProgramImpl &)> & f,ProgramImpl & impl) const69 void GrFragmentProcessor::visitWithImpls(
70         const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>& f,
71         ProgramImpl& impl) const {
72     f(*this, impl);
73     SkASSERT(impl.numChildProcessors() == this->numChildProcessors());
74     for (int i = 0; i < this->numChildProcessors(); ++i) {
75         if (const auto* child = this->childProcessor(i)) {
76             child->visitWithImpls(f, *impl.childProcessor(i));
77         }
78     }
79 }
80 
asTextureEffect()81 GrTextureEffect* GrFragmentProcessor::asTextureEffect() {
82     if (this->classID() == kGrTextureEffect_ClassID) {
83         return static_cast<GrTextureEffect*>(this);
84     }
85     return nullptr;
86 }
87 
asTextureEffect() const88 const GrTextureEffect* GrFragmentProcessor::asTextureEffect() const {
89     if (this->classID() == kGrTextureEffect_ClassID) {
90         return static_cast<const GrTextureEffect*>(this);
91     }
92     return nullptr;
93 }
94 
95 #if defined(GR_TEST_UTILS)
recursive_dump_tree_info(const GrFragmentProcessor & fp,SkString indent,SkString * text)96 static void recursive_dump_tree_info(const GrFragmentProcessor& fp,
97                                      SkString indent,
98                                      SkString* text) {
99     for (int index = 0; index < fp.numChildProcessors(); ++index) {
100         text->appendf("\n%s(#%d) -> ", indent.c_str(), index);
101         if (const GrFragmentProcessor* childFP = fp.childProcessor(index)) {
102             text->append(childFP->dumpInfo());
103             indent.append("\t");
104             recursive_dump_tree_info(*childFP, indent, text);
105         } else {
106             text->append("null");
107         }
108     }
109 }
110 
dumpTreeInfo() const111 SkString GrFragmentProcessor::dumpTreeInfo() const {
112     SkString text = this->dumpInfo();
113     recursive_dump_tree_info(*this, SkString("\t"), &text);
114     text.append("\n");
115     return text;
116 }
117 #endif
118 
makeProgramImpl() const119 std::unique_ptr<GrFragmentProcessor::ProgramImpl> GrFragmentProcessor::makeProgramImpl() const {
120     std::unique_ptr<ProgramImpl> impl = this->onMakeProgramImpl();
121     impl->fChildProcessors.push_back_n(fChildProcessors.size());
122     for (int i = 0; i < fChildProcessors.size(); ++i) {
123         impl->fChildProcessors[i] = fChildProcessors[i] ? fChildProcessors[i]->makeProgramImpl()
124                                                         : nullptr;
125     }
126     return impl;
127 }
128 
numNonNullChildProcessors() const129 int GrFragmentProcessor::numNonNullChildProcessors() const {
130     return std::count_if(fChildProcessors.begin(), fChildProcessors.end(),
131                          [](const auto& c) { return c != nullptr; });
132 }
133 
134 #ifdef SK_DEBUG
isInstantiated() const135 bool GrFragmentProcessor::isInstantiated() const {
136     bool result = true;
137     this->visitTextureEffects([&result](const GrTextureEffect& te) {
138         if (!te.texture()) {
139             result = false;
140         }
141     });
142     return result;
143 }
144 #endif
145 
registerChild(std::unique_ptr<GrFragmentProcessor> child,SkSL::SampleUsage sampleUsage)146 void GrFragmentProcessor::registerChild(std::unique_ptr<GrFragmentProcessor> child,
147                                         SkSL::SampleUsage sampleUsage) {
148     SkASSERT(sampleUsage.isSampled());
149 
150     if (!child) {
151         fChildProcessors.push_back(nullptr);
152         return;
153     }
154 
155     // The child should not have been attached to another FP already and not had any sampling
156     // strategy set on it.
157     SkASSERT(!child->fParent && !child->sampleUsage().isSampled());
158 
159     // Configure child's sampling state first
160     child->fUsage = sampleUsage;
161 
162     // Propagate the "will read dest-color" flag up to parent FPs.
163     if (child->willReadDstColor()) {
164         this->setWillReadDstColor();
165     }
166 
167     // If this child receives passthrough or matrix transformed coords from its parent then note
168     // that the parent's coords are used indirectly to ensure that they aren't omitted.
169     if ((sampleUsage.isPassThrough() || sampleUsage.isUniformMatrix()) &&
170         child->usesSampleCoords()) {
171         fFlags |= kUsesSampleCoordsIndirectly_Flag;
172     }
173 
174     // Record that the child is attached to us; this FP is the source of any uniform data needed
175     // to evaluate the child sample matrix.
