• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrGeometryProcessor_DEFINED
9 #define GrGeometryProcessor_DEFINED
10 
11 #include "include/gpu/GrBackendSurface.h"
12 #include "src/gpu/Swizzle.h"
13 #include "src/gpu/ganesh/GrColor.h"
14 #include "src/gpu/ganesh/GrFragmentProcessor.h"
15 #include "src/gpu/ganesh/GrProcessor.h"
16 #include "src/gpu/ganesh/GrSamplerState.h"
17 #include "src/gpu/ganesh/GrShaderCaps.h"
18 #include "src/gpu/ganesh/GrShaderVar.h"
19 #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
20 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
21 #include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
22 
23 #include <unordered_map>
24 
25 class GrGLSLFPFragmentBuilder;
26 class GrGLSLVaryingHandler;
27 class GrGLSLUniformHandler;
28 class GrGLSLVertexBuilder;
29 
30 /**
31  * The GrGeometryProcessor represents some kind of geometric primitive.  This includes the shape
32  * of the primitive and the inherent color of the primitive.  The GrGeometryProcessor is
33  * responsible for providing a color and coverage input into the Ganesh rendering pipeline. Through
34  * optimization, Ganesh may decide a different color, no color, and / or no coverage are required
35  * from the GrGeometryProcessor, so the GrGeometryProcessor must be able to support this
36  * functionality.
37  *
38  * There are two feedback loops between the GrFragmentProcessors, the GrXferProcessor, and the
39  * GrGeometryProcessor. These loops run on the CPU and to determine known properties of the final
40  * color and coverage inputs to the GrXferProcessor in order to perform optimizations that preserve
41  * correctness. The GrDrawOp seeds these loops with initial color and coverage, in its
42  * getProcessorAnalysisInputs implementation. These seed values are processed by the
43  * subsequent stages of the rendering pipeline and the output is then fed back into the GrDrawOp
44  * in the applyPipelineOptimizations call, where the op can use the information to inform
45  * decisions about GrGeometryProcessor creation.
46  *
47  * Note that all derived classes should hide their constructors and provide a Make factory
48  * function that takes an arena (except for Tesselation-specific classes). This is because
49  * geometry processors can be created in either the record-time or flush-time arenas which
50  * define their lifetimes (i.e., a DDLs life time in the first case and a single flush in
51  * the second case).
52  */
53 class GrGeometryProcessor : public GrProcessor {
54 public:
55     /**
56      * Every GrGeometryProcessor must be capable of creating a subclass of ProgramImpl. The
57      * ProgramImpl emits the shader code that implements the GrGeometryProcessor, is attached to the
58      * generated backend API pipeline/program and used to extract uniform data from
59      * GrGeometryProcessor instances.
60      */
61     class ProgramImpl;
62 
63     class TextureSampler;
64 
65     /** Describes a vertex or instance attribute. */
66     class Attribute {
67     public:
AlignOffset(size_t offset)68         static constexpr size_t AlignOffset(size_t offset) { return SkAlign4(offset); }
69 
70         constexpr Attribute() = default;
71         /**
72          * Makes an attribute whose offset will be implicitly determined by the types and ordering
73          * of an array attributes.
74          */
Attribute(const char * name,GrVertexAttribType cpuType,SkSLType gpuType)75         constexpr Attribute(const char* name,
76                             GrVertexAttribType cpuType,
77                             SkSLType gpuType)
78                 : fName(name), fCPUType(cpuType), fGPUType(gpuType) {
79             SkASSERT(name && gpuType != SkSLType::kVoid);
80         }
81         /**
82          * Makes an attribute with an explicit offset.
