• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/tessellate/GrStrokeTessellationShader.h"
9 
10 #include "src/gpu/KeyBuilder.h"
11 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
12 #include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
13 #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h"
14 #include "src/gpu/tessellate/FixedCountBufferUtils.h"
15 #include "src/gpu/tessellate/WangsFormula.h"
16 
17 namespace {
18 
19 // float2 robust_normalize_diff(float2 a, float b) { ... }
20 //
21 // Returns the normalized difference between a and b, i.e. normalize(a - b), with care taken for
22 // if 'a' and/or 'b' have large coordinates.
23 static const char* kRobustNormalizeDiffFn =
24 "float2 robust_normalize_diff(float2 a, float2 b) {"
25     "float2 diff = a - b;"
26     "if (diff == float2(0.0)) {"
27         "return float2(0.0);"
28     "} else {"
29         "float invMag = 1.0 / max(abs(diff.x), abs(diff.y));"
30         "return normalize(invMag * diff);"
31     "}"
32 "}";
33 
34 // float cosine_between_unit_vectors(float2 a, float2 b) { ...
35 //
36 // Returns the cosine of the angle between a and b, assuming a and b are unit vectors already.
37 // Guaranteed to be between [-1, 1].
38 static const char* kCosineBetweenUnitVectorsFn =
39 "float cosine_between_unit_vectors(float2 a, float2 b) {"
40     // Since a and b are assumed to be normalized, the cosine is equal to the dot product, although
41     // we clamp that to ensure it falls within the expected range of [-1, 1].
42     "return clamp(dot(a, b), -1.0, 1.0);"
43 "}"
44 ;
45 
46 
47 // float miter_extent(float cosTheta, float miterLimit) { ...
48 //
49 // Extends the middle radius to either the miter point, or the bevel edge if we surpassed the
50 // miter limit and need to revert to a bevel join.
51 static const char* kMiterExtentFn =
52 "float miter_extent(float cosTheta, float miterLimit) {"
53     "float x = fma(cosTheta, .5, .5);"
54     "return (x * miterLimit * miterLimit >= 1.0) ? inversesqrt(x) : sqrt(x);"
55 "}"
56 ;
57 
58 // float num_radial_segments_per_radian(float approxDevStrokeRadius) { ...
59 //
60 // Returns the number of radial segments required for each radian of rotation, in order for the
61 // curve to appear "smooth" as defined by the approximate device-space stroke radius.
62 static const char* kNumRadialSegmentsPerRadianFn =
63 "float num_radial_segments_per_radian(float approxDevStrokeRadius) {"
64     "return .5 / acos(max(1.0 - (1.0 / PRECISION) / approxDevStrokeRadius, -1.0));"
65 "}";
66 
67 // float<N> unchecked_mix(float<N> a, float<N> b, float<N> T) { ...
68 //
69 // Unlike mix(), this does not return b when t==1. But it otherwise seems to get better
70 // precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
71 // We override this result anyway when t==1 so it shouldn't be a problem.
72 static const char* kUncheckedMixFn =
73 "float unchecked_mix(float a, float b, float T) {"
74     "return fma(b - a, T, a);"
75 "}"
76 "float2 unchecked_mix(float2 a, float2 b, float T) {"
77     "return fma(b - a, float2(T), a);"
78 "}"
79 "float4 unchecked_mix(float4 a, float4 b, float4 T) {"
80     "return fma(b - a, T, a);"
81 "}"
82 ;
83 
84 using skgpu::tess::FixedCountStrokes;
85 
86 } // anonymous namespace
87 
GrStrokeTessellationShader(const GrShaderCaps & shaderCaps,PatchAttribs attribs,const SkMatrix & viewMatrix,const SkStrokeRec & stroke,SkPMColor4f color)88 GrStrokeTessellationShader::GrStrokeTessellationShader(const GrShaderCaps& shaderCaps,
89                                                        PatchAttribs attribs,
90                                                        const SkMatrix& viewMatrix,
91                                                        const SkStrokeRec& stroke,
92                                                        SkPMColor4f color)
93         : GrTessellationShader(kTessellate_GrStrokeTessellationShader_ClassID,
94                                GrPrimitiveType::kTriangleStrip, viewMatrix, color)
95         , fPatchAttribs(attribs | PatchAttribs::kJoinControlPoint)
96         , fStroke(stroke) {
97     // We should use explicit curve type when, and only when, there isn't infinity support.