176     child->fParent = this;
177     fChildProcessors.push_back(std::move(child));
178 
179     // Validate: our sample strategy comes from a parent we shouldn't have yet.
180     SkASSERT(!fUsage.isSampled() && !fParent);
181 }
182 
cloneAndRegisterAllChildProcessors(const GrFragmentProcessor & src)183 void GrFragmentProcessor::cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src) {
184     for (int i = 0; i < src.numChildProcessors(); ++i) {
185         if (auto fp = src.childProcessor(i)) {
186             this->registerChild(fp->clone(), fp->sampleUsage());
187         } else {
188             this->registerChild(nullptr);
189         }
190     }
191 }
192 
MakeColor(SkPMColor4f color)193 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MakeColor(SkPMColor4f color) {
194     // Use ColorFilter signature/factory to get the constant output for constant input optimization
195     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
196         "uniform half4 color;"
197         "half4 main(half4 inColor) { return color; }"
198     );
199     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
200     return GrSkSLFP::Make(effect, "color_fp", /*inputFP=*/nullptr,
201                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
202                                            : GrSkSLFP::OptFlags::kNone,
203                           "color", color);
204 }
205 
MulInputByChildAlpha(std::unique_ptr<GrFragmentProcessor> fp)206 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::MulInputByChildAlpha(
207         std::unique_ptr<GrFragmentProcessor> fp) {
208     if (!fp) {
209         return nullptr;
210     }
211     return GrBlendFragmentProcessor::Make<SkBlendMode::kSrcIn>(/*src=*/nullptr, std::move(fp));
212 }
213 
ApplyPaintAlpha(std::unique_ptr<GrFragmentProcessor> child)214 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ApplyPaintAlpha(
215         std::unique_ptr<GrFragmentProcessor> child) {
216     SkASSERT(child);
217     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
218         "uniform colorFilter fp;"
219         "half4 main(half4 inColor) {"
220             "return fp.eval(inColor.rgb1) * inColor.a;"
221         "}"
222     );
223     return GrSkSLFP::Make(effect, "ApplyPaintAlpha", /*inputFP=*/nullptr,
224                           GrSkSLFP::OptFlags::kPreservesOpaqueInput |
225                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
226                           "fp", std::move(child));
227 }
228 
ModulateRGBA(std::unique_ptr<GrFragmentProcessor> inputFP,const SkPMColor4f & color)229 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ModulateRGBA(
230         std::unique_ptr<GrFragmentProcessor> inputFP, const SkPMColor4f& color) {
231     auto colorFP = MakeColor(color);
232     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(colorFP),
233                                                                   std::move(inputFP));
234 }
235 
ClampOutput(std::unique_ptr<GrFragmentProcessor> fp)236 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ClampOutput(
237         std::unique_ptr<GrFragmentProcessor> fp) {
238     SkASSERT(fp);
239     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
240         "half4 main(half4 inColor) {"
241             "return saturate(inColor);"
242         "}"
243     );
244     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
245     return GrSkSLFP::Make(effect, "Clamp", std::move(fp),
246                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
247 }
248 
SwizzleOutput(std::unique_ptr<GrFragmentProcessor> fp,const skgpu::Swizzle & swizzle)249 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(
250         std::unique_ptr<GrFragmentProcessor> fp, const skgpu::Swizzle& swizzle) {
251     class SwizzleFragmentProcessor : public GrFragmentProcessor {
252     public:
253         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
254                                                          const skgpu::Swizzle& swizzle) {
255             return std::unique_ptr<GrFragmentProcessor>(
256                     new SwizzleFragmentProcessor(std::move(fp), swizzle));
257         }
258 
259         const char* name() const override { return "Swizzle"; }
260 
261         std::unique_ptr<GrFragmentProcessor> clone() const override {
262             return Make(this->childProcessor(0)->clone(), fSwizzle);
263         }
264 
265     private:
266         SwizzleFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp,
267                                  const skgpu::Swizzle& swizzle)
268                 : INHERITED(kSwizzleFragmentProcessor_ClassID, ProcessorOptimizationFlags(fp.get()))
269                 , fSwizzle(swizzle) {
270             this->registerChild(std::move(fp));
271         }
272 
273         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
274             class Impl : public ProgramImpl {
275             public:
276                 void emitCode(EmitArgs& args) override {
277                     SkString childColor = this->invokeChild(0, args);
278 
279                     const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
280                     const skgpu::Swizzle& swizzle = sfp.fSwizzle;
281                     GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
282 
283                     fragBuilder->codeAppendf("return %s.%s;",
284                                              childColor.c_str(), swizzle.asString().c_str());
285                 }
286             };
287             return std::make_unique<Impl>();
288         }
289 
290         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const override {
291             b->add32(fSwizzle.asKey());
292         }
