1 // Copyright (c) 2018 Google LLC.
2 // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights
3 // reserved.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16
17 #include <algorithm>
18 #include <string>
19 #include <vector>
20
21 #include "source/opcode.h"
22 #include "source/spirv_target_env.h"
23 #include "source/val/instruction.h"
24 #include "source/val/validate.h"
25 #include "source/val/validate_scopes.h"
26 #include "source/val/validation_state.h"
27
28 namespace spvtools {
29 namespace val {
30 namespace {
31
32 bool AreLayoutCompatibleStructs(ValidationState_t&, const Instruction*,
33 const Instruction*);
34 bool HaveLayoutCompatibleMembers(ValidationState_t&, const Instruction*,
35 const Instruction*);
36 bool HaveSameLayoutDecorations(ValidationState_t&, const Instruction*,
37 const Instruction*);
38 bool HasConflictingMemberOffsets(const std::set<Decoration>&,
39 const std::set<Decoration>&);
40
IsAllowedTypeOrArrayOfSame(ValidationState_t & _,const Instruction * type,std::initializer_list<spv::Op> allowed)41 bool IsAllowedTypeOrArrayOfSame(ValidationState_t& _, const Instruction* type,
42 std::initializer_list<spv::Op> allowed) {
43 if (std::find(allowed.begin(), allowed.end(), type->opcode()) !=
44 allowed.end()) {
45 return true;
46 }
47 if (type->opcode() == spv::Op::OpTypeArray ||
48 type->opcode() == spv::Op::OpTypeRuntimeArray) {
49 auto elem_type = _.FindDef(type->word(2));
50 return std::find(allowed.begin(), allowed.end(), elem_type->opcode()) !=
51 allowed.end();
52 }
53 return false;
54 }
55
56 // Returns true if the two instructions represent structs that, as far as the
57 // validator can tell, have the exact same data layout.
AreLayoutCompatibleStructs(ValidationState_t & _,const Instruction * type1,const Instruction * type2)58 bool AreLayoutCompatibleStructs(ValidationState_t& _, const Instruction* type1,
59 const Instruction* type2) {
60 if (type1->opcode() != spv::Op::OpTypeStruct) {
61 return false;
62 }
63 if (type2->opcode() != spv::Op::OpTypeStruct) {
64 return false;
65 }
66
67 if (!HaveLayoutCompatibleMembers(_, type1, type2)) return false;
68
69 return HaveSameLayoutDecorations(_, type1, type2);
70 }
71
72 // Returns true if the operands to the OpTypeStruct instruction defining the
73 // types are the same or are layout compatible types. |type1| and |type2| must
74 // be OpTypeStruct instructions.
HaveLayoutCompatibleMembers(ValidationState_t & _,const Instruction * type1,const Instruction * type2)75 bool HaveLayoutCompatibleMembers(ValidationState_t& _, const Instruction* type1,
76 const Instruction* type2) {
77 assert(type1->opcode() == spv::Op::OpTypeStruct &&
78 "type1 must be an OpTypeStruct instruction.");
79 assert(type2->opcode() == spv::Op::OpTypeStruct &&
80 "type2 must be an OpTypeStruct instruction.");
81 const auto& type1_operands = type1->operands();
82 const auto& type2_operands = type2->operands();
83 if (type1_operands.size() != type2_operands.size()) {
84 return false;
85 }
86
87 for (size_t operand = 2; operand < type1_operands.size(); ++operand) {
88 if (type1->word(operand) != type2->word(operand)) {
89 auto def1 = _.FindDef(type1->word(operand));
90 auto def2 = _.FindDef(type2->word(operand));
91 if (!AreLayoutCompatibleStructs(_, def1, def2)) {
92 return false;
93 }
94 }
95 }
96 return true;
97 }
98
99 // Returns true if all decorations that affect the data layout of the struct
100 // (like Offset), are the same for the two types. |type1| and |type2| must be
101 // OpTypeStruct instructions.
HaveSameLayoutDecorations(ValidationState_t & _,const Instruction * type1,const Instruction * type2)102 bool HaveSameLayoutDecorations(ValidationState_t& _, const Instruction* type1,
103 const Instruction* type2) {
104 assert(type1->opcode() == spv::Op::OpTypeStruct &&
105 "type1 must be an OpTypeStruct instruction.");
106 assert(type2->opcode() == spv::Op::OpTypeStruct &&
107 "type2 must be an OpTypeStruct instruction.");
108 const std::set<Decoration>& type1_decorations = _.id_decorations(type1->id());
109 const std::set<Decoration>& type2_decorations = _.id_decorations(type2->id());
110
111 // TODO: Will have to add other check for arrays an matricies if we want to
112 // handle them.
113 if (HasConflictingMemberOffsets(type1_decorations, type2_decorations)) {
114 return false;
115 }
116
117 return true;
118 }
119
HasConflictingMemberOffsets(const std::set<Decoration> & type1_decorations,const std::set<Decoration> & type2_decorations)120 bool HasConflictingMemberOffsets(
121 const std::set<Decoration>& type1_decorations,
122 const std::set<Decoration>& type2_decorations) {
123 {
124 // We are interested in conflicting decoration. If a decoration is in one
125 // list but not the other, then we will assume the code is correct. We are
126 // looking for things we know to be wrong.
127 //
128 // We do not have to traverse type2_decoration because, after traversing
129 // type1_decorations, anything new will not be found in
130 // type1_decoration. Therefore, it cannot lead to a conflict.
131 for (const Decoration& decoration : type1_decorations) {
132 switch (decoration.dec_type()) {
133 case spv::Decoration::Offset: {
134 // Since these affect the layout of the struct, they must be present
135 // in both structs.
136 auto compare = [&decoration](const Decoration& rhs) {
137 if (rhs.dec_type() != spv::Decoration::Offset) return false;
138 return decoration.struct_member_index() ==
139 rhs.struct_member_index();
140 };
141 auto i = std::find_if(type2_decorations.begin(),
142 type2_decorations.end(), compare);
143 if (i != type2_decorations.end() &&
144 decoration.params().front() != i->params().front()) {
145 return true;
146 }
147 } break;
148 default:
149 // This decoration does not affect the layout of the structure, so
150 // just moving on.
151 break;
152 }
153 }
154 }
155 return false;
156 }
157
158 // If |skip_builtin| is true, returns true if |storage| contains bool within
159 // it and no storage that contains the bool is builtin.
160 // If |skip_builtin| is false, returns true if |storage| contains bool within
161 // it.