83          */
Attribute(const char * name,GrVertexAttribType cpuType,SkSLType gpuType,size_t offset)84         constexpr Attribute(const char*        name,
85                             GrVertexAttribType cpuType,
86                             SkSLType           gpuType,
87                             size_t             offset)
88                 : fName(name), fCPUType(cpuType), fGPUType(gpuType), fOffset(SkToU32(offset)) {
89             SkASSERT(AlignOffset(offset) == offset);
90             SkASSERT(name && gpuType != SkSLType::kVoid);
91         }
92         constexpr Attribute(const Attribute&) = default;
93 
94         Attribute& operator=(const Attribute&) = default;
95 
isInitialized()96         constexpr bool isInitialized() const { return fGPUType != SkSLType::kVoid; }
97 
name()98         constexpr const char*           name() const { return fName; }
cpuType()99         constexpr GrVertexAttribType cpuType() const { return fCPUType; }
gpuType()100         constexpr SkSLType           gpuType() const { return fGPUType; }
101         /**
102          * Returns the offset if attributes were specified with explicit offsets. Otherwise,
103          * offsets (and total vertex stride) are implicitly determined from attribute order and
104          * types.
105          */
offset()106         std::optional<size_t> offset() const {
107             if (fOffset != kImplicitOffset) {
108                 SkASSERT(AlignOffset(fOffset) == fOffset);
109                 return {fOffset};
110             }
111             return std::nullopt;
112         }
113 
114         inline constexpr size_t size() const;
115 
asShaderVar()116         GrShaderVar asShaderVar() const {
117             return {fName, fGPUType, GrShaderVar::TypeModifier::In};
118         }
119 
120     private:
121         static constexpr uint32_t kImplicitOffset = 1;  // 1 is not valid because it isn't aligned.
122 
123         const char*        fName    = nullptr;
124         GrVertexAttribType fCPUType = kFloat_GrVertexAttribType;
125         SkSLType           fGPUType = SkSLType::kVoid;
126         uint32_t           fOffset  = kImplicitOffset;
127     };
128 
129     /**
130      * A set of attributes that can iterated. The iterator handles hides two pieces of complexity:
131      * 1) It skips uninitialized attributes.
132      * 2) It always returns an attribute with a known offset.
133      */
134     class AttributeSet {
135         class Iter {
136         public:
137             Iter() = default;
138             Iter(const Iter& iter) = default;
139             Iter& operator=(const Iter& iter) = default;
140 
Iter(const Attribute * attrs,int count)141             Iter(const Attribute* attrs, int count) : fCurr(attrs), fRemaining(count) {
142                 this->skipUninitialized();
143             }
144 
145             bool operator!=(const Iter& that) const { return fCurr != that.fCurr; }
146             Attribute operator*() const;
147             void operator++();
148 
149         private:
150             void skipUninitialized();
151 
152             const Attribute* fCurr           = nullptr;
153             int              fRemaining      = 0;
154             size_t           fImplicitOffset = 0;
155         };
156 
157     public:
158         Iter begin() const;
159         Iter end() const;
160 
count()161         int count() const { return fCount; }
stride()162         size_t stride() const { return fStride; }
163 
164         // Init with implicit offsets and stride. No attributes can have a predetermined stride.
165         void initImplicit(const Attribute* attrs, int count);
166         // Init with explicit offsets and stride. All attributes must be initialized and have
167         // an explicit offset aligned to 4 bytes and with no attribute crossing stride boundaries.
