1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <cassert>
16 #include <functional>
17 #include <iostream>
18 #include <map>
19 #include <string>
20 #include <tuple>
21 #include <unordered_map>
22 #include <unordered_set>
23 #include <utility>
24 #include <vector>
25
26 #include "source/cfa.h"
27 #include "source/opcode.h"
28 #include "source/spirv_constant.h"
29 #include "source/spirv_validator_options.h"
30 #include "source/val/basic_block.h"
31 #include "source/val/construct.h"
32 #include "source/val/function.h"
33 #include "source/val/validate.h"
34 #include "source/val/validation_state.h"
35
36 namespace spvtools {
37 namespace val {
38 namespace {
39
ValidatePhi(ValidationState_t & _,const Instruction * inst)40 spv_result_t ValidatePhi(ValidationState_t& _, const Instruction* inst) {
41 auto block = inst->block();
42 size_t num_in_ops = inst->words().size() - 3;
43 if (num_in_ops % 2 != 0) {
44 return _.diag(SPV_ERROR_INVALID_ID, inst)
45 << "OpPhi does not have an equal number of incoming values and "
46 "basic blocks.";
47 }
48
49 if (_.IsVoidType(inst->type_id())) {
50 return _.diag(SPV_ERROR_INVALID_DATA, inst)
51 << "OpPhi must not have void result type";
52 }
53 if (_.IsPointerType(inst->type_id()) &&
54 _.addressing_model() == spv::AddressingModel::Logical) {
55 if (!_.features().variable_pointers) {
56 return _.diag(SPV_ERROR_INVALID_DATA, inst)
57 << "Using pointers with OpPhi requires capability "
58 << "VariablePointers or VariablePointersStorageBuffer";
59 }
60 }
61
62 const Instruction* type_inst = _.FindDef(inst->type_id());
63 assert(type_inst);
64 const spv::Op type_opcode = type_inst->opcode();
65
66 if (!_.options()->before_hlsl_legalization &&
67 !_.HasCapability(spv::Capability::BindlessTextureNV)) {
68 if (type_opcode == spv::Op::OpTypeSampledImage ||
69 (_.HasCapability(spv::Capability::Shader) &&
70 (type_opcode == spv::Op::OpTypeImage ||
71 type_opcode == spv::Op::OpTypeSampler))) {
72 return _.diag(SPV_ERROR_INVALID_ID, inst)
73 << "Result type cannot be Op" << spvOpcodeString(type_opcode);
74 }
75 }
76
77 // Create a uniqued vector of predecessor ids for comparison against
78 // incoming values. OpBranchConditional %cond %label %label produces two
79 // predecessors in the CFG.
80 std::vector<uint32_t> pred_ids;
81 std::transform(block->predecessors()->begin(), block->predecessors()->end(),
82 std::back_inserter(pred_ids),
83 [](const BasicBlock* b) { return b->id(); });
84 std::sort(pred_ids.begin(), pred_ids.end());
85 pred_ids.erase(std::unique(pred_ids.begin(), pred_ids.end()), pred_ids.end());
86
87 size_t num_edges = num_in_ops / 2;
88 if (num_edges != pred_ids.size()) {
89 return _.diag(SPV_ERROR_INVALID_ID, inst)
90 << "OpPhi's number of incoming blocks (" << num_edges
91 << ") does not match block's predecessor count ("
92 << block->predecessors()->size() << ").";
93 }
94
95 std::unordered_set<uint32_t> observed_predecessors;
96
97 for (size_t i = 3; i < inst->words().size(); ++i) {
98 auto inc_id = inst->word(i);
99 if (i % 2 == 1) {
100 // Incoming value type must match the phi result type.
101 auto inc_type_id = _.GetTypeId(inc_id);
102 if (inst->type_id() != inc_type_id) {
103 return _.diag(SPV_ERROR_INVALID_ID, inst)
104 << "OpPhi's result type <id> " << _.getIdName(inst->type_id())
105 << " does not match incoming value <id> " << _.getIdName(inc_id)
106 << " type <id> " << _.getIdName(inc_type_id) << ".";
107 }
108 } else {
109 if (_.GetIdOpcode(inc_id) != spv::Op::OpLabel) {
110 return _.diag(SPV_ERROR_INVALID_ID, inst)
111 << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
112 << " is not an OpLabel.";
113 }
114
115 // Incoming basic block must be an immediate predecessor of the phi's
116 // block.
117 if (!std::binary_search(pred_ids.begin(), pred_ids.end(), inc_id)) {
118 return _.diag(SPV_ERROR_INVALID_ID, inst)
119 << "OpPhi's incoming basic block <id> " << _.getIdName(inc_id)
120 << " is not a predecessor of <id> " << _.getIdName(block->id())
121 << ".";
122 }
123
124 // We must not have already seen this predecessor as one of the phi's
125 // operands.
126 if (observed_predecessors.count(inc_id) != 0) {
127 return _.diag(SPV_ERROR_INVALID_ID, inst)
128 << "OpPhi references incoming basic block <id> "
129 << _.getIdName(inc_id) << " multiple times.";
130 }
131
132 // Note the fact that we have now observed this predecessor.
133 observed_predecessors.insert(inc_id);
134 }
135 }
136
137 return SPV_SUCCESS;
138 }
139
ValidateBranch(ValidationState_t & _,const Instruction * inst)140 spv_result_t ValidateBranch(ValidationState_t& _, const Instruction* inst) {
141 // target operands must be OpLabel
142 const auto id = inst->GetOperandAs<uint32_t>(0);
143 const auto target = _.FindDef(id);
144 if (!target || spv::Op::OpLabel != target->opcode()) {
145 return _.diag(SPV_ERROR_INVALID_ID, inst)
146 << "'Target Label' operands for OpBranch must be the ID "
147 "of an OpLabel instruction";
148 }
149
150 return SPV_SUCCESS;
151 }
152
ValidateBranchConditional(ValidationState_t & _,const Instruction * inst)153 spv_result_t ValidateBranchConditional(ValidationState_t& _,
154 const Instruction* inst) {
155 // num_operands is either 3 or 5 --- if 5, the last two need to be literal
156 // integers
157 const auto num_operands = inst->operands().size();
158 if (num_operands != 3 && num_operands != 5) {
159 return _.diag(SPV_ERROR_INVALID_ID, inst)
160 << "OpBranchConditional requires either 3 or 5 parameters";
161 }
162
163 // grab the condition operand and check that it is a bool
164 const auto cond_id = inst->GetOperandAs<uint32_t>(0);
165 const auto cond_op = _.FindDef(cond_id);
166 if (!cond_op || !cond_op->type_id() ||
167 !_.IsBoolScalarType(cond_op->type_id())) {
168 return _.diag(SPV_ERROR_INVALID_ID, inst) << "Condition operand for "
169 "OpBranchConditional must be "
170 "of boolean type";
171 }
172
173 // target operands must be OpLabel
174 // note that we don't need to check that the target labels are in the same
175 // function,
176 // PerformCfgChecks already checks for that
177 const auto true_id = inst->GetOperandAs<uint32_t>(1);
178 const auto true_target = _.FindDef(true_id);
179 if (!true_target || spv::Op::OpLabel != true_target->opcode()) {
180 return _.diag(SPV_ERROR_INVALID_ID, inst)
181 << "The 'True Label' operand for OpBranchConditional must be the "
182 "ID of an OpLabel instruction";
183 }
184
185 const auto false_id = inst->GetOperandAs<uint32_t>(2);
186 const auto false_target = _.FindDef(false_id);
187 if (!false_target || spv::Op::OpLabel != false_target->opcode()) {
188 return _.diag(SPV_ERROR_INVALID_ID, inst)
189 << "The 'False Label' operand for OpBranchConditional must be the "
190 "ID of an OpLabel instruction";
191 }
192
193 // A similar requirement for SPV_KHR_maximal_reconvergence is deferred until
194 // entry point call trees have been reconrded.