98     // Otherwise the GPU can infer curve type based on infinity.
99     SkASSERT(shaderCaps.fInfinitySupport != (attribs & PatchAttribs::kExplicitCurveType));
100     // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic
101     // with w=p3.x.
102     //
103     // An empty stroke (p0==p1==p2==p3) is a special case that denotes a circle, or
104     // 180-degree point stroke.
105     fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
106     fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
107 
108     // argsAttr contains the lastControlPoint for setting up the join.
109     fAttribs.emplace_back("argsAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2);
110 
111     if (fPatchAttribs & PatchAttribs::kStrokeParams) {
112         fAttribs.emplace_back("dynamicStrokeAttr", kFloat2_GrVertexAttribType,
113                               SkSLType::kFloat2);
114     }
115     if (fPatchAttribs & PatchAttribs::kColor) {
116         fAttribs.emplace_back("dynamicColorAttr",
117                               (fPatchAttribs & PatchAttribs::kWideColorIfEnabled)
118                                       ? kFloat4_GrVertexAttribType
119                                       : kUByte4_norm_GrVertexAttribType,
120                               SkSLType::kHalf4);
121     }
122     if (fPatchAttribs & PatchAttribs::kExplicitCurveType) {
123         // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support
124         // infinity can't detect this. On these platforms we write out an extra float with each
125         // patch that explicitly tells the shader what type of curve it is.
126         fAttribs.emplace_back("curveTypeAttr", kFloat_GrVertexAttribType, SkSLType::kFloat);
127     }
128 
129     this->setInstanceAttributesWithImplicitOffsets(fAttribs.data(), fAttribs.size());
130     SkASSERT(this->instanceStride() == sizeof(SkPoint) * 4 + PatchAttribsStride(fPatchAttribs));
131     if (!shaderCaps.fVertexIDSupport) {
132         constexpr static Attribute kVertexAttrib("edgeID", kFloat_GrVertexAttribType,
133                                                     SkSLType::kFloat);
134         this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1);
135     }
136     SkASSERT(fAttribs.size() <= kMaxAttribCount);
137 }
138 
139 // This base class emits shader code for our parametric/radial stroke tessellation algorithm
140 // described above. The subclass emits its own specific setup code before calling into
141 // emitTessellationCode and emitFragment code.
142 class GrStrokeTessellationShader::Impl : public ProgramImpl {
143     void onEmitCode(EmitArgs&, GrGPArgs*) override;
144 
145     // Emits code that calculates the vertex position and any other inputs to the fragment shader.
146     // The onEmitCode() is responsible to define the following symbols before calling this method:
147     //
148     //     // Functions.
149     //     float2 unchecked_mix(float2, float2, float);
150     //     float unchecked_mix(float, float, float);
151     //
152     //     // Values provided by either uniforms or attribs.
153     //     float2 p0, p1, p2, p3;
154     //     float w;
155     //     float STROKE_RADIUS;
156     //     float 2x2 AFFINE_MATRIX;
157     //     float2 TRANSLATE;
158     //
159     //     // Values calculated by the specific subclass.
160     //     float combinedEdgeID;
161     //     bool isFinalEdge;
162     //     float numParametricSegments;
163     //     float radsPerSegment;
164     //     float2 tan0; // Must be pre-normalized
165     //     float2 tan1; // Must be pre-normalized
166     //     float strokeOutset;
167     //
168     void emitTessellationCode(const GrStrokeTessellationShader& shader, SkString* code,
169                               GrGPArgs* gpArgs, const GrShaderCaps& shaderCaps) const;
170 
171     // Emits all necessary fragment code. If using dynamic color, the impl is responsible to set up
172     // a half4 varying for color and provide its name in 'fDynamicColorName'.
173     void emitFragmentCode(const GrStrokeTessellationShader&, const EmitArgs&);
174 
175     void setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps&,
176                  const GrGeometryProcessor&) final;
177 
178     GrGLSLUniformHandler::UniformHandle fTessControlArgsUniform;
179     GrGLSLUniformHandler::UniformHandle fTranslateUniform;
180     GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
181     GrGLSLUniformHandler::UniformHandle fColorUniform;
182     SkString fDynamicColorName;
183 };
184 
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)185 void GrStrokeTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
186     const auto& shader = args.fGeomProc.cast<GrStrokeTessellationShader>();
187     SkPaint::Join joinType = shader.stroke().getJoin();
188     args.fVaryingHandler->emitAttributes(shader);
189 
190     args.fVertBuilder->defineConstant("float", "PI", "3.141592653589793238");
191     args.fVertBuilder->defineConstant("PRECISION", skgpu::tess::kPrecision);
192     // There is an artificial maximum number of edges (compared to the max limit calculated based on
193     // the number of radial segments per radian, Wang's formula, and join type). When there is
194     // vertex ID support, the limit is what can be represented in a uint16; otherwise the limit is
195     // the size of the fallback vertex buffer.