168         void initExplicit(const Attribute* attrs, int count, size_t stride);
169 
170         void addToKey(skgpu::KeyBuilder* b) const;
171 
172     private:
173         const Attribute* fAttributes = nullptr;
174         int              fRawCount = 0;
175         int              fCount = 0;
176         size_t           fStride = 0;
177     };
178 
179     GrGeometryProcessor(ClassID);
180 
numTextureSamplers()181     int numTextureSamplers() const { return fTextureSamplerCnt; }
182     const TextureSampler& textureSampler(int index) const;
numVertexAttributes()183     int numVertexAttributes() const { return fVertexAttributes.count(); }
vertexAttributes()184     const AttributeSet& vertexAttributes() const { return fVertexAttributes; }
numInstanceAttributes()185     int numInstanceAttributes() const { return fInstanceAttributes.count(); }
instanceAttributes()186     const AttributeSet& instanceAttributes() const { return fInstanceAttributes; }
187 
hasVertexAttributes()188     bool hasVertexAttributes() const { return SkToBool(fVertexAttributes.count()); }
hasInstanceAttributes()189     bool hasInstanceAttributes() const { return SkToBool(fInstanceAttributes.count()); }
190 
191     /**
192      * A common practice is to populate the the vertex/instance's memory using an implicit array of
193      * structs. In this case, it is best to assert that:
194      *     stride == sizeof(struct)
195      */
vertexStride()196     size_t vertexStride() const { return fVertexAttributes.stride(); }
instanceStride()197     size_t instanceStride() const { return fInstanceAttributes.stride(); }
198 
199     /**
200      * Computes a key for the transforms owned by an FP based on the shader code that will be
201      * emitted by the primitive processor to implement them.
202      */
203     static uint32_t ComputeCoordTransformsKey(const GrFragmentProcessor& fp);
204 
205     inline static constexpr int kCoordTransformKeyBits = 4;
206 
207     /**
208      * Adds a key on the skgpu::KeyBuilder that reflects any variety in the code that the
209      * geometry processor subclass can emit.
210      */
211     virtual void addToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0;
212 
213     void getAttributeKey(skgpu::KeyBuilder* b) const;
214 
215     /**
216      * Returns a new instance of the appropriate implementation class for the given
217      * GrGeometryProcessor.
218      */
219     virtual std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const = 0;
220 
221 protected:
222     // GPs that need to use either float or ubyte colors can just call this to get a correctly
223     // configured Attribute struct
MakeColorAttribute(const char * name,bool wideColor)224     static Attribute MakeColorAttribute(const char* name, bool wideColor) {
225         return { name,
226                  wideColor ? kFloat4_GrVertexAttribType : kUByte4_norm_GrVertexAttribType,
227                  SkSLType::kHalf4 };
228     }
setVertexAttributes(const Attribute * attrs,int attrCount,size_t stride)229     void setVertexAttributes(const Attribute* attrs, int attrCount, size_t stride) {
230         fVertexAttributes.initExplicit(attrs, attrCount, stride);
231     }
setInstanceAttributes(const Attribute * attrs,int attrCount,size_t stride)232     void setInstanceAttributes(const Attribute* attrs, int attrCount, size_t stride) {
233         SkASSERT(attrCount >= 0);
234         fInstanceAttributes.initExplicit(attrs, attrCount, stride);
235     }
236 
setVertexAttributesWithImplicitOffsets(const Attribute * attrs,int attrCount)237     void setVertexAttributesWithImplicitOffsets(const Attribute* attrs, int attrCount) {
238         fVertexAttributes.initImplicit(attrs, attrCount);
239     }
setInstanceAttributesWithImplicitOffsets(const Attribute * attrs,int attrCount)240     void setInstanceAttributesWithImplicitOffsets(const Attribute* attrs, int attrCount) {
241         SkASSERT(attrCount >= 0);
242         fInstanceAttributes.initImplicit(attrs, attrCount);
243     }
setTextureSamplerCnt(int cnt)244     void setTextureSamplerCnt(int cnt) {
245         SkASSERT(cnt >= 0);
246         fTextureSamplerCnt = cnt;
247     }
248 
249 private:
onTextureSampler(int)250     virtual const TextureSampler& onTextureSampler(int) const { SK_ABORT("no texture samplers"); }
251 
252     AttributeSet fVertexAttributes;
253     AttributeSet fInstanceAttributes;
254 
255     int fTextureSamplerCnt = 0;
256     using INHERITED = GrProcessor;
257 };
258 
259 //////////////////////////////////////////////////////////////////////////////
260 
261 class GrGeometryProcessor::ProgramImpl {
262 public:
263     using UniformHandle = GrGLSLProgramDataManager::UniformHandle;
264     using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
265     /**
266      * Struct of optional varying that replaces the input coords and bool indicating whether the FP
267      * should take a coord param as an argument. The latter may be false if the coords are simply
268      * unused or if the GP has lifted their computation to a varying emitted by the VS.