293 
294         bool onIsEqual(const GrFragmentProcessor& other) const override {
295             const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
296             return fSwizzle == sfp.fSwizzle;
297         }
298 
299         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
300             return fSwizzle.applyTo(ConstantOutputForConstantInput(this->childProcessor(0), input));
301         }
302 
303         skgpu::Swizzle fSwizzle;
304 
305         using INHERITED = GrFragmentProcessor;
306     };
307 
308     if (!fp) {
309         return nullptr;
310     }
311     if (skgpu::Swizzle::RGBA() == swizzle) {
312         return fp;
313     }
314     return SwizzleFragmentProcessor::Make(std::move(fp), swizzle);
315 }
316 
317 //////////////////////////////////////////////////////////////////////////////
318 
OverrideInput(std::unique_ptr<GrFragmentProcessor> fp,const SkPMColor4f & color)319 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(
320         std::unique_ptr<GrFragmentProcessor> fp, const SkPMColor4f& color) {
321     if (!fp) {
322         return nullptr;
323     }
324     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
325         "uniform colorFilter fp;"  // Declared as colorFilter so we can pass a color
326         "uniform half4 color;"
327         "half4 main(half4 inColor) {"
328             "return fp.eval(color);"
329         "}"
330     );
331     return GrSkSLFP::Make(effect, "OverrideInput", /*inputFP=*/nullptr,
332                           color.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
333                                            : GrSkSLFP::OptFlags::kNone,
334                           "fp", std::move(fp),
335                           "color", color);
336 }
337 
338 //////////////////////////////////////////////////////////////////////////////
339 
DisableCoverageAsAlpha(std::unique_ptr<GrFragmentProcessor> fp)340 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DisableCoverageAsAlpha(
341         std::unique_ptr<GrFragmentProcessor> fp) {
342     if (!fp || !fp->compatibleWithCoverageAsAlpha()) {
343         return fp;
344     }
345     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
346         "half4 main(half4 inColor) { return inColor; }"
347     );
348     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
349     return GrSkSLFP::Make(effect, "DisableCoverageAsAlpha", std::move(fp),
350                           GrSkSLFP::OptFlags::kPreservesOpaqueInput);
351 }
352 
353 //////////////////////////////////////////////////////////////////////////////
354 
DestColor()355 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DestColor() {
356     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForBlender,
357         "half4 main(half4 src, half4 dst) {"
358             "return dst;"
359         "}"
360     );
361     return GrSkSLFP::Make(effect, "DestColor", /*inputFP=*/nullptr, GrSkSLFP::OptFlags::kNone);
362 }
363 
364 //////////////////////////////////////////////////////////////////////////////
365 
Compose(std::unique_ptr<GrFragmentProcessor> f,std::unique_ptr<GrFragmentProcessor> g)366 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Compose(
367         std::unique_ptr<GrFragmentProcessor> f, std::unique_ptr<GrFragmentProcessor> g) {
368     class ComposeProcessor : public GrFragmentProcessor {
369     public:
370         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> f,
371                                                          std::unique_ptr<GrFragmentProcessor> g) {
372             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(std::move(f),
373                                                                              std::move(g)));
374         }
375 
376         const char* name() const override { return "Compose"; }
377 
378         std::unique_ptr<GrFragmentProcessor> clone() const override {
379             return std::unique_ptr<GrFragmentProcessor>(new ComposeProcessor(*this));
380         }
381 
382     private:
383         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
384             class Impl : public ProgramImpl {
385             public:
386                 void emitCode(EmitArgs& args) override {
387                     SkString result = this->invokeChild(1, args);         // g(x)
388                     result = this->invokeChild(0, result.c_str(), args);  // f(g(x))
389                     args.fFragBuilder->codeAppendf("return %s;", result.c_str());
390                 }
391             };
392             return std::make_unique<Impl>();
393         }
394 
395         ComposeProcessor(std::unique_ptr<GrFragmentProcessor> f,
396                          std::unique_ptr<GrFragmentProcessor> g)
397                 : INHERITED(kSeriesFragmentProcessor_ClassID,
398                             f->optimizationFlags() & g->optimizationFlags()) {
399             this->registerChild(std::move(f));
400             this->registerChild(std::move(g));
401         }
402 
403         ComposeProcessor(const ComposeProcessor& that) : INHERITED(that) {}
404 
405         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
406 
407         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
408 
409         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& inColor) const override {
410             SkPMColor4f color = inColor;
411             color = ConstantOutputForConstantInput(this->childProcessor(1), color);
412             color = ConstantOutputForConstantInput(this->childProcessor(0), color);
413             return color;
414         }
415 
416         using INHERITED = GrFragmentProcessor;
417     };
418 
419     // Allow either of the composed functions to be null.