196     float maxEdges = args.fShaderCaps->fVertexIDSupport ? FixedCountStrokes::kMaxEdges
197                                                         : FixedCountStrokes::kMaxEdgesNoVertexIDs;
198     args.fVertBuilder->defineConstant("NUM_TOTAL_EDGES", maxEdges);
199 
200     // Helper functions.
201     if (shader.hasDynamicStroke()) {
202         args.fVertBuilder->insertFunction(kNumRadialSegmentsPerRadianFn);
203     }
204     args.fVertBuilder->insertFunction(kRobustNormalizeDiffFn);
205     args.fVertBuilder->insertFunction(kCosineBetweenUnitVectorsFn);
206     args.fVertBuilder->insertFunction(kMiterExtentFn);
207     args.fVertBuilder->insertFunction(kUncheckedMixFn);
208     args.fVertBuilder->insertFunction(GrTessellationShader::WangsFormulaSkSL());
209 
210     // Tessellation control uniforms and/or dynamic attributes.
211     if (!shader.hasDynamicStroke()) {
212         // [NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS]
213         const char* tessArgsName;
214         fTessControlArgsUniform = args.fUniformHandler->addUniform(
215                 nullptr, kVertex_GrShaderFlag, SkSLType::kFloat3, "tessControlArgs",
216                 &tessArgsName);
217         args.fVertBuilder->codeAppendf(
218         "float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.x;"
219         "float JOIN_TYPE = %s.y;"
220         "float STROKE_RADIUS = %s.z;", tessArgsName, tessArgsName, tessArgsName);
221     } else {
222         // The shader does not currently support dynamic hairlines, so this case only needs to
223         // configure NUM_RADIAL_SEGMENTS_PER_RADIAN based on the fixed maxScale and per-instance
224         // stroke radius attribute that's defined in local space.
225         SkASSERT(!shader.stroke().isHairlineStyle());
226         const char* maxScaleName;
227         fTessControlArgsUniform = args.fUniformHandler->addUniform(
228                 nullptr, kVertex_GrShaderFlag, SkSLType::kFloat, "maxScale",
229                 &maxScaleName);
230         args.fVertBuilder->codeAppendf(
231         "float STROKE_RADIUS = dynamicStrokeAttr.x;"
232         "float JOIN_TYPE = dynamicStrokeAttr.y;"
233         "float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian("
234                 "%s * STROKE_RADIUS);", maxScaleName);
235 
236     }
237 
238     if (shader.hasDynamicColor()) {
239         // Create a varying for color to get passed in through.
240         GrGLSLVarying dynamicColor{SkSLType::kHalf4};
241         args.fVaryingHandler->addVarying("dynamicColor", &dynamicColor);
242         args.fVertBuilder->codeAppendf("%s = dynamicColorAttr;", dynamicColor.vsOut());
243         fDynamicColorName = dynamicColor.fsIn();
244     }
245 
246     // View matrix uniforms.
247     const char* translateName, *affineMatrixName;
248     fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
249                                                             SkSLType::kFloat4, "affineMatrix",
250                                                             &affineMatrixName);
251     fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
252                                                          SkSLType::kFloat2, "translate",
253                                                          &translateName);
254     args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s.xy, %s.zw);\n",
255                                    affineMatrixName, affineMatrixName);
256     args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;\n", translateName);
257 
258     if (shader.hasExplicitCurveType()) {
259         args.fVertBuilder->insertFunction(SkStringPrintf(
260         "bool is_conic_curve() { return curveTypeAttr != %g; }",
261             skgpu::tess::kCubicCurveType).c_str());
262     } else {
263         args.fVertBuilder->insertFunction(
264         "bool is_conic_curve() { return isinf(pts23Attr.w); }");
265     }
266 
267     // Tessellation code.
268     args.fVertBuilder->codeAppend(
269     "float2 p0=pts01Attr.xy, p1=pts01Attr.zw, p2=pts23Attr.xy, p3=pts23Attr.zw;"
270     "float2 lastControlPoint = argsAttr.xy;"
271     "float w = -1;"  // w<0 means the curve is an integral cubic.