195 if (_.version() >= SPV_SPIRV_VERSION_WORD(1, 6) && true_id == false_id) {
196 return _.diag(SPV_ERROR_INVALID_ID, inst)
197 << "In SPIR-V 1.6 or later, True Label and False Label must be "
198 "different labels";
199 }
200
201 return SPV_SUCCESS;
202 }
203
ValidateSwitch(ValidationState_t & _,const Instruction * inst)204 spv_result_t ValidateSwitch(ValidationState_t& _, const Instruction* inst) {
205 const auto num_operands = inst->operands().size();
206 // At least two operands (selector, default), any more than that are
207 // literal/target.
208
209 const auto sel_type_id = _.GetOperandTypeId(inst, 0);
210 if (!_.IsIntScalarType(sel_type_id)) {
211 return _.diag(SPV_ERROR_INVALID_ID, inst)
212 << "Selector type must be OpTypeInt";
213 }
214
215 const auto default_label = _.FindDef(inst->GetOperandAs<uint32_t>(1));
216 if (default_label->opcode() != spv::Op::OpLabel) {
217 return _.diag(SPV_ERROR_INVALID_ID, inst)
218 << "Default must be an OpLabel instruction";
219 }
220
221 // target operands must be OpLabel
222 for (size_t i = 2; i < num_operands; i += 2) {
223 // literal, id
224 const auto id = inst->GetOperandAs<uint32_t>(i + 1);
225 const auto target = _.FindDef(id);
226 if (!target || spv::Op::OpLabel != target->opcode()) {
227 return _.diag(SPV_ERROR_INVALID_ID, inst)
228 << "'Target Label' operands for OpSwitch must be IDs of an "
229 "OpLabel instruction";
230 }
231 }
232
233 return SPV_SUCCESS;
234 }
235
ValidateReturnValue(ValidationState_t & _,const Instruction * inst)236 spv_result_t ValidateReturnValue(ValidationState_t& _,
237 const Instruction* inst) {
238 const auto value_id = inst->GetOperandAs<uint32_t>(0);
239 const auto value = _.FindDef(value_id);
240 if (!value || !value->type_id()) {
241 return _.diag(SPV_ERROR_INVALID_ID, inst)
242 << "OpReturnValue Value <id> " << _.getIdName(value_id)
243 << " does not represent a value.";
244 }
245 auto value_type = _.FindDef(value->type_id());
246 if (!value_type || spv::Op::OpTypeVoid == value_type->opcode()) {
247 return _.diag(SPV_ERROR_INVALID_ID, inst)
248 << "OpReturnValue value's type <id> "
249 << _.getIdName(value->type_id()) << " is missing or void.";
250 }
251
252 if (_.addressing_model() == spv::AddressingModel::Logical &&
253 spv::Op::OpTypePointer == value_type->opcode() &&
254 !_.features().variable_pointers && !_.options()->relax_logical_pointer) {
255 return _.diag(SPV_ERROR_INVALID_ID, inst)
256 << "OpReturnValue value's type <id> "
257 << _.getIdName(value->type_id())
258 << " is a pointer, which is invalid in the Logical addressing "
259 "model.";
260 }
261
262 const auto function = inst->function();
263 const auto return_type = _.FindDef(function->GetResultTypeId());
264 if (!return_type || return_type->id() != value_type->id()) {
265 return _.diag(SPV_ERROR_INVALID_ID, inst)
266 << "OpReturnValue Value <id> " << _.getIdName(value_id)
267 << "s type does not match OpFunction's return type.";
268 }
269
270 return SPV_SUCCESS;
271 }
272
operator >>(const spv::LoopControlShift & lhs,const spv::LoopControlShift & rhs)273 uint32_t operator>>(const spv::LoopControlShift& lhs,
274 const spv::LoopControlShift& rhs) {
275 return uint32_t(lhs) >> uint32_t(rhs);
276 }
277
ValidateLoopMerge(ValidationState_t & _,const Instruction * inst)278 spv_result_t ValidateLoopMerge(ValidationState_t& _, const Instruction* inst) {
279 const auto merge_id = inst->GetOperandAs<uint32_t>(0);
280 const auto merge = _.FindDef(merge_id);
281 if (!merge || merge->opcode() != spv::Op::OpLabel) {
282 return _.diag(SPV_ERROR_INVALID_ID, inst)
283 << "Merge Block " << _.getIdName(merge_id) << " must be an OpLabel";
284 }
285 if (merge_id == inst->block()->id()) {
286 return _.diag(SPV_ERROR_INVALID_ID, inst)
287 << "Merge Block may not be the block containing the OpLoopMerge\n";
288 }
289
290 const auto continue_id = inst->GetOperandAs<uint32_t>(1);
291 const auto continue_target = _.FindDef(continue_id);
292 if (!continue_target || continue_target->opcode() != spv::Op::OpLabel) {
293 return _.diag(SPV_ERROR_INVALID_ID, inst)
294 << "Continue Target " << _.getIdName(continue_id)
295 << " must be an OpLabel";
296 }
297
298 if (merge_id == continue_id) {
299 return _.diag(SPV_ERROR_INVALID_ID, inst)
300 << "Merge Block and Continue Target must be different ids";
301 }
302
303 const auto loop_control = inst->GetOperandAs<spv::LoopControlShift>(2);
304 if ((loop_control >> spv::LoopControlShift::Unroll) & 0x1 &&
305 (loop_control >> spv::LoopControlShift::DontUnroll) & 0x1) {
306 return _.diag(SPV_ERROR_INVALID_DATA, inst)
307 << "Unroll and DontUnroll loop controls must not both be specified";
308 }
309 if ((loop_control >> spv::LoopControlShift::DontUnroll) & 0x1 &&
310 (loop_control >> spv::LoopControlShift::PeelCount) & 0x1) {
311 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PeelCount and DontUnroll "
312 "loop controls must not "
313 "both be specified";
314 }
315 if ((loop_control >> spv::LoopControlShift::DontUnroll) & 0x1 &&
316 (loop_control >> spv::LoopControlShift::PartialCount) & 0x1) {
317 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "PartialCount and "
318 "DontUnroll loop controls "
319 "must not both be specified";
320 }
321
322 uint32_t operand = 3;
323 if ((loop_control >> spv::LoopControlShift::DependencyLength) & 0x1) {
324 ++operand;
325 }
326 if ((loop_control >> spv::LoopControlShift::MinIterations) & 0x1) {
327 ++operand;
328 }
329 if ((loop_control >> spv::LoopControlShift::MaxIterations) & 0x1) {
330 ++operand;
331 }
332 if ((loop_control >> spv::LoopControlShift::IterationMultiple) & 0x1) {
333 if (inst->operands().size() < operand ||
334 inst->GetOperandAs<uint32_t>(operand) == 0) {
335 return _.diag(SPV_ERROR_INVALID_DATA, inst) << "IterationMultiple loop "
336 "control operand must be "
337 "greater than zero";
338 }
339 ++operand;
340 }
341 if ((loop_control >> spv::LoopControlShift::PeelCount) & 0x1) {
342 ++operand;
343 }
344 if ((loop_control >> spv::LoopControlShift::PartialCount) & 0x1) {
345 ++operand;
346 }
347
348 // That the right number of operands is present is checked by the parser. The
349 // above code tracks operands for expanded validation checking in the future.