420     if (f == nullptr) {
421         return g;
422     }
423     if (g == nullptr) {
424         return f;
425     }
426 
427     // Run an optimization pass on this composition.
428     GrProcessorAnalysisColor inputColor;
429     inputColor.setToUnknown();
430 
431     std::unique_ptr<GrFragmentProcessor> series[2] = {std::move(g), std::move(f)};
432     GrColorFragmentProcessorAnalysis info(inputColor, series, std::size(series));
433 
434     SkPMColor4f knownColor;
435     int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
436     switch (leadingFPsToEliminate) {
437         default:
438             // We shouldn't eliminate more than we started with.
439             SkASSERT(leadingFPsToEliminate <= 2);
440             [[fallthrough]];
441         case 0:
442             // Compose the two processors as requested.
443             return ComposeProcessor::Make(/*f=*/std::move(series[1]), /*g=*/std::move(series[0]));
444         case 1:
445             // Replace the first processor with a constant color.
446             return ComposeProcessor::Make(/*f=*/std::move(series[1]),
447                                           /*g=*/MakeColor(knownColor));
448         case 2:
449             // Replace the entire composition with a constant color.
450             return MakeColor(knownColor);
451     }
452 }
453 
454 //////////////////////////////////////////////////////////////////////////////
455 
ColorMatrix(std::unique_ptr<GrFragmentProcessor> child,const float matrix[20],bool unpremulInput,bool clampRGBOutput,bool premulOutput)456 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::ColorMatrix(
457         std::unique_ptr<GrFragmentProcessor> child,
458         const float matrix[20],
459         bool unpremulInput,
460         bool clampRGBOutput,
461         bool premulOutput) {
462     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter,
463         "uniform half4x4 m;"
464         "uniform half4 v;"
465         "uniform int unpremulInput;"   // always specialized
466         "uniform int clampRGBOutput;"  // always specialized
467         "uniform int premulOutput;"    // always specialized
468         "half4 main(half4 color) {"
469             "if (bool(unpremulInput)) {"
470                 "color = unpremul(color);"
471             "}"
472             "color = m * color + v;"
473             "if (bool(clampRGBOutput)) {"
474                 "color = saturate(color);"
475             "} else {"
476                 "color.a = saturate(color.a);"
477             "}"
478             "if (bool(premulOutput)) {"
479                 "color.rgb *= color.a;"
480             "}"
481             "return color;"
482         "}"
483     );
484     SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
485 
486     SkM44 m44(matrix[ 0], matrix[ 1], matrix[ 2], matrix[ 3],
487               matrix[ 5], matrix[ 6], matrix[ 7], matrix[ 8],
488               matrix[10], matrix[11], matrix[12], matrix[13],
489               matrix[15], matrix[16], matrix[17], matrix[18]);
490     SkV4 v4 = {matrix[4], matrix[9], matrix[14], matrix[19]};
491     return GrSkSLFP::Make(effect, "ColorMatrix", std::move(child), GrSkSLFP::OptFlags::kNone,
492                           "m", m44,
493                           "v", v4,
494                           "unpremulInput",  GrSkSLFP::Specialize(unpremulInput  ? 1 : 0),
495                           "clampRGBOutput", GrSkSLFP::Specialize(clampRGBOutput ? 1 : 0),
496                           "premulOutput",   GrSkSLFP::Specialize(premulOutput   ? 1 : 0));
497 }
498 
499 //////////////////////////////////////////////////////////////////////////////
500 
SurfaceColor()501 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::SurfaceColor() {
502     class SurfaceColorProcessor : public GrFragmentProcessor {
503     public:
504         static std::unique_ptr<GrFragmentProcessor> Make() {
505             return std::unique_ptr<GrFragmentProcessor>(new SurfaceColorProcessor());
506         }
507 
508         std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
509 
510         const char* name() const override { return "SurfaceColor"; }
511 
512     private:
513         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
514             class Impl : public ProgramImpl {
515             public:
516                 void emitCode(EmitArgs& args) override {
517                     const char* dstColor = args.fFragBuilder->dstColor();
518                     args.fFragBuilder->codeAppendf("return %s;", dstColor);
519                 }
520             };
521             return std::make_unique<Impl>();
522         }
523 
524         SurfaceColorProcessor()
525                 : INHERITED(kSurfaceColorProcessor_ClassID, kNone_OptimizationFlags) {
526             this->setWillReadDstColor();
527         }
528 
529         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
530 
531         bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
532 
533         using INHERITED = GrFragmentProcessor;
534     };
535 
536     return SurfaceColorProcessor::Make();
537 }
538 
539 //////////////////////////////////////////////////////////////////////////////
540 
DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)541 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::DeviceSpace(
542         std::unique_ptr<GrFragmentProcessor> fp) {
543     if (!fp) {
544         return nullptr;
545     }
546 
547     class DeviceSpace : GrFragmentProcessor {
548     public:
549         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
550             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(fp)));
551         }
552 
553     private:
554         DeviceSpace(std::unique_ptr<GrFragmentProcessor> fp)
555                 : GrFragmentProcessor(kDeviceSpace_ClassID, fp->optimizationFlags()) {
556             // Passing FragCoord here is the reason this is a subclass and not a runtime-FP.
