1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ganesh/ops/AAHairLinePathRenderer.h"
9
10 #include "include/core/SkPoint3.h"
11 #include "include/private/base/SkFloatingPoint.h"
12 #include "include/private/base/SkTemplates.h"
13 #include "src/core/SkGeometry.h"
14 #include "src/core/SkMatrixPriv.h"
15 #include "src/core/SkPointPriv.h"
16 #include "src/core/SkRectPriv.h"
17 #include "src/core/SkStroke.h"
18 #include "src/gpu/ganesh/GrAuditTrail.h"
19 #include "src/gpu/ganesh/GrBuffer.h"
20 #include "src/gpu/ganesh/GrCaps.h"
21 #include "src/gpu/ganesh/GrDefaultGeoProcFactory.h"
22 #include "src/gpu/ganesh/GrDrawOpTest.h"
23 #include "src/gpu/ganesh/GrOpFlushState.h"
24 #include "src/gpu/ganesh/GrProcessor.h"
25 #include "src/gpu/ganesh/GrProgramInfo.h"
26 #include "src/gpu/ganesh/GrResourceProvider.h"
27 #include "src/gpu/ganesh/GrStyle.h"
28 #include "src/gpu/ganesh/GrUtil.h"
29 #include "src/gpu/ganesh/SurfaceDrawContext.h"
30 #include "src/gpu/ganesh/effects/GrBezierEffect.h"
31 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
32 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
33 #include "src/gpu/ganesh/ops/GrMeshDrawOp.h"
34 #include "src/gpu/ganesh/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
35
36 using namespace skia_private;
37
38 #define PREALLOC_PTARRAY(N) STArray<(N),SkPoint, true>
39
40 using PtArray = TArray<SkPoint, true>;
41 using IntArray = TArray<int, true>;
42 using FloatArray = TArray<float, true>;
43
44 namespace {
45
46 // quadratics are rendered as 5-sided polys in order to bound the
47 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
48 // bloat_quad. Quadratics and conics share an index buffer
49
50 // lines are rendered as:
51 // *______________*
52 // |\ -_______ /|
53 // | \ \ / |
54 // | *--------* |
55 // | / ______/ \ |
56 // */_-__________\*
57 // For: 6 vertices and 18 indices (for 6 triangles)
58
59 // Each quadratic is rendered as a five sided polygon. This poly bounds
60 // the quadratic's bounding triangle but has been expanded so that the
61 // 1-pixel wide area around the curve is inside the poly.
62 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
63 // that is rendered would look like this:
64 // b0
65 // b
66 //
67 // a0 c0
68 // a c
69 // a1 c1
70 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
71 // specified by these 9 indices:
72 static const uint16_t kQuadIdxBufPattern[] = {
73 0, 1, 2,
74 2, 4, 3,
75 1, 4, 2
76 };
77
78 static const int kIdxsPerQuad = std::size(kQuadIdxBufPattern);
79 static const int kQuadNumVertices = 5;
80 static const int kQuadsNumInIdxBuffer = 256;
81 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
82
get_quads_index_buffer(GrResourceProvider * resourceProvider)83 sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
84 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
85 return resourceProvider->findOrCreatePatternedIndexBuffer(
86 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
87 gQuadsIndexBufferKey);
88 }
89
90
91 // Each line segment is rendered as two quads and two triangles.
92 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
93 // The four external points are offset 1 pixel perpendicular to the
94 // line and half a pixel parallel to the line.
95 //
96 // p4 p5
97 // p0 p1
98 // p2 p3
99 //
100 // Each is drawn as six triangles specified by these 18 indices:
101
102 static const uint16_t kLineSegIdxBufPattern[] = {
103 0, 1, 3,
104 0, 3, 2,
105 0, 4, 5,
106 0, 5, 1,
107 0, 2, 4,
108 1, 5, 3
109 };
110
111 static const int kIdxsPerLineSeg = std::size(kLineSegIdxBufPattern);
112 static const int kLineSegNumVertices = 6;
113 static const int kLineSegsNumInIdxBuffer = 256;
114
115 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
116
get_lines_index_buffer(GrResourceProvider * resourceProvider)117 sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
118 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
119 return resourceProvider->findOrCreatePatternedIndexBuffer(
120 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
121 gLinesIndexBufferKey);
122 }
123
124 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)125 int get_float_exp(float x) {
126 static_assert(sizeof(int) == sizeof(float));
127 #ifdef SK_DEBUG
128 static bool tested;
129 if (!tested) {
130 tested = true;
131 SkASSERT(get_float_exp(0.25f) == -2);
132 SkASSERT(get_float_exp(0.3f) == -2);
133 SkASSERT(get_float_exp(0.5f) == -1);
134 SkASSERT(get_float_exp(1.f) == 0);
135 SkASSERT(get_float_exp(2.f) == 1);
136 SkASSERT(get_float_exp(2.5f) == 1);
137 SkASSERT(get_float_exp(8.f) == 3);
138 SkASSERT(get_float_exp(100.f) == 6);
139 SkASSERT(get_float_exp(1000.f) == 9);
140 SkASSERT(get_float_exp(1024.f) == 10);
141 SkASSERT(get_float_exp(3000000.f) == 21);
142 }
143 #endif
144 const int* iptr = (const int*)&x;
145 return (((*iptr) & 0x7f800000) >> 23) - 127;
146 }
147
148 // Uses the max curvature function for quads to estimate
149 // where to chop the conic. If the max curvature is not
150 // found along the curve segment it will return 1 and
151 // dst[0] is the original conic. If it returns 2 the dst[0]
152 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)153 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
154 SkScalar t = SkFindQuadMaxCurvature(src);
155 // SkFindQuadMaxCurvature() returns either a value in [0, 1) or NaN.