272     "if (is_conic_curve()) {"
273         // Conics are 3 points, with the weight in p3.
274         "w = p3.x;"
275         "p3 = p2;"  // Setting p3 equal to p2 works for the remaining rotational logic.
276     "}"
277     );
278 
279     // Emit code to call Wang's formula to determine parametric segments. We do this before
280     // transform points for hairlines so that it is consistent with how the CPU tested the control
281     // points for chopping.
282     args.fVertBuilder->codeAppend(
283     // Find how many parametric segments this stroke requires.
284     "float numParametricSegments;"
285     "if (w < 0) {"
286         "if (p0 == p1 && p2 == p3) {"
287             "numParametricSegments = 1;" // a line
288         "} else {"
289             "numParametricSegments = wangs_formula_cubic(PRECISION, p0, p1, p2, p3, AFFINE_MATRIX);"
290         "}"
291     "} else {"
292         "numParametricSegments = wangs_formula_conic(PRECISION,"
293                                                     "AFFINE_MATRIX * p0,"
294                                                     "AFFINE_MATRIX * p1,"
295                                                     "AFFINE_MATRIX * p2, w);"
296     "}"
297     );
298 
299     if (shader.stroke().isHairlineStyle()) {
300         // Hairline case. Transform the points before tessellation. We can still hold off on the
301         // translate until the end; we just need to perform the scale and skew right now.
302         args.fVertBuilder->codeAppend(
303         "p0 = AFFINE_MATRIX * p0;"
304         "p1 = AFFINE_MATRIX * p1;"
305         "p2 = AFFINE_MATRIX * p2;"
306         "p3 = AFFINE_MATRIX * p3;"
307         "lastControlPoint = AFFINE_MATRIX * lastControlPoint;"
308         );
309     }
310 
311     args.fVertBuilder->codeAppend(
312     // Find the starting and ending tangents.
313     "float2 tan0 = robust_normalize_diff((p0 == p1) ? ((p1 == p2) ? p3 : p2) : p1, p0);"
314     "float2 tan1 = robust_normalize_diff(p3, (p3 == p2) ? ((p2 == p1) ? p0 : p1) : p2);"
315     "if (tan0 == float2(0)) {"
316         // The stroke is a point. This special case tells us to draw a stroke-width circle as a
317         // 180 degree point stroke instead.
318         "tan0 = float2(1,0);"
319         "tan1 = float2(-1,0);"
320     "}"
321     );
322 
323     if (args.fShaderCaps->fVertexIDSupport) {
324         // If we don't have sk_VertexID support then "edgeID" already came in as a vertex attrib.
325         args.fVertBuilder->codeAppend(
326         "float edgeID = float(sk_VertexID >> 1);"
327         "if ((sk_VertexID & 1) != 0) {"
328             "edgeID = -edgeID;"
329         "}"
330         );
331     }
332 
333     // Potential optimization: (shader.hasDynamicStroke() && shader.hasRoundJoins())?
334     if (shader.stroke().getJoin() == SkPaint::kRound_Join || shader.hasDynamicStroke()) {
335         args.fVertBuilder->codeAppend(
336         // Determine how many edges to give to the round join. We emit the first and final edges
337         // of the join twice: once full width and once restricted to half width. This guarantees
338         // perfect seaming by matching the vertices from the join as well as from the strokes on
339         // either side.
340         "float2 prevTan = robust_normalize_diff(p0, lastControlPoint);"
341         "float joinRads = acos(cosine_between_unit_vectors(prevTan, tan0));"
342         "float numRadialSegmentsInJoin = max(ceil(joinRads * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);"
343         // +2 because we emit the beginning and ending edges twice (see above comment).
344         "float numEdgesInJoin = numRadialSegmentsInJoin + 2;"
345         // The stroke section needs at least two edges. Don't assign more to the join than
346         // "NUM_TOTAL_EDGES - 2". (This is only relevant when the ideal max edge count calculated
347         // on the CPU had to be limited to NUM_TOTAL_EDGES in the draw call).
348         "numEdgesInJoin = min(numEdgesInJoin, NUM_TOTAL_EDGES - 2);");
349         if (shader.hasDynamicStroke()) {
350             args.fVertBuilder->codeAppend(
351             "if (JOIN_TYPE >= 0) {" // Is the join not a round type?