557             this->registerChild(std::move(fp), SkSL::SampleUsage::FragCoord());
558         }
559 
560         std::unique_ptr<GrFragmentProcessor> clone() const override {
561             auto child = this->childProcessor(0)->clone();
562             return std::unique_ptr<GrFragmentProcessor>(new DeviceSpace(std::move(child)));
563         }
564 
565         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& f) const override {
566             return this->childProcessor(0)->constantOutputForConstantInput(f);
567         }
568 
569         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
570             class Impl : public ProgramImpl {
571             public:
572                 Impl() = default;
573                 void emitCode(ProgramImpl::EmitArgs& args) override {
574                     auto child = this->invokeChild(0, args.fInputColor, args, "sk_FragCoord.xy");
575                     args.fFragBuilder->codeAppendf("return %s;", child.c_str());
576                 }
577             };
578             return std::make_unique<Impl>();
579         }
580 
581         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
582 
583         bool onIsEqual(const GrFragmentProcessor& processor) const override { return true; }
584 
585         const char* name() const override { return "DeviceSpace"; }
586     };
587 
588     return DeviceSpace::Make(std::move(fp));
589 }
590 
591 //////////////////////////////////////////////////////////////////////////////
592 
593 #define CLIP_EDGE_SKSL              \
594     "const int kFillBW = 0;"        \
595     "const int kFillAA = 1;"        \
596     "const int kInverseFillBW = 2;" \
597     "const int kInverseFillAA = 3;"
598 
599 static_assert(static_cast<int>(GrClipEdgeType::kFillBW) == 0);
600 static_assert(static_cast<int>(GrClipEdgeType::kFillAA) == 1);
601 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillBW) == 2);
602 static_assert(static_cast<int>(GrClipEdgeType::kInverseFillAA) == 3);
603 
Rect(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkRect rect)604 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::Rect(
605         std::unique_ptr<GrFragmentProcessor> inputFP, GrClipEdgeType edgeType, SkRect rect) {
606     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
607     CLIP_EDGE_SKSL
608         "uniform int edgeType;"  // GrClipEdgeType, specialized
609         "uniform float4 rectUniform;"
610 
611         "half4 main(float2 xy) {"
612             "half coverage;"
613             "if (edgeType == kFillBW || edgeType == kInverseFillBW) {"
614                 // non-AA
615                 "coverage = half(all(greaterThan(float4(sk_FragCoord.xy, rectUniform.zw),"
616                                                 "float4(rectUniform.xy, sk_FragCoord.xy))));"
617             "} else {"
618                 // compute coverage relative to left and right edges, add, then subtract 1 to
619                 // account for double counting. And similar for top/bottom.
620                 "half4 dists4 = saturate(half4(1, 1, -1, -1) *"
621                                         "half4(sk_FragCoord.xyxy - rectUniform));"
622                 "half2 dists2 = dists4.xy + dists4.zw - 1;"
623                 "coverage = dists2.x * dists2.y;"
624             "}"
625 
626             "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
627                 "coverage = 1.0 - coverage;"
628             "}"
629 
630             "return half4(coverage);"
631         "}"
632     );
633 
634     SkASSERT(rect.isSorted());
635     // The AA math in the shader evaluates to 0 at the uploaded coordinates, so outset by 0.5
636     // to interpolate from 0 at a half pixel inset and 1 at a half pixel outset of rect.
637     SkRect rectUniform = GrClipEdgeTypeIsAA(edgeType) ? rect.makeOutset(.5f, .5f) : rect;
638 
639     auto rectFP = GrSkSLFP::Make(effect, "Rect", /*inputFP=*/nullptr,
640                                  GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
641                                 "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
642                                 "rectUniform", rectUniform);
643     return GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(rectFP),
644                                                                   std::move(inputFP));
645 }
646 
Circle(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,float radius)647 GrFPResult GrFragmentProcessor::Circle(std::unique_ptr<GrFragmentProcessor> inputFP,
648                                        GrClipEdgeType edgeType,
649                                        SkPoint center,
650                                        float radius) {
651     // A radius below half causes the implicit insetting done by this processor to become
652     // inverted. We could handle this case by making the processor code more complicated.