ContainsInvalidBool(ValidationState_t & _,const Instruction * storage,bool skip_builtin)162 bool ContainsInvalidBool(ValidationState_t& _, const Instruction* storage,
163 bool skip_builtin) {
164 if (skip_builtin) {
165 for (const Decoration& decoration : _.id_decorations(storage->id())) {
166 if (decoration.dec_type() == spv::Decoration::BuiltIn) return false;
167 }
168 }
169
170 const size_t elem_type_index = 1;
171 uint32_t elem_type_id;
172 Instruction* elem_type;
173
174 switch (storage->opcode()) {
175 case spv::Op::OpTypeBool:
176 return true;
177 case spv::Op::OpTypeVector:
178 case spv::Op::OpTypeMatrix:
179 case spv::Op::OpTypeArray:
180 case spv::Op::OpTypeRuntimeArray:
181 elem_type_id = storage->GetOperandAs<uint32_t>(elem_type_index);
182 elem_type = _.FindDef(elem_type_id);
183 return ContainsInvalidBool(_, elem_type, skip_builtin);
184 case spv::Op::OpTypeStruct:
185 for (size_t member_type_index = 1;
186 member_type_index < storage->operands().size();
187 ++member_type_index) {
188 auto member_type_id =
189 storage->GetOperandAs<uint32_t>(member_type_index);
190 auto member_type = _.FindDef(member_type_id);
191 if (ContainsInvalidBool(_, member_type, skip_builtin)) return true;
192 }
193 default:
194 break;
195 }
196 return false;
197 }
198
ContainsCooperativeMatrix(ValidationState_t & _,const Instruction * storage)199 bool ContainsCooperativeMatrix(ValidationState_t& _,
200 const Instruction* storage) {
201 const size_t elem_type_index = 1;
202 uint32_t elem_type_id;
203 Instruction* elem_type;
204
205 switch (storage->opcode()) {
206 case spv::Op::OpTypeCooperativeMatrixNV:
207 case spv::Op::OpTypeCooperativeMatrixKHR:
208 return true;
209 case spv::Op::OpTypeArray:
210 case spv::Op::OpTypeRuntimeArray:
211 elem_type_id = storage->GetOperandAs<uint32_t>(elem_type_index);
212 elem_type = _.FindDef(elem_type_id);
213 return ContainsCooperativeMatrix(_, elem_type);
214 case spv::Op::OpTypeStruct:
215 for (size_t member_type_index = 1;
216 member_type_index < storage->operands().size();
217 ++member_type_index) {
218 auto member_type_id =
219 storage->GetOperandAs<uint32_t>(member_type_index);
220 auto member_type = _.FindDef(member_type_id);
221 if (ContainsCooperativeMatrix(_, member_type)) return true;
222 }
223 break;
224 default:
225 break;
226 }
227 return false;
228 }
229
GetStorageClass(ValidationState_t & _,const Instruction * inst)230 std::pair<spv::StorageClass, spv::StorageClass> GetStorageClass(
231 ValidationState_t& _, const Instruction* inst) {
232 spv::StorageClass dst_sc = spv::StorageClass::Max;
233 spv::StorageClass src_sc = spv::StorageClass::Max;
234 switch (inst->opcode()) {
235 case spv::Op::OpCooperativeMatrixLoadNV:
236 case spv::Op::OpCooperativeMatrixLoadKHR:
237 case spv::Op::OpLoad: {
238 auto load_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(2));
239 auto load_pointer_type = _.FindDef(load_pointer->type_id());
240 dst_sc = load_pointer_type->GetOperandAs<spv::StorageClass>(1);
241 break;
242 }
243 case spv::Op::OpCooperativeMatrixStoreNV:
244 case spv::Op::OpCooperativeMatrixStoreKHR:
245 case spv::Op::OpStore: {
246 auto store_pointer = _.FindDef(inst->GetOperandAs<uint32_t>(0));
247 auto store_pointer_type = _.FindDef(store_pointer->type_id());
248 dst_sc = store_pointer_type->GetOperandAs<spv::StorageClass>(1);
249 break;
250 }
251 case spv::Op::OpCopyMemory:
252 case spv::Op::OpCopyMemorySized: {
253 auto dst = _.FindDef(inst->GetOperandAs<uint32_t>(0));
254 auto dst_type = _.FindDef(dst->type_id());
255 dst_sc = dst_type->GetOperandAs<spv::StorageClass>(1);
256 auto src = _.FindDef(inst->GetOperandAs<uint32_t>(1));
257 auto src_type = _.FindDef(src->type_id());
258 src_sc = src_type->GetOperandAs<spv::StorageClass>(1);
259 break;
260 }
261 default:
262 break;
263 }
264
265 return std::make_pair(dst_sc, src_sc);
266 }
267
268 // Returns the number of instruction words taken up by a memory access
269 // argument and its implied operands.
MemoryAccessNumWords(uint32_t mask)270 int MemoryAccessNumWords(uint32_t mask) {
271 int result = 1; // Count the mask
272 if (mask & uint32_t(spv::MemoryAccessMask::Aligned)) ++result;
273 if (mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) ++result;
274 if (mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) ++result;
275 return result;
276 }
277
278 // Returns the scope ID operand for MakeAvailable memory access with mask
279 // at the given operand index.
280 // This function is only called for OpLoad, OpStore, OpCopyMemory and
281 // OpCopyMemorySized, OpCooperativeMatrixLoadNV, and
282 // OpCooperativeMatrixStoreNV.
GetMakeAvailableScope(const Instruction * inst,uint32_t mask,uint32_t mask_index)283 uint32_t GetMakeAvailableScope(const Instruction* inst, uint32_t mask,
284 uint32_t mask_index) {
285 assert(mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR));
286 uint32_t this_bit = uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR);
287 uint32_t index =
288 mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
289 return inst->GetOperandAs<uint32_t>(index);
290 }
291
292 // This function is only called for OpLoad, OpStore, OpCopyMemory,
293 // OpCopyMemorySized, OpCooperativeMatrixLoadNV, and
294 // OpCooperativeMatrixStoreNV.
GetMakeVisibleScope(const Instruction * inst,uint32_t mask,uint32_t mask_index)295 uint32_t GetMakeVisibleScope(const Instruction* inst, uint32_t mask,
296 uint32_t mask_index) {
297 assert(mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR));
298 uint32_t this_bit = uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR);
299 uint32_t index =
300 mask_index - 1 + MemoryAccessNumWords(mask & (this_bit | (this_bit - 1)));
301 return inst->GetOperandAs<uint32_t>(index);
302 }
303
DoesStructContainRTA(const ValidationState_t & _,const Instruction * inst)304 bool DoesStructContainRTA(const ValidationState_t& _, const Instruction* inst) {
305 for (size_t member_index = 1; member_index < inst->operands().size();
306 ++member_index) {
307 const auto member_id = inst->GetOperandAs<uint32_t>(member_index);
308 const auto member_type = _.FindDef(member_id);
309 if (member_type->opcode() == spv::Op::OpTypeRuntimeArray) return true;
310 }
311 return false;
312 }
313
CheckMemoryAccess(ValidationState_t & _,const Instruction * inst,uint32_t index)314 spv_result_t CheckMemoryAccess(ValidationState_t& _, const Instruction* inst,
315 uint32_t index) {
316 spv::StorageClass dst_sc, src_sc;
317 std::tie(dst_sc, src_sc) = GetStorageClass(_, inst);
318 if (inst->operands().size() <= index) {
319 // Cases where lack of some operand is invalid
320 if (src_sc == spv::StorageClass::PhysicalStorageBuffer ||
321 dst_sc == spv::StorageClass::PhysicalStorageBuffer) {
322 return _.diag(SPV_ERROR_INVALID_ID, inst)
323 << _.VkErrorID(4708)
324 << "Memory accesses with PhysicalStorageBuffer must use Aligned.";
325 }
326 return SPV_SUCCESS;
327 }
328
329 const uint32_t mask = inst->GetOperandAs<uint32_t>(index);
330 if (mask & uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) {
331 if (inst->opcode() == spv::Op::OpLoad ||
332 inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV ||
333 inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) {
334 return _.diag(SPV_ERROR_INVALID_ID, inst)
335 << "MakePointerAvailableKHR cannot be used with OpLoad.";
336 }
337
338 if (!(mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR))) {
339 return _.diag(SPV_ERROR_INVALID_ID, inst)
340 << "NonPrivatePointerKHR must be specified if "
341 "MakePointerAvailableKHR is specified.";
342 }
343
344 // Check the associated scope for MakeAvailableKHR.
345 const auto available_scope = GetMakeAvailableScope(inst, mask, index);
346 if (auto error = ValidateMemoryScope(_, inst, available_scope))
347 return error;
348 }
349
350 if (mask & uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) {
351 if (inst->opcode() == spv::Op::OpStore ||
352 inst->opcode() == spv::Op::OpCooperativeMatrixStoreNV) {
353 return _.diag(SPV_ERROR_INVALID_ID, inst)
354 << "MakePointerVisibleKHR cannot be used with OpStore.";
355 }
356
357 if (!(mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR))) {
358 return _.diag(SPV_ERROR_INVALID_ID, inst)
359 << "NonPrivatePointerKHR must be specified if "
360 << "MakePointerVisibleKHR is specified.";
361 }
362
363 // Check the associated scope for MakeVisibleKHR.