269      */
270     struct FPCoords {GrShaderVar coordsVarying; bool hasCoordsParam;};
271     using FPCoordsMap = std::unordered_map<const GrFragmentProcessor*, FPCoords>;
272 
273     virtual ~ProgramImpl() = default;
274 
275     struct EmitArgs {
EmitArgsEmitArgs276         EmitArgs(GrGLSLVertexBuilder* vertBuilder,
277                  GrGLSLFPFragmentBuilder* fragBuilder,
278                  GrGLSLVaryingHandler* varyingHandler,
279                  GrGLSLUniformHandler* uniformHandler,
280                  const GrShaderCaps* caps,
281                  const GrGeometryProcessor& geomProc,
282                  const char* outputColor,
283                  const char* outputCoverage,
284                  const SamplerHandle* texSamplers)
285                 : fVertBuilder(vertBuilder)
286                 , fFragBuilder(fragBuilder)
287                 , fVaryingHandler(varyingHandler)
288                 , fUniformHandler(uniformHandler)
289                 , fShaderCaps(caps)
290                 , fGeomProc(geomProc)
291                 , fOutputColor(outputColor)
292                 , fOutputCoverage(outputCoverage)
293                 , fTexSamplers(texSamplers) {}
294         GrGLSLVertexBuilder* fVertBuilder;
295         GrGLSLFPFragmentBuilder* fFragBuilder;
296         GrGLSLVaryingHandler* fVaryingHandler;
297         GrGLSLUniformHandler* fUniformHandler;
298         const GrShaderCaps* fShaderCaps;
299         const GrGeometryProcessor& fGeomProc;
300         const char* fOutputColor;
301         const char* fOutputCoverage;
302         const SamplerHandle* fTexSamplers;
303     };
304 
305     /**
306      * Emits the code from this geometry processor into the shaders. For any FP in the pipeline that
307      * has its input coords implemented by the GP as a varying, the varying will be accessible in
308      * the returned map and should be used when the FP code is emitted. The FS variable containing
309      * the GP's output local coords is also returned.
310      **/
311     std::tuple<FPCoordsMap, GrShaderVar> emitCode(EmitArgs&, const GrPipeline& pipeline);
312 
313     /**
314      * Called after all effect emitCode() functions, to give the processor a chance to write out
315      * additional transformation code now that all uniforms have been emitted.
316      * It generates the final code for assigning transformed coordinates to the varyings recorded
317      * in the call to collectTransforms(). This must happen after FP code emission so that it has
318      * access to any uniforms the FPs registered for uniform sample matrix invocations.
319      */
320     void emitTransformCode(GrGLSLVertexBuilder* vb, GrGLSLUniformHandler* uniformHandler);
321 
322     /**
323      * A ProgramImpl instance can be reused with any GrGeometryProcessor that produces the same key.
324      * This function reads data from a GrGeometryProcessor and updates any uniform variables
325      * required by the shaders created in emitCode(). The GrGeometryProcessor parameter is
326      * guaranteed to be of the same type and to have an identical processor key as the
327      * GrGeometryProcessor that created this ProgramImpl.
328      */
329     virtual void setData(const GrGLSLProgramDataManager&,
330                          const GrShaderCaps&,
331                          const GrGeometryProcessor&) = 0;
332 
333     // GPs that use writeOutputPosition and/or writeLocalCoord must incorporate the matrix type
334     // into their key, and should use this function or one of the other related helpers.