350
351 return SPV_SUCCESS;
352 }
353
354 } // namespace
355
printDominatorList(const BasicBlock & b)356 void printDominatorList(const BasicBlock& b) {
357 std::cout << b.id() << " is dominated by: ";
358 const BasicBlock* bb = &b;
359 while (bb->immediate_dominator() != bb) {
360 bb = bb->immediate_dominator();
361 std::cout << bb->id() << " ";
362 }
363 }
364
365 #define CFG_ASSERT(ASSERT_FUNC, TARGET) \
366 if (spv_result_t rcode = ASSERT_FUNC(_, TARGET)) return rcode
367
FirstBlockAssert(ValidationState_t & _,uint32_t target)368 spv_result_t FirstBlockAssert(ValidationState_t& _, uint32_t target) {
369 if (_.current_function().IsFirstBlock(target)) {
370 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
371 << "First block " << _.getIdName(target) << " of function "
372 << _.getIdName(_.current_function().id()) << " is targeted by block "
373 << _.getIdName(_.current_function().current_block()->id());
374 }
375 return SPV_SUCCESS;
376 }
377
MergeBlockAssert(ValidationState_t & _,uint32_t merge_block)378 spv_result_t MergeBlockAssert(ValidationState_t& _, uint32_t merge_block) {
379 if (_.current_function().IsBlockType(merge_block, kBlockTypeMerge)) {
380 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(_.current_function().id()))
381 << "Block " << _.getIdName(merge_block)
382 << " is already a merge block for another header";
383 }
384 return SPV_SUCCESS;
385 }
386
387 /// Update the continue construct's exit blocks once the backedge blocks are
388 /// identified in the CFG.
UpdateContinueConstructExitBlocks(Function & function,const std::vector<std::pair<uint32_t,uint32_t>> & back_edges)389 void UpdateContinueConstructExitBlocks(
390 Function& function,
391 const std::vector<std::pair<uint32_t, uint32_t>>& back_edges) {
392 auto& constructs = function.constructs();
393 // TODO(umar): Think of a faster way to do this
394 for (auto& edge : back_edges) {
395 uint32_t back_edge_block_id;
396 uint32_t loop_header_block_id;
397 std::tie(back_edge_block_id, loop_header_block_id) = edge;
398 auto is_this_header = [=](Construct& c) {
399 return c.type() == ConstructType::kLoop &&
400 c.entry_block()->id() == loop_header_block_id;
401 };
402
403 for (auto construct : constructs) {
404 if (is_this_header(construct)) {
405 Construct* continue_construct =
406 construct.corresponding_constructs().back();
407 assert(continue_construct->type() == ConstructType::kContinue);
408
409 BasicBlock* back_edge_block;
410 std::tie(back_edge_block, std::ignore) =
411 function.GetBlock(back_edge_block_id);
412 continue_construct->set_exit(back_edge_block);
413 }
414 }
415 }
416 }
417
ConstructNames(ConstructType type)418 std::tuple<std::string, std::string, std::string> ConstructNames(
419 ConstructType type) {
420 std::string construct_name, header_name, exit_name;
421
422 switch (type) {
423 case ConstructType::kSelection:
424 construct_name = "selection";
425 header_name = "selection header";
426 exit_name = "merge block";
427 break;
428 case ConstructType::kLoop:
429 construct_name = "loop";
430 header_name = "loop header";
431 exit_name = "merge block";
432 break;
433 case ConstructType::kContinue:
434 construct_name = "continue";
435 header_name = "continue target";
436 exit_name = "back-edge block";
437 break;
438 case ConstructType::kCase:
439 construct_name = "case";
440 header_name = "case entry block";
441 exit_name = "case exit block";
442 break;
443 default:
444 assert(1 == 0 && "Not defined type");
445 }
446
447 return std::make_tuple(construct_name, header_name, exit_name);
448 }
449
450 /// Constructs an error message for construct validation errors
ConstructErrorString(const Construct & construct,const std::string & header_string,const std::string & exit_string,const std::string & dominate_text)451 std::string ConstructErrorString(const Construct& construct,
452 const std::string& header_string,
453 const std::string& exit_string,
454 const std::string& dominate_text) {
455 std::string construct_name, header_name, exit_name;
456 std::tie(construct_name, header_name, exit_name) =
457 ConstructNames(construct.type());
458
459 // TODO(umar): Add header block for continue constructs to error message
460 return "The " + construct_name + " construct with the " + header_name + " " +
461 header_string + " " + dominate_text + " the " + exit_name + " " +
462 exit_string;
463 }
464
465 // Finds the fall through case construct of |target_block| and records it in
466 // |case_fall_through|. Returns SPV_ERROR_INVALID_CFG if the case construct
467 // headed by |target_block| branches to multiple case constructs.