364 const auto visible_scope = GetMakeVisibleScope(inst, mask, index);
365 if (auto error = ValidateMemoryScope(_, inst, visible_scope)) return error;
366 }
367
368 if (mask & uint32_t(spv::MemoryAccessMask::NonPrivatePointerKHR)) {
369 if (dst_sc != spv::StorageClass::Uniform &&
370 dst_sc != spv::StorageClass::Workgroup &&
371 dst_sc != spv::StorageClass::CrossWorkgroup &&
372 dst_sc != spv::StorageClass::Generic &&
373 dst_sc != spv::StorageClass::Image &&
374 dst_sc != spv::StorageClass::StorageBuffer &&
375 dst_sc != spv::StorageClass::PhysicalStorageBuffer) {
376 return _.diag(SPV_ERROR_INVALID_ID, inst)
377 << "NonPrivatePointerKHR requires a pointer in Uniform, "
378 << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
379 << "storage classes.";
380 }
381 if (src_sc != spv::StorageClass::Max &&
382 src_sc != spv::StorageClass::Uniform &&
383 src_sc != spv::StorageClass::Workgroup &&
384 src_sc != spv::StorageClass::CrossWorkgroup &&
385 src_sc != spv::StorageClass::Generic &&
386 src_sc != spv::StorageClass::Image &&
387 src_sc != spv::StorageClass::StorageBuffer &&
388 src_sc != spv::StorageClass::PhysicalStorageBuffer) {
389 return _.diag(SPV_ERROR_INVALID_ID, inst)
390 << "NonPrivatePointerKHR requires a pointer in Uniform, "
391 << "Workgroup, CrossWorkgroup, Generic, Image or StorageBuffer "
392 << "storage classes.";
393 }
394 }
395
396 if (!(mask & uint32_t(spv::MemoryAccessMask::Aligned))) {
397 if (src_sc == spv::StorageClass::PhysicalStorageBuffer ||
398 dst_sc == spv::StorageClass::PhysicalStorageBuffer) {
399 return _.diag(SPV_ERROR_INVALID_ID, inst)
400 << _.VkErrorID(4708)
401 << "Memory accesses with PhysicalStorageBuffer must use Aligned.";
402 }
403 }
404
405 return SPV_SUCCESS;
406 }
407
ValidateVariable(ValidationState_t & _,const Instruction * inst)408 spv_result_t ValidateVariable(ValidationState_t& _, const Instruction* inst) {
409 auto result_type = _.FindDef(inst->type_id());
410 if (!result_type || result_type->opcode() != spv::Op::OpTypePointer) {
411 return _.diag(SPV_ERROR_INVALID_ID, inst)
412 << "OpVariable Result Type <id> " << _.getIdName(inst->type_id())
413 << " is not a pointer type.";
414 }
415
416 const auto type_index = 2;
417 const auto value_id = result_type->GetOperandAs<uint32_t>(type_index);
418 auto value_type = _.FindDef(value_id);
419
420 const auto initializer_index = 3;
421 const auto storage_class_index = 2;
422 if (initializer_index < inst->operands().size()) {
423 const auto initializer_id = inst->GetOperandAs<uint32_t>(initializer_index);
424 const auto initializer = _.FindDef(initializer_id);
425 const auto is_module_scope_var =
426 initializer && (initializer->opcode() == spv::Op::OpVariable) &&
427 (initializer->GetOperandAs<spv::StorageClass>(storage_class_index) !=
428 spv::StorageClass::Function);
429 const auto is_constant =
430 initializer && spvOpcodeIsConstant(initializer->opcode());
431 if (!initializer || !(is_constant || is_module_scope_var)) {
432 return _.diag(SPV_ERROR_INVALID_ID, inst)
433 << "OpVariable Initializer <id> " << _.getIdName(initializer_id)
434 << " is not a constant or module-scope variable.";
435 }
436 if (initializer->type_id() != value_id) {
437 return _.diag(SPV_ERROR_INVALID_ID, inst)
438 << "Initializer type must match the type pointed to by the Result "
439 "Type";
440 }
441 }
442
443 auto storage_class =
444 inst->GetOperandAs<spv::StorageClass>(storage_class_index);
445 if (storage_class != spv::StorageClass::Workgroup &&
446 storage_class != spv::StorageClass::CrossWorkgroup &&
447 storage_class != spv::StorageClass::Private &&
448 storage_class != spv::StorageClass::Function &&
449 storage_class != spv::StorageClass::UniformConstant &&
450 storage_class != spv::StorageClass::RayPayloadKHR &&
451 storage_class != spv::StorageClass::IncomingRayPayloadKHR &&
452 storage_class != spv::StorageClass::HitAttributeKHR &&
453 storage_class != spv::StorageClass::CallableDataKHR &&
454 storage_class != spv::StorageClass::IncomingCallableDataKHR &&
455 storage_class != spv::StorageClass::TaskPayloadWorkgroupEXT &&
456 storage_class != spv::StorageClass::HitObjectAttributeNV) {
457 bool storage_input_or_output = storage_class == spv::StorageClass::Input ||
458 storage_class == spv::StorageClass::Output;
459 bool builtin = false;
460 if (storage_input_or_output) {
461 for (const Decoration& decoration : _.id_decorations(inst->id())) {
462 if (decoration.dec_type() == spv::Decoration::BuiltIn) {
463 builtin = true;
464 break;
465 }
466 }
467 }
468 if (!builtin &&
469 ContainsInvalidBool(_, value_type, storage_input_or_output)) {
470 if (storage_input_or_output) {
471 return _.diag(SPV_ERROR_INVALID_ID, inst)
472 << _.VkErrorID(7290)
473 << "If OpTypeBool is stored in conjunction with OpVariable "
474 "using Input or Output Storage Classes it requires a BuiltIn "
475 "decoration";
476
477 } else {
478 return _.diag(SPV_ERROR_INVALID_ID, inst)
479 << "If OpTypeBool is stored in conjunction with OpVariable, it "
480 "can only be used with non-externally visible shader Storage "
481 "Classes: Workgroup, CrossWorkgroup, Private, Function, "
482 "Input, Output, RayPayloadKHR, IncomingRayPayloadKHR, "
483 "HitAttributeKHR, CallableDataKHR, "
484 "IncomingCallableDataKHR, or UniformConstant";
485 }
486 }
487 }
488
489 if (!_.IsValidStorageClass(storage_class)) {
490 return _.diag(SPV_ERROR_INVALID_BINARY, inst)
491 << _.VkErrorID(4643)
492 << "Invalid storage class for target environment";
493 }
494
495 if (storage_class == spv::StorageClass::Generic) {
496 return _.diag(SPV_ERROR_INVALID_BINARY, inst)
497 << "OpVariable storage class cannot be Generic";
498 }
499
500 if (inst->function() && storage_class != spv::StorageClass::Function) {
501 return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
502 << "Variables must have a function[7] storage class inside"
503 " of a function";
504 }
505
506 if (!inst->function() && storage_class == spv::StorageClass::Function) {
507 return _.diag(SPV_ERROR_INVALID_LAYOUT, inst)
508 << "Variables can not have a function[7] storage class "
509 "outside of a function";
510 }
511
512 // SPIR-V 3.32.8: Check that pointer type and variable type have the same
513 // storage class.
514 const auto result_storage_class_index = 1;
515 const auto result_storage_class =
516 result_type->GetOperandAs<spv::StorageClass>(result_storage_class_index);
517 if (storage_class != result_storage_class) {
518 return _.diag(SPV_ERROR_INVALID_ID, inst)
519 << "From SPIR-V spec, section 3.32.8 on OpVariable:\n"
520 << "Its Storage Class operand must be the same as the Storage Class "
521 << "operand of the result type.";
522 }
523
524 // Variable pointer related restrictions.
525 const auto pointee = _.FindDef(result_type->word(3));
526 if (_.addressing_model() == spv::AddressingModel::Logical &&
527 !_.options()->relax_logical_pointer) {
528 // VariablePointersStorageBuffer is implied by VariablePointers.
529 if (pointee->opcode() == spv::Op::OpTypePointer) {
530 if (!_.HasCapability(spv::Capability::VariablePointersStorageBuffer)) {
531 return _.diag(SPV_ERROR_INVALID_ID, inst)
532 << "In Logical addressing, variables may not allocate a pointer "
533 << "type";
534 } else if (storage_class != spv::StorageClass::Function &&
535 storage_class != spv::StorageClass::Private) {
536 return _.diag(SPV_ERROR_INVALID_ID, inst)
537 << "In Logical addressing with variable pointers, variables "
538 << "that allocate pointers must be in Function or Private "
539 << "storage classes";
540 }
541 }
542 }
543
544 if (spvIsVulkanEnv(_.context()->target_env)) {
545 // Vulkan Push Constant Interface section: Check type of PushConstant
546 // variables.
547 if (storage_class == spv::StorageClass::PushConstant) {
548 if (pointee->opcode() != spv::Op::OpTypeStruct) {
549 return _.diag(SPV_ERROR_INVALID_ID, inst)
550 << _.VkErrorID(6808) << "PushConstant OpVariable <id> "
551 << _.getIdName(inst->id()) << " has illegal type.\n"
552 << "From Vulkan spec, Push Constant Interface section:\n"
553 << "Such variables must be typed as OpTypeStruct";
554 }
555 }
556
557 // Vulkan Descriptor Set Interface: Check type of UniformConstant and
558 // Uniform variables.