ComputeMatrixKey(const GrShaderCaps & caps,const SkMatrix & mat)335     static uint32_t ComputeMatrixKey(const GrShaderCaps& caps, const SkMatrix& mat) {
336         if (!caps.fReducedShaderMode) {
337             if (mat.isIdentity()) {
338                 return 0b00;
339             }
340             if (mat.isScaleTranslate()) {
341                 return 0b01;
342             }
343         }
344         if (!mat.hasPerspective()) {
345             return 0b10;
346         }
347         return 0b11;
348     }
349 
ComputeMatrixKeys(const GrShaderCaps & shaderCaps,const SkMatrix & viewMatrix,const SkMatrix & localMatrix)350     static uint32_t ComputeMatrixKeys(const GrShaderCaps& shaderCaps,
351                                       const SkMatrix& viewMatrix,
352                                       const SkMatrix& localMatrix) {
353         return (ComputeMatrixKey(shaderCaps, viewMatrix) << kMatrixKeyBits) |
354                ComputeMatrixKey(shaderCaps, localMatrix);
355     }
356 
AddMatrixKeys(const GrShaderCaps & shaderCaps,uint32_t flags,const SkMatrix & viewMatrix,const SkMatrix & localMatrix)357     static uint32_t AddMatrixKeys(const GrShaderCaps& shaderCaps,
358                                   uint32_t flags,
359                                   const SkMatrix& viewMatrix,
360                                   const SkMatrix& localMatrix) {
361         // Shifting to make room for the matrix keys shouldn't lose bits
362         SkASSERT(((flags << (2 * kMatrixKeyBits)) >> (2 * kMatrixKeyBits)) == flags);
363         return (flags << (2 * kMatrixKeyBits)) |
364                ComputeMatrixKeys(shaderCaps, viewMatrix, localMatrix);
365     }
366     inline static constexpr int kMatrixKeyBits = 2;
367 
368 protected:
369     void setupUniformColor(GrGLSLFPFragmentBuilder* fragBuilder,
370                            GrGLSLUniformHandler* uniformHandler,
371                            const char* outputName,
372                            UniformHandle* colorUniform);
373 
374     // A helper for setting the matrix on a uniform handle initialized through
375     // writeOutputPosition or writeLocalCoord. Automatically handles elided uniforms,
376     // scale+translate matrices, and state tracking (if provided state pointer is non-null).
377     static void SetTransform(const GrGLSLProgramDataManager&,
378                              const GrShaderCaps&,
379                              const UniformHandle& uniform,
380                              const SkMatrix& matrix,
381                              SkMatrix* state = nullptr);
382 
383     struct GrGPArgs {
384         // Used to specify the output variable used by the GP to store its device position. It can
385         // either be a float2 or a float3 (in order to handle perspective). The subclass sets this
386         // in its onEmitCode().
387         GrShaderVar fPositionVar;
388         // Used to specify the variable storing the draw's local coordinates. It can be either a
389         // float2, float3, or void. It can only be void when no FP needs local coordinates. This
390         // variable can be an attribute or local variable, but should not itself be a varying.
391         // ProgramImpl automatically determines if this must be passed to a FS.
392         GrShaderVar fLocalCoordVar;
393         // The GP can specify the local coord var either in the VS or FS. When either is possible
394         // the VS is preferable. It may allow derived coordinates to be interpolated from the VS
395         // instead of computed in the FS per pixel.
396         GrShaderType fLocalCoordShader = kVertex_GrShaderType;
397     };
398 
399     // Helpers for adding code to write the transformed vertex position. The first simple version
400     // just writes a variable named by 'posName' into the position output variable with the
401     // assumption that the position is 2D. The second version transforms the input position by a
402     // view matrix and the output variable is 2D or 3D depending on whether the view matrix is
403     // perspective. Both versions declare the output position variable and will set
404     // GrGPArgs::fPositionVar.