156 // However, passing NaN to conic.chopAt() will assert. Checking to see if
157 // t is in (0,1) will also cover the NaN case since NaN comparisons are always
158 // false, so we'll drop down into the else block in that case.
159 if (0 < t && t < 1) {
160 if (dst) {
161 SkConic conic;
162 conic.set(src, weight);
163 if (!conic.chopAt(t, dst)) {
164 dst[0].set(src, weight);
165 return 1;
166 }
167 }
168 return 2;
169 } else {
170 if (dst) {
171 dst[0].set(src, weight);
172 }
173 return 1;
174 }
175 }
176
177 // Calls split_conic on the entire conic and then once more on each subsection.
178 // Most cases will result in either 1 conic (chop point is not within t range)
179 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)180 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
181 SkConic dstTemp[2];
182 int conicCnt = split_conic(src, dstTemp, weight);
183 if (2 == conicCnt) {
184 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
185 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
186 } else {
187 dst[0] = dstTemp[0];
188 }
189 return conicCnt;
190 }
191
192 // returns 0 if quad/conic is degen or close to it
193 // in this case approx the path with lines
194 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)195 int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
196 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
197 static const SkScalar gDegenerateToLineTolSqd =
198 gDegenerateToLineTol * gDegenerateToLineTol;
199
200 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
201 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
202 return 1;
203 }
204
205 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
206 if (*dsqd < gDegenerateToLineTolSqd) {
207 return 1;
208 }
209
210 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
211 return 1;
212 }
213 return 0;
214 }
215
is_degen_quad_or_conic(const SkPoint p[3])216 int is_degen_quad_or_conic(const SkPoint p[3]) {
217 SkScalar dsqd;
218 return is_degen_quad_or_conic(p, &dsqd);
219 }
220
221 // we subdivide the quads to avoid huge overfill
222 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])223 int num_quad_subdivs(const SkPoint p[3]) {
224 SkScalar dsqd;
225 if (is_degen_quad_or_conic(p, &dsqd)) {
226 return -1;
227 }
228
229 // tolerance of triangle height in pixels
230 // tuned on windows Quadro FX 380 / Z600
231 // trade off of fill vs cpu time on verts
232 // maybe different when do this using gpu (geo or tess shaders)
233 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
234
235 if (dsqd <= gSubdivTol * gSubdivTol) {
236 return 0;
237 } else {
238 static const int kMaxSub = 4;
239 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
240 // = log4(d*d/tol*tol)/2
241 // = log2(d*d/tol*tol)
242
243 // +1 since we're ignoring the mantissa contribution.
244 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
245 log = std::min(std::max(0, log), kMaxSub);
246 return log;
247 }
248 }
249
250 /**
251 * Generates the lines and quads to be rendered. Lines are always recorded in
252 * device space. We will do a device space bloat to account for the 1pixel
253 * thickness.
254 * Quads are recorded in device space unless m contains
255 * perspective, then in they are in src space. We do this because we will
256 * subdivide large quads to reduce over-fill. This subdivision has to be
257 * performed before applying the perspective matrix.
258 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,bool convertConicsToQuads,PtArray * lines,PtArray * quads,PtArray * conics,IntArray * quadSubdivCnts,FloatArray * conicWeights)259 int gather_lines_and_quads(const SkPath& path,
260 const SkMatrix& m,
261 const SkIRect& devClipBounds,
262 SkScalar capLength,
263 bool convertConicsToQuads,
264 PtArray* lines,
265 PtArray* quads,
266 PtArray* conics,
267 IntArray* quadSubdivCnts,
268 FloatArray* conicWeights) {
269 SkPath::Iter iter(path, false);
270
271 int totalQuadCount = 0;
272 SkRect bounds;
273 SkIRect ibounds;
274
275 bool persp = m.hasPerspective();
276
277 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
278 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
279 // suffice for AA square & circle capping.
280 int verbsInContour = 0; // Does not count moves
281 bool seenZeroLengthVerb = false;
282 SkPoint zeroVerbPt;
283
284 // Adds a quad that has already been chopped to the list and checks for quads that are close to
285 // lines. Also does a bounding box check. It takes points that are in src space and device
286 // space. The src points are only required if the view matrix has perspective.
287 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
288 bool isContourStart) {
289 SkRect bounds;
290 SkIRect ibounds;
291 bounds.setBounds(devPts, 3);
292 bounds.outset(SK_Scalar1, SK_Scalar1);
293 bounds.roundOut(&ibounds);
294 // We only need the src space space pts when not in perspective.
295 SkASSERT(srcPts || !persp);
296 if (SkIRect::Intersects(devClipBounds, ibounds)) {
297 int subdiv = num_quad_subdivs(devPts);
298 SkASSERT(subdiv >= -1);
299 if (-1 == subdiv) {
300 SkPoint* pts = lines->push_back_n(4);
301 pts[0] = devPts[0];
302 pts[1] = devPts[1];
303 pts[2] = devPts[1];
304 pts[3] = devPts[2];
305 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
306 seenZeroLengthVerb = true;
307 zeroVerbPt = pts[0];
308 }
309 } else {
310 // when in perspective keep quads in src space
311 const SkPoint* qPts = persp ? srcPts : devPts;
312 SkPoint* pts = quads->push_back_n(3);
313 pts[0] = qPts[0];
314 pts[1] = qPts[1];
315 pts[2] = qPts[2];
316 quadSubdivCnts->push_back() = subdiv;
317 totalQuadCount += 1 << subdiv;
318 }
319 }
320 };
321
322 // Applies the view matrix to quad src points and calls the above helper.