352                 // Bevel and miter joins get 1 and 2 segments respectively.
353                 // +2 because we emit the beginning and ending edges twice (see above comments).
354                 "numEdgesInJoin = sign(JOIN_TYPE) + 1 + 2;"
355             "}");
356         }
357     } else {
358         args.fVertBuilder->codeAppendf("float numEdgesInJoin = %i;",
359         skgpu::tess::NumFixedEdgesInJoin(joinType));
360     }
361 
362     args.fVertBuilder->codeAppend(
363     // Find which direction the curve turns.
364     // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
365     // NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
366     "float turn = cross_length_2d(p2 - p0, p3 - p1);"
367     "float combinedEdgeID = abs(edgeID) - numEdgesInJoin;"
368     "if (combinedEdgeID < 0) {"
369         "tan1 = tan0;"
370         // Don't let tan0 become zero. The code as-is isn't built to handle that case. tan0=0
371         // means the join is disabled, and to disable it with the existing code we can leave
372         // tan0 equal to tan1.
373         "if (lastControlPoint != p0) {"
374             "tan0 = robust_normalize_diff(p0, lastControlPoint);"
375         "}"
376         "turn = cross_length_2d(tan0, tan1);"
377     "}"
378 
379     // Calculate the curve's starting angle and rotation.
380     "float cosTheta = cosine_between_unit_vectors(tan0, tan1);"
381     "float rotation = acos(cosTheta);"
382     "if (turn < 0) {"
383         // Adjust sign of rotation to match the direction the curve turns.
384         "rotation = -rotation;"
385     "}"
386 
387     "float numRadialSegments;"
388     "float strokeOutset = sign(edgeID);"
389     "if (combinedEdgeID < 0) {"
390         // We belong to the preceding join. The first and final edges get duplicated, so we only
391         // have "numEdgesInJoin - 2" segments.
392         "numRadialSegments = numEdgesInJoin - 2;"
393         "numParametricSegments = 1;"  // Joins don't have parametric segments.
394         "p3 = p2 = p1 = p0;"  // Colocate all points on the junction point.
395         // Shift combinedEdgeID to the range [-1, numRadialSegments]. This duplicates the first
396         // edge and lands one edge at the very end of the join. (The duplicated final edge will
397         // actually come from the section of our strip that belongs to the stroke.)
398         "combinedEdgeID += numRadialSegments + 1;"
399         // We normally restrict the join on one side of the junction, but if the tangents are
400         // nearly equivalent this could theoretically result in bad seaming and/or cracks on the
401         // side we don't put it on. If the tangents are nearly equivalent then we leave the join
402         // double-sided.
403        " float sinEpsilon = 1e-2;"  // ~= sin(180deg / 3000)
404         "bool tangentsNearlyParallel ="
405                 "(abs(turn) * inversesqrt(dot(tan0, tan0) * dot(tan1, tan1))) < sinEpsilon;"
406         "if (!tangentsNearlyParallel || dot(tan0, tan1) < 0) {"
407             // There are two edges colocated at the beginning. Leave the first one double sided
408             // for seaming with the previous stroke. (The double sided edge at the end will
409             // actually come from the section of our strip that belongs to the stroke.)
410             "if (combinedEdgeID >= 0) {"
411                 "strokeOutset = (turn < 0) ? min(strokeOutset, 0) : max(strokeOutset, 0);"
412             "}"
413         "}"
414         "combinedEdgeID = max(combinedEdgeID, 0);"
415     "} else {"
416         // We belong to the stroke. Unless NUM_RADIAL_SEGMENTS_PER_RADIAN is incredibly high,
417         // clamping to maxCombinedSegments will be a no-op because the draw call was invoked with
418         // sufficient vertices to cover the worst case scenario of 180 degree rotation.
419         "float maxCombinedSegments = NUM_TOTAL_EDGES - numEdgesInJoin - 1;"
420         "numRadialSegments = max(ceil(abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);"
421         "numRadialSegments = min(numRadialSegments, maxCombinedSegments);"
422         "numParametricSegments = min(numParametricSegments,"
423                                     "maxCombinedSegments - numRadialSegments + 1);"
424     "}"
425 
426     // Additional parameters for emitTessellationCode().
427     "float radsPerSegment = rotation / numRadialSegments;"
428     "float numCombinedSegments = numParametricSegments + numRadialSegments - 1;"
429     "bool isFinalEdge = (combinedEdgeID >= numCombinedSegments);"
430     "if (combinedEdgeID > numCombinedSegments) {"
431         "strokeOutset = 0;"  // The strip has more edges than we need. Drop this one.