653     if (radius < .5f && GrClipEdgeTypeIsInverseFill(edgeType)) {
654         return GrFPFailure(std::move(inputFP));
655     }
656 
657     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
658     CLIP_EDGE_SKSL
659         "uniform int edgeType;"  // GrClipEdgeType, specialized
660         // The circle uniform is (center.x, center.y, radius + 0.5, 1 / (radius + 0.5)) for regular
661         // fills and (..., radius - 0.5, 1 / (radius - 0.5)) for inverse fills.
662         "uniform float4 circle;"
663 
664         "half4 main(float2 xy) {"
665             // TODO: Right now the distance to circle calculation is performed in a space normalized
666             // to the radius and then denormalized. This is to mitigate overflow on devices that
667             // don't have full float.
668             "half d;"
669             "if (edgeType == kInverseFillBW || edgeType == kInverseFillAA) {"
670                 "d = half((length((circle.xy - sk_FragCoord.xy) * circle.w) - 1.0) * circle.z);"
671             "} else {"
672                 "d = half((1.0 - length((circle.xy - sk_FragCoord.xy) * circle.w)) * circle.z);"
673             "}"
674             "return half4((edgeType == kFillAA || edgeType == kInverseFillAA)"
675                               "? saturate(d)"
676                               ": (d > 0.5 ? 1 : 0));"
677         "}"
678     );
679 
680     SkScalar effectiveRadius = radius;
681     if (GrClipEdgeTypeIsInverseFill(edgeType)) {
682         effectiveRadius -= 0.5f;
683         // When the radius is 0.5 effectiveRadius is 0 which causes an inf * 0 in the shader.
684         effectiveRadius = std::max(0.001f, effectiveRadius);
685     } else {
686         effectiveRadius += 0.5f;
687     }
688     SkV4 circle = {center.fX, center.fY, effectiveRadius, SkScalarInvert(effectiveRadius)};
689 
690     auto circleFP = GrSkSLFP::Make(effect, "Circle", /*inputFP=*/nullptr,
691                                    GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
692                                    "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
693                                    "circle", circle);
694     return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(inputFP),
695                                                                               std::move(circleFP)));
696 }
697 
Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,GrClipEdgeType edgeType,SkPoint center,SkPoint radii,const GrShaderCaps & caps)698 GrFPResult GrFragmentProcessor::Ellipse(std::unique_ptr<GrFragmentProcessor> inputFP,
699                                         GrClipEdgeType edgeType,
700                                         SkPoint center,
701                                         SkPoint radii,
702                                         const GrShaderCaps& caps) {
703     const bool medPrecision = !caps.fFloatIs32Bits;
704 
705     // Small radii produce bad results on devices without full float.
706     if (medPrecision && (radii.fX < 0.5f || radii.fY < 0.5f)) {
707         return GrFPFailure(std::move(inputFP));
708     }
709     // Very narrow ellipses produce bad results on devices without full float
710     if (medPrecision && (radii.fX > 255*radii.fY || radii.fY > 255*radii.fX)) {
711         return GrFPFailure(std::move(inputFP));
712     }
713     // Very large ellipses produce bad results on devices without full float
714     if (medPrecision && (radii.fX > 16384 || radii.fY > 16384)) {
715         return GrFPFailure(std::move(inputFP));
716     }
717 
718     static const SkRuntimeEffect* effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader,
719     CLIP_EDGE_SKSL
720         "uniform int edgeType;"      // GrClipEdgeType, specialized
721         "uniform int medPrecision;"  // !sk_Caps.floatIs32Bits, specialized
722 
723         "uniform float4 ellipse;"
724         "uniform float2 scale;"    // only for medPrecision
725 
726         "half4 main(float2 xy) {"
727             // d is the offset to the ellipse center
728             "float2 d = sk_FragCoord.xy - ellipse.xy;"
729             // If we're on a device with a "real" mediump then we'll do the distance computation in
730             // a space that is normalized by the larger radius or 128, whichever is smaller. The
731             // scale uniform will be scale, 1/scale. The inverse squared radii uniform values are
732             // already in this normalized space. The center is not.
733             "if (bool(medPrecision)) {"
734                 "d *= scale.y;"
735             "}"
736             "float2 Z = d * ellipse.zw;"
737             // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
738             "float implicit = dot(Z, d) - 1;"
739             // grad_dot is the squared length of the gradient of the implicit.
