1 /*
2 * Copyright 2021 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/graphite/Device.h"
9
10 #include "include/gpu/graphite/Recorder.h"
11 #include "include/gpu/graphite/Recording.h"
12 #include "include/gpu/graphite/Surface.h"
13 #include "include/private/gpu/graphite/ContextOptionsPriv.h"
14 #include "src/gpu/AtlasTypes.h"
15 #include "src/gpu/BlurUtils.h"
16 #include "src/gpu/SkBackingFit.h"
17 #include "src/gpu/graphite/AtlasProvider.h"
18 #include "src/gpu/graphite/Buffer.h"
19 #include "src/gpu/graphite/Caps.h"
20 #include "src/gpu/graphite/CommandBuffer.h"
21 #include "src/gpu/graphite/ContextPriv.h"
22 #include "src/gpu/graphite/ContextUtils.h"
23 #include "src/gpu/graphite/DrawContext.h"
24 #include "src/gpu/graphite/DrawList.h"
25 #include "src/gpu/graphite/DrawParams.h"
26 #include "src/gpu/graphite/Image_Graphite.h"
27 #include "src/gpu/graphite/Log.h"
28 #include "src/gpu/graphite/PathAtlas.h"
29 #include "src/gpu/graphite/RasterPathAtlas.h"
30 #include "src/gpu/graphite/RecorderPriv.h"
31 #include "src/gpu/graphite/Renderer.h"
32 #include "src/gpu/graphite/RendererProvider.h"
33 #include "src/gpu/graphite/ResourceTypes.h"
34 #include "src/gpu/graphite/SharedContext.h"
35 #include "src/gpu/graphite/SpecialImage_Graphite.h"
36 #include "src/gpu/graphite/Surface_Graphite.h"
37 #include "src/gpu/graphite/TextureProxy.h"
38 #include "src/gpu/graphite/TextureUtils.h"
39 #include "src/gpu/graphite/geom/BoundsManager.h"
40 #include "src/gpu/graphite/geom/Geometry.h"
41 #include "src/gpu/graphite/geom/IntersectionTree.h"
42 #include "src/gpu/graphite/geom/Shape.h"
43 #include "src/gpu/graphite/geom/Transform_graphite.h"
44 #include "src/gpu/graphite/text/TextAtlasManager.h"
45
46 #include "include/core/SkColorSpace.h"
47 #include "include/core/SkPath.h"
48 #include "include/core/SkPathEffect.h"
49 #include "include/core/SkStrokeRec.h"
50
51 #include "src/core/SkBlenderBase.h"
52 #include "src/core/SkBlurMaskFilterImpl.h"
53 #include "src/core/SkColorSpacePriv.h"
54 #include "src/core/SkConvertPixels.h"
55 #include "src/core/SkImageFilterTypes.h"
56 #include "src/core/SkImageInfoPriv.h"
57 #include "src/core/SkImagePriv.h"
58 #include "src/core/SkMatrixPriv.h"
59 #include "src/core/SkPaintPriv.h"
60 #include "src/core/SkRRectPriv.h"
61 #include "src/core/SkSpecialImage.h"
62 #include "src/core/SkStrikeCache.h"
63 #include "src/core/SkTraceEvent.h"
64 #include "src/core/SkVerticesPriv.h"
65 #include "src/gpu/TiledTextureUtils.h"
66 #include "src/text/GlyphRun.h"
67 #include "src/text/gpu/GlyphVector.h"
68 #include "src/text/gpu/SlugImpl.h"
69 #include "src/text/gpu/SubRunContainer.h"
70 #include "src/text/gpu/TextBlobRedrawCoordinator.h"
71 #include "src/text/gpu/VertexFiller.h"
72
73 #include <functional>
74 #include <tuple>
75 #include <unordered_map>
76 #include <vector>
77
78 using RescaleGamma = SkImage::RescaleGamma;
79 using RescaleMode = SkImage::RescaleMode;
80 using ReadPixelsCallback = SkImage::ReadPixelsCallback;
81 using ReadPixelsContext = SkImage::ReadPixelsContext;
82
83 #if defined(GRAPHITE_TEST_UTILS)
84 int gOverrideMaxTextureSizeGraphite = 0;
85 // Allows tests to check how many tiles were drawn on the most recent call to
86 // Device::drawAsTiledImageRect. This is an atomic because we can write to it from
87 // multiple threads during "normal" operations. However, the tests that actually
88 // read from it are done single-threaded.
89 std::atomic<int> gNumTilesDrawnGraphite{0};
90 #endif
91
92 namespace skgpu::graphite {
93
94 #define ASSERT_SINGLE_OWNER SkASSERT(fRecorder); SKGPU_ASSERT_SINGLE_OWNER(fRecorder->singleOwner())
95
96 namespace {
97
DefaultFillStyle()98 const SkStrokeRec& DefaultFillStyle() {
99 static const SkStrokeRec kFillStyle(SkStrokeRec::kFill_InitStyle);
100 return kFillStyle;
101 }
102
blender_depends_on_dst(const SkBlender * blender,bool srcIsTransparent)103 bool blender_depends_on_dst(const SkBlender* blender, bool srcIsTransparent) {
104 std::optional<SkBlendMode> bm = blender ? as_BB(blender)->asBlendMode() : SkBlendMode::kSrcOver;
105 if (!bm.has_value()) {
106 return true;
107 }
108 if (bm.value() == SkBlendMode::kSrc || bm.value() == SkBlendMode::kClear) {
109 // src and clear blending never depends on dst
110 return false;
111 }
112 if (bm.value() == SkBlendMode::kSrcOver) {
113 // src-over depends on dst if src is transparent (a != 1)
114 return srcIsTransparent;
115 }
116 // TODO: Are their other modes that don't depend on dst that can be trivially detected?
117 return true;
118 }
119
paint_depends_on_dst(SkColor4f color,const SkShader * shader,const SkColorFilter * colorFilter,const SkBlender * finalBlender,const SkBlender * primitiveBlender)120 bool paint_depends_on_dst(SkColor4f color,
121 const SkShader* shader,
122 const SkColorFilter* colorFilter,
123 const SkBlender* finalBlender,
124 const SkBlender* primitiveBlender) {
125 const bool srcIsTransparent = !color.isOpaque() || (shader && !shader->isOpaque()) ||
126 (colorFilter && !colorFilter->isAlphaUnchanged());
127
128 if (primitiveBlender && blender_depends_on_dst(primitiveBlender, srcIsTransparent)) {
129 return true;
130 }
131
132 return blender_depends_on_dst(finalBlender, srcIsTransparent);
133 }
134
paint_depends_on_dst(const PaintParams & paintParams)135 bool paint_depends_on_dst(const PaintParams& paintParams) {
136 return paint_depends_on_dst(paintParams.color(),
137 paintParams.shader(),
138 paintParams.colorFilter(),
139 paintParams.finalBlender(),
140 paintParams.primitiveBlender());
141 }
142
paint_depends_on_dst(const SkPaint & paint)143 bool paint_depends_on_dst(const SkPaint& paint) {
144 // CAUTION: getMaskFilter is intentionally ignored here.
145 SkASSERT(!paint.getImageFilter()); // no paints in SkDevice should have an image filter
146 return paint_depends_on_dst(paint.getColor4f(),
147 paint.getShader(),
148 paint.getColorFilter(),
149 paint.getBlender(),
150 /*primitiveBlender=*/nullptr);
151 }
152
153 /** If the paint can be reduced to a solid flood-fill, determine the correct color to fill with. */
extract_paint_color(const SkPaint & paint,const SkColorInfo & dstColorInfo)154 std::optional<SkColor4f> extract_paint_color(const SkPaint& paint,
155 const SkColorInfo& dstColorInfo) {
156 SkASSERT(!paint_depends_on_dst(paint));
157 if (paint.getShader()) {
158 return std::nullopt;
159 }
160
161 SkColor4f dstPaintColor = PaintParams::Color4fPrepForDst(paint.getColor4f(), dstColorInfo);
162
163 if (SkColorFilter* filter = paint.getColorFilter()) {
164 SkColorSpace* dstCS = dstColorInfo.colorSpace();
165 return filter->filterColor4f(dstPaintColor, dstCS, dstCS);
166 }
167 return dstPaintColor;
168 }
169
rect_to_pixelbounds(const Rect & r)170 SkIRect rect_to_pixelbounds(const Rect& r) {
171 return r.makeRoundOut().asSkIRect();
172 }
173
is_simple_shape(const Shape & shape,SkStrokeRec::Style type)174 bool is_simple_shape(const Shape& shape, SkStrokeRec::Style type) {
175 // We send regular filled and hairline [round] rectangles, stroked/hairline lines, and stroked
176 // [r]rects with circular corners to a single Renderer that does not trigger MSAA.
177 // Per-edge AA quadrilaterals also use the same Renderer but those are not "Shapes".
178 return !shape.inverted() && type != SkStrokeRec::kStrokeAndFill_Style &&
179 (shape.isRect() ||
180 (shape.isLine() && type != SkStrokeRec::kFill_Style) ||
181 (shape.isRRect() && (type != SkStrokeRec::kStroke_Style ||
182 SkRRectPriv::AllCornersCircular(shape.rrect()))));
183 }
184
use_compute_atlas_when_available(PathRendererStrategy strategy)185 bool use_compute_atlas_when_available(PathRendererStrategy strategy) {
186 return strategy == PathRendererStrategy::kComputeAnalyticAA ||
187 strategy == PathRendererStrategy::kComputeMSAA16 ||
188 strategy == PathRendererStrategy::kComputeMSAA8 ||
189 strategy == PathRendererStrategy::kDefault;
190 }
191
192 } // anonymous namespace
193
194 /**
195 * IntersectionTreeSet controls multiple IntersectionTrees to organize all add rectangles into
196 * disjoint sets. For a given CompressedPaintersOrder and bounds, it returns the smallest
197 * DisjointStencilIndex that guarantees the bounds are disjoint from all other draws that use the
198 * same painters order and stencil index.
199 */
200 class Device::IntersectionTreeSet {
201 public:
202 IntersectionTreeSet() = default;
203
add(CompressedPaintersOrder drawOrder,Rect rect)204 DisjointStencilIndex add(CompressedPaintersOrder drawOrder, Rect rect) {
205 auto& trees = fTrees[drawOrder];
206 DisjointStencilIndex stencil = DrawOrder::kUnassigned.next();
207 for (auto&& tree : trees) {
208 if (tree->add(rect)) {
209 return stencil;
210 }
211 stencil = stencil.next(); // advance to the next tree's index
212 }
213
214 // If here, no existing intersection tree can hold the rect so add a new one
215 IntersectionTree* newTree = this->makeTree();
216 SkAssertResult(newTree->add(rect));
217 trees.push_back(newTree);
218 return stencil;
219 }
220
reset()221 void reset() {
222 fTrees.clear();
223 fTreeStore.reset();
224 }
225
226 private:
227 struct Hash {
operator ()skgpu::graphite::Device::IntersectionTreeSet::Hash228 size_t operator()(const CompressedPaintersOrder& o) const noexcept { return o.bits(); }
229 };
230
makeTree()231 IntersectionTree* makeTree() {
232 return fTreeStore.make<IntersectionTree>();
233 }
234
235 // Each compressed painters order defines a barrier around draws so each order's set of draws
236 // are independent, even if they may intersect. Within each order, the list of trees holds the
237 // IntersectionTrees representing each disjoint set.