FindCaseFallThrough(ValidationState_t & _,BasicBlock * target_block,uint32_t * case_fall_through,const BasicBlock * merge,const std::unordered_set<uint32_t> & case_targets,Function * function)468 spv_result_t FindCaseFallThrough(
469 ValidationState_t& _, BasicBlock* target_block, uint32_t* case_fall_through,
470 const BasicBlock* merge, const std::unordered_set<uint32_t>& case_targets,
471 Function* function) {
472 std::vector<BasicBlock*> stack;
473 stack.push_back(target_block);
474 std::unordered_set<const BasicBlock*> visited;
475 bool target_reachable = target_block->structurally_reachable();
476 int target_depth = function->GetBlockDepth(target_block);
477 while (!stack.empty()) {
478 auto block = stack.back();
479 stack.pop_back();
480
481 if (block == merge) continue;
482
483 if (!visited.insert(block).second) continue;
484
485 if (target_reachable && block->structurally_reachable() &&
486 target_block->structurally_dominates(*block)) {
487 // Still in the case construct.
488 for (auto successor : *block->successors()) {
489 stack.push_back(successor);
490 }
491 } else {
492 // Exiting the case construct to non-merge block.
493 if (!case_targets.count(block->id())) {
494 int depth = function->GetBlockDepth(block);
495 if ((depth < target_depth) ||
496 (depth == target_depth && block->is_type(kBlockTypeContinue))) {
497 continue;
498 }
499
500 return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
501 << "Case construct that targets "
502 << _.getIdName(target_block->id())
503 << " has invalid branch to block " << _.getIdName(block->id())
504 << " (not another case construct, corresponding merge, outer "
505 "loop merge or outer loop continue)";
506 }
507
508 if (*case_fall_through == 0u) {
509 if (target_block != block) {
510 *case_fall_through = block->id();
511 }
512 } else if (*case_fall_through != block->id()) {
513 // Case construct has at most one branch to another case construct.
514 return _.diag(SPV_ERROR_INVALID_CFG, target_block->label())
515 << "Case construct that targets "
516 << _.getIdName(target_block->id())
517 << " has branches to multiple other case construct targets "
518 << _.getIdName(*case_fall_through) << " and "
519 << _.getIdName(block->id());
520 }
521 }
522 }
523
524 return SPV_SUCCESS;
525 }
526
StructuredSwitchChecks(ValidationState_t & _,Function * function,const Instruction * switch_inst,const BasicBlock * header,const BasicBlock * merge)527 spv_result_t StructuredSwitchChecks(ValidationState_t& _, Function* function,
528 const Instruction* switch_inst,
529 const BasicBlock* header,
530 const BasicBlock* merge) {
531 std::unordered_set<uint32_t> case_targets;
532 for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
533 uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
534 if (target != merge->id()) case_targets.insert(target);
535 }
536 // Tracks how many times each case construct is targeted by another case
537 // construct.
538 std::map<uint32_t, uint32_t> num_fall_through_targeted;
539 uint32_t default_case_fall_through = 0u;
540 uint32_t default_target = switch_inst->GetOperandAs<uint32_t>(1u);
541 bool default_appears_multiple_times = false;
542 for (uint32_t i = 3; i < switch_inst->operands().size(); i += 2) {
543 if (default_target == switch_inst->GetOperandAs<uint32_t>(i)) {
544 default_appears_multiple_times = true;
545 break;
546 }
547 }
548 std::unordered_map<uint32_t, uint32_t> seen_to_fall_through;
549 for (uint32_t i = 1; i < switch_inst->operands().size(); i += 2) {
550 uint32_t target = switch_inst->GetOperandAs<uint32_t>(i);
551 if (target == merge->id()) continue;
552
553 uint32_t case_fall_through = 0u;
554 auto seen_iter = seen_to_fall_through.find(target);
555 if (seen_iter == seen_to_fall_through.end()) {
556 const auto target_block = function->GetBlock(target).first;
557 // OpSwitch must dominate all its case constructs.
558 if (header->structurally_reachable() &&
559 target_block->structurally_reachable() &&
560 !header->structurally_dominates(*target_block)) {
561 return _.diag(SPV_ERROR_INVALID_CFG, header->label())
562 << "Switch header " << _.getIdName(header->id())
563 << " does not structurally dominate its case construct "
564 << _.getIdName(target);
565 }
566
567 if (auto error = FindCaseFallThrough(_, target_block, &case_fall_through,
568 merge, case_targets, function)) {
569 return error;
570 }
571
572 // Track how many time the fall through case has been targeted.
573 if (case_fall_through != 0u) {
574 auto where = num_fall_through_targeted.lower_bound(case_fall_through);
575 if (where == num_fall_through_targeted.end() ||
576 where->first != case_fall_through) {
577 num_fall_through_targeted.insert(
578 where, std::make_pair(case_fall_through, 1));
579 } else {
580 where->second++;
581 }
582 }
583 seen_to_fall_through.insert(std::make_pair(target, case_fall_through));
584 } else {
585 case_fall_through = seen_iter->second;
586 }
587
588 if (case_fall_through == default_target &&
589 !default_appears_multiple_times) {
590 case_fall_through = default_case_fall_through;
591 }
592 if (case_fall_through != 0u) {
593 bool is_default = i == 1;
594 if (is_default) {
595 default_case_fall_through = case_fall_through;
596 } else {
597 // Allow code like:
598 // case x:
599 // case y:
600 // ...
601 // case z:
602 //
603 // Where x and y target the same block and fall through to z.
604 uint32_t j = i;
605 while ((j + 2 < switch_inst->operands().size()) &&
606 target == switch_inst->GetOperandAs<uint32_t>(j + 2)) {
607 j += 2;
608 }
609 // If Target T1 branches to Target T2, or if Target T1 branches to the
610 // Default target and the Default target branches to Target T2, then T1
611 // must immediately precede T2 in the list of OpSwitch Target operands.
612 if ((switch_inst->operands().size() < j + 2) ||
613 (case_fall_through != switch_inst->GetOperandAs<uint32_t>(j + 2))) {
614 return _.diag(SPV_ERROR_INVALID_CFG, switch_inst)
615 << "Case construct that targets " << _.getIdName(target)
616 << " has branches to the case construct that targets "
617 << _.getIdName(case_fall_through)
618 << ", but does not immediately precede it in the "
619 "OpSwitch's target list";
620 }
621 }
622 }
623 }
624
625 // Each case construct must be branched to by at most one other case
626 // construct.
627 for (const auto& pair : num_fall_through_targeted) {
628 if (pair.second > 1) {
629 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pair.first))
630 << "Multiple case constructs have branches to the case construct "
631 "that targets "
632 << _.getIdName(pair.first);
633 }
634 }
635
636 return SPV_SUCCESS;
637 }
638
639 // Validates that all CFG divergences (i.e. conditional branch or switch) are
640 // structured correctly. Either divergence is preceded by a merge instruction
641 // or the divergence introduces at most one unseen label.