740             "float grad_dot = 4 * dot(Z, Z);"
741             // Avoid calling inversesqrt on zero.
742             "if (bool(medPrecision)) {"
743                 "grad_dot = max(grad_dot, 6.1036e-5);"
744             "} else {"
745                 "grad_dot = max(grad_dot, 1.1755e-38);"
746             "}"
747             "float approx_dist = implicit * inversesqrt(grad_dot);"
748             "if (bool(medPrecision)) {"
749                 "approx_dist *= scale.x;"
750             "}"
751 
752             "half alpha;"
753             "if (edgeType == kFillBW) {"
754                 "alpha = approx_dist > 0.0 ? 0.0 : 1.0;"
755             "} else if (edgeType == kFillAA) {"
756                 "alpha = saturate(0.5 - half(approx_dist));"
757             "} else if (edgeType == kInverseFillBW) {"
758                 "alpha = approx_dist > 0.0 ? 1.0 : 0.0;"
759             "} else {"  // edgeType == kInverseFillAA
760                 "alpha = saturate(0.5 + half(approx_dist));"
761             "}"
762             "return half4(alpha);"
763         "}"
764     );
765 
766     float invRXSqd;
767     float invRYSqd;
768     SkV2 scale = {1, 1};
769     // If we're using a scale factor to work around precision issues, choose the larger radius as
770     // the scale factor. The inv radii need to be pre-adjusted by the scale factor.
771     if (medPrecision) {
772         if (radii.fX > radii.fY) {
773             invRXSqd = 1.f;
774             invRYSqd = (radii.fX * radii.fX) / (radii.fY * radii.fY);
775             scale = {radii.fX, 1.f / radii.fX};
776         } else {
777             invRXSqd = (radii.fY * radii.fY) / (radii.fX * radii.fX);
778             invRYSqd = 1.f;
779             scale = {radii.fY, 1.f / radii.fY};
780         }
781     } else {
782         invRXSqd = 1.f / (radii.fX * radii.fX);
783         invRYSqd = 1.f / (radii.fY * radii.fY);
784     }
785     SkV4 ellipse = {center.fX, center.fY, invRXSqd, invRYSqd};
786 
787     auto ellipseFP = GrSkSLFP::Make(effect, "Ellipse", /*inputFP=*/nullptr,
788                                     GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
789                                     "edgeType", GrSkSLFP::Specialize(static_cast<int>(edgeType)),
790                                     "medPrecision",  GrSkSLFP::Specialize<int>(medPrecision),
791                                     "ellipse", ellipse,
792                                     "scale", scale);
793     return GrFPSuccess(GrBlendFragmentProcessor::Make<SkBlendMode::kModulate>(std::move(ellipseFP),
794                                                                               std::move(inputFP)));
795 }
796 
797 //////////////////////////////////////////////////////////////////////////////
798 
HighPrecision(std::unique_ptr<GrFragmentProcessor> fp)799 std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::HighPrecision(
800         std::unique_ptr<GrFragmentProcessor> fp) {
801     class HighPrecisionFragmentProcessor : public GrFragmentProcessor {
802     public:
803         static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
804             return std::unique_ptr<GrFragmentProcessor>(
805                     new HighPrecisionFragmentProcessor(std::move(fp)));
806         }
807 
808         const char* name() const override { return "HighPrecision"; }
809 
810         std::unique_ptr<GrFragmentProcessor> clone() const override {
811             return Make(this->childProcessor(0)->clone());
812         }
813 
814     private:
815         HighPrecisionFragmentProcessor(std::unique_ptr<GrFragmentProcessor> fp)
816                 : INHERITED(kHighPrecisionFragmentProcessor_ClassID,
817                             ProcessorOptimizationFlags(fp.get())) {
818             this->registerChild(std::move(fp));
819         }
820 
821         std::unique_ptr<ProgramImpl> onMakeProgramImpl() const override {
822             class Impl : public ProgramImpl {
823             public:
824                 void emitCode(EmitArgs& args) override {
825                     SkString childColor = this->invokeChild(0, args);
826 
827                     args.fFragBuilder->forceHighPrecision();
828                     args.fFragBuilder->codeAppendf("return %s;", childColor.c_str());
829                 }
830             };
831             return std::make_unique<Impl>();
832         }
833 
834         void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const override {}
835         bool onIsEqual(const GrFragmentProcessor& other) const override { return true; }
836 
837         SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& input) const override {
838             return ConstantOutputForConstantInput(this->childProcessor(0), input);
839         }
840 
841         using INHERITED = GrFragmentProcessor;
842     };
843 
844     return HighPrecisionFragmentProcessor::Make(std::move(fp));
845 }
846 
847 //////////////////////////////////////////////////////////////////////////////
848 
849 using ProgramImpl = GrFragmentProcessor::ProgramImpl;
850 
setData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)851 void ProgramImpl::setData(const GrGLSLProgramDataManager& pdman,
852                           const GrFragmentProcessor& processor) {
853     this->onSetData(pdman, processor);
854 }
855 
invokeChild(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args,std::string_view skslCoords)856 SkString ProgramImpl::invokeChild(int childIndex,
857                                   const char* inputColor,
858                                   const char* destColor,
859                                   EmitArgs& args,
860                                   std::string_view skslCoords) {
861     SkASSERT(childIndex >= 0);
862 
863     if (!inputColor) {
864         inputColor = args.fInputColor;
865     }
866 
867     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
868     if (!childProc) {
869         // If no child processor is provided, return the input color as-is.