323 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
324 SkPoint devPts[3];
325 m.mapPoints(devPts, srcSpaceQuadPts, 3);
326 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
327 };
328
329 SkPoint pathPts[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
330 for (;;) {
331 SkPath::Verb verb = iter.next(pathPts);
332 switch (verb) {
333 case SkPath::kConic_Verb:
334 if (convertConicsToQuads) {
335 SkScalar weight = iter.conicWeight();
336 SkAutoConicToQuads converter;
337 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
338 for (int i = 0; i < converter.countQuads(); ++i) {
339 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
340 }
341 } else {
342 SkConic dst[4];
343 // We chop the conics to create tighter clipping to hide error
344 // that appears near max curvature of very thin conics. Thin
345 // hyperbolas with high weight still show error.
346 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
347 for (int i = 0; i < conicCnt; ++i) {
348 SkPoint devPts[4];
349 SkPoint* chopPnts = dst[i].fPts;
350 m.mapPoints(devPts, chopPnts, 3);
351 bounds.setBounds(devPts, 3);
352 bounds.outset(SK_Scalar1, SK_Scalar1);
353 bounds.roundOut(&ibounds);
354 if (SkIRect::Intersects(devClipBounds, ibounds)) {
355 if (is_degen_quad_or_conic(devPts)) {
356 SkPoint* pts = lines->push_back_n(4);
357 pts[0] = devPts[0];
358 pts[1] = devPts[1];
359 pts[2] = devPts[1];
360 pts[3] = devPts[2];
361 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
362 pts[2] == pts[3]) {
363 seenZeroLengthVerb = true;
364 zeroVerbPt = pts[0];
365 }
366 } else {
367 // when in perspective keep conics in src space
368 SkPoint* cPts = persp ? chopPnts : devPts;
369 SkPoint* pts = conics->push_back_n(3);
370 pts[0] = cPts[0];
371 pts[1] = cPts[1];
372 pts[2] = cPts[2];
373 conicWeights->push_back() = dst[i].fW;
374 }
375 }
376 }
377 }
378 verbsInContour++;
379 break;
380 case SkPath::kMove_Verb:
381 // New contour (and last one was unclosed). If it was just a zero length drawing
382 // operation, and we're supposed to draw caps, then add a tiny line.
383 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
384 SkPoint* pts = lines->push_back_n(2);
385 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
386 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
387 }
388 verbsInContour = 0;
389 seenZeroLengthVerb = false;
390 break;
391 case SkPath::kLine_Verb: {
392 SkPoint devPts[2];
393 m.mapPoints(devPts, pathPts, 2);
394 bounds.setBounds(devPts, 2);
395 bounds.outset(SK_Scalar1, SK_Scalar1);
396 bounds.roundOut(&ibounds);
397 if (SkIRect::Intersects(devClipBounds, ibounds)) {
398 SkPoint* pts = lines->push_back_n(2);
399 pts[0] = devPts[0];
400 pts[1] = devPts[1];
401 if (verbsInContour == 0 && pts[0] == pts[1]) {
402 seenZeroLengthVerb = true;
403 zeroVerbPt = pts[0];
404 }
405 }
406 verbsInContour++;
407 break;
408 }
409 case SkPath::kQuad_Verb: {
410 SkPoint choppedPts[5];
411 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
412 // When it is degenerate it allows the approximation with lines to work since the
413 // chop point (if there is one) will be at the parabola's vertex. In the nearly
414 // degenerate the QuadUVMatrix computed for the points is almost singular which
415 // can cause rendering artifacts.
416 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
417 for (int i = 0; i < n; ++i) {
418 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
419 }
420 verbsInContour++;
421 break;
422 }
423 case SkPath::kCubic_Verb: {
424 SkPoint devPts[4];
425 m.mapPoints(devPts, pathPts, 4);
426 bounds.setBounds(devPts, 4);
427 bounds.outset(SK_Scalar1, SK_Scalar1);
428 bounds.roundOut(&ibounds);
429 if (SkIRect::Intersects(devClipBounds, ibounds)) {
430 PREALLOC_PTARRAY(32) q;
431 // We convert cubics to quadratics (for now).
432 // In perspective have to do conversion in src space.
433 if (persp) {
434 SkScalar tolScale =
435 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
436 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
437 } else {
438 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
439 }
440 for (int i = 0; i < q.size(); i += 3) {
441 if (persp) {
442 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
443 } else {
444 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
445 }
446 }
447 }
448 verbsInContour++;
449 break;
450 }
451 case SkPath::kClose_Verb:
452 // Contour is closed, so we don't need to grow the starting line, unless it's
453 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
454 if (capLength > 0) {
455 if (seenZeroLengthVerb && verbsInContour == 1) {
456 SkPoint* pts = lines->push_back_n(2);
457 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
458 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
459 } else if (verbsInContour == 0) {
460 // Contour was (moveTo, close). Add a line.
461 SkPoint devPts[2];
462 m.mapPoints(devPts, pathPts, 1);
463 devPts[1] = devPts[0];
464 bounds.setBounds(devPts, 2);
465 bounds.outset(SK_Scalar1, SK_Scalar1);
466 bounds.roundOut(&ibounds);
467 if (SkIRect::Intersects(devClipBounds, ibounds)) {
468 SkPoint* pts = lines->push_back_n(2);
469 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
470 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
471 }
472 }
473 }
474 break;
475 case SkPath::kDone_Verb:
476 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
477 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
478 // degenerate, we need to draw a line.