ValidateStructuredSelections(ValidationState_t & _,const std::vector<const BasicBlock * > & postorder)642 spv_result_t ValidateStructuredSelections(
643 ValidationState_t& _, const std::vector<const BasicBlock*>& postorder) {
644 std::unordered_set<uint32_t> seen;
645 for (auto iter = postorder.rbegin(); iter != postorder.rend(); ++iter) {
646 const auto* block = *iter;
647 const auto* terminator = block->terminator();
648 if (!terminator) continue;
649 const auto index = terminator - &_.ordered_instructions()[0];
650 auto* merge = &_.ordered_instructions()[index - 1];
651 // Marks merges and continues as seen.
652 if (merge->opcode() == spv::Op::OpSelectionMerge) {
653 seen.insert(merge->GetOperandAs<uint32_t>(0));
654 } else if (merge->opcode() == spv::Op::OpLoopMerge) {
655 seen.insert(merge->GetOperandAs<uint32_t>(0));
656 seen.insert(merge->GetOperandAs<uint32_t>(1));
657 } else {
658 // Only track the pointer if it is a merge instruction.
659 merge = nullptr;
660 }
661
662 // Skip unreachable blocks.
663 if (!block->structurally_reachable()) continue;
664
665 if (terminator->opcode() == spv::Op::OpBranchConditional) {
666 const auto true_label = terminator->GetOperandAs<uint32_t>(1);
667 const auto false_label = terminator->GetOperandAs<uint32_t>(2);
668 // Mark the upcoming blocks as seen now, but only error out if this block
669 // was missing a merge instruction and both labels hadn't been seen
670 // previously.
671 const bool true_label_unseen = seen.insert(true_label).second;
672 const bool false_label_unseen = seen.insert(false_label).second;
673 if ((!merge || merge->opcode() == spv::Op::OpLoopMerge) &&
674 true_label_unseen && false_label_unseen) {
675 return _.diag(SPV_ERROR_INVALID_CFG, terminator)
676 << "Selection must be structured";
677 }
678 } else if (terminator->opcode() == spv::Op::OpSwitch) {
679 if (!merge) {
680 return _.diag(SPV_ERROR_INVALID_CFG, terminator)
681 << "OpSwitch must be preceded by an OpSelectionMerge "
682 "instruction";
683 }
684 // Mark the targets as seen.
685 for (uint32_t i = 1; i < terminator->operands().size(); i += 2) {
686 const auto target = terminator->GetOperandAs<uint32_t>(i);
687 seen.insert(target);
688 }
689 }
690 }
691
692 return SPV_SUCCESS;
693 }
694
StructuredControlFlowChecks(ValidationState_t & _,Function * function,const std::vector<std::pair<uint32_t,uint32_t>> & back_edges,const std::vector<const BasicBlock * > & postorder)695 spv_result_t StructuredControlFlowChecks(
696 ValidationState_t& _, Function* function,
697 const std::vector<std::pair<uint32_t, uint32_t>>& back_edges,
698 const std::vector<const BasicBlock*>& postorder) {
699 /// Check all backedges target only loop headers and have exactly one
700 /// back-edge branching to it
701
702 // Map a loop header to blocks with back-edges to the loop header.
703 std::map<uint32_t, std::unordered_set<uint32_t>> loop_latch_blocks;
704 for (auto back_edge : back_edges) {
705 uint32_t back_edge_block;
706 uint32_t header_block;
707 std::tie(back_edge_block, header_block) = back_edge;
708 if (!function->IsBlockType(header_block, kBlockTypeLoop)) {
709 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(back_edge_block))
710 << "Back-edges (" << _.getIdName(back_edge_block) << " -> "
711 << _.getIdName(header_block)
712 << ") can only be formed between a block and a loop header.";
713 }
714 loop_latch_blocks[header_block].insert(back_edge_block);
715 }
716
717 // Check the loop headers have exactly one back-edge branching to it
718 for (BasicBlock* loop_header : function->ordered_blocks()) {
719 if (!loop_header->structurally_reachable()) continue;
720 if (!loop_header->is_type(kBlockTypeLoop)) continue;
721 auto loop_header_id = loop_header->id();
722 auto num_latch_blocks = loop_latch_blocks[loop_header_id].size();
723 if (num_latch_blocks != 1) {
724 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(loop_header_id))
725 << "Loop header " << _.getIdName(loop_header_id)
726 << " is targeted by " << num_latch_blocks
727 << " back-edge blocks but the standard requires exactly one";
728 }
729 }
730
731 // Check construct rules
732 for (const Construct& construct : function->constructs()) {
733 auto header = construct.entry_block();
734 if (!header->structurally_reachable()) continue;
735 auto merge = construct.exit_block();
736
737 if (!merge) {
738 std::string construct_name, header_name, exit_name;
739 std::tie(construct_name, header_name, exit_name) =
740 ConstructNames(construct.type());
741 return _.diag(SPV_ERROR_INTERNAL, _.FindDef(header->id()))
742 << "Construct " + construct_name + " with " + header_name + " " +
743 _.getIdName(header->id()) + " does not have a " +
744 exit_name + ". This may be a bug in the validator.";
745 }
746
747 // If the header is reachable, the merge is guaranteed to be structurally
748 // reachable.
749 if (!header->structurally_dominates(*merge)) {
750 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
751 << ConstructErrorString(construct, _.getIdName(header->id()),
752 _.getIdName(merge->id()),
753 "does not structurally dominate");
754 }
755
756 // If it's really a merge block for a selection or loop, then it must be
757 // *strictly* structrually dominated by the header.
758 if (construct.ExitBlockIsMergeBlock() && (header == merge)) {
759 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
760 << ConstructErrorString(construct, _.getIdName(header->id()),
761 _.getIdName(merge->id()),
762 "does not strictly structurally dominate");
763 }
764
765 // Check post-dominance for continue constructs. But dominance and
766 // post-dominance only make sense when the construct is reachable.
767 if (construct.type() == ConstructType::kContinue) {
768 if (!merge->structurally_postdominates(*header)) {
769 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(merge->id()))
770 << ConstructErrorString(construct, _.getIdName(header->id()),
771 _.getIdName(merge->id()),
772 "is not structurally post dominated by");
773 }
774 }
775
776 Construct::ConstructBlockSet construct_blocks = construct.blocks(function);
777 std::string construct_name, header_name, exit_name;
778 std::tie(construct_name, header_name, exit_name) =
779 ConstructNames(construct.type());
780 for (auto block : construct_blocks) {
781 // Check that all exits from the construct are via structured exits.