559 if (storage_class == spv::StorageClass::UniformConstant) {
560 if (!IsAllowedTypeOrArrayOfSame(
561 _, pointee,
562 {spv::Op::OpTypeImage, spv::Op::OpTypeSampler,
563 spv::Op::OpTypeSampledImage,
564 spv::Op::OpTypeAccelerationStructureKHR})) {
565 return _.diag(SPV_ERROR_INVALID_ID, inst)
566 << _.VkErrorID(4655) << "UniformConstant OpVariable <id> "
567 << _.getIdName(inst->id()) << " has illegal type.\n"
568 << "Variables identified with the UniformConstant storage class "
569 << "are used only as handles to refer to opaque resources. Such "
570 << "variables must be typed as OpTypeImage, OpTypeSampler, "
571 << "OpTypeSampledImage, OpTypeAccelerationStructureKHR, "
572 << "or an array of one of these types.";
573 }
574 }
575
576 if (storage_class == spv::StorageClass::Uniform) {
577 if (!IsAllowedTypeOrArrayOfSame(_, pointee, {spv::Op::OpTypeStruct})) {
578 return _.diag(SPV_ERROR_INVALID_ID, inst)
579 << _.VkErrorID(6807) << "Uniform OpVariable <id> "
580 << _.getIdName(inst->id()) << " has illegal type.\n"
581 << "From Vulkan spec:\n"
582 << "Variables identified with the Uniform storage class are "
583 << "used to access transparent buffer backed resources. Such "
584 << "variables must be typed as OpTypeStruct, or an array of "
585 << "this type";
586 }
587 }
588
589 if (storage_class == spv::StorageClass::StorageBuffer) {
590 if (!IsAllowedTypeOrArrayOfSame(_, pointee, {spv::Op::OpTypeStruct})) {
591 return _.diag(SPV_ERROR_INVALID_ID, inst)
592 << _.VkErrorID(6807) << "StorageBuffer OpVariable <id> "
593 << _.getIdName(inst->id()) << " has illegal type.\n"
594 << "From Vulkan spec:\n"
595 << "Variables identified with the StorageBuffer storage class "
596 "are used to access transparent buffer backed resources. "
597 "Such variables must be typed as OpTypeStruct, or an array "
598 "of this type";
599 }
600 }
601
602 // Check for invalid use of Invariant
603 if (storage_class != spv::StorageClass::Input &&
604 storage_class != spv::StorageClass::Output) {
605 if (_.HasDecoration(inst->id(), spv::Decoration::Invariant)) {
606 return _.diag(SPV_ERROR_INVALID_ID, inst)
607 << _.VkErrorID(4677)
608 << "Variable decorated with Invariant must only be identified "
609 "with the Input or Output storage class in Vulkan "
610 "environment.";
611 }
612 // Need to check if only the members in a struct are decorated
613 if (value_type && value_type->opcode() == spv::Op::OpTypeStruct) {
614 if (_.HasDecoration(value_id, spv::Decoration::Invariant)) {
615 return _.diag(SPV_ERROR_INVALID_ID, inst)
616 << _.VkErrorID(4677)
617 << "Variable struct member decorated with Invariant must only "
618 "be identified with the Input or Output storage class in "
619 "Vulkan environment.";
620 }
621 }
622 }
623
624 // Initializers in Vulkan are only allowed in some storage clases
625 if (inst->operands().size() > 3) {
626 if (storage_class == spv::StorageClass::Workgroup) {
627 auto init_id = inst->GetOperandAs<uint32_t>(3);
628 auto init = _.FindDef(init_id);
629 if (init->opcode() != spv::Op::OpConstantNull) {
630 return _.diag(SPV_ERROR_INVALID_ID, inst)
631 << _.VkErrorID(4734) << "OpVariable, <id> "
632 << _.getIdName(inst->id())
633 << ", initializers are limited to OpConstantNull in "
634 "Workgroup "
635 "storage class";
636 }
637 } else if (storage_class != spv::StorageClass::Output &&
638 storage_class != spv::StorageClass::Private &&
639 storage_class != spv::StorageClass::Function) {
640 return _.diag(SPV_ERROR_INVALID_ID, inst)
641 << _.VkErrorID(4651) << "OpVariable, <id> "
642 << _.getIdName(inst->id())
643 << ", has a disallowed initializer & storage class "
644 << "combination.\n"
645 << "From " << spvLogStringForEnv(_.context()->target_env)
646 << " spec:\n"
647 << "Variable declarations that include initializers must have "
648 << "one of the following storage classes: Output, Private, "
649 << "Function or Workgroup";
650 }
651 }
652 }
653
654 if (inst->operands().size() > 3) {
655 if (storage_class == spv::StorageClass::TaskPayloadWorkgroupEXT) {
656 return _.diag(SPV_ERROR_INVALID_ID, inst)
657 << "OpVariable, <id> " << _.getIdName(inst->id())
658 << ", initializer are not allowed for TaskPayloadWorkgroupEXT";
659 }
660 if (storage_class == spv::StorageClass::Input) {
661 return _.diag(SPV_ERROR_INVALID_ID, inst)
662 << "OpVariable, <id> " << _.getIdName(inst->id())
663 << ", initializer are not allowed for Input";
664 }
665 if (storage_class == spv::StorageClass::HitObjectAttributeNV) {
666 return _.diag(SPV_ERROR_INVALID_ID, inst)
667 << "OpVariable, <id> " << _.getIdName(inst->id())
668 << ", initializer are not allowed for HitObjectAttributeNV";
669 }
670 }
671
672 if (storage_class == spv::StorageClass::PhysicalStorageBuffer) {
673 return _.diag(SPV_ERROR_INVALID_ID, inst)
674 << "PhysicalStorageBuffer must not be used with OpVariable.";
675 }
676
677 auto pointee_base = pointee;
678 while (pointee_base->opcode() == spv::Op::OpTypeArray) {
679 pointee_base = _.FindDef(pointee_base->GetOperandAs<uint32_t>(1u));
680 }
681 if (pointee_base->opcode() == spv::Op::OpTypePointer) {
682 if (pointee_base->GetOperandAs<spv::StorageClass>(1u) ==
683 spv::StorageClass::PhysicalStorageBuffer) {
684 // check for AliasedPointer/RestrictPointer
685 bool foundAliased =
686 _.HasDecoration(inst->id(), spv::Decoration::AliasedPointer);
687 bool foundRestrict =
688 _.HasDecoration(inst->id(), spv::Decoration::RestrictPointer);
689 if (!foundAliased && !foundRestrict) {
690 return _.diag(SPV_ERROR_INVALID_ID, inst)
691 << "OpVariable " << inst->id()
692 << ": expected AliasedPointer or RestrictPointer for "
693 << "PhysicalStorageBuffer pointer.";
694 }
695 if (foundAliased && foundRestrict) {
696 return _.diag(SPV_ERROR_INVALID_ID, inst)
697 << "OpVariable " << inst->id()
698 << ": can't specify both AliasedPointer and "
699 << "RestrictPointer for PhysicalStorageBuffer pointer.";
700 }
701 }
702 }
703
704 // Vulkan specific validation rules for OpTypeRuntimeArray
705 if (spvIsVulkanEnv(_.context()->target_env)) {
706 // OpTypeRuntimeArray should only ever be in a container like OpTypeStruct,
707 // so should never appear as a bare variable.
708 // Unless the module has the RuntimeDescriptorArrayEXT capability.
709 if (value_type && value_type->opcode() == spv::Op::OpTypeRuntimeArray) {
710 if (!_.HasCapability(spv::Capability::RuntimeDescriptorArrayEXT)) {
711 return _.diag(SPV_ERROR_INVALID_ID, inst)
712 << _.VkErrorID(4680) << "OpVariable, <id> "
713 << _.getIdName(inst->id())
714 << ", is attempting to create memory for an illegal type, "
715 << "OpTypeRuntimeArray.\nFor Vulkan OpTypeRuntimeArray can only "
716 << "appear as the final member of an OpTypeStruct, thus cannot "
717 << "be instantiated via OpVariable";
718 } else {
719 // A bare variable OpTypeRuntimeArray is allowed in this context, but
720 // still need to check the storage class.
721 if (storage_class != spv::StorageClass::StorageBuffer &&
722 storage_class != spv::StorageClass::Uniform &&
723 storage_class != spv::StorageClass::UniformConstant) {
724 return _.diag(SPV_ERROR_INVALID_ID, inst)
725 << _.VkErrorID(4680)
726 << "For Vulkan with RuntimeDescriptorArrayEXT, a variable "
727 << "containing OpTypeRuntimeArray must have storage class of "
728 << "StorageBuffer, Uniform, or UniformConstant.";
729 }
730 }
731 }
732
733 // If an OpStruct has an OpTypeRuntimeArray somewhere within it, then it
734 // must either have the storage class StorageBuffer and be decorated
735 // with Block, or it must be in the Uniform storage class and be decorated
736 // as BufferBlock.