479 SkPoint* pts = lines->push_back_n(2);
480 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
481 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
482 }
483 return totalQuadCount;
484 }
485 }
486 }
487
488 struct LineVertex {
489 SkPoint fPos;
490 float fCoverage;
491 };
492
493 struct BezierVertex {
494 SkPoint fPos;
495 union {
496 struct {
497 SkScalar fKLM[3];
498 } fConic;
499 SkVector fQuadCoord;
500 struct {
501 SkScalar fBogus[4];
502 };
503 };
504 };
505
506 static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
507
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)508 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
509 const SkPoint& ptB, const SkVector& normB,
510 SkPoint* result) {
511
512 SkScalar lineAW = -normA.dot(ptA);
513 SkScalar lineBW = -normB.dot(ptB);
514
515 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
516 wInv = sk_ieee_float_divide(1.0f, wInv);
517 if (!SkIsFinite(wInv)) {
518 // lines are parallel, pick the point in between
519 *result = (ptA + ptB)*SK_ScalarHalf;
520 *result += normA;
521 } else {
522 result->fX = normA.fY * lineBW - lineAW * normB.fY;
523 result->fX *= wInv;
524
525 result->fY = lineAW * normB.fX - normA.fX * lineBW;
526 result->fY *= wInv;
527 }
528 }
529
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])530 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
531 // this should be in the src space, not dev coords, when we have perspective
532 GrPathUtils::QuadUVMatrix DevToUV(qpts);
533 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
534 }
535
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])536 bool bloat_quad(const SkPoint qpts[3],
537 const SkMatrix* toDevice,
538 const SkMatrix* toSrc,
539 BezierVertex verts[kQuadNumVertices]) {
540 SkASSERT(!toDevice == !toSrc);
541 // original quad is specified by tri a,b,c
542 SkPoint a = qpts[0];
543 SkPoint b = qpts[1];
544 SkPoint c = qpts[2];
545
546 if (toDevice) {
547 toDevice->mapPoints(&a, 1);
548 toDevice->mapPoints(&b, 1);
549 toDevice->mapPoints(&c, 1);
550 }
551 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
552 // to edges ab and bc:
553 //
554 // before | after
555 // | b0
556 // b |
557 // |
558 // | a0 c0
559 // a c | a1 c1
560 //
561 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
562 // respectively.
563 BezierVertex& a0 = verts[0];
564 BezierVertex& a1 = verts[1];
565 BezierVertex& b0 = verts[2];
566 BezierVertex& c0 = verts[3];
567 BezierVertex& c1 = verts[4];
568
569 SkVector ab = b;
570 ab -= a;
571 SkVector ac = c;
572 ac -= a;
573 SkVector cb = b;
574 cb -= c;
575
576 // After the transform (or due to floating point math) we might have a line,
577 // try to do something reasonable
578
579 bool abNormalized = ab.normalize();
580 bool cbNormalized = cb.normalize();
581
582 if (!abNormalized) {
583 if (!cbNormalized) {
584 return false; // Quad is degenerate so we won't add it.
585 }
586
587 ab = cb;
588 }
589
590 if (!cbNormalized) {
591 cb = ab;
592 }
593
594 // We should have already handled degenerates
595 SkASSERT(ab.length() > 0 && cb.length() > 0);
596
597 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
598 if (abN.dot(ac) > 0) {
599 abN.negate();
600 }
601
602 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
603 if (cbN.dot(ac) < 0) {
604 cbN.negate();
605 }
606
607 a0.fPos = a;
608 a0.fPos += abN;
609 a1.fPos = a;
610 a1.fPos -= abN;
611
612 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
613 c = b;
614 }
615 c0.fPos = c;
616 c0.fPos += cbN;
617 c1.fPos = c;
618 c1.fPos -= cbN;
619
620 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
621
622 if (toSrc) {
623 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
624 kQuadNumVertices);
625 }
626
627 return true;
628 }
629
630 // Equations based off of Loop-Blinn Quadratic GPU Rendering
631 // Input Parametric:
632 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
633 // Output Implicit:
634 // f(x, y, w) = f(P) = K^2 - LM
635 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
636 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)637 void set_conic_coeffs(const SkPoint p[3],
638 BezierVertex verts[kQuadNumVertices],
639 const SkScalar weight) {
640 SkMatrix klm;
641
642 GrPathUtils::getConicKLM(p, weight, &klm);
643
644 for (int i = 0; i < kQuadNumVertices; ++i) {
645 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
646 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
647 }
648 }
649
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)650 void add_conics(const SkPoint p[3],
651 const SkScalar weight,
652 const SkMatrix* toDevice,
653 const SkMatrix* toSrc,
654 BezierVertex** vert) {
655 if (bloat_quad(p, toDevice, toSrc, *vert)) {
656 set_conic_coeffs(p, *vert, weight);
657 *vert += kQuadNumVertices;
658 }
659 }
660
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)661 void add_quads(const SkPoint p[3],
662 int subdiv,
663 const SkMatrix* toDevice,
664 const SkMatrix* toSrc,
665 BezierVertex** vert) {
666 SkASSERT(subdiv >= 0);
667 // temporary vertex storage to avoid reading the vertex buffer
668 BezierVertex outVerts[kQuadNumVertices] = {};
669
670 // storage for the chopped quad
671 // pts 0,1,2 are the first quad, and 2,3,4 the second quad
672 SkPoint choppedQuadPts[5];
673 // start off with our original curve in the second quad slot
674 memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
675
676 int stepCount = 1 << subdiv;
677 while (stepCount > 1) {
678 // The general idea is:
679 // * chop the quad using pts 2,3,4 as the input
680 // * write out verts using pts 0,1,2
681 // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
682 SkScalar h = 1.f / stepCount;
683 SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
684
685 if (bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts)) {
686 set_uv_quad(choppedQuadPts, outVerts);
687 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
688 *vert += kQuadNumVertices;
689 }
690 --stepCount;
691 }
692
693 // finish up, write out the final quad
694 if (bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts)) {