238 // TODO: This organization of trees is logically convenient but may need to be optimized based
239 // on real world data (e.g. how sparse is the map, how long is each vector of trees,...)
240 std::unordered_map<CompressedPaintersOrder, std::vector<IntersectionTree*>, Hash> fTrees;
241 SkSTArenaAllocWithReset<4 * sizeof(IntersectionTree)> fTreeStore;
242 };
243
Make(Recorder * recorder,const SkImageInfo & ii,skgpu::Budgeted budgeted,Mipmapped mipmapped,SkBackingFit backingFit,const SkSurfaceProps & props,LoadOp initialLoadOp,std::string_view label,bool registerWithRecorder)244 sk_sp<Device> Device::Make(Recorder* recorder,
245 const SkImageInfo& ii,
246 skgpu::Budgeted budgeted,
247 Mipmapped mipmapped,
248 SkBackingFit backingFit,
249 const SkSurfaceProps& props,
250 LoadOp initialLoadOp,
251 std::string_view label,
252 bool registerWithRecorder) {
253 SkASSERT(!(mipmapped == Mipmapped::kYes && backingFit == SkBackingFit::kApprox));
254 if (!recorder) {
255 return nullptr;
256 }
257
258 const Caps* caps = recorder->priv().caps();
259 SkISize backingDimensions = backingFit == SkBackingFit::kApprox ? GetApproxSize(ii.dimensions())
260 : ii.dimensions();
261 auto textureInfo = caps->getDefaultSampledTextureInfo(ii.colorType(),
262 mipmapped,
263 recorder->priv().isProtected(),
264 Renderable::kYes);
265
266 return Make(recorder,
267 TextureProxy::Make(caps, recorder->priv().resourceProvider(),
268 backingDimensions, textureInfo, std::move(label), budgeted),
269 ii.dimensions(),
270 ii.colorInfo(),
271 props,
272 initialLoadOp,
273 registerWithRecorder);
274 }
275
Make(Recorder * recorder,sk_sp<TextureProxy> target,SkISize deviceSize,const SkColorInfo & colorInfo,const SkSurfaceProps & props,LoadOp initialLoadOp,bool registerWithRecorder)276 sk_sp<Device> Device::Make(Recorder* recorder,
277 sk_sp<TextureProxy> target,
278 SkISize deviceSize,
279 const SkColorInfo& colorInfo,
280 const SkSurfaceProps& props,
281 LoadOp initialLoadOp,
282 bool registerWithRecorder) {
283 if (!recorder) {
284 return nullptr;
285 }
286
287 sk_sp<DrawContext> dc = DrawContext::Make(recorder->priv().caps(),
288 std::move(target),
289 deviceSize,
290 colorInfo,
291 props);
292 if (!dc) {
293 return nullptr;
294 } else if (initialLoadOp == LoadOp::kClear) {
295 dc->clear(SkColors::kTransparent);
296 } else if (initialLoadOp == LoadOp::kDiscard) {
297 dc->discard();
298 } // else kLoad is the default initial op for a DrawContext
299
300 sk_sp<Device> device{new Device(recorder, std::move(dc))};
301 if (registerWithRecorder) {
302 // We don't register the device with the recorder until after the constructor has returned.
303 recorder->registerDevice(device);
304 } else {
305 // Since it's not registered, it should go out of scope before nextRecordingID() changes
306 // from what is saved to fScopedRecordingID.
307 SkDEBUGCODE(device->fScopedRecordingID = recorder->priv().nextRecordingID();)
308 }
309 return device;
310 }
311
312 // These default tuning numbers for the HybridBoundsManager were chosen from looking at performance
313 // and accuracy curves produced by the BoundsManagerBench for random draw bounding boxes. This
314 // config will use brute force for the first 64 draw calls to the Device and then switch to a grid
315 // that is dynamically sized to produce cells that are 16x16, up to a grid that's 32x32 cells.
316 // This seemed like a sweet spot balancing accuracy for low-draw count surfaces and overhead for
317 // high-draw count and high-resolution surfaces. With the 32x32 grid limit, cell size will increase
318 // above 16px when the surface dimension goes above 512px.
319 // TODO: These could be exposed as context options or surface options, and we may want to have
320 // different strategies in place for a base device vs. a layer's device.
321 static constexpr int kGridCellSize = 16;
322 static constexpr int kMaxBruteForceN = 64;
323 static constexpr int kMaxGridSize = 32;
324
Device(Recorder * recorder,sk_sp<DrawContext> dc)325 Device::Device(Recorder* recorder, sk_sp<DrawContext> dc)
326 : SkDevice(dc->imageInfo(), dc->surfaceProps())
327 , fRecorder(recorder)
328 , fDC(std::move(dc))
329 , fClip(this)
330 , fColorDepthBoundsManager(std::make_unique<HybridBoundsManager>(
331 fDC->imageInfo().dimensions(), kGridCellSize, kMaxBruteForceN, kMaxGridSize))
332 , fDisjointStencilSet(std::make_unique<IntersectionTreeSet>())
333 , fCachedLocalToDevice(SkM44())
334 , fCurrentDepth(DrawOrder::kClearDepth)
335 , fSDFTControl(recorder->priv().caps()->getSDFTControl(
336 fDC->surfaceProps().isUseDeviceIndependentFonts())) {
337 SkASSERT(SkToBool(fDC) && SkToBool(fRecorder));
338 if (fRecorder->priv().caps()->defaultMSAASamplesCount() > 1) {
339 if (fRecorder->priv().caps()->msaaRenderToSingleSampledSupport()) {
340 fMSAASupported = true;
341 } else {
342 TextureInfo msaaTexInfo =
343 fRecorder->priv().caps()->getDefaultMSAATextureInfo(fDC->target()->textureInfo(),
344 Discardable::kYes);
345 fMSAASupported = msaaTexInfo.isValid();
346 }
347 }
348 }
349
~Device()350 Device::~Device() {
351 // The Device should have been marked immutable before it's destroyed, or the Recorder was the
352 // last holder of a reference to it and de-registered the device as part of its cleanup.
353 // However, if the Device was not registered with the recorder (i.e. a scratch device) we don't
354 // require that its recorder be adandoned. Scratch devices must either have been marked
355 // immutable or be destroyed before the recorder has been snapped.
356 SkASSERT(!fRecorder || fScopedRecordingID != 0);
357 #if defined(SK_DEBUG)
358 if (fScopedRecordingID != 0 && fRecorder) {
359 SkASSERT(fScopedRecordingID == fRecorder->priv().nextRecordingID());
360 }
361 // else it wasn't a scratch device, or it was a scratch device that was marked immutable so its
362 // lifetime was validated when setImmutable() was called.
363 #endif
364 }
365
setImmutable()366 void Device::setImmutable() {
367 if (fRecorder) {
368 // Push any pending work to the Recorder now. setImmutable() is only called by the
369 // destructor of a client-owned Surface, or explicitly in layer/filtering workflows. In
370 // both cases this is restricted to the Recorder's thread. This is in contrast to ~Device(),
371 // which might be called from another thread if it was linked to an Image used in multiple
372 // recorders.
373 this->flushPendingWorkToRecorder();
374 fRecorder->deregisterDevice(this);
375 // Abandoning the recorder ensures that there are no further operations that can be recorded
376 // and is relied on by Image::notifyInUse() to detect when it can unlink from a Device.
377 this->abandonRecorder();
378 }
379 }
380
localToDeviceTransform()381 const Transform& Device::localToDeviceTransform() {
382 if (this->checkLocalToDeviceDirty()) {
383 fCachedLocalToDevice = Transform{this->localToDevice44()};
384 }
385 return fCachedLocalToDevice;
386 }
387
strikeDeviceInfo() const388 SkStrikeDeviceInfo Device::strikeDeviceInfo() const {
389 return {this->surfaceProps(), this->scalerContextFlags(), &fSDFTControl};
390 }
391
createDevice(const CreateInfo & info,const SkPaint *)392 sk_sp<SkDevice> Device::createDevice(const CreateInfo& info, const SkPaint*) {
393 // TODO: Inspect the paint and create info to determine if there's anything that has to be
394 // modified to support inline subpasses.
395 SkSurfaceProps props =
396 this->surfaceProps().cloneWithPixelGeometry(info.fPixelGeometry);
397
398 // Skia's convention is to only clear a device if it is non-opaque.
399 LoadOp initialLoadOp = info.fInfo.isOpaque() ? LoadOp::kDiscard : LoadOp::kClear;
400
401 std::string label = this->target()->label();
402 if (label.empty()) {
403 label = "ChildDevice";
404 } else {
405 label += "_ChildDevice";
406 }
407
408 return Make(fRecorder,
409 info.fInfo,
410 skgpu::Budgeted::kYes,
411 Mipmapped::kNo,
412 SkBackingFit::kApprox,
413 props,
414 initialLoadOp,
415 label);
416 }
417
makeSurface(const SkImageInfo & ii,const SkSurfaceProps & props)418 sk_sp<SkSurface> Device::makeSurface(const SkImageInfo& ii, const SkSurfaceProps& props) {
419 return SkSurfaces::RenderTarget(fRecorder, ii, Mipmapped::kNo, &props);
420 }
421
makeImageCopy(const SkIRect & subset,Budgeted budgeted,Mipmapped mipmapped,SkBackingFit backingFit)422 sk_sp<Image> Device::makeImageCopy(const SkIRect& subset,
423 Budgeted budgeted,
424 Mipmapped mipmapped,
425 SkBackingFit backingFit) {
426 ASSERT_SINGLE_OWNER
427 this->flushPendingWorkToRecorder();
428
429 const SkColorInfo& colorInfo = this->imageInfo().colorInfo();
430 TextureProxyView srcView = this->readSurfaceView();
431 if (!srcView) {
432 // readSurfaceView() returns an empty view when the target is not texturable. Create an
433 // equivalent view for the blitting operation.
434 Swizzle readSwizzle = fRecorder->priv().caps()->getReadSwizzle(
435 colorInfo.colorType(), this->target()->textureInfo());
436 srcView = {sk_ref_sp(this->target()), readSwizzle};
437 }
438 std::string label = this->target()->label();
439 if (label.empty()) {
440 label = "CopyDeviceTexture";
441 } else {
442 label += "_DeviceCopy";
443 }
444
445 return Image::Copy(fRecorder, srcView, colorInfo, subset, budgeted, mipmapped, backingFit,
446 label);
447 }
448
onReadPixels(const SkPixmap & pm,int srcX,int srcY)449 bool Device::onReadPixels(const SkPixmap& pm, int srcX, int srcY) {
450 #if defined(GRAPHITE_TEST_UTILS)
451 // This testing-only function should only be called before the Device has detached from its
452 // Recorder, since it's accessed via the test-held Surface.
453 ASSERT_SINGLE_OWNER
454 if (Context* context = fRecorder->priv().context()) {
455 // Add all previous commands generated to the command buffer.
456 // If the client snaps later they'll only get post-read commands in their Recording,
457 // but since they're doing a readPixels in the middle that shouldn't be unexpected.
458 std::unique_ptr<Recording> recording = fRecorder->snap();
459 if (!recording) {
460 return false;
461 }
462 InsertRecordingInfo info;
463 info.fRecording = recording.get();
464 if (!context->insertRecording(info)) {
465 return false;
466 }
467 return context->priv().readPixels(pm, fDC->target(), this->imageInfo(), srcX, srcY);
468 }
469 #endif
470 // We have no access to a context to do a read pixels here.