782 for (auto succ : *block->successors()) {
783 if (!construct_blocks.count(succ) &&
784 !construct.IsStructuredExit(_, succ)) {
785 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
786 << "block <ID> " << _.getIdName(block->id()) << " exits the "
787 << construct_name << " headed by <ID> "
788 << _.getIdName(header->id())
789 << ", but not via a structured exit";
790 }
791 }
792 if (block == header) continue;
793 // Check that for all non-header blocks, all predecessors are within this
794 // construct.
795 for (auto pred : *block->predecessors()) {
796 if (pred->structurally_reachable() && !construct_blocks.count(pred)) {
797 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(pred->id()))
798 << "block <ID> " << pred->id() << " branches to the "
799 << construct_name << " construct, but not to the "
800 << header_name << " <ID> " << header->id();
801 }
802 }
803
804 if (block->is_type(BlockType::kBlockTypeSelection) ||
805 block->is_type(BlockType::kBlockTypeLoop)) {
806 size_t index = (block->terminator() - &_.ordered_instructions()[0]) - 1;
807 const auto& merge_inst = _.ordered_instructions()[index];
808 if (merge_inst.opcode() == spv::Op::OpSelectionMerge ||
809 merge_inst.opcode() == spv::Op::OpLoopMerge) {
810 uint32_t merge_id = merge_inst.GetOperandAs<uint32_t>(0);
811 auto merge_block = function->GetBlock(merge_id).first;
812 if (merge_block->structurally_reachable() &&
813 !construct_blocks.count(merge_block)) {
814 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(block->id()))
815 << "Header block " << _.getIdName(block->id())
816 << " is contained in the " << construct_name
817 << " construct headed by " << _.getIdName(header->id())
818 << ", but its merge block " << _.getIdName(merge_id)
819 << " is not";
820 }
821 }
822 }
823 }
824
825 if (construct.type() == ConstructType::kLoop) {
826 // If the continue target differs from the loop header, then check that
827 // all edges into the continue construct come from within the loop.
828 const auto index = header->terminator() - &_.ordered_instructions()[0];
829 const auto& merge_inst = _.ordered_instructions()[index - 1];
830 const auto continue_id = merge_inst.GetOperandAs<uint32_t>(1);
831 const auto* continue_inst = _.FindDef(continue_id);
832 // OpLabel instructions aren't stored as part of the basic block for
833 // legacy reaasons. Grab the next instruction and use it's block pointer
834 // instead.
835 const auto next_index =
836 (continue_inst - &_.ordered_instructions()[0]) + 1;
837 const auto& next_inst = _.ordered_instructions()[next_index];
838 const auto* continue_target = next_inst.block();
839 if (header->id() != continue_id) {
840 for (auto pred : *continue_target->predecessors()) {
841 // Ignore back-edges from within the continue construct.
842 bool is_back_edge = false;
843 for (auto back_edge : back_edges) {
844 uint32_t back_edge_block;
845 uint32_t header_block;
846 std::tie(back_edge_block, header_block) = back_edge;
847 if (header_block == continue_id && back_edge_block == pred->id())
848 is_back_edge = true;
849 }
850 if (!construct_blocks.count(pred) && !is_back_edge) {
851 return _.diag(SPV_ERROR_INVALID_CFG, pred->terminator())
852 << "Block " << _.getIdName(pred->id())
853 << " branches to the loop continue target "
854 << _.getIdName(continue_id)
855 << ", but is not contained in the associated loop construct "
856 << _.getIdName(header->id());
857 }
858 }
859 }
860 }
861
862 // Checks rules for case constructs.
863 if (construct.type() == ConstructType::kSelection &&
864 header->terminator()->opcode() == spv::Op::OpSwitch) {
865 const auto terminator = header->terminator();
866 if (auto error =
867 StructuredSwitchChecks(_, function, terminator, header, merge)) {
868 return error;
869 }
870 }
871 }
872
873 if (auto error = ValidateStructuredSelections(_, postorder)) {
874 return error;
875 }
876
877 return SPV_SUCCESS;
878 }
879
MaximalReconvergenceChecks(ValidationState_t & _)880 spv_result_t MaximalReconvergenceChecks(ValidationState_t& _) {
881 // Find all the entry points with the MaximallyReconvergencesKHR execution
882 // mode.
883 std::unordered_set<uint32_t> maximal_funcs;
884 std::unordered_set<uint32_t> maximal_entry_points;
885 for (auto entry_point : _.entry_points()) {
886 const auto* exec_modes = _.GetExecutionModes(entry_point);
887 if (exec_modes &&
888 exec_modes->count(spv::ExecutionMode::MaximallyReconvergesKHR)) {
889 maximal_entry_points.insert(entry_point);
890 maximal_funcs.insert(entry_point);
891 }
892 }
893
894 if (maximal_entry_points.empty()) {
895 return SPV_SUCCESS;
896 }
897
898 // Find all the functions reachable from a maximal reconvergence entry point.
899 for (const auto& func : _.functions()) {
900 const auto& entry_points = _.EntryPointReferences(func.id());
901 for (auto id : entry_points) {
902 if (maximal_entry_points.count(id)) {
903 maximal_funcs.insert(func.id());
904 break;
905 }
906 }
907 }
908
909 // Check for conditional branches with the same true and false targets.
910 for (const auto& inst : _.ordered_instructions()) {
911 if (inst.opcode() == spv::Op::OpBranchConditional) {
912 const auto true_id = inst.GetOperandAs<uint32_t>(1);
913 const auto false_id = inst.GetOperandAs<uint32_t>(2);
914 if (true_id == false_id && maximal_funcs.count(inst.function()->id())) {
915 return _.diag(SPV_ERROR_INVALID_ID, &inst)
916 << "In entry points using the MaximallyReconvergesKHR execution "
917 "mode, True Label and False Label must be different labels";
918 }
919 }
920 }
921
922 // Check for invalid multiple predecessors. Only loop headers, continue
923 // targets, merge targets or switch targets or defaults may have multiple
924 // unique predecessors.