695 set_uv_quad(&choppedQuadPts[2], outVerts);
696 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
697 *vert += kQuadNumVertices;
698 }
699 }
700
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)701 void add_line(const SkPoint p[2],
702 const SkMatrix* toSrc,
703 uint8_t coverage,
704 LineVertex** vert) {
705 const SkPoint& a = p[0];
706 const SkPoint& b = p[1];
707
708 SkVector ortho, vec = b;
709 vec -= a;
710
711 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
712
713 if (vec.setLength(SK_ScalarHalf)) {
714 // Create a vector orthogonal to 'vec' and of unit length
715 ortho.fX = 2.0f * vec.fY;
716 ortho.fY = -2.0f * vec.fX;
717
718 float floatCoverage = GrNormalizeByteToFloat(coverage);
719
720 if (lengthSqd >= 1.0f) {
721 // Relative to points a and b:
722 // The inner vertices are inset half a pixel along the line a,b
723 (*vert)[0].fPos = a + vec;
724 (*vert)[0].fCoverage = floatCoverage;
725 (*vert)[1].fPos = b - vec;
726 (*vert)[1].fCoverage = floatCoverage;
727 } else {
728 // The inner vertices are inset a distance of length(a,b) from the outer edge of
729 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
730 // The coverage is then modulated by the length. This gives us the correct
731 // coverage for rects shorter than a pixel as they get translated subpixel amounts
732 // inside of a pixel.
733 SkScalar length = SkScalarSqrt(lengthSqd);
734 (*vert)[0].fPos = b - vec;
735 (*vert)[0].fCoverage = floatCoverage * length;
736 (*vert)[1].fPos = a + vec;
737 (*vert)[1].fCoverage = floatCoverage * length;
738 }
739 // Relative to points a and b:
740 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
741 // orthogonally.
742 (*vert)[2].fPos = a - vec + ortho;
743 (*vert)[2].fCoverage = 0;
744 (*vert)[3].fPos = b + vec + ortho;
745 (*vert)[3].fCoverage = 0;
746 (*vert)[4].fPos = a - vec - ortho;
747 (*vert)[4].fCoverage = 0;
748 (*vert)[5].fPos = b + vec - ortho;
749 (*vert)[5].fCoverage = 0;
750
751 if (toSrc) {
752 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
753 kLineSegNumVertices);
754 }
755 } else {
756 // just make it degenerate and likely offscreen
757 for (int i = 0; i < kLineSegNumVertices; ++i) {
758 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
759 }
760 }
761
762 *vert += kLineSegNumVertices;
763 }
764
765 ///////////////////////////////////////////////////////////////////////////////
766
767 class AAHairlineOp final : public GrMeshDrawOp {
768 private:
769 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
770
771 public:
772 DEFINE_OP_CLASS_ID
773
Make(GrRecordingContext * context,GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)774 static GrOp::Owner Make(GrRecordingContext* context,
775 GrPaint&& paint,
776 const SkMatrix& viewMatrix,
777 const SkPath& path,
778 const GrStyle& style,
779 const SkIRect& devClipBounds,
780 const GrUserStencilSettings* stencilSettings) {
781 SkScalar hairlineCoverage;
782 uint8_t newCoverage = 0xff;
783 if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
784 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
785 }
786
787 const SkStrokeRec& stroke = style.strokeRec();
788 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
789
790 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
791 viewMatrix, path,
792 devClipBounds, capLength, stencilSettings);
793 }
794
AAHairlineOp(GrProcessorSet * processorSet,const SkPMColor4f & color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)795 AAHairlineOp(GrProcessorSet* processorSet,
796 const SkPMColor4f& color,
797 uint8_t coverage,
798 const SkMatrix& viewMatrix,
799 const SkPath& path,
800 SkIRect devClipBounds,
801 SkScalar capLength,
802 const GrUserStencilSettings* stencilSettings)
803 : INHERITED(ClassID())
804 , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
805 , fColor(color)
806 , fCoverage(coverage) {
807 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
808
809 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
810 IsHairline::kYes);
811 }
812
name() const813 const char* name() const override { return "AAHairlineOp"; }
814
visitProxies(const GrVisitProxyFunc & func) const815 void visitProxies(const GrVisitProxyFunc& func) const override {
816
817 bool visited = false;
818 for (int i = 0; i < 3; ++i) {
819 if (fProgramInfos[i]) {
820 fProgramInfos[i]->visitFPProxies(func);
821 visited = true;
822 }
823 }
824
825 if (!visited) {
826 fHelper.visitProxies(func);
827 }
828 }
829
fixedFunctionFlags() const830 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
831
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)832 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
833 GrClampType clampType) override {
834 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
835 return fHelper.finalizeProcessors(caps, clip, clampType,
836 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
837 nullptr);
838 }
839
840 enum class Program : uint8_t {
841 kNone = 0x0,
842 kLine = 0x1,
843 kQuad = 0x2,
844 kConic = 0x4,
845 };
846
847 private:
848 void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
849 const GrSurfaceProxyView& writeView,
850 bool usesMSAASurface,
851 const SkMatrix* geometryProcessorViewM,
852 const SkMatrix* geometryProcessorLocalM,
853 GrXferBarrierFlags renderPassXferBarriers,
854 GrLoadOp colorLoadOp);
855 void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
856 const GrSurfaceProxyView& writeView,
857 bool usesMSAASurface,
858 const SkMatrix* geometryProcessorViewM,
859 const SkMatrix* geometryProcessorLocalM,
860 GrXferBarrierFlags renderPassXferBarriers,
861 GrLoadOp colorLoadOp);
862 void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
863 const GrSurfaceProxyView& writeView,
864 bool usesMSAASurface,
865 const SkMatrix* geometryProcessorViewM,
866 const SkMatrix* geometryProcessorLocalM,
867 GrXferBarrierFlags renderPassXferBarriers,
868 GrLoadOp colorLoadOp);
869
programInfo()870 GrProgramInfo* programInfo() override {
871 // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
872 // should really never be called.