471 return false;
472 }
473
onWritePixels(const SkPixmap & src,int x,int y)474 bool Device::onWritePixels(const SkPixmap& src, int x, int y) {
475 ASSERT_SINGLE_OWNER
476 // TODO: we may need to share this in a more central place to handle uploads
477 // to backend textures
478
479 const TextureProxy* target = fDC->target();
480
481 // TODO: add mipmap support for createBackendTexture
482
483 if (src.colorType() == kUnknown_SkColorType) {
484 return false;
485 }
486
487 // If one alpha type is unknown and the other isn't, it's too underspecified.
488 if ((src.alphaType() == kUnknown_SkAlphaType) !=
489 (this->imageInfo().alphaType() == kUnknown_SkAlphaType)) {
490 return false;
491 }
492
493 // TODO: canvas2DFastPath?
494
495 if (!fRecorder->priv().caps()->supportsWritePixels(target->textureInfo())) {
496 auto image = SkImages::RasterFromPixmap(src, nullptr, nullptr);
497 image = SkImages::TextureFromImage(fRecorder, image.get());
498 if (!image) {
499 return false;
500 }
501
502 SkPaint paint;
503 paint.setBlendMode(SkBlendMode::kSrc);
504 this->drawImageRect(image.get(),
505 /*src=*/nullptr,
506 SkRect::MakeXYWH(x, y, src.width(), src.height()),
507 SkFilterMode::kNearest,
508 paint,
509 SkCanvas::kFast_SrcRectConstraint);
510 return true;
511 }
512
513 // TODO: check for flips and either handle here or pass info to UploadTask
514
515 // Determine rect to copy
516 SkIRect dstRect = SkIRect::MakePtSize({x, y}, src.dimensions());
517 if (!target->isFullyLazy() && !dstRect.intersect(SkIRect::MakeSize(target->dimensions()))) {
518 return false;
519 }
520
521 // Set up copy location
522 const void* addr = src.addr(dstRect.fLeft - x, dstRect.fTop - y);
523 std::vector<MipLevel> levels;
524 levels.push_back({addr, src.rowBytes()});
525
526 // The writePixels() still respects painter's order, so flush everything to tasks before this
527 // recording the upload for the pixel data.
528 this->internalFlush();
529 // The new upload will be executed before any new draws are recorded and also ensures that
530 // the next call to flushDeviceToRecorder() will produce a non-null DrawTask. If this Device's
531 // target is mipmapped, mipmap generation tasks will be added automatically at that point.
532 return fDC->recordUpload(fRecorder, fDC->refTarget(), src.info().colorInfo(),
533 this->imageInfo().colorInfo(), levels, dstRect, nullptr);
534 }
535
536
537 ///////////////////////////////////////////////////////////////////////////////
538
isClipAntiAliased() const539 bool Device::isClipAntiAliased() const {
540 // All clips are AA'ed unless it's wide-open, empty, or a device-rect with integer coordinates
541 ClipStack::ClipState type = fClip.clipState();
542 if (type == ClipStack::ClipState::kWideOpen || type == ClipStack::ClipState::kEmpty) {
543 return false;
544 } else if (type == ClipStack::ClipState::kDeviceRect) {
545 const ClipStack::Element rect = *fClip.begin();
546 SkASSERT(rect.fShape.isRect() && rect.fLocalToDevice.type() == Transform::Type::kIdentity);
547 return rect.fShape.rect() != rect.fShape.rect().makeRoundOut();
548 } else {
549 return true;
550 }
551 }
552
devClipBounds() const553 SkIRect Device::devClipBounds() const {
554 return rect_to_pixelbounds(fClip.conservativeBounds());
555 }
556
557 // TODO: This is easy enough to support, but do we still need this API in Skia at all?
android_utils_clipAsRgn(SkRegion * region) const558 void Device::android_utils_clipAsRgn(SkRegion* region) const {
559 SkIRect bounds = this->devClipBounds();
560 // Assume wide open and then perform intersect/difference operations reducing the region
561 region->setRect(bounds);
562 const SkRegion deviceBounds(bounds);
563 for (const ClipStack::Element& e : fClip) {
564 SkRegion tmp;
565 if (e.fShape.isRect() && e.fLocalToDevice.type() == Transform::Type::kIdentity) {
566 tmp.setRect(rect_to_pixelbounds(e.fShape.rect()));
567 } else {
568 SkPath tmpPath = e.fShape.asPath();
569 tmpPath.transform(e.fLocalToDevice);
570 tmp.setPath(tmpPath, deviceBounds);
571 }
572
573 region->op(tmp, (SkRegion::Op) e.fOp);
574 }
575 }
576
clipRect(const SkRect & rect,SkClipOp op,bool aa)577 void Device::clipRect(const SkRect& rect, SkClipOp op, bool aa) {
578 SkASSERT(op == SkClipOp::kIntersect || op == SkClipOp::kDifference);
579 // TODO: Snap rect edges to pixel bounds if non-AA and axis-aligned?
580 fClip.clipShape(this->localToDeviceTransform(), Shape{rect}, op);
581 }
582
clipRRect(const SkRRect & rrect,SkClipOp op,bool aa)583 void Device::clipRRect(const SkRRect& rrect, SkClipOp op, bool aa) {
584 SkASSERT(op == SkClipOp::kIntersect || op == SkClipOp::kDifference);
585 // TODO: Snap rrect edges to pixel bounds if non-AA and axis-aligned? Is that worth doing to
586 // seam with non-AA rects even if the curves themselves are AA'ed?
587 fClip.clipShape(this->localToDeviceTransform(), Shape{rrect}, op);
588 }
589
clipPath(const SkPath & path,SkClipOp op,bool aa)590 void Device::clipPath(const SkPath& path, SkClipOp op, bool aa) {
591 SkASSERT(op == SkClipOp::kIntersect || op == SkClipOp::kDifference);
592 // TODO: Ensure all path inspection is handled here or in SkCanvas, and that non-AA rects as
593 // paths are routed appropriately.
594 // TODO: Must also detect paths that are lines so the clip stack can be set to empty
595 fClip.clipShape(this->localToDeviceTransform(), Shape{path}, op);
596 }
597
onClipShader(sk_sp<SkShader> shader)598 void Device::onClipShader(sk_sp<SkShader> shader) {
599 fClip.clipShader(std::move(shader));
600 }
601
602 // TODO: Is clipRegion() on the deprecation chopping block. If not it should be...
clipRegion(const SkRegion & globalRgn,SkClipOp op)603 void Device::clipRegion(const SkRegion& globalRgn, SkClipOp op) {
604 SkASSERT(op == SkClipOp::kIntersect || op == SkClipOp::kDifference);
605
606 Transform globalToDevice{this->globalToDevice()};
607
608 if (globalRgn.isEmpty()) {
609 fClip.clipShape(globalToDevice, Shape{}, op);
610 } else if (globalRgn.isRect()) {
611 // TODO: Region clips are non-AA so this should match non-AA onClipRect(), but we use a
612 // different transform so can't just call that instead.
613 fClip.clipShape(globalToDevice, Shape{SkRect::Make(globalRgn.getBounds())}, op);
614 } else {
615 // TODO: Can we just iterate the region and do non-AA rects for each chunk?
616 SkPath path;
617 globalRgn.getBoundaryPath(&path);
618 fClip.clipShape(globalToDevice, Shape{path}, op);
619 }
620 }
621
replaceClip(const SkIRect & rect)622 void Device::replaceClip(const SkIRect& rect) {
623 // ReplaceClip() is currently not intended to be supported in Graphite since it's only used
624 // for emulating legacy clip ops in Android Framework, and apps/devices that require that
625 // should not use Graphite. However, if it needs to be supported, we could probably implement
626 // it by:
627 // 1. Flush all pending clip element depth draws.
628 // 2. Draw a fullscreen rect to the depth attachment using a Z value greater than what's
629 // been used so far.
630 // 3. Make sure all future "unclipped" draws use this Z value instead of 0 so they aren't
631 // sorted before the depth reset.
632 // 4. Make sure all prior elements are inactive so they can't affect subsequent draws.
633 //
634 // For now, just ignore it.
635 }
636
637 ///////////////////////////////////////////////////////////////////////////////
638
drawPaint(const SkPaint & paint)639 void Device::drawPaint(const SkPaint& paint) {
640 ASSERT_SINGLE_OWNER
641 // We never want to do a fullscreen clear on a fully-lazy render target, because the device size
642 // may be smaller than the final surface we draw to, in which case we don't want to fill the
643 // entire final surface.
644 if (this->isClipWideOpen() && !fDC->target()->isFullyLazy()) {
645 if (!paint_depends_on_dst(paint)) {
646 if (std::optional<SkColor4f> color = extract_paint_color(paint, fDC->colorInfo())) {
647 // do fullscreen clear
648 fDC->clear(*color);
649 return;
650 } else {
651 // This paint does not depend on the destination and covers the entire surface, so
652 // discard everything previously recorded and proceed with the draw.
653 fDC->discard();
654 }
655 }
656 }
657
658 const Transform& localToDevice = this->localToDeviceTransform();
659 if (!localToDevice.valid()) {
660 // TBD: This matches legacy behavior for drawPaint() that requires local coords, although
661 // v1 handles arbitrary transforms when the paint is solid color because it just fills the
662 // device bounds directly. In the new world it might be nice to have non-invertible
663 // transforms formalized (i.e. no drawing ever, handled at SkCanvas level possibly?)
664 return;
665 }
666 Rect localCoveringBounds = localToDevice.inverseMapRect(fClip.conservativeBounds());
667 this->drawGeometry(localToDevice,
668 Geometry(Shape(localCoveringBounds)),
669 paint,
670 DefaultFillStyle(),
671 DrawFlags::kIgnorePathEffect);
672 }
673
drawRect(const SkRect & r,const SkPaint & paint)674 void Device::drawRect(const SkRect& r, const SkPaint& paint) {
675 this->drawGeometry(this->localToDeviceTransform(), Geometry(Shape(r)),
676 paint, SkStrokeRec(paint));
677 }
678
drawVertices(const SkVertices * vertices,sk_sp<SkBlender> blender,const SkPaint & paint,bool skipColorXform)679 void Device::drawVertices(const SkVertices* vertices, sk_sp<SkBlender> blender,
680 const SkPaint& paint, bool skipColorXform) {
681 // TODO - Add GPU handling of skipColorXform once Graphite has its color system more fleshed out.
682 this->drawGeometry(this->localToDeviceTransform(),
683 Geometry(sk_ref_sp(vertices)),
684 paint,
685 DefaultFillStyle(),
686 DrawFlags::kIgnorePathEffect,
687 std::move(blender),
688 skipColorXform);
689 }
690
drawAsTiledImageRect(SkCanvas * canvas,const SkImage * image,const SkRect * src,const SkRect & dst,const SkSamplingOptions & sampling,const SkPaint & paint,SkCanvas::SrcRectConstraint constraint)691 bool Device::drawAsTiledImageRect(SkCanvas* canvas,
692 const SkImage* image,
693 const SkRect* src,
694 const SkRect& dst,
695 const SkSamplingOptions& sampling,
696 const SkPaint& paint,
697 SkCanvas::SrcRectConstraint constraint) {
698 auto recorder = canvas->recorder();
699 if (!recorder) {
700 return false;
701 }
702 SkASSERT(src);
703
704 // For Graphite this is a pretty loose heuristic. The Recorder-local cache size (relative
705 // to the large image's size) is used as a proxy for how conservative we should be when
706 // allocating tiles. Since the tiles will actually be owned by the client (via an
707 // ImageProvider) they won't actually add any memory pressure directly to Graphite.