925 for (const auto& func : _.functions()) {
926 if (!maximal_funcs.count(func.id())) continue;
927
928 for (const auto* block : func.ordered_blocks()) {
929 std::unordered_set<uint32_t> unique_preds;
930 const auto* preds = block->predecessors();
931 if (!preds) continue;
932
933 for (const auto* pred : *preds) {
934 unique_preds.insert(pred->id());
935 }
936 if (unique_preds.size() < 2) continue;
937
938 const auto* terminator = block->terminator();
939 const auto index = terminator - &_.ordered_instructions()[0];
940 const auto* pre_terminator = &_.ordered_instructions()[index - 1];
941 if (pre_terminator->opcode() == spv::Op::OpLoopMerge) continue;
942
943 const auto* label = _.FindDef(block->id());
944 bool ok = false;
945 for (const auto& pair : label->uses()) {
946 const auto* use_inst = pair.first;
947 switch (use_inst->opcode()) {
948 case spv::Op::OpSelectionMerge:
949 case spv::Op::OpLoopMerge:
950 case spv::Op::OpSwitch:
951 ok = true;
952 break;
953 default:
954 break;
955 }
956 }
957 if (!ok) {
958 return _.diag(SPV_ERROR_INVALID_CFG, label)
959 << "In entry points using the MaximallyReconvergesKHR "
960 "execution mode, this basic block must not have multiple "
961 "unique predecessors";
962 }
963 }
964 }
965
966 return SPV_SUCCESS;
967 }
968
PerformCfgChecks(ValidationState_t & _)969 spv_result_t PerformCfgChecks(ValidationState_t& _) {
970 for (auto& function : _.functions()) {
971 // Check all referenced blocks are defined within a function
972 if (function.undefined_block_count() != 0) {
973 std::string undef_blocks("{");
974 bool first = true;
975 for (auto undefined_block : function.undefined_blocks()) {
976 undef_blocks += _.getIdName(undefined_block);
977 if (!first) {
978 undef_blocks += " ";
979 }
980 first = false;
981 }
982 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(function.id()))
983 << "Block(s) " << undef_blocks << "}"
984 << " are referenced but not defined in function "
985 << _.getIdName(function.id());
986 }
987
988 // Set each block's immediate dominator.
989 //
990 // We want to analyze all the blocks in the function, even in degenerate
991 // control flow cases including unreachable blocks. So use the augmented
992 // CFG to ensure we cover all the blocks.
993 std::vector<const BasicBlock*> postorder;
994 auto ignore_block = [](const BasicBlock*) {};
995 auto no_terminal_blocks = [](const BasicBlock*) { return false; };
996 if (!function.ordered_blocks().empty()) {
997 /// calculate dominators
998 CFA<BasicBlock>::DepthFirstTraversal(
999 function.first_block(), function.AugmentedCFGSuccessorsFunction(),
1000 ignore_block, [&](const BasicBlock* b) { postorder.push_back(b); },
1001 no_terminal_blocks);
1002 auto edges = CFA<BasicBlock>::CalculateDominators(
1003 postorder, function.AugmentedCFGPredecessorsFunction());
1004 for (auto edge : edges) {
1005 if (edge.first != edge.second)
1006 edge.first->SetImmediateDominator(edge.second);
1007 }
1008 }
1009
1010 auto& blocks = function.ordered_blocks();
1011 if (!blocks.empty()) {
1012 // Check if the order of blocks in the binary appear before the blocks
1013 // they dominate
1014 for (auto block = begin(blocks) + 1; block != end(blocks); ++block) {
1015 if (auto idom = (*block)->immediate_dominator()) {
1016 if (idom != function.pseudo_entry_block() &&
1017 block == std::find(begin(blocks), block, idom)) {
1018 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef(idom->id()))
1019 << "Block " << _.getIdName((*block)->id())
1020 << " appears in the binary before its dominator "
1021 << _.getIdName(idom->id());
1022 }
1023 }
1024 }
1025 // If we have structured control flow, check that no block has a control
1026 // flow nesting depth larger than the limit.
1027 if (_.HasCapability(spv::Capability::Shader)) {
1028 const int control_flow_nesting_depth_limit =
1029 _.options()->universal_limits_.max_control_flow_nesting_depth;
1030 for (auto block = begin(blocks); block != end(blocks); ++block) {
1031 if (function.GetBlockDepth(*block) >
1032 control_flow_nesting_depth_limit) {
1033 return _.diag(SPV_ERROR_INVALID_CFG, _.FindDef((*block)->id()))
1034 << "Maximum Control Flow nesting depth exceeded.";
1035 }
1036 }
1037 }
1038 }
1039
1040 /// Structured control flow checks are only required for shader capabilities
1041 if (_.HasCapability(spv::Capability::Shader)) {
1042 // Calculate structural dominance.
1043 postorder.clear();
1044 std::vector<const BasicBlock*> postdom_postorder;
1045 std::vector<std::pair<uint32_t, uint32_t>> back_edges;
1046 if (!function.ordered_blocks().empty()) {
1047 /// calculate dominators
1048 CFA<BasicBlock>::DepthFirstTraversal(
1049 function.first_block(),
1050 function.AugmentedStructuralCFGSuccessorsFunction(), ignore_block,
1051 [&](const BasicBlock* b) { postorder.push_back(b); },
1052 no_terminal_blocks);
1053 auto edges = CFA<BasicBlock>::CalculateDominators(
1054 postorder, function.AugmentedStructuralCFGPredecessorsFunction());
1055 for (auto edge : edges) {
1056 if (edge.first != edge.second)
1057 edge.first->SetImmediateStructuralDominator(edge.second);
1058 }
1059
1060 /// calculate post dominators
1061 CFA<BasicBlock>::DepthFirstTraversal(
1062 function.pseudo_exit_block(),
1063 function.AugmentedStructuralCFGPredecessorsFunction(), ignore_block,
1064 [&](const BasicBlock* b) { postdom_postorder.push_back(b); },
1065 no_terminal_blocks);
1066 auto postdom_edges = CFA<BasicBlock>::CalculateDominators(
1067 postdom_postorder,
1068 function.AugmentedStructuralCFGSuccessorsFunction());
1069 for (auto edge : postdom_edges) {
1070 edge.first->SetImmediateStructuralPostDominator(edge.second);
1071 }
1072 /// calculate back edges.
1073 CFA<BasicBlock>::DepthFirstTraversal(
1074 function.pseudo_entry_block(),
1075 function.AugmentedStructuralCFGSuccessorsFunction(), ignore_block,
1076 ignore_block,
1077 [&](const BasicBlock* from, const BasicBlock* to) {
1078 // A back edge must be a real edge. Since the augmented successors
1079 // contain structural edges, filter those from consideration.
1080 for (const auto* succ : *(from->successors())) {
1081 if (succ == to) back_edges.emplace_back(from->id(), to->id());
1082 }
1083 },
1084 no_terminal_blocks);
1085 }
1086 UpdateContinueConstructExitBlocks(function, back_edges);
1087
1088 if (auto error =
1089 StructuredControlFlowChecks(_, &function, back_edges, postorder))
1090 return error;
1091 }
1092 }
1093
1094 if (auto error = MaximalReconvergenceChecks(_)) {
1095 return error;
1096 }
1097
1098 return SPV_SUCCESS;
1099 }
1100
CfgPass(ValidationState_t & _,const Instruction * inst)1101 spv_result_t CfgPass(ValidationState_t& _, const Instruction* inst) {
1102 spv::Op opcode = inst->opcode();
1103 switch (opcode) {
1104 case spv::Op::OpLabel:
1105 if (auto error = _.current_function().RegisterBlock(inst->id()))
1106 return error;
1107
1108 // TODO(github:1661) This should be done in the
1109 // ValidationState::RegisterInstruction method but because of the order of
1110 // passes the OpLabel ends up not being part of the basic block it starts.