873 SkASSERT(0);
874 return nullptr;
875 }
876
877 Program predictPrograms(const GrCaps*) const;
878
879 void onCreateProgramInfo(const GrCaps*,
880 SkArenaAlloc*,
881 const GrSurfaceProxyView& writeView,
882 bool usesMSAASurface,
883 GrAppliedClip&&,
884 const GrDstProxyView&,
885 GrXferBarrierFlags renderPassXferBarriers,
886 GrLoadOp colorLoadOp) override;
887
888 void onPrePrepareDraws(GrRecordingContext*,
889 const GrSurfaceProxyView& writeView,
890 GrAppliedClip*,
891 const GrDstProxyView&,
892 GrXferBarrierFlags renderPassXferBarriers,
893 GrLoadOp colorLoadOp) override;
894
895 void onPrepareDraws(GrMeshDrawTarget*) override;
896 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
897
onCombineIfPossible(GrOp * t,SkArenaAlloc *,const GrCaps & caps)898 CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
899 AAHairlineOp* that = t->cast<AAHairlineOp>();
900
901 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
902 return CombineResult::kCannotCombine;
903 }
904
905 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
906 return CombineResult::kCannotCombine;
907 }
908
909 // We go to identity if we don't have perspective
910 if (this->viewMatrix().hasPerspective() &&
911 !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
912 return CombineResult::kCannotCombine;
913 }
914
915 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
916 // method but we haven't implemented this yet
917 // TODO investigate going to vertex color and coverage?
918 if (this->coverage() != that->coverage()) {
919 return CombineResult::kCannotCombine;
920 }
921
922 if (this->color() != that->color()) {
923 return CombineResult::kCannotCombine;
924 }
925
926 if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
927 that->viewMatrix())) {
928 return CombineResult::kCannotCombine;
929 }
930
931 fPaths.push_back_n(that->fPaths.size(), that->fPaths.begin());
932 return CombineResult::kMerged;
933 }
934
935 #if defined(GR_TEST_UTILS)
onDumpInfo() const936 SkString onDumpInfo() const override {
937 return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
938 fColor.toBytes_RGBA(), fCoverage, fPaths.size(),
939 fHelper.dumpInfo().c_str());
940 }
941 #endif
942
color() const943 const SkPMColor4f& color() const { return fColor; }
coverage() const944 uint8_t coverage() const { return fCoverage; }
viewMatrix() const945 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
946
947 struct PathData {
948 SkMatrix fViewMatrix;
949 SkPath fPath;
950 SkIRect fDevClipBounds;
951 SkScalar fCapLength;
952 };
953
954 STArray<1, PathData, true> fPaths;
955 Helper fHelper;
956 SkPMColor4f fColor;
957 uint8_t fCoverage;
958
959 Program fCharacterization = Program::kNone; // holds a mask of required programs
960 GrSimpleMesh* fMeshes[3] = { nullptr };
961 GrProgramInfo* fProgramInfos[3] = { nullptr };
962
963 using INHERITED = GrMeshDrawOp;
964 };
965
GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)966 GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
967
968 void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
969 const GrPipeline* pipeline,
970 const GrSurfaceProxyView& writeView,
971 bool usesMSAASurface,
972 const SkMatrix* geometryProcessorViewM,
973 const SkMatrix* geometryProcessorLocalM,
974 GrXferBarrierFlags renderPassXferBarriers,
975 GrLoadOp colorLoadOp) {
976 if (fProgramInfos[0]) {
977 return;
978 }
979
980 GrGeometryProcessor* lineGP;
981 {
982 using namespace GrDefaultGeoProcFactory;
983
984 Color color(this->color());
985 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
986 : LocalCoords::kUnused_Type);
987 localCoords.fMatrix = geometryProcessorLocalM;
988
989 lineGP = GrDefaultGeoProcFactory::Make(arena,
990 color,
991 Coverage::kAttribute_Type,
992 localCoords,
993 *geometryProcessorViewM);
994 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
995 }
996
997 fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
998 &caps, arena, pipeline, writeView, usesMSAASurface, lineGP, GrPrimitiveType::kTriangles,
999 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1000 }
1001
makeQuadProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1002 void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1003 const GrPipeline* pipeline,
1004 const GrSurfaceProxyView& writeView,
1005 bool usesMSAASurface,
1006 const SkMatrix* geometryProcessorViewM,
1007 const SkMatrix* geometryProcessorLocalM,
1008 GrXferBarrierFlags renderPassXferBarriers,
1009 GrLoadOp colorLoadOp) {
1010 if (fProgramInfos[1]) {
1011 return;
1012 }
1013
1014 GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
1015 this->color(),
1016 *geometryProcessorViewM,
1017 caps,
1018 *geometryProcessorLocalM,
1019 fHelper.usesLocalCoords(),
1020 this->coverage());
1021 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1022
1023 fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1024 &caps, arena, pipeline, writeView, usesMSAASurface, quadGP, GrPrimitiveType::kTriangles,
1025 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1026 }
1027
makeConicProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1028 void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1029 const GrPipeline* pipeline,
1030 const GrSurfaceProxyView& writeView,
1031 bool usesMSAASurface,
1032 const SkMatrix* geometryProcessorViewM,
1033 const SkMatrix* geometryProcessorLocalM,
1034 GrXferBarrierFlags renderPassXferBarriers,
1035 GrLoadOp colorLoadOp) {
1036 if (fProgramInfos[2]) {
1037 return;
1038 }
1039
1040 GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
1041 this->color(),
1042 *geometryProcessorViewM,
1043 caps,
1044 *geometryProcessorLocalM,
1045 fHelper.usesLocalCoords(),
1046 this->coverage());
1047 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1048
1049 fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1050 &caps, arena, pipeline, writeView, usesMSAASurface, conicGP,
1051 GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp,
1052 fHelper.stencilSettings());
1053 }
1054
predictPrograms(const GrCaps * caps) const1055 AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
1056 bool convertConicsToQuads = !caps->shaderCaps()->fFloatIs32Bits;
1057
1058 // When predicting the programs we always include the lineProgram bc it is used as a fallback
1059 // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
1060 // given path.