708 size_t cacheSize = recorder->priv().getResourceCacheLimit();
709 size_t maxTextureSize = recorder->priv().caps()->maxTextureSize();
710
711 #if defined(GRAPHITE_TEST_UTILS)
712 if (gOverrideMaxTextureSizeGraphite) {
713 maxTextureSize = gOverrideMaxTextureSizeGraphite;
714 }
715 gNumTilesDrawnGraphite.store(0, std::memory_order_relaxed);
716 #endif
717
718 [[maybe_unused]] auto [wasTiled, numTiles] =
719 skgpu::TiledTextureUtils::DrawAsTiledImageRect(canvas,
720 image,
721 *src,
722 dst,
723 SkCanvas::kAll_QuadAAFlags,
724 sampling,
725 &paint,
726 constraint,
727 cacheSize,
728 maxTextureSize);
729 #if defined(GRAPHITE_TEST_UTILS)
730 gNumTilesDrawnGraphite.store(numTiles, std::memory_order_relaxed);
731 #endif
732 return wasTiled;
733 }
734
drawOval(const SkRect & oval,const SkPaint & paint)735 void Device::drawOval(const SkRect& oval, const SkPaint& paint) {
736 if (paint.getPathEffect()) {
737 // Dashing requires that the oval path starts on the right side and travels clockwise. This
738 // is the default for the SkPath::Oval constructor, as used by SkBitmapDevice.
739 this->drawGeometry(this->localToDeviceTransform(), Geometry(Shape(SkPath::Oval(oval))),
740 paint, SkStrokeRec(paint));
741 } else {
742 // TODO: This has wasted effort from the SkCanvas level since it instead converts rrects
743 // that happen to be ovals into this, only for us to go right back to rrect.
744 this->drawGeometry(this->localToDeviceTransform(), Geometry(Shape(SkRRect::MakeOval(oval))),
745 paint, SkStrokeRec(paint));
746 }
747 }
748
drawRRect(const SkRRect & rr,const SkPaint & paint)749 void Device::drawRRect(const SkRRect& rr, const SkPaint& paint) {
750 this->drawGeometry(this->localToDeviceTransform(), Geometry(Shape(rr)),
751 paint, SkStrokeRec(paint));
752 }
753
drawPath(const SkPath & path,const SkPaint & paint,bool pathIsMutable)754 void Device::drawPath(const SkPath& path, const SkPaint& paint, bool pathIsMutable) {
755 // Alternatively, we could move this analysis to SkCanvas. Also, we could consider applying the
756 // path effect, being careful about starting point and direction.
757 if (!paint.getPathEffect() && !path.isInverseFillType()) {
758 if (SkRect oval; path.isOval(&oval)) {
759 this->drawGeometry(this->localToDeviceTransform(),
760 Geometry(Shape(SkRRect::MakeOval(oval))),
761 paint,
762 SkStrokeRec(paint));
763 return;
764 }
765 if (SkRRect rrect; path.isRRect(&rrect)) {
766 this->drawGeometry(this->localToDeviceTransform(),
767 Geometry(Shape(rrect)),
768 paint,
769 SkStrokeRec(paint));
770 return;
771 }
772 if (SkRect rect; paint.getStyle() == SkPaint::kFill_Style && path.isRect(&rect)) {
773 this->drawGeometry(this->localToDeviceTransform(),
774 Geometry(Shape(rect)),
775 paint,
776 SkStrokeRec(paint));
777 return;
778 }
779 }
780 this->drawGeometry(this->localToDeviceTransform(), Geometry(Shape(path)),
781 paint, SkStrokeRec(paint));
782 }
783
drawPoints(SkCanvas::PointMode mode,size_t count,const SkPoint * points,const SkPaint & paint)784 void Device::drawPoints(SkCanvas::PointMode mode, size_t count,
785 const SkPoint* points, const SkPaint& paint) {
786 SkStrokeRec stroke(paint, SkPaint::kStroke_Style);
787 size_t next = 0;
788 if (mode == SkCanvas::kPoints_PointMode) {
789 // Treat kPoints mode as stroking zero-length path segments, which produce caps so that
790 // both hairlines and round vs. square geometry are handled entirely on the GPU.
791 // TODO: SkCanvas should probably do the butt to square cap correction.
792 if (paint.getStrokeCap() == SkPaint::kButt_Cap) {
793 stroke.setStrokeParams(SkPaint::kSquare_Cap,
794 paint.getStrokeJoin(),
795 paint.getStrokeMiter());
796 }
797 } else {
798 next = 1;
799 count--;
800 }
801
802 size_t inc = mode == SkCanvas::kLines_PointMode ? 2 : 1;
803 for (size_t i = 0; i < count; i += inc) {
804 this->drawGeometry(this->localToDeviceTransform(),
805 Geometry(Shape(points[i], points[i + next])),
806 paint, stroke);
807 }
808 }
809
drawEdgeAAQuad(const SkRect & rect,const SkPoint clip[4],SkCanvas::QuadAAFlags aaFlags,const SkColor4f & color,SkBlendMode mode)810 void Device::drawEdgeAAQuad(const SkRect& rect,
811 const SkPoint clip[4],
812 SkCanvas::QuadAAFlags aaFlags,
813 const SkColor4f& color,
814 SkBlendMode mode) {
815 SkPaint solidColorPaint;
816 solidColorPaint.setColor4f(color, /*colorSpace=*/nullptr);
817 solidColorPaint.setBlendMode(mode);
818
819 auto flags = SkEnumBitMask<EdgeAAQuad::Flags>(static_cast<EdgeAAQuad::Flags>(aaFlags));
820 EdgeAAQuad quad = clip ? EdgeAAQuad(clip, flags) : EdgeAAQuad(rect, flags);
821 this->drawGeometry(this->localToDeviceTransform(),
822 Geometry(quad),
823 solidColorPaint,
824 DefaultFillStyle(),
825 DrawFlags::kIgnorePathEffect);
826 }
827
drawEdgeAAImageSet(const SkCanvas::ImageSetEntry set[],int count,const SkPoint dstClips[],const SkMatrix preViewMatrices[],const SkSamplingOptions & sampling,const SkPaint & paint,SkCanvas::SrcRectConstraint constraint)828 void Device::drawEdgeAAImageSet(const SkCanvas::ImageSetEntry set[], int count,
829 const SkPoint dstClips[], const SkMatrix preViewMatrices[],
830 const SkSamplingOptions& sampling, const SkPaint& paint,
831 SkCanvas::SrcRectConstraint constraint) {
832 SkASSERT(count > 0);
833
834 SkPaint paintWithShader(paint);
835 int dstClipIndex = 0;
836 for (int i = 0; i < count; ++i) {
837 // If the entry is clipped by 'dstClips', that must be provided
838 SkASSERT(!set[i].fHasClip || dstClips);
839 // Similarly, if it has an extra transform, those must be provided
840 SkASSERT(set[i].fMatrixIndex < 0 || preViewMatrices);
841
842 auto [ imageToDraw, newSampling ] =
843 skgpu::graphite::GetGraphiteBacked(this->recorder(), set[i].fImage.get(), sampling);
844 if (!imageToDraw) {
845 SKGPU_LOG_W("Device::drawImageRect: Creation of Graphite-backed image failed");
846 return;
847 }
848
849 // TODO: Produce an image shading paint key and data directly without having to reconstruct
850 // the equivalent SkPaint for each entry. Reuse the key and data between entries if possible
851 paintWithShader.setShader(paint.refShader());
852 paintWithShader.setAlphaf(paint.getAlphaf() * set[i].fAlpha);
853 SkRect dst = SkModifyPaintAndDstForDrawImageRect(
854 imageToDraw.get(), newSampling, set[i].fSrcRect, set[i].fDstRect,
855 constraint == SkCanvas::kStrict_SrcRectConstraint,
856 &paintWithShader);
857 if (dst.isEmpty()) {
858 return;
859 }
860
861 auto flags =
862 SkEnumBitMask<EdgeAAQuad::Flags>(static_cast<EdgeAAQuad::Flags>(set[i].fAAFlags));
863 EdgeAAQuad quad = set[i].fHasClip ? EdgeAAQuad(dstClips + dstClipIndex, flags)
864 : EdgeAAQuad(dst, flags);
865
866 // TODO: Calling drawGeometry() for each entry re-evaluates the clip stack every time, which
867 // is consistent with Ganesh's behavior. It also matches the behavior if edge-AA images were
868 // submitted one at a time by SkiaRenderer (a nice client simplification). However, we
869 // should explore the performance trade off with doing one bulk evaluation for the whole set
870 if (set[i].fMatrixIndex < 0) {
871 this->drawGeometry(this->localToDeviceTransform(),
872 Geometry(quad),
873 paintWithShader,
874 DefaultFillStyle(),
875 DrawFlags::kIgnorePathEffect);
876 } else {
877 SkM44 xtraTransform(preViewMatrices[set[i].fMatrixIndex]);
878 this->drawGeometry(this->localToDeviceTransform().concat(xtraTransform),
879 Geometry(quad),
880 paintWithShader,
881 DefaultFillStyle(),
882 DrawFlags::kIgnorePathEffect);
883 }
884
885 dstClipIndex += 4 * set[i].fHasClip;
886 }
887 }
888
drawImageRect(const SkImage * image,const SkRect * src,const SkRect & dst,const SkSamplingOptions & sampling,const SkPaint & paint,SkCanvas::SrcRectConstraint constraint)889 void Device::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
890 const SkSamplingOptions& sampling, const SkPaint& paint,
891 SkCanvas::SrcRectConstraint constraint) {
892 SkCanvas::ImageSetEntry single{sk_ref_sp(image),
893 src ? *src : SkRect::Make(image->bounds()),
894 dst,
895 /*alpha=*/1.f,
896 SkCanvas::kAll_QuadAAFlags};
897 this->drawEdgeAAImageSet(&single, 1, nullptr, nullptr, sampling, paint, constraint);
898 }
899
atlasDelegate()900 sktext::gpu::AtlasDrawDelegate Device::atlasDelegate() {
901 return [&](const sktext::gpu::AtlasSubRun* subRun,
902 SkPoint drawOrigin,
903 const SkPaint& paint,
904 sk_sp<SkRefCnt> subRunStorage,
905 sktext::gpu::RendererData rendererData) {
906 this->drawAtlasSubRun(subRun, drawOrigin, paint, subRunStorage, rendererData);
907 };
908 }
909
onDrawGlyphRunList(SkCanvas * canvas,const sktext::GlyphRunList & glyphRunList,const SkPaint & paint)910 void Device::onDrawGlyphRunList(SkCanvas* canvas,
911 const sktext::GlyphRunList& glyphRunList,
912 const SkPaint& paint) {
913 ASSERT_SINGLE_OWNER
914 fRecorder->priv().textBlobCache()->drawGlyphRunList(canvas,
915 this->localToDevice(),
916 glyphRunList,
917 paint,
918 this->strikeDeviceInfo(),
919 this->atlasDelegate());
920 }
921
drawAtlasSubRun(const sktext::gpu::AtlasSubRun * subRun,SkPoint drawOrigin,const SkPaint & paint,sk_sp<SkRefCnt> subRunStorage,sktext::gpu::RendererData rendererData)922 void Device::drawAtlasSubRun(const sktext::gpu::AtlasSubRun* subRun,
923 SkPoint drawOrigin,
924 const SkPaint& paint,
925 sk_sp<SkRefCnt> subRunStorage,
926 sktext::gpu::RendererData rendererData) {
927 ASSERT_SINGLE_OWNER
928
929 const int subRunEnd = subRun->glyphCount();
930 auto regenerateDelegate = [&](sktext::gpu::GlyphVector* glyphs,
931 int begin,
932 int end,
933 skgpu::MaskFormat maskFormat,
934 int padding) {
935 return glyphs->regenerateAtlasForGraphite(begin, end, maskFormat, padding, fRecorder);
936 };
937 for (int subRunCursor = 0; subRunCursor < subRunEnd;) {
938 // For the remainder of the run, add any atlas uploads to the Recorder's TextAtlasManager
939 auto[ok, glyphsRegenerated] = subRun->regenerateAtlas(subRunCursor, subRunEnd,
940 regenerateDelegate);
941 // There was a problem allocating the glyph in the atlas. Bail.