432     "}");
433 
434     if (joinType == SkPaint::kMiter_Join || shader.hasDynamicStroke()) {
435         args.fVertBuilder->codeAppendf(
436         // Edge #2 extends to the miter point.
437         "if (abs(edgeID) == 2 && %s) {"
438             "strokeOutset *= miter_extent(cosTheta, JOIN_TYPE);" // miterLimit
439         "}", shader.hasDynamicStroke() ? "JOIN_TYPE > 0" /*Is the join a miter type?*/ : "true");
440     }
441 
442     this->emitTessellationCode(shader, &args.fVertBuilder->code(), gpArgs, *args.fShaderCaps);
443 
444     this->emitFragmentCode(shader, args);
445 }
446 
emitTessellationCode(const GrStrokeTessellationShader & shader,SkString * code,GrGPArgs * gpArgs,const GrShaderCaps & shaderCaps) const447 void GrStrokeTessellationShader::Impl::emitTessellationCode(
448         const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs,
449         const GrShaderCaps& shaderCaps) const {
450     // The subclass is responsible to define the following symbols before calling this method:
451     //
452     //     // Functions.
453     //     float2 unchecked_mix(float2, float2, float);
454     //     float unchecked_mix(float, float, float);
455     //
456     //     // Values provided by either uniforms or attribs.
457     //     float2 p0, p1, p2, p3;
458     //     float w;
459     //     float STROKE_RADIUS;
460     //     float 2x2 AFFINE_MATRIX;
461     //     float2 TRANSLATE;
462     //
463     //     // Values calculated by the specific subclass.
464     //     float combinedEdgeID;
465     //     bool isFinalEdge;
466     //     float numParametricSegments;
467     //     float radsPerSegment;
468     //     float2 tan0; // Must be pre-normalized
469     //     float2 tan1; // Must be pre-normalized
470     //     float strokeOutset;
471     //
472     code->appendf(
473     "float2 tangent, strokeCoord;"
474     "if (combinedEdgeID != 0 && !isFinalEdge) {"
475         // Compute the location and tangent direction of the stroke edge with the integral id
476         // "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial
477         // edges. Start by finding the tangent function's power basis coefficients. These define a
478         // tangent direction (scaled by some uniform value) as:
479         //                                                 |T^2|
480         //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
481         //                                    |.   .  .|   |1  |
482         "float2 A, B, C = p1 - p0;"
483         "float2 D = p3 - p0;"
484         "if (w >= 0.0) {"
485             // P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome
486             // order-4 denominator. However, this isn't necessary if we are only interested in a
487             // vector in the same *direction* as a given tangent line. Since the denominator scales
488             // dx and dy uniformly, we can throw it out completely after evaluating the derivative
489             // with the standard quotient rule. This leaves us with a simpler quadratic function
490             // that we use to find a tangent.
491             "C *= w;"
492             "B = .5*D - C;"
493             "A = (w - 1.0) * D;"
494             "p1 *= w;"
495         "} else {"
496             "float2 E = p2 - p1;"
497             "B = E - C;"
498             "A = fma(float2(-3), E, D);"
499         "}"
500         // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C at
501         // this point in order to prevent fp32 overflow.
502 
503         // Now find the coefficients that give a tangent direction from a parametric edge ID:
504         //
505         //                                                                 |parametricEdgeID^2|
506         //     Tangent_Direction(parametricEdgeID) = dx,dy = |A  B_  C_| * |parametricEdgeID  |
507         //                                                   |.   .   .|   |1                 |
508         //
509         "float2 B_ = B * (numParametricSegments * 2.0);"
510         "float2 C_ = C * (numParametricSegments * numParametricSegments);"
511 
512         // Run a binary search to determine the highest parametric edge that is located on or before
513         // the combinedEdgeID. A combined ID is determined by the sum of complete parametric and
514         // radial segments behind it. i.e., find the highest parametric edge where:
515         //
516         //    parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID
517         //
518         "float lastParametricEdgeID = 0.0;"
519         "float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID);"
520         "float negAbsRadsPerSegment = -abs(radsPerSegment);"
521         "float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment);"
522         "for (int exp = %i - 1; exp >= 0; --exp) {"
523             // Test the parametric edge at lastParametricEdgeID + 2^exp.