1061 Program neededPrograms = Program::kLine;
1062
1063 for (int i = 0; i < fPaths.size(); i++) {
1064 uint32_t mask = fPaths[i].fPath.getSegmentMasks();
1065
1066 if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
1067 neededPrograms |= Program::kQuad;
1068 }
1069 if (mask & SkPath::kConic_SegmentMask) {
1070 if (convertConicsToQuads) {
1071 neededPrograms |= Program::kQuad;
1072 } else {
1073 neededPrograms |= Program::kConic;
1074 }
1075 }
1076 }
1077
1078 return neededPrograms;
1079 }
1080
onCreateProgramInfo(const GrCaps * caps,SkArenaAlloc * arena,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip && appliedClip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1081 void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
1082 SkArenaAlloc* arena,
1083 const GrSurfaceProxyView& writeView,
1084 bool usesMSAASurface,
1085 GrAppliedClip&& appliedClip,
1086 const GrDstProxyView& dstProxyView,
1087 GrXferBarrierFlags renderPassXferBarriers,
1088 GrLoadOp colorLoadOp) {
1089 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1090 SkMatrix invert;
1091 if (!this->viewMatrix().invert(&invert)) {
1092 return;
1093 }
1094
1095 // we will transform to identity space if the viewmatrix does not have perspective
1096 bool hasPerspective = this->viewMatrix().hasPerspective();
1097 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
1098 const SkMatrix* geometryProcessorLocalM = &invert;
1099 if (hasPerspective) {
1100 geometryProcessorViewM = &this->viewMatrix();
1101 geometryProcessorLocalM = &SkMatrix::I();
1102 }
1103
1104 auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
1105 std::move(appliedClip), dstProxyView);
1106
1107 if (fCharacterization & Program::kLine) {
1108 this->makeLineProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1109 geometryProcessorViewM, geometryProcessorLocalM,
1110 renderPassXferBarriers, colorLoadOp);
1111 }
1112 if (fCharacterization & Program::kQuad) {
1113 this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1114 geometryProcessorViewM, geometryProcessorLocalM,
1115 renderPassXferBarriers, colorLoadOp);
1116 }
1117 if (fCharacterization & Program::kConic) {
1118 this->makeConicProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1119 geometryProcessorViewM, geometryProcessorLocalM,
1120 renderPassXferBarriers, colorLoadOp);
1121
1122 }
1123 }
1124
onPrePrepareDraws(GrRecordingContext * context,const GrSurfaceProxyView & writeView,GrAppliedClip * clip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1125 void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
1126 const GrSurfaceProxyView& writeView,
1127 GrAppliedClip* clip,
1128 const GrDstProxyView& dstProxyView,
1129 GrXferBarrierFlags renderPassXferBarriers,
1130 GrLoadOp colorLoadOp) {
1131 SkArenaAlloc* arena = context->priv().recordTimeAllocator();
1132 const GrCaps* caps = context->priv().caps();
1133
1134 // http://skbug.com/12201 -- DDL does not yet support DMSAA.
1135 bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
1136
1137 // This is equivalent to a GrOpFlushState::detachAppliedClip
1138 GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
1139
1140 // Conservatively predict which programs will be required
1141 fCharacterization = this->predictPrograms(caps);
1142
1143 this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
1144 dstProxyView, renderPassXferBarriers, colorLoadOp);
1145
1146 context->priv().recordProgramInfo(fProgramInfos[0]);
1147 context->priv().recordProgramInfo(fProgramInfos[1]);
1148 context->priv().recordProgramInfo(fProgramInfos[2]);
1149 }
1150
onPrepareDraws(GrMeshDrawTarget * target)1151 void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
1152 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1153 SkMatrix invert;
1154 if (!this->viewMatrix().invert(&invert)) {
1155 return;
1156 }
1157
1158 // we will transform to identity space if the viewmatrix does not have perspective
1159 const SkMatrix* toDevice = nullptr;
1160 const SkMatrix* toSrc = nullptr;
1161 if (this->viewMatrix().hasPerspective()) {
1162 toDevice = &this->viewMatrix();
1163 toSrc = &invert;
1164 }
1165
1166 SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
1167 Program actualPrograms = Program::kNone;
1168
1169 // This is hand inlined for maximum performance.