405     static void WriteOutputPosition(GrGLSLVertexBuilder*, GrGPArgs*, const char* posName);
406     static void WriteOutputPosition(GrGLSLVertexBuilder*,
407                                     GrGLSLUniformHandler*,
408                                     const GrShaderCaps&,
409                                     GrGPArgs*,
410                                     const char* posName,
411                                     const SkMatrix& viewMatrix,
412                                     UniformHandle* viewMatrixUniform);
413 
414     // Helper to transform an existing variable by a given local matrix (e.g. the inverse view
415     // matrix). It will declare the transformed local coord variable and will set
416     // GrGPArgs::fLocalCoordVar.
417     static void WriteLocalCoord(GrGLSLVertexBuilder*,
418                                 GrGLSLUniformHandler*,
419                                 const GrShaderCaps&,
420                                 GrGPArgs*,
421                                 GrShaderVar localVar,
422                                 const SkMatrix& localMatrix,
423                                 UniformHandle* localMatrixUniform);
424 
425 private:
426     virtual void onEmitCode(EmitArgs&, GrGPArgs*) = 0;
427 
428     // Iterates over the FPs beginning with the passed iter to register additional varyings and
429     // uniforms to support VS-promoted local coord evaluation for the FPs.
430     //
431     // This must happen before FP code emission so that the FPs can find the appropriate varying
432     // handles they use in place of explicit coord sampling; it is automatically called after
433     // onEmitCode() returns using the value stored in GpArgs::fLocalCoordVar and
434     // GpArgs::fPositionVar.
435     FPCoordsMap collectTransforms(GrGLSLVertexBuilder* vb,
436                                   GrGLSLVaryingHandler* varyingHandler,
437                                   GrGLSLUniformHandler* uniformHandler,
438                                   GrShaderType localCoordsShader,
439                                   const GrShaderVar& localCoordsVar,
440                                   const GrShaderVar& positionVar,
441                                   const GrPipeline& pipeline);
442     struct TransformInfo {
443         // The varying that conveys the coordinates to one or more FPs in the FS.
444         GrGLSLVarying varying;
445         // The coordinate to be transformed. varying is computed from this.
446         GrShaderVar   inputCoords;
447         // Used to sort so that ancestor FP varyings are initialized before descendant FP varyings.
448         int           traversalOrder;
449     };
450     // Populated by collectTransforms() for use in emitTransformCode(). When we lift the computation
451     // of a FP's input coord to a varying we propagate that varying up the FP tree to the highest
452     // node that shares the same coordinates. This allows multiple FPs in a subtree to share a
453     // varying.
454     std::unordered_map<const GrFragmentProcessor*, TransformInfo> fTransformVaryingsMap;
455 
456     // Move back into collectTransforms when /std=c++20 can be used with msvc.
457     enum class BaseCoord { kNone, kLocal, kPosition };
458 };
459 
460 ///////////////////////////////////////////////////////////////////////////
461 
462 /**
463  * Used to capture the properties of the GrTextureProxies required/expected by a primitiveProcessor
464  * along with an associated GrSamplerState. The actual proxies used are stored in either the
465  * fixed or dynamic state arrays. TextureSamplers don't perform any coord manipulation to account
466  * for texture origin.