942 if (!ok) {
943 return;
944 }
945 if (glyphsRegenerated) {
946 auto [bounds, localToDevice] = subRun->vertexFiller().boundsAndDeviceMatrix(
947 this->localToDeviceTransform(), drawOrigin);
948 SkPaint subRunPaint = paint;
949 // For color emoji, only the paint alpha affects the final color
950 if (subRun->maskFormat() == skgpu::MaskFormat::kARGB) {
951 subRunPaint.setColor(SK_ColorWHITE);
952 subRunPaint.setAlphaf(paint.getAlphaf());
953 }
954
955 bool useGammaCorrectDistanceTable =
956 this->imageInfo().colorSpace() &&
957 this->imageInfo().colorSpace()->gammaIsLinear();
958 this->drawGeometry(localToDevice,
959 Geometry(SubRunData(subRun,
960 subRunStorage,
961 bounds,
962 this->localToDeviceTransform().inverse(),
963 subRunCursor,
964 glyphsRegenerated,
965 SkPaintPriv::ComputeLuminanceColor(subRunPaint),
966 useGammaCorrectDistanceTable,
967 this->surfaceProps().pixelGeometry(),
968 fRecorder,
969 rendererData)),
970 subRunPaint,
971 DefaultFillStyle(),
972 DrawFlags::kIgnorePathEffect);
973 }
974 subRunCursor += glyphsRegenerated;
975
976 if (subRunCursor < subRunEnd) {
977 // Flush if not all the glyphs are handled because the atlas is out of space.
978 // We flush every Device because the glyphs that are being flushed/referenced are not
979 // necessarily specific to this Device. This addresses both multiple SkSurfaces within
980 // a Recorder, and nested layers.
981 TRACE_EVENT_INSTANT0("skia.gpu", "Glyph atlas full", TRACE_EVENT_SCOPE_NAME_THREAD);
982 fRecorder->priv().flushTrackedDevices();
983 }
984 }
985 }
986
drawGeometry(const Transform & localToDevice,const Geometry & geometry,const SkPaint & paint,const SkStrokeRec & style,SkEnumBitMask<DrawFlags> flags,sk_sp<SkBlender> primitiveBlender,bool skipColorXform)987 void Device::drawGeometry(const Transform& localToDevice,
988 const Geometry& geometry,
989 const SkPaint& paint,
990 const SkStrokeRec& style,
991 SkEnumBitMask<DrawFlags> flags,
992 sk_sp<SkBlender> primitiveBlender,
993 bool skipColorXform) {
994 ASSERT_SINGLE_OWNER
995
996 if (!localToDevice.valid()) {
997 // If the transform is not invertible or not finite then drawing isn't well defined.
998 SKGPU_LOG_W("Skipping draw with non-invertible/non-finite transform.");
999 return;
1000 }
1001
1002 // Heavy weight paint options like path effects, mask filters, and stroke-and-fill style are
1003 // applied on the CPU by generating a new shape and recursing on drawGeometry with updated flags
1004 if (!(flags & DrawFlags::kIgnorePathEffect) && paint.getPathEffect()) {
1005 // Apply the path effect before anything else, which if we are applying here, means that we
1006 // are dealing with a Shape. drawVertices (and a SkVertices geometry) should pass in
1007 // kIgnorePathEffect per SkCanvas spec. Text geometry also should pass in kIgnorePathEffect
1008 // because the path effect is applied per glyph by the SkStrikeSpec already.
1009 SkASSERT(geometry.isShape());
1010
1011 // TODO: If asADash() returns true and the base path matches the dashing fast path, then
1012 // that should be detected now as well. Maybe add dashPath to Device so canvas can handle it
1013 SkStrokeRec newStyle = style;
1014 float maxScaleFactor = localToDevice.maxScaleFactor();
1015 if (localToDevice.type() == Transform::Type::kPerspective) {
1016 auto bounds = geometry.bounds();
1017 float tl = std::get<1>(localToDevice.scaleFactors({bounds.left(), bounds.top()}));
1018 float tr = std::get<1>(localToDevice.scaleFactors({bounds.right(), bounds.top()}));
1019 float br = std::get<1>(localToDevice.scaleFactors({bounds.right(), bounds.bot()}));
1020 float bl = std::get<1>(localToDevice.scaleFactors({bounds.left(), bounds.bot()}));
1021 maxScaleFactor = std::max(std::max(tl, tr), std::max(bl, br));
1022 }
1023 newStyle.setResScale(maxScaleFactor);
1024 SkPath dst;
1025 if (paint.getPathEffect()->filterPath(&dst, geometry.shape().asPath(), &newStyle,
1026 nullptr, localToDevice)) {
1027 dst.setIsVolatile(true);
1028 // Recurse using the path and new style, while disabling downstream path effect handling
1029 this->drawGeometry(localToDevice, Geometry(Shape(dst)), paint, newStyle,
1030 flags | DrawFlags::kIgnorePathEffect, std::move(primitiveBlender),
1031 skipColorXform);
1032 return;
1033 } else {
1034 SKGPU_LOG_W("Path effect failed to apply, drawing original path.");
1035 this->drawGeometry(localToDevice, geometry, paint, style,
1036 flags | DrawFlags::kIgnorePathEffect, std::move(primitiveBlender),
1037 skipColorXform);
1038 return;
1039 }
1040 }
1041
1042 // TODO: The tessellating and atlas path renderers haven't implemented perspective yet, so
1043 // transform to device space so we draw something approximately correct (barring local coord
1044 // issues).
1045 if (geometry.isShape() && localToDevice.type() == Transform::Type::kPerspective &&
1046 !is_simple_shape(geometry.shape(), style.getStyle())) {
1047 SkPath devicePath = geometry.shape().asPath();
1048 devicePath.transform(localToDevice.matrix().asM33());
1049 devicePath.setIsVolatile(true);
1050 this->drawGeometry(Transform::Identity(), Geometry(Shape(devicePath)), paint, style, flags,
1051 std::move(primitiveBlender), skipColorXform);
1052 return;
1053 }
1054
1055 // TODO: Manually snap pixels for rects, rrects, and lines if paint is non-AA (ideally also
1056 // consider snapping stroke width and/or adjusting geometry for hairlines). This pixel snapping
1057 // math should be consistent with how non-AA clip [r]rects are handled.
1058
1059 // If we got here, then path effects should have been handled and the style should be fill or
1060 // stroke/hairline. Stroke-and-fill is not handled by DrawContext, but is emulated here by
1061 // drawing twice--one stroke and one fill--using the same depth value.
1062 SkASSERT(!SkToBool(paint.getPathEffect()) || (flags & DrawFlags::kIgnorePathEffect));
1063
1064 // TODO: Some renderer decisions could depend on the clip (see PathAtlas::addShape for
1065 // one workaround) so we should figure out how to remove this circular dependency.
1066
1067 // We assume that we will receive a renderer, or a PathAtlas. If it's a PathAtlas,
1068 // then we assume that the renderer chosen in PathAtlas::addShape() will have
1069 // single-channel coverage, require AA bounds outsetting, and have a single renderStep.
1070 auto [renderer, pathAtlas] =
1071 this->chooseRenderer(localToDevice, geometry, style, /*requireMSAA=*/false);
1072 if (!renderer && !pathAtlas) {
1073 SKGPU_LOG_W("Skipping draw with no supported renderer or PathAtlas.");
1074 return;
1075 }
1076
1077 // Calculate the clipped bounds of the draw and determine the clip elements that affect the
1078 // draw without updating the clip stack.
1079 const bool outsetBoundsForAA = renderer ? renderer->outsetBoundsForAA() : true;
1080 ClipStack::ElementList clipElements;
1081 const Clip clip =
1082 fClip.visitClipStackForDraw(localToDevice, geometry, style, outsetBoundsForAA,
1083 &clipElements);
1084 if (clip.isClippedOut()) {
1085 // Clipped out, so don't record anything.
1086 return;
1087 }
1088
1089 // Figure out what dst color requirements we have, if any.
1090 DstReadRequirement dstReadReq = DstReadRequirement::kNone;
1091 const SkBlenderBase* blender = as_BB(paint.getBlender());
1092 const std::optional<SkBlendMode> blendMode = blender ? blender->asBlendMode()
1093 : SkBlendMode::kSrcOver;
1094 const Coverage rendererCoverage = renderer ? renderer->coverage()
1095 : Coverage::kSingleChannel;
1096 dstReadReq = GetDstReadRequirement(recorder()->priv().caps(), blendMode, rendererCoverage);
1097
1098 // When using a tessellating path renderer a stroke-and-fill is rendered using two draws. When
1099 // drawing from an atlas we issue a single draw as the atlas mask covers both styles.
1100 SkStrokeRec::Style styleType = style.getStyle();
1101 const int numNewRenderSteps =
1102 renderer ? renderer->numRenderSteps() : 1 +
1103 (!pathAtlas && (styleType == SkStrokeRec::kStrokeAndFill_Style)
1104 ? fRecorder->priv().rendererProvider()->tessellatedStrokes()->numRenderSteps()
1105 : 0);
1106
1107 // Decide if we have any reason to flush pending work. We want to flush before updating the clip
1108 // state or making any permanent changes to a path atlas, since otherwise clip operations and/or
1109 // atlas entries for the current draw will be flushed.
1110 const bool needsFlush = this->needsFlushBeforeDraw(numNewRenderSteps, dstReadReq);
1111 if (needsFlush) {
1112 if (pathAtlas != nullptr) {
1113 // We need to flush work for all devices associated with the current Recorder.
1114 // Otherwise we may end up with outstanding draws that depend on past atlas state.
1115 fRecorder->priv().flushTrackedDevices();
1116 } else {
1117 this->flushPendingWorkToRecorder();
1118 }
1119 }
1120
1121 // If an atlas path renderer was chosen we need to insert the shape into the atlas and schedule
1122 // it to be drawn.