1170 PREALLOC_PTARRAY(128) lines;
1171 PREALLOC_PTARRAY(128) quads;
1172 PREALLOC_PTARRAY(128) conics;
1173 IntArray qSubdivs;
1174 FloatArray cWeights;
1175 int quadCount = 0;
1176
1177 int instanceCount = fPaths.size();
1178 bool convertConicsToQuads = !target->caps().shaderCaps()->fFloatIs32Bits;
1179 for (int i = 0; i < instanceCount; i++) {
1180 const PathData& args = fPaths[i];
1181 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
1182 args.fCapLength, convertConicsToQuads, &lines, &quads,
1183 &conics, &qSubdivs, &cWeights);
1184 }
1185
1186 int lineCount = lines.size() / 2;
1187 int conicCount = conics.size() / 3;
1188 int quadAndConicCount = conicCount + quadCount;
1189
1190 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
1191 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
1192 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
1193 return;
1194 }
1195
1196 // do lines first
1197 if (lineCount) {
1198 SkASSERT(predictedPrograms & Program::kLine);
1199 actualPrograms |= Program::kLine;
1200
1201 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
1202
1203 GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
1204 std::move(linesIndexBuffer), kLineSegNumVertices,
1205 kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
1206
1207 LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
1208 if (!verts) {
1209 SkDebugf("Could not allocate vertices\n");
1210 return;
1211 }
1212
1213 for (int i = 0; i < lineCount; ++i) {
1214 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
1215 }
1216
1217 fMeshes[0] = helper.mesh();
1218 }
1219
1220 if (quadCount || conicCount) {
1221 sk_sp<const GrBuffer> vertexBuffer;
1222 int firstVertex;
1223
1224 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1225
1226 int vertexCount = kQuadNumVertices * quadAndConicCount;
1227 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1228 &firstVertex);
1229
1230 if (!vertices || !quadsIndexBuffer) {
1231 SkDebugf("Could not allocate vertices\n");
1232 return;
1233 }
1234
1235 // Setup vertices
1236 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1237
1238 int unsubdivQuadCnt = quads.size() / 3;
1239 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1240 SkASSERT(qSubdivs[i] >= 0);
1241 if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
1242 return;
1243 }
1244 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1245 }
1246
1247 // Start Conics
1248 for (int i = 0; i < conicCount; ++i) {
1249 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1250 }
1251
1252 if (quadCount > 0) {
1253 SkASSERT(predictedPrograms & Program::kQuad);
1254 actualPrograms |= Program::kQuad;
1255
1256 fMeshes[1] = target->allocMesh();
1257 fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
1258 kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
1259 firstVertex);
1260 firstVertex += quadCount * kQuadNumVertices;
1261 }
1262
1263 if (conicCount > 0) {
1264 SkASSERT(predictedPrograms & Program::kConic);
1265 actualPrograms |= Program::kConic;
1266
1267 fMeshes[2] = target->allocMesh();
1268 fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
1269 kQuadsNumInIdxBuffer, std::move(vertexBuffer),
1270 kQuadNumVertices, firstVertex);
1271 }
1272 }
1273
1274 // In DDL mode this will replace the predicted program requirements with the actual ones.
1275 // However, we will already have surfaced the predicted programs to the DDL.
1276 fCharacterization = actualPrograms;
1277 }
1278
onExecute(GrOpFlushState * flushState,const SkRect & chainBounds)1279 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1280 this->createProgramInfo(flushState);
1281
1282 for (int i = 0; i < 3; ++i) {
1283 if (fProgramInfos[i] && fMeshes[i]) {
1284 flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
1285 flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
1286 fProgramInfos[i]->pipeline());
1287 flushState->drawMesh(*fMeshes[i]);
1288 }
1289 }
1290 }
1291
1292 } // anonymous namespace
1293
1294 ///////////////////////////////////////////////////////////////////////////////////////////////////
1295
1296 #if defined(GR_TEST_UTILS)
1297
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1298 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1299 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1300 const SkPath& path = GrTest::TestPath(random);
1301 SkIRect devClipBounds;
1302 devClipBounds.setEmpty();
1303 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1304 GrStyle::SimpleHairline(), devClipBounds,
1305 GrGetRandomStencil(random, context));
1306 }
1307
1308 #endif
1309
1310 ///////////////////////////////////////////////////////////////////////////////////////////////////
1311
1312 namespace skgpu::ganesh {
1313
onCanDrawPath(const CanDrawPathArgs & args) const1314 PathRenderer::CanDrawPath AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
1315 if (GrAAType::kCoverage != args.fAAType) {
1316 return CanDrawPath::kNo;
1317 }
1318
1319 if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
1320 return CanDrawPath::kNo;
1321 }
1322
1323 // We don't currently handle dashing in this class though perhaps we should.
1324 if (args.fShape->style().pathEffect()) {
1325 return CanDrawPath::kNo;
1326 }
1327
1328 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
1329 args.fCaps->shaderCaps()->fShaderDerivativeSupport) {
1330 return CanDrawPath::kYes;
1331 }
1332
1333 return CanDrawPath::kNo;
1334 }
1335
1336
onDrawPath(const DrawPathArgs & args)1337 bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1338 GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
1339 "AAHairlinePathRenderer::onDrawPath");
1340 SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
1341
1342 SkPath path;
1343 args.fShape->asPath(&path);
1344 GrOp::Owner op =
1345 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1346 args.fShape->style(), *args.fClipConservativeBounds,
1347 args.fUserStencilSettings);
1348 args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
1349 return true;
1350 }
1351
1352 } // namespace skgpu::ganesh
1353