737 if (value_type && value_type->opcode() == spv::Op::OpTypeStruct) {
738 if (DoesStructContainRTA(_, value_type)) {
739 if (storage_class == spv::StorageClass::StorageBuffer ||
740 storage_class == spv::StorageClass::PhysicalStorageBuffer) {
741 if (!_.HasDecoration(value_id, spv::Decoration::Block)) {
742 return _.diag(SPV_ERROR_INVALID_ID, inst)
743 << _.VkErrorID(4680)
744 << "For Vulkan, an OpTypeStruct variable containing an "
745 << "OpTypeRuntimeArray must be decorated with Block if it "
746 << "has storage class StorageBuffer or "
747 "PhysicalStorageBuffer.";
748 }
749 } else if (storage_class == spv::StorageClass::Uniform) {
750 if (!_.HasDecoration(value_id, spv::Decoration::BufferBlock)) {
751 return _.diag(SPV_ERROR_INVALID_ID, inst)
752 << _.VkErrorID(4680)
753 << "For Vulkan, an OpTypeStruct variable containing an "
754 << "OpTypeRuntimeArray must be decorated with BufferBlock "
755 << "if it has storage class Uniform.";
756 }
757 } else {
758 return _.diag(SPV_ERROR_INVALID_ID, inst)
759 << _.VkErrorID(4680)
760 << "For Vulkan, OpTypeStruct variables containing "
761 << "OpTypeRuntimeArray must have storage class of "
762 << "StorageBuffer, PhysicalStorageBuffer, or Uniform.";
763 }
764 }
765 }
766 }
767
768 // Cooperative matrix types can only be allocated in Function or Private
769 if ((storage_class != spv::StorageClass::Function &&
770 storage_class != spv::StorageClass::Private) &&
771 ContainsCooperativeMatrix(_, pointee)) {
772 return _.diag(SPV_ERROR_INVALID_ID, inst)
773 << "Cooperative matrix types (or types containing them) can only be "
774 "allocated "
775 << "in Function or Private storage classes or as function "
776 "parameters";
777 }
778
779 if (_.HasCapability(spv::Capability::Shader)) {
780 // Don't allow variables containing 16-bit elements without the appropriate
781 // capabilities.
782 if ((!_.HasCapability(spv::Capability::Int16) &&
783 _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeInt, 16)) ||
784 (!_.HasCapability(spv::Capability::Float16) &&
785 _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeFloat, 16))) {
786 auto underlying_type = value_type;
787 while (underlying_type->opcode() == spv::Op::OpTypePointer) {
788 storage_class = underlying_type->GetOperandAs<spv::StorageClass>(1u);
789 underlying_type =
790 _.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
791 }
792 bool storage_class_ok = true;
793 std::string sc_name = _.grammar().lookupOperandName(
794 SPV_OPERAND_TYPE_STORAGE_CLASS, uint32_t(storage_class));
795 switch (storage_class) {
796 case spv::StorageClass::StorageBuffer:
797 case spv::StorageClass::PhysicalStorageBuffer:
798 if (!_.HasCapability(spv::Capability::StorageBuffer16BitAccess)) {
799 storage_class_ok = false;
800 }
801 break;
802 case spv::StorageClass::Uniform:
803 if (!_.HasCapability(
804 spv::Capability::UniformAndStorageBuffer16BitAccess)) {
805 if (underlying_type->opcode() == spv::Op::OpTypeArray ||
806 underlying_type->opcode() == spv::Op::OpTypeRuntimeArray) {
807 underlying_type =
808 _.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
809 }
810 if (!_.HasCapability(spv::Capability::StorageBuffer16BitAccess) ||
811 !_.HasDecoration(underlying_type->id(),
812 spv::Decoration::BufferBlock)) {
813 storage_class_ok = false;
814 }
815 }
816 break;
817 case spv::StorageClass::PushConstant:
818 if (!_.HasCapability(spv::Capability::StoragePushConstant16)) {
819 storage_class_ok = false;
820 }
821 break;
822 case spv::StorageClass::Input:
823 case spv::StorageClass::Output:
824 if (!_.HasCapability(spv::Capability::StorageInputOutput16)) {
825 storage_class_ok = false;
826 }
827 break;
828 case spv::StorageClass::Workgroup:
829 if (!_.HasCapability(
830 spv::Capability::
831 WorkgroupMemoryExplicitLayout16BitAccessKHR)) {
832 storage_class_ok = false;
833 }
834 break;
835 default:
836 return _.diag(SPV_ERROR_INVALID_ID, inst)
837 << "Cannot allocate a variable containing a 16-bit type in "
838 << sc_name << " storage class";
839 }
840 if (!storage_class_ok) {
841 return _.diag(SPV_ERROR_INVALID_ID, inst)
842 << "Allocating a variable containing a 16-bit element in "
843 << sc_name << " storage class requires an additional capability";
844 }
845 }
846 // Don't allow variables containing 8-bit elements without the appropriate
847 // capabilities.
848 if (!_.HasCapability(spv::Capability::Int8) &&
849 _.ContainsSizedIntOrFloatType(value_id, spv::Op::OpTypeInt, 8)) {
850 auto underlying_type = value_type;
851 while (underlying_type->opcode() == spv::Op::OpTypePointer) {
852 storage_class = underlying_type->GetOperandAs<spv::StorageClass>(1u);
853 underlying_type =
854 _.FindDef(underlying_type->GetOperandAs<uint32_t>(2u));
855 }
856 bool storage_class_ok = true;
857 std::string sc_name = _.grammar().lookupOperandName(
858 SPV_OPERAND_TYPE_STORAGE_CLASS, uint32_t(storage_class));
859 switch (storage_class) {
860 case spv::StorageClass::StorageBuffer:
861 case spv::StorageClass::PhysicalStorageBuffer:
862 if (!_.HasCapability(spv::Capability::StorageBuffer8BitAccess)) {
863 storage_class_ok = false;
864 }
865 break;
866 case spv::StorageClass::Uniform:
867 if (!_.HasCapability(
868 spv::Capability::UniformAndStorageBuffer8BitAccess)) {
869 if (underlying_type->opcode() == spv::Op::OpTypeArray ||
870 underlying_type->opcode() == spv::Op::OpTypeRuntimeArray) {
871 underlying_type =
872 _.FindDef(underlying_type->GetOperandAs<uint32_t>(1u));
873 }
874 if (!_.HasCapability(spv::Capability::StorageBuffer8BitAccess) ||
875 !_.HasDecoration(underlying_type->id(),
876 spv::Decoration::BufferBlock)) {
877 storage_class_ok = false;
878 }
879 }
880 break;
881 case spv::StorageClass::PushConstant:
882 if (!_.HasCapability(spv::Capability::StoragePushConstant8)) {
883 storage_class_ok = false;
884 }
885 break;
886 case spv::StorageClass::Workgroup:
887 if (!_.HasCapability(
888 spv::Capability::
889 WorkgroupMemoryExplicitLayout8BitAccessKHR)) {
890 storage_class_ok = false;
891 }
892 break;
893 default:
894 return _.diag(SPV_ERROR_INVALID_ID, inst)
895 << "Cannot allocate a variable containing a 8-bit type in "
896 << sc_name << " storage class";
897 }
898 if (!storage_class_ok) {
899 return _.diag(SPV_ERROR_INVALID_ID, inst)
900 << "Allocating a variable containing a 8-bit element in "
901 << sc_name << " storage class requires an additional capability";
902 }
903 }
904 }
905
906 return SPV_SUCCESS;
907 }
908
ValidateLoad(ValidationState_t & _,const Instruction * inst)909 spv_result_t ValidateLoad(ValidationState_t& _, const Instruction* inst) {
910 const auto result_type = _.FindDef(inst->type_id());
911 if (!result_type) {
912 return _.diag(SPV_ERROR_INVALID_ID, inst)
913 << "OpLoad Result Type <id> " << _.getIdName(inst->type_id())
914 << " is not defined.";
915 }
916
917 const auto pointer_index = 2;
918 const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
919 const auto pointer = _.FindDef(pointer_id);
920 if (!pointer ||
921 ((_.addressing_model() == spv::AddressingModel::Logical) &&
922 ((!_.features().variable_pointers &&
923 !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
924 (_.features().variable_pointers &&
925 !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
926 return _.diag(SPV_ERROR_INVALID_ID, inst)
927 << "OpLoad Pointer <id> " << _.getIdName(pointer_id)
928 << " is not a logical pointer.";
929 }
930
931 const auto pointer_type = _.FindDef(pointer->type_id());
932 if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
933 return _.diag(SPV_ERROR_INVALID_ID, inst)
934 << "OpLoad type for pointer <id> " << _.getIdName(pointer_id)
935 << " is not a pointer type.";
936 }
937
938 uint32_t pointee_data_type;
939 spv::StorageClass storage_class;
940 if (!_.GetPointerTypeInfo(pointer_type->id(), &pointee_data_type,
941 &storage_class) ||
942 result_type->id() != pointee_data_type) {