1123 std::optional<PathAtlas::MaskAndOrigin> atlasMask; // only used if `pathAtlas != nullptr`
1124 if (pathAtlas != nullptr) {
1125 std::tie(renderer, atlasMask) = pathAtlas->addShape(clip.transformedShapeBounds(),
1126 geometry.shape(),
1127 localToDevice,
1128 style);
1129
1130 // If there was no space in the atlas and we haven't flushed already, then flush pending
1131 // work to clear up space in the atlas. If we had already flushed once (which would have
1132 // cleared the atlas) then the atlas is too small for this shape.
1133 if (!atlasMask && !needsFlush) {
1134 // We need to flush work for all devices associated with the current Recorder.
1135 // Otherwise we may end up with outstanding draws that depend on past atlas state.
1136 fRecorder->priv().flushTrackedDevices();
1137
1138 // Try inserting the shape again.
1139 std::tie(renderer, atlasMask) = pathAtlas->addShape(clip.transformedShapeBounds(),
1140 geometry.shape(),
1141 localToDevice,
1142 style);
1143 }
1144
1145 if (!atlasMask) {
1146 SKGPU_LOG_E("Failed to add shape to atlas!");
1147 // TODO(b/285195175): This can happen if the atlas is not large enough or a compatible
1148 // atlas texture cannot be created. Handle the first case in `chooseRenderer` and make
1149 // sure that the atlas path renderer is not chosen if the path is larger than the atlas
1150 // texture.
1151 return;
1152 }
1153 // Since addShape() was successful we should have a valid Renderer now.
1154 SkASSERT(renderer);
1155 }
1156
1157 // Update the clip stack after issuing a flush (if it was needed). A draw will be recorded after
1158 // this point.
1159 DrawOrder order(fCurrentDepth.next());
1160 CompressedPaintersOrder clipOrder = fClip.updateClipStateForDraw(
1161 clip, clipElements, fColorDepthBoundsManager.get(), order.depth());
1162
1163 #if defined(SK_DEBUG)
1164 // Renderers and their component RenderSteps have flexibility in defining their
1165 // DepthStencilSettings. However, the clipping and ordering managed between Device and ClipStack
1166 // requires that only GREATER or GEQUAL depth tests are used for draws recorded through the
1167 // client-facing, painters-order-oriented API. We assert here vs. in Renderer's constructor to
1168 // allow internal-oriented Renderers that are never selected for a "regular" draw call to have
1169 // more flexibility in their settings.
1170 for (const RenderStep* step : renderer->steps()) {
1171 auto dss = step->depthStencilSettings();
1172 SkASSERT((!step->performsShading() || dss.fDepthTestEnabled) &&
1173 (!dss.fDepthTestEnabled ||
1174 dss.fDepthCompareOp == CompareOp::kGreater ||
1175 dss.fDepthCompareOp == CompareOp::kGEqual));
1176 }
1177 #endif
1178
1179 // A draw's order always depends on the clips that must be drawn before it
1180 order.dependsOnPaintersOrder(clipOrder);
1181
1182 // A primitive blender should be ignored if there is no primitive color to blend against.
1183 // Additionally, if a renderer emits a primitive color, then a null primitive blender should
1184 // be interpreted as SrcOver blending mode.
1185 if (!renderer->emitsPrimitiveColor()) {
1186 primitiveBlender = nullptr;
1187 } else if (!SkToBool(primitiveBlender)) {
1188 primitiveBlender = SkBlender::Mode(SkBlendMode::kSrcOver);
1189 }
1190
1191 // If a draw is not opaque, it must be drawn after the most recent draw it intersects with in
1192 // order to blend correctly. We always query the most recent draw (even when opaque) because it
1193 // also lets Device easily track whether or not there are any overlapping draws.
1194 PaintParams shading{paint,
1195 std::move(primitiveBlender),
1196 sk_ref_sp(clip.shader()),
1197 dstReadReq,
1198 skipColorXform};
1199 const bool dependsOnDst = rendererCoverage != Coverage::kNone || paint_depends_on_dst(shading);
1200 if (dependsOnDst) {
1201 CompressedPaintersOrder prevDraw =
1202 fColorDepthBoundsManager->getMostRecentDraw(clip.drawBounds());
1203 order.dependsOnPaintersOrder(prevDraw);
1204 }
1205
1206 // Now that the base paint order and draw bounds are finalized, if the Renderer relies on the
1207 // stencil attachment, we compute a secondary sorting field to allow disjoint draws to reorder
1208 // the RenderSteps across draws instead of in sequence for each draw.
1209 if (renderer->depthStencilFlags() & DepthStencilFlags::kStencil) {
1210 DisjointStencilIndex setIndex = fDisjointStencilSet->add(order.paintOrder(),
1211 clip.drawBounds());
1212 order.dependsOnStencil(setIndex);
1213 }
1214
1215 // TODO(b/330864257): This is an extra traversal of all paint effects, that can be avoided when
1216 // the paint key itself is determined inside this function.
1217 shading.notifyImagesInUse(fRecorder, fDC.get());
1218
1219 // If an atlas path renderer was chosen, then record a single CoverageMaskShape draw.
1220 // The shape will be scheduled to be rendered or uploaded into the atlas during the
1221 // next invocation of flushPendingWorkToRecorder().
1222 if (pathAtlas != nullptr) {
1223 // Record the draw as a fill since stroking is handled by the atlas render/upload.
1224 SkASSERT(atlasMask.has_value());
1225 auto [mask, origin] = *atlasMask;
1226 fDC->recordDraw(renderer, Transform::Translate(origin.fX, origin.fY), Geometry(mask),
1227 clip, order, &shading, nullptr);
1228 } else {
1229 if (styleType == SkStrokeRec::kStroke_Style ||
1230 styleType == SkStrokeRec::kHairline_Style ||
1231 styleType == SkStrokeRec::kStrokeAndFill_Style) {
1232 // For stroke-and-fill, 'renderer' is used for the fill and we always use the
1233 // TessellatedStrokes renderer; for stroke and hairline, 'renderer' is used.
1234 StrokeStyle stroke(style.getWidth(), style.getMiter(), style.getJoin(), style.getCap());
1235 fDC->recordDraw(styleType == SkStrokeRec::kStrokeAndFill_Style
1236 ? fRecorder->priv().rendererProvider()->tessellatedStrokes()
1237 : renderer,
1238 localToDevice, geometry, clip, order, &shading, &stroke);
1239 }
1240 if (styleType == SkStrokeRec::kFill_Style ||
1241 styleType == SkStrokeRec::kStrokeAndFill_Style) {
1242 fDC->recordDraw(renderer, localToDevice, geometry, clip, order, &shading, nullptr);
1243 }
1244 }
1245
1246 // TODO: If 'fullyOpaque' is true, it might be useful to store the draw bounds and Z in a
1247 // special occluders list for filtering the DrawList/DrawPass when flushing.
1248 // const bool fullyOpaque = !dependsOnDst &&
1249 // clipOrder == DrawOrder::kNoIntersection &&
1250 // shape.isRect() &&
1251 // localToDevice.type() <= Transform::Type::kRectStaysRect;
1252
1253 // Post-draw book keeping (bounds manager, depth tracking, etc.)
1254 fColorDepthBoundsManager->recordDraw(clip.drawBounds(), order.paintOrder());
1255 fCurrentDepth = order.depth();
1256
1257 // TODO(b/238758897): When we enable layer elision that depends on draws not overlapping, we
1258 // can use the `getMostRecentDraw()` query to determine that, although that will mean querying
1259 // even if the draw does not depend on dst (so should be only be used when the Device is an
1260 // elision candidate).
1261 }
1262
drawClipShape(const Transform & localToDevice,const Shape & shape,const Clip & clip,DrawOrder order)1263 void Device::drawClipShape(const Transform& localToDevice,
1264 const Shape& shape,
1265 const Clip& clip,
1266 DrawOrder order) {
1267 // A clip draw's state is almost fully defined by the ClipStack. The only thing we need
1268 // to account for is selecting a Renderer and tracking the stencil buffer usage.
1269 Geometry geometry{shape};
1270 auto [renderer, pathAtlas] = this->chooseRenderer(localToDevice,
1271 geometry,
1272 DefaultFillStyle(),
1273 /*requireMSAA=*/true);
1274 if (!renderer) {
1275 SKGPU_LOG_W("Skipping clip with no supported path renderer.");
1276 return;
1277 } else if (renderer->depthStencilFlags() & DepthStencilFlags::kStencil) {
1278 DisjointStencilIndex setIndex = fDisjointStencilSet->add(order.paintOrder(),
1279 clip.drawBounds());
1280 order.dependsOnStencil(setIndex);
1281 }
1282
1283 // This call represents one of the deferred clip shapes that's already pessimistically counted
1284 // in needsFlushBeforeDraw(), so the DrawContext should have room to add it.
1285 SkASSERT(fDC->pendingRenderSteps() + renderer->numRenderSteps() < DrawList::kMaxRenderSteps);
1286
1287 // Anti-aliased clipping requires the renderer to use MSAA to modify the depth per sample, so
1288 // analytic coverage renderers cannot be used.
1289 SkASSERT(renderer->coverage() == Coverage::kNone && renderer->requiresMSAA());
1290 SkASSERT(pathAtlas == nullptr);
1291
1292 // Clips draws are depth-only (null PaintParams), and filled (null StrokeStyle).
1293 // TODO: Remove this CPU-transform once perspective is supported for all path renderers
1294 if (localToDevice.type() == Transform::Type::kPerspective) {
1295 SkPath devicePath = geometry.shape().asPath();
1296 devicePath.transform(localToDevice.matrix().asM33());
1297 fDC->recordDraw(renderer, Transform::Identity(), Geometry(Shape(devicePath)), clip, order,
1298 nullptr, nullptr);
1299 } else {
1300 fDC->recordDraw(renderer, localToDevice, geometry, clip, order, nullptr, nullptr);
1301 }
1302 // This ensures that draws recorded after this clip shape has been popped off the stack will
1303 // be unaffected by the Z value the clip shape wrote to the depth attachment.
1304 if (order.depth() > fCurrentDepth) {
1305 fCurrentDepth = order.depth();
1306 }
1307 }
1308
1309 // TODO: Currently all Renderers are always defined, but with config options and caps that may not
1310 // be the case, in which case chooseRenderer() will have to go through compatible choices.
chooseRenderer(const Transform & localToDevice,const Geometry & geometry,const SkStrokeRec & style,bool requireMSAA) const1311 std::pair<const Renderer*, PathAtlas*> Device::chooseRenderer(const Transform& localToDevice,
1312 const Geometry& geometry,
1313 const SkStrokeRec& style,
1314 bool requireMSAA) const {
1315 const RendererProvider* renderers = fRecorder->priv().rendererProvider();
1316 SkASSERT(renderers);
1317 SkStrokeRec::Style type = style.getStyle();
1318
1319 if (geometry.isSubRun()) {
1320 SkASSERT(!requireMSAA);
1321 sktext::gpu::RendererData rendererData = geometry.subRunData().rendererData();
1322 if (!rendererData.isSDF) {
1323 return {renderers->bitmapText(rendererData.isLCD), nullptr};
1324 }
1325 // Even though the SkPaint can request subpixel rendering, we still need to match
1326 // this with the pixel geometry.