870         return SkString(inputColor);
871     }
872 
873     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
874                                      inputColor);
875 
876     if (childProc->isBlendFunction()) {
877         if (!destColor) {
878             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
879         }
880         invocation.appendf(", %s", destColor);
881     }
882 
883     // Assert that the child has no sample matrix. A uniform matrix sample call would go through
884     // invokeChildWithMatrix, not here.
885     SkASSERT(!childProc->sampleUsage().isUniformMatrix());
886 
887     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
888         SkASSERT(!childProc->sampleUsage().isFragCoord() || skslCoords == "sk_FragCoord.xy");
889         // The child's function takes a half4 color and a float2 coordinate
890         if (!skslCoords.empty()) {
891             invocation.appendf(", %.*s", (int)skslCoords.size(), skslCoords.data());
892         } else {
893             invocation.appendf(", %s", args.fSampleCoord);
894         }
895     }
896 
897     invocation.append(")");
898     return invocation;
899 }
900 
invokeChildWithMatrix(int childIndex,const char * inputColor,const char * destColor,EmitArgs & args)901 SkString ProgramImpl::invokeChildWithMatrix(int childIndex,
902                                             const char* inputColor,
903                                             const char* destColor,
904                                             EmitArgs& args) {
905     SkASSERT(childIndex >= 0);
906 
907     if (!inputColor) {
908         inputColor = args.fInputColor;
909     }
910 
911     const GrFragmentProcessor* childProc = args.fFp.childProcessor(childIndex);
912     if (!childProc) {
913         // If no child processor is provided, return the input color as-is.
914         return SkString(inputColor);
915     }
916 
917     SkASSERT(childProc->sampleUsage().isUniformMatrix());
918 
919     // Every uniform matrix has the same (initial) name. Resolve that into the mangled name:
920     GrShaderVar uniform = args.fUniformHandler->getUniformMapping(
921             args.fFp, SkString(SkSL::SampleUsage::MatrixUniformName()));
922     SkASSERT(uniform.getType() == SkSLType::kFloat3x3);
923     const SkString& matrixName(uniform.getName());
924 
925     auto invocation = SkStringPrintf("%s(%s", this->childProcessor(childIndex)->functionName(),
926                                      inputColor);
927 
928     if (childProc->isBlendFunction()) {
929         if (!destColor) {
930             destColor = args.fFp.isBlendFunction() ? args.fDestColor : "half4(1)";
931         }
932         invocation.appendf(", %s", destColor);
933     }
934 
935     // Produce a string containing the call to the helper function. We have a uniform variable
936     // containing our transform (matrixName). If the parent coords were produced by uniform
937     // transforms, then the entire expression (matrixName * coords) is lifted to a vertex shader
938     // and is stored in a varying. In that case, childProc will not be sampled explicitly, so its
939     // function signature will not take in coords.
940     //
941     // In all other cases, we need to insert sksl to compute matrix * parent coords and then invoke
942     // the function.
943     if (args.fFragBuilder->getProgramBuilder()->fragmentProcessorHasCoordsParam(childProc)) {
944         // Only check perspective for this specific matrix transform, not the aggregate FP property.
945         // Any parent perspective will have already been applied when evaluated in the FS.
946         if (childProc->sampleUsage().hasPerspective()) {
947             invocation.appendf(", proj((%s) * %s.xy1)", matrixName.c_str(), args.fSampleCoord);
948         } else if (args.fShaderCaps->fNonsquareMatrixSupport) {
949             invocation.appendf(", float3x2(%s) * %s.xy1", matrixName.c_str(), args.fSampleCoord);
950         } else {
951             invocation.appendf(", ((%s) * %s.xy1).xy", matrixName.c_str(), args.fSampleCoord);
952         }
953     }
954 
955     invocation.append(")");
956     return invocation;
957 }
958