943 return _.diag(SPV_ERROR_INVALID_ID, inst)
944 << "OpLoad Result Type <id> " << _.getIdName(inst->type_id())
945 << " does not match Pointer <id> " << _.getIdName(pointer->id())
946 << "s type.";
947 }
948
949 if (!_.options()->before_hlsl_legalization &&
950 _.ContainsRuntimeArray(inst->type_id())) {
951 return _.diag(SPV_ERROR_INVALID_ID, inst)
952 << "Cannot load a runtime-sized array";
953 }
954
955 if (auto error = CheckMemoryAccess(_, inst, 3)) return error;
956
957 if (_.HasCapability(spv::Capability::Shader) &&
958 _.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
959 result_type->opcode() != spv::Op::OpTypePointer) {
960 if (result_type->opcode() != spv::Op::OpTypeInt &&
961 result_type->opcode() != spv::Op::OpTypeFloat &&
962 result_type->opcode() != spv::Op::OpTypeVector &&
963 result_type->opcode() != spv::Op::OpTypeMatrix) {
964 return _.diag(SPV_ERROR_INVALID_ID, inst)
965 << "8- or 16-bit loads must be a scalar, vector or matrix type";
966 }
967 }
968
969 _.RegisterQCOMImageProcessingTextureConsumer(pointer_id, inst, nullptr);
970
971 return SPV_SUCCESS;
972 }
973
ValidateStore(ValidationState_t & _,const Instruction * inst)974 spv_result_t ValidateStore(ValidationState_t& _, const Instruction* inst) {
975 const auto pointer_index = 0;
976 const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
977 const auto pointer = _.FindDef(pointer_id);
978 if (!pointer ||
979 (_.addressing_model() == spv::AddressingModel::Logical &&
980 ((!_.features().variable_pointers &&
981 !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
982 (_.features().variable_pointers &&
983 !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
984 return _.diag(SPV_ERROR_INVALID_ID, inst)
985 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
986 << " is not a logical pointer.";
987 }
988 const auto pointer_type = _.FindDef(pointer->type_id());
989 if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
990 return _.diag(SPV_ERROR_INVALID_ID, inst)
991 << "OpStore type for pointer <id> " << _.getIdName(pointer_id)
992 << " is not a pointer type.";
993 }
994 const auto type_id = pointer_type->GetOperandAs<uint32_t>(2);
995 const auto type = _.FindDef(type_id);
996 if (!type || spv::Op::OpTypeVoid == type->opcode()) {
997 return _.diag(SPV_ERROR_INVALID_ID, inst)
998 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
999 << "s type is void.";
1000 }
1001
1002 // validate storage class
1003 {
1004 uint32_t data_type;
1005 spv::StorageClass storage_class;
1006 if (!_.GetPointerTypeInfo(pointer_type->id(), &data_type, &storage_class)) {
1007 return _.diag(SPV_ERROR_INVALID_ID, inst)
1008 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
1009 << " is not pointer type";
1010 }
1011
1012 if (storage_class == spv::StorageClass::UniformConstant ||
1013 storage_class == spv::StorageClass::Input ||
1014 storage_class == spv::StorageClass::PushConstant) {
1015 return _.diag(SPV_ERROR_INVALID_ID, inst)
1016 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
1017 << " storage class is read-only";
1018 } else if (storage_class == spv::StorageClass::ShaderRecordBufferKHR) {
1019 return _.diag(SPV_ERROR_INVALID_ID, inst)
1020 << "ShaderRecordBufferKHR Storage Class variables are read only";
1021 } else if (storage_class == spv::StorageClass::HitAttributeKHR) {
1022 std::string errorVUID = _.VkErrorID(4703);
1023 _.function(inst->function()->id())
1024 ->RegisterExecutionModelLimitation(
1025 [errorVUID](spv::ExecutionModel model, std::string* message) {
1026 if (model == spv::ExecutionModel::AnyHitKHR ||
1027 model == spv::ExecutionModel::ClosestHitKHR) {
1028 if (message) {
1029 *message =
1030 errorVUID +
1031 "HitAttributeKHR Storage Class variables are read only "
1032 "with AnyHitKHR and ClosestHitKHR";
1033 }
1034 return false;
1035 }
1036 return true;
1037 });
1038 }
1039
1040 if (spvIsVulkanEnv(_.context()->target_env) &&
1041 storage_class == spv::StorageClass::Uniform) {
1042 auto base_ptr = _.TracePointer(pointer);
1043 if (base_ptr->opcode() == spv::Op::OpVariable) {
1044 // If it's not a variable a different check should catch the problem.
1045 auto base_type = _.FindDef(base_ptr->GetOperandAs<uint32_t>(0));
1046 // Get the pointed-to type.
1047 base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(2u));
1048 if (base_type->opcode() == spv::Op::OpTypeArray ||
1049 base_type->opcode() == spv::Op::OpTypeRuntimeArray) {
1050 base_type = _.FindDef(base_type->GetOperandAs<uint32_t>(1u));
1051 }
1052 if (_.HasDecoration(base_type->id(), spv::Decoration::Block)) {
1053 return _.diag(SPV_ERROR_INVALID_ID, inst)
1054 << _.VkErrorID(6925)
1055 << "In the Vulkan environment, cannot store to Uniform Blocks";
1056 }
1057 }
1058 }
1059 }
1060
1061 const auto object_index = 1;
1062 const auto object_id = inst->GetOperandAs<uint32_t>(object_index);
1063 const auto object = _.FindDef(object_id);
1064 if (!object || !object->type_id()) {
1065 return _.diag(SPV_ERROR_INVALID_ID, inst)
1066 << "OpStore Object <id> " << _.getIdName(object_id)
1067 << " is not an object.";
1068 }
1069 const auto object_type = _.FindDef(object->type_id());
1070 if (!object_type || spv::Op::OpTypeVoid == object_type->opcode()) {
1071 return _.diag(SPV_ERROR_INVALID_ID, inst)
1072 << "OpStore Object <id> " << _.getIdName(object_id)
1073 << "s type is void.";
1074 }
1075
1076 if (type->id() != object_type->id()) {
1077 if (!_.options()->relax_struct_store ||
1078 type->opcode() != spv::Op::OpTypeStruct ||
1079 object_type->opcode() != spv::Op::OpTypeStruct) {
1080 return _.diag(SPV_ERROR_INVALID_ID, inst)
1081 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
1082 << "s type does not match Object <id> "
1083 << _.getIdName(object->id()) << "s type.";
1084 }
1085
1086 // TODO: Check for layout compatible matricies and arrays as well.
1087 if (!AreLayoutCompatibleStructs(_, type, object_type)) {
1088 return _.diag(SPV_ERROR_INVALID_ID, inst)
1089 << "OpStore Pointer <id> " << _.getIdName(pointer_id)
1090 << "s layout does not match Object <id> "
1091 << _.getIdName(object->id()) << "s layout.";
1092 }
1093 }
1094
1095 if (auto error = CheckMemoryAccess(_, inst, 2)) return error;
1096
1097 if (_.HasCapability(spv::Capability::Shader) &&
1098 _.ContainsLimitedUseIntOrFloatType(inst->type_id()) &&
1099 object_type->opcode() != spv::Op::OpTypePointer) {
1100 if (object_type->opcode() != spv::Op::OpTypeInt &&
1101 object_type->opcode() != spv::Op::OpTypeFloat &&
1102 object_type->opcode() != spv::Op::OpTypeVector &&
1103 object_type->opcode() != spv::Op::OpTypeMatrix) {
1104 return _.diag(SPV_ERROR_INVALID_ID, inst)
1105 << "8- or 16-bit stores must be a scalar, vector or matrix type";
1106 }
1107 }
1108
1109 return SPV_SUCCESS;
1110 }
1111
ValidateCopyMemoryMemoryAccess(ValidationState_t & _,const Instruction * inst)1112 spv_result_t ValidateCopyMemoryMemoryAccess(ValidationState_t& _,
1113 const Instruction* inst) {
1114 assert(inst->opcode() == spv::Op::OpCopyMemory ||
1115 inst->opcode() == spv::Op::OpCopyMemorySized);
1116 const uint32_t first_access_index =
1117 inst->opcode() == spv::Op::OpCopyMemory ? 2 : 3;
1118 if (inst->operands().size() > first_access_index) {
1119 if (auto error = CheckMemoryAccess(_, inst, first_access_index))
1120 return error;
1121
1122 const auto first_access = inst->GetOperandAs<uint32_t>(first_access_index);
1123 const uint32_t second_access_index =
1124 first_access_index + MemoryAccessNumWords(first_access);
1125 if (inst->operands().size() > second_access_index) {
1126 if (_.features().copy_memory_permits_two_memory_accesses) {
1127 if (auto error = CheckMemoryAccess(_, inst, second_access_index))
1128 return error;
1129
1130 // In the two-access form in SPIR-V 1.4 and later:
1131 // - the first is the target (write) access and it can't have
1132 // make-visible.