1327 bool useLCD = rendererData.isLCD &&
1328 geometry.subRunData().pixelGeometry() != kUnknown_SkPixelGeometry;
1329 return {renderers->sdfText(useLCD), nullptr};
1330 } else if (geometry.isVertices()) {
1331 SkVerticesPriv info(geometry.vertices()->priv());
1332 return {renderers->vertices(info.mode(), info.hasColors(), info.hasTexCoords()), nullptr};
1333 } else if (geometry.isCoverageMaskShape()) {
1334 // drawCoverageMask() passes in CoverageMaskShapes that reference a provided texture.
1335 // The CoverageMask renderer can also be chosen later on if the shape is assigned to
1336 // to be rendered into the PathAtlas, in which case the 2nd return value is non-null.
1337 return {renderers->coverageMask(), nullptr};
1338 } else if (geometry.isEdgeAAQuad()) {
1339 SkASSERT(!requireMSAA && style.isFillStyle());
1340 // handled by specialized system, simplified from rects and round rects
1341 return {renderers->perEdgeAAQuad(), nullptr};
1342 } else if (geometry.isAnalyticBlur()) {
1343 return {renderers->analyticBlur(), nullptr};
1344 } else if (!geometry.isShape()) {
1345 // We must account for new Geometry types with specific Renderers
1346 return {nullptr, nullptr};
1347 }
1348
1349 const Shape& shape = geometry.shape();
1350 // We can't use this renderer if we require MSAA for an effect (i.e. clipping or stroke+fill).
1351 if (!requireMSAA && is_simple_shape(shape, type)) {
1352 return {renderers->analyticRRect(), nullptr};
1353 }
1354
1355 // Path rendering options. For now the strategy is very simple and not optimal:
1356 // I. Use tessellation if MSAA is required for an effect.
1357 // II: otherwise:
1358 // 1. Always use compute AA if supported unless it was excluded by ContextOptions or the
1359 // compute renderer cannot render the shape efficiently yet (based on the result of
1360 // `isSuitableForAtlasing`).
1361 // 2. Fall back to CPU raster AA if hardware MSAA is disabled or it was explicitly requested
1362 // via ContextOptions.
1363 // 3. Otherwise use tessellation.
1364 #if defined(GRAPHITE_TEST_UTILS)
1365 PathRendererStrategy strategy = fRecorder->priv().caps()->requestedPathRendererStrategy();
1366 #else
1367 PathRendererStrategy strategy = PathRendererStrategy::kDefault;
1368 #endif
1369
1370 PathAtlas* pathAtlas = nullptr;
1371 AtlasProvider* atlasProvider = fRecorder->priv().atlasProvider();
1372
1373 // Prefer compute atlas draws if supported. This currently implicitly filters out clip draws as
1374 // they require MSAA. Eventually we may want to route clip shapes to the atlas as well but not
1375 // if hardware MSAA is required.
1376 std::optional<Rect> drawBounds;
1377 if (atlasProvider->isAvailable(AtlasProvider::PathAtlasFlags::kCompute) &&
1378 use_compute_atlas_when_available(strategy)) {
1379 PathAtlas* atlas = fDC->getComputePathAtlas(fRecorder);
1380 SkASSERT(atlas);
1381
1382 // Don't use the compute renderer if it can't handle the shape efficiently.
1383 //
1384 // Use the conservative clip bounds for a rough estimate of the mask size (this avoids
1385 // having to evaluate the entire clip stack before choosing the renderer as it will have to
1386 // get evaluated again if we fall back to a different renderer).
1387 drawBounds = localToDevice.mapRect(shape.bounds());
1388 if (atlas->isSuitableForAtlasing(*drawBounds, fClip.conservativeBounds())) {
1389 pathAtlas = atlas;
1390 }
1391 }
1392
1393 // Fall back to CPU rendered paths when multisampling is disabled and the compute atlas is not
1394 // available.
1395 // TODO: enable other uses of the software path renderer
1396 if (!pathAtlas && atlasProvider->isAvailable(AtlasProvider::PathAtlasFlags::kRaster) &&
1397 (strategy == PathRendererStrategy::kRasterAA ||
1398 (strategy == PathRendererStrategy::kDefault && !fMSAASupported))) {
1399 // NOTE: RasterPathAtlas doesn't implement `PathAtlas::isSuitableForAtlasing` as it doesn't
1400 // reject paths (unlike ComputePathAtlas).
1401 pathAtlas = atlasProvider->getRasterPathAtlas();
1402 }
1403
1404 if (!requireMSAA && pathAtlas) {
1405 // If we got here it means that we should draw with an atlas renderer if we can and avoid
1406 // resorting to one of the tessellating techniques.
1407 return {nullptr, pathAtlas};
1408 }
1409
1410 // If we got here, it requires tessellated path rendering or an MSAA technique applied to a
1411 // simple shape (so we interpret them as paths to reduce the number of pipelines we need).
1412
1413 // TODO: All shapes that select a tessellating path renderer need to be "pre-chopped" if they
1414 // are large enough to exceed the fixed count tessellation limits. Fills are pre-chopped to the
1415 // viewport bounds, strokes and stroke-and-fills are pre-chopped to the viewport bounds outset
1416 // by the stroke radius (hence taking the whole style and not just its type).
1417
1418 if (type == SkStrokeRec::kStroke_Style ||
1419 type == SkStrokeRec::kHairline_Style) {
1420 // Unlike in Ganesh, the HW stroke tessellator can work with arbitrary paints since the
1421 // depth test prevents double-blending when there is transparency, thus we can HW stroke
1422 // any path regardless of its paint.
1423 // TODO: We treat inverse-filled strokes as regular strokes. We could handle them by
1424 // stenciling first with the HW stroke tessellator and then covering their bounds, but
1425 // inverse-filled strokes are not well-specified in our public canvas behavior so we may be
1426 // able to remove it.
1427 return {renderers->tessellatedStrokes(), nullptr};
1428 }
1429
1430 // 'type' could be kStrokeAndFill, but in that case chooseRenderer() is meant to return the
1431 // fill renderer since tessellatedStrokes() will always be used for the stroke pass.
1432 if (shape.convex() && !shape.inverted()) {
1433 // TODO: Ganesh doesn't have a curve+middle-out triangles option for convex paths, but it
1434 // would be pretty trivial to spin up.
1435 return {renderers->convexTessellatedWedges(), nullptr};
1436 } else {
1437 if (!drawBounds.has_value()) {
1438 drawBounds = localToDevice.mapRect(shape.bounds());
1439 }
1440 drawBounds->intersect(fClip.conservativeBounds());
1441 const bool preferWedges =
1442 // If the draw bounds don't intersect with the clip stack's conservative bounds,
1443 // we'll be drawing a very small area at most, accounting for coverage, so just
1444 // stick with drawing wedges in that case.
1445 drawBounds->isEmptyNegativeOrNaN() ||
1446
1447 // TODO: Combine this heuristic with what is used in PathStencilCoverOp to choose
1448 // between wedges curves consistently in Graphite and Ganesh.
1449 (shape.isPath() && shape.path().countVerbs() < 50) ||
1450 drawBounds->area() <= (256 * 256);
1451
1452 if (preferWedges) {
1453 return {renderers->stencilTessellatedWedges(shape.fillType()), nullptr};
1454 } else {
1455 return {renderers->stencilTessellatedCurvesAndTris(shape.fillType()), nullptr};
1456 }
1457 }
1458 }
1459
lastDrawTask() const1460 sk_sp<Task> Device::lastDrawTask() const {
1461 SkASSERT(this->isScratchDevice());
1462 return fLastTask;
1463 }
1464
flushPendingWorkToRecorder()1465 void Device::flushPendingWorkToRecorder() {
1466 TRACE_EVENT0("skia.gpu", TRACE_FUNC);
1467
1468 // If this is a scratch device being flushed, it should only be flushing into the expected
1469 // next recording from when the Device was first created.
1470 SkASSERT(fRecorder);
1471 SkASSERT(fScopedRecordingID == 0 || fScopedRecordingID == fRecorder->priv().nextRecordingID());
1472
1473 // TODO(b/330864257): flushPendingWorkToRecorder() can be recursively called if this Device
1474 // recorded a picture shader draw and during a flush (triggered by snap or automatically from
1475 // reaching limits), the picture shader will be rendered to a new device. If that picture drawn
1476 // to the temporary device fills up an atlas it can trigger the global
1477 // recorder->flushTrackedDevices(), which will then encounter this device that is already in
1478 // the midst of flushing. To avoid crashing we only actually flush the first time this is called
1479 // and set a bit to early-out on any recursive calls.
1480 // This is not an ideal solution since the temporary Device's flush-the-world may have reset
1481 // atlas entries that the current Device's flushed draws will reference. But at this stage it's
1482 // not possible to split the already recorded draws into a before-list and an after-list that
1483 // can reference the old and new contents of the atlas. While avoiding the crash, this may cause
1484 // incorrect accesses to a shared atlas. Once paint data is extracted at draw time, picture
1485 // shaders will be resolved outside of flushes and then this will be fixed automatically.
1486 if (fIsFlushing) {
1487 return;
1488 } else {
1489 fIsFlushing = true;
1490 }
1491
1492 this->internalFlush();
1493 sk_sp<Task> drawTask = fDC->snapDrawTask(fRecorder);
1494 if (this->isScratchDevice()) {
1495 // TODO(b/323887221): Once shared atlas resources are less brittle, scratch devices won't
1496 // flush to the recorder at all and will only store the snapped task here.
1497 fLastTask = drawTask;
1498 } else {
1499 // Non-scratch devices do not need to point back to the last snapped task since they are
1500 // always added to the root task list.
1501 // TODO: It is currently possible for scratch devices to be flushed and instantiated before
1502 // their work is finished, meaning they will produce additional tasks to be included in
1503 // a follow-up Recording: https://chat.google.com/room/AAAA2HlH94I/YU0XdFqX2Uw.
1504 // However, in this case they no longer appear scratch because the first Recording
1505 // instantiated the targets. When scratch devices are not actually registered with the
1506 // Recorder and are only included when they are drawn (e.g. restored), we should be able to
1507 // assert that `fLastTask` is null.
1508 fLastTask = nullptr;
1509 }
1510
1511 if (drawTask) {
1512 fRecorder->priv().add(std::move(drawTask));
1513
1514 // TODO(b/297344089): This always regenerates mipmaps on the draw target when it's drawn to.
1515 // This could be wasteful if we draw to a target multiple times before reading from it with
1516 // downscaling.
1517 if (fDC->target()->mipmapped() == Mipmapped::kYes) {
1518 if (!GenerateMipmaps(fRecorder, fDC->refTarget(), fDC->colorInfo())) {
1519 SKGPU_LOG_W("Device::flushPendingWorkToRecorder: Failed to generate mipmaps");
1520 }
1521 }
1522 }
1523
1524 fIsFlushing = false;
1525 }
1526
internalFlush()1527 void Device::internalFlush() {
1528 TRACE_EVENT0("skia.gpu", TRACE_FUNC);
1529 ASSERT_SINGLE_OWNER
1530
1531 // Push any pending uploads from the atlas provider that pending draws reference.
1532 fRecorder->priv().atlasProvider()->recordUploads(fDC.get());
1533
1534 // Clip shapes are depth-only draws, but aren't recorded in the DrawContext until a flush in
1535 // order to determine the Z values for each element.