467  */
468 class GrGeometryProcessor::TextureSampler {
469 public:
470     TextureSampler() = default;
471 
472     TextureSampler(GrSamplerState, const GrBackendFormat&, const skgpu::Swizzle&);
473 
474     TextureSampler(const TextureSampler&) = delete;
475     TextureSampler& operator=(const TextureSampler&) = delete;
476 
477     TextureSampler(TextureSampler&&) = default;
478     TextureSampler& operator=(TextureSampler&&) = default;
479 
480     void reset(GrSamplerState, const GrBackendFormat&, const skgpu::Swizzle&);
481 
backendFormat()482     const GrBackendFormat& backendFormat() const { return fBackendFormat; }
textureType()483     GrTextureType textureType() const { return fBackendFormat.textureType(); }
484 
samplerState()485     GrSamplerState samplerState() const { return fSamplerState; }
swizzle()486     const skgpu::Swizzle& swizzle() const { return fSwizzle; }
487 
isInitialized()488     bool isInitialized() const { return fIsInitialized; }
489 
490 private:
491     GrSamplerState  fSamplerState;
492     GrBackendFormat fBackendFormat;
493     skgpu::Swizzle  fSwizzle;
494     bool            fIsInitialized = false;
495 };
496 
497 //////////////////////////////////////////////////////////////////////////////
498 
499 /**
500  * Returns the size of the attrib type in bytes.
501  * This was moved from include/private/gpu/ganesh/GrTypesPriv.h in service of Skia dependents that build
502  * with C++11.
503  */
GrVertexAttribTypeSize(GrVertexAttribType type)504 static constexpr inline size_t GrVertexAttribTypeSize(GrVertexAttribType type) {
505     switch (type) {
506         case kFloat_GrVertexAttribType:
507             return sizeof(float);
508         case kFloat2_GrVertexAttribType:
509             return 2 * sizeof(float);
510         case kFloat3_GrVertexAttribType:
511             return 3 * sizeof(float);
512         case kFloat4_GrVertexAttribType:
513             return 4 * sizeof(float);
514         case kHalf_GrVertexAttribType:
515             return sizeof(uint16_t);
516         case kHalf2_GrVertexAttribType:
517             return 2 * sizeof(uint16_t);
518         case kHalf4_GrVertexAttribType:
519             return 4 * sizeof(uint16_t);
520         case kInt2_GrVertexAttribType:
521             return 2 * sizeof(int32_t);
522         case kInt3_GrVertexAttribType:
523             return 3 * sizeof(int32_t);
524         case kInt4_GrVertexAttribType:
525             return 4 * sizeof(int32_t);
526         case kByte_GrVertexAttribType:
527             return 1 * sizeof(char);
528         case kByte2_GrVertexAttribType:
529             return 2 * sizeof(char);
530         case kByte4_GrVertexAttribType:
531             return 4 * sizeof(char);
532         case kUByte_GrVertexAttribType:
533             return 1 * sizeof(char);
534         case kUByte2_GrVertexAttribType:
535             return 2 * sizeof(char);
536         case kUByte4_GrVertexAttribType:
537             return 4 * sizeof(char);
538         case kUByte_norm_GrVertexAttribType:
539             return 1 * sizeof(char);
540         case kUByte4_norm_GrVertexAttribType:
541             return 4 * sizeof(char);
542         case kShort2_GrVertexAttribType:
543             return 2 * sizeof(int16_t);
544         case kShort4_GrVertexAttribType:
545             return 4 * sizeof(int16_t);
546         case kUShort2_GrVertexAttribType: // fall through
547         case kUShort2_norm_GrVertexAttribType:
548             return 2 * sizeof(uint16_t);
549         case kInt_GrVertexAttribType:
550             return sizeof(int32_t);
551         case kUInt_GrVertexAttribType:
552             return sizeof(uint32_t);
553         case kUShort_norm_GrVertexAttribType:
554             return sizeof(uint16_t);
555         case kUShort4_norm_GrVertexAttribType:
556             return 4 * sizeof(uint16_t);
557     }
558     // GCC fails because SK_ABORT evaluates to non constexpr. clang and cl.exe think this is
559     // unreachable and don't complain.
560 #if defined(__clang__) || !defined(__GNUC__)
561     SK_ABORT("Unsupported type conversion");
562 #endif
563     return 0;
564 }
565 
size()566 constexpr size_t GrGeometryProcessor::Attribute::size() const {
567     return GrVertexAttribTypeSize(fCPUType);
568 }
569 
570 #endif
571