1133 // - the second is the source (read) access and it can't have
1134 // make-available.
1135 if (first_access &
1136 uint32_t(spv::MemoryAccessMask::MakePointerVisibleKHR)) {
1137 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1138 << "Target memory access must not include "
1139 "MakePointerVisibleKHR";
1140 }
1141 const auto second_access =
1142 inst->GetOperandAs<uint32_t>(second_access_index);
1143 if (second_access &
1144 uint32_t(spv::MemoryAccessMask::MakePointerAvailableKHR)) {
1145 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1146 << "Source memory access must not include "
1147 "MakePointerAvailableKHR";
1148 }
1149 } else {
1150 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1151 << spvOpcodeString(static_cast<spv::Op>(inst->opcode()))
1152 << " with two memory access operands requires SPIR-V 1.4 or "
1153 "later";
1154 }
1155 }
1156 }
1157 return SPV_SUCCESS;
1158 }
1159
ValidateCopyMemory(ValidationState_t & _,const Instruction * inst)1160 spv_result_t ValidateCopyMemory(ValidationState_t& _, const Instruction* inst) {
1161 const auto target_index = 0;
1162 const auto target_id = inst->GetOperandAs<uint32_t>(target_index);
1163 const auto target = _.FindDef(target_id);
1164 if (!target) {
1165 return _.diag(SPV_ERROR_INVALID_ID, inst)
1166 << "Target operand <id> " << _.getIdName(target_id)
1167 << " is not defined.";
1168 }
1169
1170 const auto source_index = 1;
1171 const auto source_id = inst->GetOperandAs<uint32_t>(source_index);
1172 const auto source = _.FindDef(source_id);
1173 if (!source) {
1174 return _.diag(SPV_ERROR_INVALID_ID, inst)
1175 << "Source operand <id> " << _.getIdName(source_id)
1176 << " is not defined.";
1177 }
1178
1179 const auto target_pointer_type = _.FindDef(target->type_id());
1180 if (!target_pointer_type ||
1181 target_pointer_type->opcode() != spv::Op::OpTypePointer) {
1182 return _.diag(SPV_ERROR_INVALID_ID, inst)
1183 << "Target operand <id> " << _.getIdName(target_id)
1184 << " is not a pointer.";
1185 }
1186
1187 const auto source_pointer_type = _.FindDef(source->type_id());
1188 if (!source_pointer_type ||
1189 source_pointer_type->opcode() != spv::Op::OpTypePointer) {
1190 return _.diag(SPV_ERROR_INVALID_ID, inst)
1191 << "Source operand <id> " << _.getIdName(source_id)
1192 << " is not a pointer.";
1193 }
1194
1195 if (inst->opcode() == spv::Op::OpCopyMemory) {
1196 const auto target_type =
1197 _.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));
1198 if (!target_type || target_type->opcode() == spv::Op::OpTypeVoid) {
1199 return _.diag(SPV_ERROR_INVALID_ID, inst)
1200 << "Target operand <id> " << _.getIdName(target_id)
1201 << " cannot be a void pointer.";
1202 }
1203
1204 const auto source_type =
1205 _.FindDef(source_pointer_type->GetOperandAs<uint32_t>(2));
1206 if (!source_type || source_type->opcode() == spv::Op::OpTypeVoid) {
1207 return _.diag(SPV_ERROR_INVALID_ID, inst)
1208 << "Source operand <id> " << _.getIdName(source_id)
1209 << " cannot be a void pointer.";
1210 }
1211
1212 if (target_type->id() != source_type->id()) {
1213 return _.diag(SPV_ERROR_INVALID_ID, inst)
1214 << "Target <id> " << _.getIdName(source_id)
1215 << "s type does not match Source <id> "
1216 << _.getIdName(source_type->id()) << "s type.";
1217 }
1218 } else {
1219 const auto size_id = inst->GetOperandAs<uint32_t>(2);
1220 const auto size = _.FindDef(size_id);
1221 if (!size) {
1222 return _.diag(SPV_ERROR_INVALID_ID, inst)
1223 << "Size operand <id> " << _.getIdName(size_id)
1224 << " is not defined.";
1225 }
1226
1227 const auto size_type = _.FindDef(size->type_id());
1228 if (!_.IsIntScalarType(size_type->id())) {
1229 return _.diag(SPV_ERROR_INVALID_ID, inst)
1230 << "Size operand <id> " << _.getIdName(size_id)
1231 << " must be a scalar integer type.";
1232 }
1233
1234 bool is_zero = true;
1235 switch (size->opcode()) {
1236 case spv::Op::OpConstantNull:
1237 return _.diag(SPV_ERROR_INVALID_ID, inst)
1238 << "Size operand <id> " << _.getIdName(size_id)
1239 << " cannot be a constant zero.";
1240 case spv::Op::OpConstant:
1241 if (size_type->word(3) == 1 &&
1242 size->word(size->words().size() - 1) & 0x80000000) {
1243 return _.diag(SPV_ERROR_INVALID_ID, inst)
1244 << "Size operand <id> " << _.getIdName(size_id)
1245 << " cannot have the sign bit set to 1.";
1246 }
1247 for (size_t i = 3; is_zero && i < size->words().size(); ++i) {
1248 is_zero &= (size->word(i) == 0);
1249 }
1250 if (is_zero) {
1251 return _.diag(SPV_ERROR_INVALID_ID, inst)
1252 << "Size operand <id> " << _.getIdName(size_id)
1253 << " cannot be a constant zero.";
1254 }
1255 break;
1256 default:
1257 // Cannot infer any other opcodes.
1258 break;
1259 }
1260 }
1261 if (auto error = ValidateCopyMemoryMemoryAccess(_, inst)) return error;
1262
1263 // Get past the pointers to avoid checking a pointer copy.
1264 auto sub_type = _.FindDef(target_pointer_type->GetOperandAs<uint32_t>(2));
1265 while (sub_type->opcode() == spv::Op::OpTypePointer) {
1266 sub_type = _.FindDef(sub_type->GetOperandAs<uint32_t>(2));
1267 }
1268 if (_.HasCapability(spv::Capability::Shader) &&
1269 _.ContainsLimitedUseIntOrFloatType(sub_type->id())) {
1270 return _.diag(SPV_ERROR_INVALID_ID, inst)
1271 << "Cannot copy memory of objects containing 8- or 16-bit types";
1272 }
1273
1274 return SPV_SUCCESS;
1275 }
1276
ValidateAccessChain(ValidationState_t & _,const Instruction * inst)1277 spv_result_t ValidateAccessChain(ValidationState_t& _,
1278 const Instruction* inst) {
1279 std::string instr_name =
1280 "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));
1281
1282 // The result type must be OpTypePointer.
1283 auto result_type = _.FindDef(inst->type_id());
1284 if (spv::Op::OpTypePointer != result_type->opcode()) {
1285 return _.diag(SPV_ERROR_INVALID_ID, inst)
1286 << "The Result Type of " << instr_name << " <id> "
1287 << _.getIdName(inst->id()) << " must be OpTypePointer. Found Op"
1288 << spvOpcodeString(static_cast<spv::Op>(result_type->opcode()))
1289 << ".";
1290 }
1291
1292 // Result type is a pointer. Find out what it's pointing to.
1293 // This will be used to make sure the indexing results in the same type.
1294 // OpTypePointer word 3 is the type being pointed to.
1295 const auto result_type_pointee = _.FindDef(result_type->word(3));
1296
1297 // Base must be a pointer, pointing to the base of a composite object.