1536 fClip.recordDeferredClipDraws();
1537
1538 // Flush all pending items to the internal task list and reset Device tracking state
1539 fDC->flush(fRecorder);
1540
1541 fColorDepthBoundsManager->reset();
1542 fDisjointStencilSet->reset();
1543 fCurrentDepth = DrawOrder::kClearDepth;
1544
1545 // Any cleanup in the AtlasProvider
1546 fRecorder->priv().atlasProvider()->postFlush();
1547 }
1548
needsFlushBeforeDraw(int numNewRenderSteps,DstReadRequirement dstReadReq) const1549 bool Device::needsFlushBeforeDraw(int numNewRenderSteps, DstReadRequirement dstReadReq) const {
1550 // Must also account for the elements in the clip stack that might need to be recorded.
1551 numNewRenderSteps += fClip.maxDeferredClipDraws() * Renderer::kMaxRenderSteps;
1552 return // Need flush if we don't have room to record into the current list.
1553 (DrawList::kMaxRenderSteps - fDC->pendingRenderSteps()) < numNewRenderSteps ||
1554 // Need flush if this draw needs to copy the dst surface for reading.
1555 dstReadReq == DstReadRequirement::kTextureCopy;
1556 }
1557
drawSpecial(SkSpecialImage * special,const SkMatrix & localToDevice,const SkSamplingOptions & sampling,const SkPaint & paint,SkCanvas::SrcRectConstraint constraint)1558 void Device::drawSpecial(SkSpecialImage* special,
1559 const SkMatrix& localToDevice,
1560 const SkSamplingOptions& sampling,
1561 const SkPaint& paint,
1562 SkCanvas::SrcRectConstraint constraint) {
1563 SkASSERT(!paint.getMaskFilter() && !paint.getImageFilter());
1564
1565 sk_sp<SkImage> img = special->asImage();
1566 if (!img || !as_IB(img)->isGraphiteBacked()) {
1567 SKGPU_LOG_W("Couldn't get Graphite-backed special image as image");
1568 return;
1569 }
1570
1571 SkPaint paintWithShader(paint);
1572 SkRect dst = SkModifyPaintAndDstForDrawImageRect(
1573 img.get(),
1574 sampling,
1575 /*src=*/SkRect::Make(special->subset()),
1576 /*dst=*/SkRect::MakeIWH(special->width(), special->height()),
1577 /*strictSrcSubset=*/constraint == SkCanvas::kStrict_SrcRectConstraint,
1578 &paintWithShader);
1579 if (dst.isEmpty()) {
1580 return;
1581 }
1582
1583 this->drawGeometry(Transform(SkM44(localToDevice)),
1584 Geometry(Shape(dst)),
1585 paintWithShader,
1586 DefaultFillStyle(),
1587 DrawFlags::kIgnorePathEffect);
1588 }
1589
drawCoverageMask(const SkSpecialImage * mask,const SkMatrix & localToDevice,const SkSamplingOptions & sampling,const SkPaint & paint)1590 void Device::drawCoverageMask(const SkSpecialImage* mask,
1591 const SkMatrix& localToDevice,
1592 const SkSamplingOptions& sampling,
1593 const SkPaint& paint) {
1594 CoverageMaskShape::MaskInfo maskInfo{/*fTextureOrigin=*/{SkTo<uint16_t>(mask->subset().fLeft),
1595 SkTo<uint16_t>(mask->subset().fTop)},
1596 /*fMaskSize=*/{SkTo<uint16_t>(mask->width()),
1597 SkTo<uint16_t>(mask->height())}};
1598
1599 auto maskProxyView = AsView(mask->asImage());
1600 if (!maskProxyView) {
1601 SKGPU_LOG_W("Couldn't get Graphite-backed special image as texture proxy view");
1602 return;
1603 }
1604
1605 // Every other "Image" draw reaches the underlying texture via AddToKey/NotifyInUse, which
1606 // handles notifying the image and either flushing the linked surface or attaching draw tasks
1607 // from a scratch device to the current draw context. In this case, 'mask' is very likely to
1608 // be linked to a scratch device, but we must perform the same notifyInUse manually here because
1609 // the texture is consumed by the RenderStep and not part of the PaintParams.
1610 static_cast<Image_Base*>(mask->asImage().get())->notifyInUse(fRecorder, fDC.get());
1611
1612 // 'mask' logically has 0 coverage outside of its pixels, which is equivalent to kDecal tiling.
1613 // However, since we draw geometry tightly fitting 'mask', we can use the better-supported
1614 // kClamp tiling and behave effectively the same way.
1615 const SkTileMode kClamp[2] = {SkTileMode::kClamp, SkTileMode::kClamp};
1616
1617 // Ensure this is kept alive; normally textures are kept alive by the PipelineDataGatherer for
1618 // image shaders, or by the PathAtlas. This is a unique circumstance.
1619 // TODO: Find a cleaner way to ensure 'maskProxyView' is transferred to the final Recording.
1620 TextureDataBlock tdb;
1621 // NOTE: CoverageMaskRenderStep controls the final sampling options; this texture data block
1622 // serves only to keep the mask alive so the sampling passed to add() doesn't matter.
1623 tdb.add(fRecorder->priv().caps(), SkFilterMode::kLinear, kClamp, maskProxyView.refProxy());
1624 fRecorder->priv().textureDataCache()->insert(tdb);
1625
1626 // CoverageMaskShape() wraps a Shape when it's used as a PathAtlas, but in this case the
1627 // original shape has been long lost, so just use a Rect that bounds the image.
1628 CoverageMaskShape maskShape{Shape{Rect::WH((float)mask->width(), (float)mask->height())},
1629 maskProxyView.proxy(),
1630 // Use the active local-to-device transform for this since it
1631 // determines the local coords for evaluating the skpaint, whereas
1632 // the provided 'localToDevice' just places the coverage mask.
1633 this->localToDeviceTransform().inverse(),
1634 maskInfo};
1635
1636 this->drawGeometry(Transform(SkM44(localToDevice)),
1637 Geometry(maskShape),
1638 paint,
1639 DefaultFillStyle(),
1640 DrawFlags::kIgnorePathEffect);
1641 }
1642
makeSpecial(const SkBitmap &)1643 sk_sp<SkSpecialImage> Device::makeSpecial(const SkBitmap&) {
1644 return nullptr;
1645 }
1646
makeSpecial(const SkImage *)1647 sk_sp<SkSpecialImage> Device::makeSpecial(const SkImage*) {
1648 return nullptr;
1649 }
1650
snapSpecial(const SkIRect & subset,bool forceCopy)1651 sk_sp<SkSpecialImage> Device::snapSpecial(const SkIRect& subset, bool forceCopy) {
1652 // NOTE: snapSpecial() can be called even after the device has been marked immutable (null
1653 // recorder), but in those cases it should not be a copy and just returns the image view.
1654 sk_sp<Image> deviceImage;
1655 SkIRect finalSubset;
1656 if (forceCopy || !this->readSurfaceView() || this->readSurfaceView().proxy()->isFullyLazy()) {
1657 deviceImage = this->makeImageCopy(
1658 subset, Budgeted::kYes, Mipmapped::kNo, SkBackingFit::kApprox);
1659 finalSubset = SkIRect::MakeSize(subset.size());
1660 } else {
1661 // TODO(b/323886870): For now snapSpecial() force adds the pending work to the recorder's
1662 // root task list. Once shared atlas management is solved and DrawTasks can be nested in a
1663 // graph then this can go away in favor of auto-flushing through the image's linked device.
1664 if (fRecorder) {
1665 this->flushPendingWorkToRecorder();
1666 }
1667 deviceImage = Image::WrapDevice(sk_ref_sp(this));
1668 finalSubset = subset;
1669 }
1670
1671 if (!deviceImage) {
1672 return nullptr;
1673 }
1674
1675 // For non-copying "snapSpecial", the semantics are returning an image view of the surface data,
1676 // and relying on higher-level draw and restore logic for the contents to make sense.
1677 return SkSpecialImages::MakeGraphite(
1678 fRecorder, finalSubset, std::move(deviceImage), this->surfaceProps());
1679 }
1680
createImageFilteringBackend(const SkSurfaceProps & surfaceProps,SkColorType colorType) const1681 sk_sp<skif::Backend> Device::createImageFilteringBackend(const SkSurfaceProps& surfaceProps,
1682 SkColorType colorType) const {
1683 return skif::MakeGraphiteBackend(fRecorder, surfaceProps, colorType);
1684 }
1685
target()1686 TextureProxy* Device::target() { return fDC->target(); }
1687
readSurfaceView() const1688 TextureProxyView Device::readSurfaceView() const { return fDC->readSurfaceView(); }
1689
isScratchDevice() const1690 bool Device::isScratchDevice() const {
1691 // Scratch device status is inferred from whether or not the Device's target is instantiated.
1692 // By default devices start out un-instantiated unless they are wrapping an existing backend
1693 // texture (definitely not a scratch scenario), or Surface explicitly instantiates the target
1694 // before returning to the client (not a scratch scenario).
1695 //
1696 // Scratch device targets are instantiated during the prepareResources() phase of
1697 // Recorder::snap(). Truly scratch devices that have gone out of scope as intended will have
1698 // already been destroyed at this point. Scratch devices that become longer-lived (linked to
1699 // a client-owned object) automatically transition to non-scratch usage.
1700 return !fDC->target()->isInstantiated() && !fDC->target()->isLazy();
1701 }
1702
convertGlyphRunListToSlug(const sktext::GlyphRunList & glyphRunList,const SkPaint & paint)1703 sk_sp<sktext::gpu::Slug> Device::convertGlyphRunListToSlug(const sktext::GlyphRunList& glyphRunList,
1704 const SkPaint& paint) {
1705 return sktext::gpu::SlugImpl::Make(this->localToDevice(),
1706 glyphRunList,
1707 paint,
1708 this->strikeDeviceInfo(),
1709 SkStrikeCache::GlobalStrikeCache());
1710 }
1711
drawSlug(SkCanvas * canvas,const sktext::gpu::Slug * slug,const SkPaint & paint)1712 void Device::drawSlug(SkCanvas* canvas, const sktext::gpu::Slug* slug, const SkPaint& paint) {
1713 auto slugImpl = static_cast<const sktext::gpu::SlugImpl*>(slug);
1714 slugImpl->subRuns()->draw(canvas, slugImpl->origin(), paint, slugImpl, this->atlasDelegate());
1715 }
1716
drawBlurredRRect(const SkRRect & rrect,const SkPaint & paint,float deviceSigma)1717 bool Device::drawBlurredRRect(const SkRRect& rrect, const SkPaint& paint, float deviceSigma) {
1718 SkStrokeRec style(paint);
1719 if (skgpu::BlurIsEffectivelyIdentity(deviceSigma)) {
1720 this->drawGeometry(this->localToDeviceTransform(),
1721 Geometry(rrect.isRect() ? Shape(rrect.rect()) : Shape(rrect)),
1722 paint,
1723 style);
1724 return true;
1725 }
1726
1727 std::optional<AnalyticBlurMask> analyticBlur = AnalyticBlurMask::Make(
1728 this->recorder(), this->localToDeviceTransform(), deviceSigma, rrect);
1729 if (!analyticBlur) {
1730 return false;
1731 }
1732
1733 this->drawGeometry(this->localToDeviceTransform(), Geometry(*analyticBlur), paint, style);
1734 return true;
1735 }
1736
1737 } // namespace skgpu::graphite
1738