1111 _.current_function().current_block()->set_label(inst);
1112 break;
1113 case spv::Op::OpLoopMerge: {
1114 uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
1115 uint32_t continue_block = inst->GetOperandAs<uint32_t>(1);
1116 CFG_ASSERT(MergeBlockAssert, merge_block);
1117
1118 if (auto error = _.current_function().RegisterLoopMerge(merge_block,
1119 continue_block))
1120 return error;
1121 } break;
1122 case spv::Op::OpSelectionMerge: {
1123 uint32_t merge_block = inst->GetOperandAs<uint32_t>(0);
1124 CFG_ASSERT(MergeBlockAssert, merge_block);
1125
1126 if (auto error = _.current_function().RegisterSelectionMerge(merge_block))
1127 return error;
1128 } break;
1129 case spv::Op::OpBranch: {
1130 uint32_t target = inst->GetOperandAs<uint32_t>(0);
1131 CFG_ASSERT(FirstBlockAssert, target);
1132
1133 _.current_function().RegisterBlockEnd({target});
1134 } break;
1135 case spv::Op::OpBranchConditional: {
1136 uint32_t tlabel = inst->GetOperandAs<uint32_t>(1);
1137 uint32_t flabel = inst->GetOperandAs<uint32_t>(2);
1138 CFG_ASSERT(FirstBlockAssert, tlabel);
1139 CFG_ASSERT(FirstBlockAssert, flabel);
1140
1141 _.current_function().RegisterBlockEnd({tlabel, flabel});
1142 } break;
1143
1144 case spv::Op::OpSwitch: {
1145 std::vector<uint32_t> cases;
1146 for (size_t i = 1; i < inst->operands().size(); i += 2) {
1147 uint32_t target = inst->GetOperandAs<uint32_t>(i);
1148 CFG_ASSERT(FirstBlockAssert, target);
1149 cases.push_back(target);
1150 }
1151 _.current_function().RegisterBlockEnd({cases});
1152 } break;
1153 case spv::Op::OpReturn: {
1154 const uint32_t return_type = _.current_function().GetResultTypeId();
1155 const Instruction* return_type_inst = _.FindDef(return_type);
1156 assert(return_type_inst);
1157 if (return_type_inst->opcode() != spv::Op::OpTypeVoid)
1158 return _.diag(SPV_ERROR_INVALID_CFG, inst)
1159 << "OpReturn can only be called from a function with void "
1160 << "return type.";
1161 _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
1162 break;
1163 }
1164 case spv::Op::OpKill:
1165 case spv::Op::OpReturnValue:
1166 case spv::Op::OpUnreachable:
1167 case spv::Op::OpTerminateInvocation:
1168 case spv::Op::OpIgnoreIntersectionKHR:
1169 case spv::Op::OpTerminateRayKHR:
1170 case spv::Op::OpEmitMeshTasksEXT:
1171 _.current_function().RegisterBlockEnd(std::vector<uint32_t>());
1172 // Ops with dedicated passes check for the Execution Model there
1173 if (opcode == spv::Op::OpKill) {
1174 _.current_function().RegisterExecutionModelLimitation(
1175 spv::ExecutionModel::Fragment,
1176 "OpKill requires Fragment execution model");
1177 }
1178 if (opcode == spv::Op::OpTerminateInvocation) {
1179 _.current_function().RegisterExecutionModelLimitation(
1180 spv::ExecutionModel::Fragment,
1181 "OpTerminateInvocation requires Fragment execution model");
1182 }
1183 if (opcode == spv::Op::OpIgnoreIntersectionKHR) {
1184 _.current_function().RegisterExecutionModelLimitation(
1185 spv::ExecutionModel::AnyHitKHR,
1186 "OpIgnoreIntersectionKHR requires AnyHitKHR execution model");
1187 }
1188 if (opcode == spv::Op::OpTerminateRayKHR) {
1189 _.current_function().RegisterExecutionModelLimitation(
1190 spv::ExecutionModel::AnyHitKHR,
1191 "OpTerminateRayKHR requires AnyHitKHR execution model");
1192 }
1193
1194 break;
1195 default:
1196 break;
1197 }
1198 return SPV_SUCCESS;
1199 }
1200
ReachabilityPass(ValidationState_t & _)1201 void ReachabilityPass(ValidationState_t& _) {
1202 for (auto& f : _.functions()) {
1203 std::vector<BasicBlock*> stack;
1204 auto entry = f.first_block();
1205 // Skip function declarations.
1206 if (entry) stack.push_back(entry);
1207
1208 while (!stack.empty()) {
1209 auto block = stack.back();
1210 stack.pop_back();
1211
1212 if (block->reachable()) continue;
1213
1214 block->set_reachable(true);
1215 for (auto succ : *block->successors()) {
1216 stack.push_back(succ);
1217 }
1218 }
1219 }
1220
1221 // Repeat for structural reachability.
1222 for (auto& f : _.functions()) {
1223 std::vector<BasicBlock*> stack;
1224 auto entry = f.first_block();
1225 // Skip function declarations.
1226 if (entry) stack.push_back(entry);
1227
1228 while (!stack.empty()) {
1229 auto block = stack.back();
1230 stack.pop_back();
1231
1232 if (block->structurally_reachable()) continue;
1233
1234 block->set_structurally_reachable(true);
1235 for (auto succ : *block->structural_successors()) {
1236 stack.push_back(succ);
1237 }
1238 }
1239 }
1240 }
1241
ControlFlowPass(ValidationState_t & _,const Instruction * inst)1242 spv_result_t ControlFlowPass(ValidationState_t& _, const Instruction* inst) {
1243 switch (inst->opcode()) {
1244 case spv::Op::OpPhi:
1245 if (auto error = ValidatePhi(_, inst)) return error;
1246 break;
1247 case spv::Op::OpBranch:
1248 if (auto error = ValidateBranch(_, inst)) return error;
1249 break;
1250 case spv::Op::OpBranchConditional:
1251 if (auto error = ValidateBranchConditional(_, inst)) return error;
1252 break;
1253 case spv::Op::OpReturnValue:
1254 if (auto error = ValidateReturnValue(_, inst)) return error;
1255 break;
1256 case spv::Op::OpSwitch:
1257 if (auto error = ValidateSwitch(_, inst)) return error;
1258 break;
1259 case spv::Op::OpLoopMerge:
1260 if (auto error = ValidateLoopMerge(_, inst)) return error;
1261 break;
1262 default:
1263 break;
1264 }
1265
1266 return SPV_SUCCESS;
1267 }
1268
1269 } // namespace val
1270 } // namespace spvtools
1271