524             "float testParametricID = lastParametricEdgeID + exp2(float(exp));"
525             "if (testParametricID <= maxParametricEdgeID) {"
526                 "float2 testTan = fma(float2(testParametricID), A, B_);"
527                 "testTan = fma(float2(testParametricID), testTan, C_);"
528                 "float cosRotation = dot(normalize(testTan), tan0);"
529                 "float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);"
530                 "maxRotation = min(maxRotation, PI);"
531                 // Is rotation <= maxRotation? (i.e., is the number of complete radial segments
532                 // behind testT, + testParametricID <= combinedEdgeID?)
533                 "if (cosRotation >= cos(maxRotation)) {"
534                     // testParametricID is on or before the combinedEdgeID. Keep it!
535                     "lastParametricEdgeID = testParametricID;"
536                 "}"
537             "}"
538         "}"
539 
540         // Find the T value of the parametric edge at lastParametricEdgeID.
541         "float parametricT = lastParametricEdgeID / numParametricSegments;"
542 
543         // Now that we've identified the highest parametric edge on or before the
544         // combinedEdgeID, the highest radial edge is easy:
545         "float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID;"
546 
547         // Find the angle of tan0, i.e. the angle between tan0 and the positive x axis.
548         "float angle0 = acos(clamp(tan0.x, -1.0, 1.0));"
549         "angle0 = tan0.y >= 0.0 ? angle0 : -angle0;"
550 
551         // Find the tangent vector on the edge at lastRadialEdgeID. By construction it is already
552         // normalized.
553         "float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);"
554         "tangent = float2(cos(radialAngle), sin(radialAngle));"
555         "float2 norm = float2(-tangent.y, tangent.x);"
556 
557         // Find the T value where the tangent is orthogonal to norm. This is a quadratic:
558         //
559         //     dot(norm, Tangent_Direction(T)) == 0
560         //
561         //                         |T^2|
562         //     norm * |A  2B  C| * |T  | == 0
563         //            |.   .  .|   |1  |
564         //
565         "float a=dot(norm,A), b_over_2=dot(norm,B), c=dot(norm,C);"
566         "float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0);"
567         "float q = sqrt(discr_over_4);"
568         "if (b_over_2 > 0.0) {"
569             "q = -q;"
570         "}"
571         "q -= b_over_2;"
572 
573         // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180
574         // degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root
575         // nearest .5.
576         "float _5qa = -.5*q*a;"
577         "float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q);"
578         "float radialT = (root.t != 0.0) ? root.s / root.t : 0.0;"
579         "radialT = clamp(radialT, 0.0, 1.0);"
580 
581         "if (lastRadialEdgeID == 0.0) {"
582             // The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if
583             // there are roots at exatly 0 and 1 both). radialT should always == 0 in this case.
584             "radialT = 0.0;"
585         "}"
586 
587         // Now that we've identified the T values of the last parametric and radial edges, our final
588         // T value for combinedEdgeID is whichever is larger.
589         "float T = max(parametricT, radialT);"
590 
591         // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability.
592         "float2 ab = unchecked_mix(p0, p1, T);"
593         "float2 bc = unchecked_mix(p1, p2, T);"
594         "float2 cd = unchecked_mix(p2, p3, T);"
595         "float2 abc = unchecked_mix(ab, bc, T);"
596         "float2 bcd = unchecked_mix(bc, cd, T);"
597         "float2 abcd = unchecked_mix(abc, bcd, T);"
598 
599         // Evaluate the conic weight at T.
600         "float u = unchecked_mix(1.0, w, T);"
601         "float v = w + 1 - u;"  // == mix(w, 1, T)
602         "float uv = unchecked_mix(u, v, T);"
603 
604         // If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial
605         // tangent found previously. (In the event that parametricT == radialT, we keep the radial
606         // tangent.)
607         "if (T != radialT) {"
608             // We must re-normalize here because the tangent is determined by the curve coefficients
609             "tangent = w >= 0.0 ? robust_normalize_diff(bc*u, ab*v)"
610                                ": robust_normalize_diff(bcd, abc);"
611         "}"
612 
613         "strokeCoord = (w >= 0.0) ? abc/uv : abcd;"
614     "} else {"
615         // Edges at the beginning and end of the strip use exact endpoints and tangents. This
616         // ensures crack-free seaming between instances.
617         "tangent = (combinedEdgeID == 0) ? tan0 : tan1;"
618         "strokeCoord = (combinedEdgeID == 0) ? p0 : p3;"
619     "}", skgpu::tess::kMaxResolveLevel /* Parametric/radial sort loop count. */);
620 
621     code->append(
622     // At this point 'tangent' is normalized, so the orthogonal vector is also normalized.
623     "float2 ortho = float2(tangent.y, -tangent.x);"
624     "strokeCoord += ortho * (STROKE_RADIUS * strokeOutset);");
625 
626     if (!shader.stroke().isHairlineStyle()) {
627         // Normal case. Do the transform after tessellation.
628         code->append("float2 devCoord = AFFINE_MATRIX * strokeCoord + TRANSLATE;");
629         gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord");
630         gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "strokeCoord");
631     } else {
632         // Hairline case. The scale and skew already happened before tessellation.
633         code->append(
634         "float2 devCoord = strokeCoord + TRANSLATE;"
635         "float2 localCoord = inverse(AFFINE_MATRIX) * strokeCoord;");
636         gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord");
637         gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localCoord");
638     }
639 }
640 
emitFragmentCode(const GrStrokeTessellationShader & shader,const EmitArgs & args)641 void GrStrokeTessellationShader::Impl::emitFragmentCode(const GrStrokeTessellationShader& shader,
642                                                         const EmitArgs& args) {
643     if (!shader.hasDynamicColor()) {
644         // The fragment shader just outputs a uniform color.
645         const char* colorUniformName;
646         fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
647                                                          SkSLType::kHalf4, "color",
648                                                          &colorUniformName);
649         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, colorUniformName);
650     } else {
651         args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor,
652                                        fDynamicColorName.c_str());
653     }
654     args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
655 }
656 
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)657 void GrStrokeTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman,
658                                                const GrShaderCaps&,
659                                                const GrGeometryProcessor& geomProc) {
660     const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
661     const auto& stroke = shader.stroke();
662 
663     // getMaxScale() returns -1 if it can't compute a scale factor (e.g. perspective), taking the
664     // absolute value automatically converts that to an identity scale factor for our purposes.
665     const float maxScale = std::abs(shader.viewMatrix().getMaxScale());
666     if (!shader.hasDynamicStroke()) {
667         // Set up the tessellation control uniforms. In the hairline case we transform prior to
668         // tessellation, so it will be defined in device space units instead of local units.
669         const float strokeRadius = 0.5f * (stroke.isHairlineStyle() ? 1.f : stroke.getWidth());
670         float numRadialSegmentsPerRadian = skgpu::tess::CalcNumRadialSegmentsPerRadian(
671                 (stroke.isHairlineStyle() ? 1.f : maxScale) * strokeRadius);
672 
673         pdman.set3f(fTessControlArgsUniform,
674                     numRadialSegmentsPerRadian,  // NUM_RADIAL_SEGMENTS_PER_RADIAN
675                     skgpu::tess::GetJoinType(stroke),  // JOIN_TYPE
676                     strokeRadius);  // STROKE_RADIUS
677     } else {
678         SkASSERT(!stroke.isHairlineStyle());
679         pdman.set1f(fTessControlArgsUniform, maxScale);
680     }
681 
682     // Set up the view matrix, if any.
683     const SkMatrix& m = shader.viewMatrix();
684     pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
685     pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
686                 m.getScaleY());
687 
688     if (!shader.hasDynamicColor()) {
689         pdman.set4fv(fColorUniform, 1, shader.color().vec());
690     }
691 }
692 
addToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const693 void GrStrokeTessellationShader::addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const {
694     bool keyNeedsJoin = !(fPatchAttribs & PatchAttribs::kStrokeParams);
695     SkASSERT(fStroke.getJoin() >> 2 == 0);
696     // Attribs get worked into the key automatically during GrGeometryProcessor::getAttributeKey().
697     // When color is in a uniform, it's always wide. kWideColor doesn't need to be considered here.
698     uint32_t key = (uint32_t)(fPatchAttribs & ~PatchAttribs::kColor);
699     key = (key << 2) | ((keyNeedsJoin) ? fStroke.getJoin() : 0);
700     key = (key << 1) | (uint32_t)fStroke.isHairlineStyle();
701     b->add32(key);
702 }
703 
makeProgramImpl(const GrShaderCaps &) const704 std::unique_ptr<GrGeometryProcessor::ProgramImpl> GrStrokeTessellationShader::makeProgramImpl(
705         const GrShaderCaps&) const {
706     return std::make_unique<Impl>();
707 }
708