1298 const auto base_index = 2;
1299 const auto base_id = inst->GetOperandAs<uint32_t>(base_index);
1300 const auto base = _.FindDef(base_id);
1301 const auto base_type = _.FindDef(base->type_id());
1302 if (!base_type || spv::Op::OpTypePointer != base_type->opcode()) {
1303 return _.diag(SPV_ERROR_INVALID_ID, inst)
1304 << "The Base <id> " << _.getIdName(base_id) << " in " << instr_name
1305 << " instruction must be a pointer.";
1306 }
1307
1308 // The result pointer storage class and base pointer storage class must match.
1309 // Word 2 of OpTypePointer is the Storage Class.
1310 auto result_type_storage_class = result_type->word(2);
1311 auto base_type_storage_class = base_type->word(2);
1312 if (result_type_storage_class != base_type_storage_class) {
1313 return _.diag(SPV_ERROR_INVALID_ID, inst)
1314 << "The result pointer storage class and base "
1315 "pointer storage class in "
1316 << instr_name << " do not match.";
1317 }
1318
1319 // The type pointed to by OpTypePointer (word 3) must be a composite type.
1320 auto type_pointee = _.FindDef(base_type->word(3));
1321
1322 // Check Universal Limit (SPIR-V Spec. Section 2.17).
1323 // The number of indexes passed to OpAccessChain may not exceed 255
1324 // The instruction includes 4 words + N words (for N indexes)
1325 size_t num_indexes = inst->words().size() - 4;
1326 if (inst->opcode() == spv::Op::OpPtrAccessChain ||
1327 inst->opcode() == spv::Op::OpInBoundsPtrAccessChain) {
1328 // In pointer access chains, the element operand is required, but not
1329 // counted as an index.
1330 --num_indexes;
1331 }
1332 const size_t num_indexes_limit =
1333 _.options()->universal_limits_.max_access_chain_indexes;
1334 if (num_indexes > num_indexes_limit) {
1335 return _.diag(SPV_ERROR_INVALID_ID, inst)
1336 << "The number of indexes in " << instr_name << " may not exceed "
1337 << num_indexes_limit << ". Found " << num_indexes << " indexes.";
1338 }
1339 // Indexes walk the type hierarchy to the desired depth, potentially down to
1340 // scalar granularity. The first index in Indexes will select the top-level
1341 // member/element/component/element of the base composite. All composite
1342 // constituents use zero-based numbering, as described by their OpType...
1343 // instruction. The second index will apply similarly to that result, and so
1344 // on. Once any non-composite type is reached, there must be no remaining
1345 // (unused) indexes.
1346 auto starting_index = 4;
1347 if (inst->opcode() == spv::Op::OpPtrAccessChain ||
1348 inst->opcode() == spv::Op::OpInBoundsPtrAccessChain) {
1349 ++starting_index;
1350 }
1351 for (size_t i = starting_index; i < inst->words().size(); ++i) {
1352 const uint32_t cur_word = inst->words()[i];
1353 // Earlier ID checks ensure that cur_word definition exists.
1354 auto cur_word_instr = _.FindDef(cur_word);
1355 // The index must be a scalar integer type (See OpAccessChain in the Spec.)
1356 auto index_type = _.FindDef(cur_word_instr->type_id());
1357 if (!index_type || spv::Op::OpTypeInt != index_type->opcode()) {
1358 return _.diag(SPV_ERROR_INVALID_ID, inst)
1359 << "Indexes passed to " << instr_name
1360 << " must be of type integer.";
1361 }
1362 switch (type_pointee->opcode()) {
1363 case spv::Op::OpTypeMatrix:
1364 case spv::Op::OpTypeVector:
1365 case spv::Op::OpTypeCooperativeMatrixNV:
1366 case spv::Op::OpTypeCooperativeMatrixKHR:
1367 case spv::Op::OpTypeArray:
1368 case spv::Op::OpTypeRuntimeArray: {
1369 // In OpTypeMatrix, OpTypeVector, spv::Op::OpTypeCooperativeMatrixNV,
1370 // OpTypeArray, and OpTypeRuntimeArray, word 2 is the Element Type.
1371 type_pointee = _.FindDef(type_pointee->word(2));
1372 break;
1373 }
1374 case spv::Op::OpTypeStruct: {
1375 // In case of structures, there is an additional constraint on the
1376 // index: the index must be an OpConstant.
1377 int64_t cur_index;
1378 if (!_.EvalConstantValInt64(cur_word, &cur_index)) {
1379 return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
1380 << "The <id> passed to " << instr_name
1381 << " to index into a "
1382 "structure must be an OpConstant.";
1383 }
1384
1385 // The index points to the struct member we want, therefore, the index
1386 // should be less than the number of struct members.
1387 const int64_t num_struct_members =
1388 static_cast<int64_t>(type_pointee->words().size() - 2);
1389 if (cur_index >= num_struct_members || cur_index < 0) {
1390 return _.diag(SPV_ERROR_INVALID_ID, cur_word_instr)
1391 << "Index is out of bounds: " << instr_name
1392 << " cannot find index " << cur_index
1393 << " into the structure <id> "
1394 << _.getIdName(type_pointee->id()) << ". This structure has "
1395 << num_struct_members << " members. Largest valid index is "
1396 << num_struct_members - 1 << ".";
1397 }
1398 // Struct members IDs start at word 2 of OpTypeStruct.
1399 const size_t word_index = static_cast<size_t>(cur_index) + 2;
1400 auto structMemberId = type_pointee->word(word_index);
1401 type_pointee = _.FindDef(structMemberId);
1402 break;
1403 }
1404 default: {
1405 // Give an error. reached non-composite type while indexes still remain.
1406 return _.diag(SPV_ERROR_INVALID_ID, inst)
1407 << instr_name
1408 << " reached non-composite type while indexes "
1409 "still remain to be traversed.";
1410 }
1411 }
1412 }
1413 // At this point, we have fully walked down from the base using the indices.
1414 // The type being pointed to should be the same as the result type.
1415 if (type_pointee->id() != result_type_pointee->id()) {
1416 return _.diag(SPV_ERROR_INVALID_ID, inst)
1417 << instr_name << " result type (Op"
1418 << spvOpcodeString(
1419 static_cast<spv::Op>(result_type_pointee->opcode()))
1420 << ") does not match the type that results from indexing into the "
1421 "base "
1422 "<id> (Op"
1423 << spvOpcodeString(static_cast<spv::Op>(type_pointee->opcode()))
1424 << ").";
1425 }
1426
1427 return SPV_SUCCESS;
1428 }
1429
ValidateRawAccessChain(ValidationState_t & _,const Instruction * inst)1430 spv_result_t ValidateRawAccessChain(ValidationState_t& _,
1431 const Instruction* inst) {
1432 std::string instr_name = "Op" + std::string(spvOpcodeString(inst->opcode()));
1433
1434 // The result type must be OpTypePointer.
1435 const auto result_type = _.FindDef(inst->type_id());
1436 if (spv::Op::OpTypePointer != result_type->opcode()) {
1437 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1438 << "The Result Type of " << instr_name << " <id> "
1439 << _.getIdName(inst->id()) << " must be OpTypePointer. Found Op"
1440 << spvOpcodeString(result_type->opcode()) << '.';
1441 }
1442
1443 // The pointed storage class must be valid.
1444 const auto storage_class = result_type->GetOperandAs<spv::StorageClass>(1);
1445 if (storage_class != spv::StorageClass::StorageBuffer &&
1446 storage_class != spv::StorageClass::PhysicalStorageBuffer &&
1447 storage_class != spv::StorageClass::Uniform) {
1448 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1449 << "The Result Type of " << instr_name << " <id> "
1450 << _.getIdName(inst->id())
1451 << " must point to a storage class of "
1452 "StorageBuffer, PhysicalStorageBuffer, or Uniform.";
1453 }
1454
1455 // The pointed type must not be one in the list below.
1456 const auto result_type_pointee =
1457 _.FindDef(result_type->GetOperandAs<uint32_t>(2));
1458 if (result_type_pointee->opcode() == spv::Op::OpTypeArray ||
1459 result_type_pointee->opcode() == spv::Op::OpTypeMatrix ||
1460 result_type_pointee->opcode() == spv::Op::OpTypeStruct) {
1461 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1462 << "The Result Type of " << instr_name << " <id> "
1463 << _.getIdName(inst->id())
1464 << " must not point to "
1465 "OpTypeArray, OpTypeMatrix, or OpTypeStruct.";
1466 }
1467
1468 // Validate Stride is a OpConstant.
1469 const auto stride = _.FindDef(inst->GetOperandAs<uint32_t>(3));
1470 if (stride->opcode() != spv::Op::OpConstant) {
1471 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1472 << "The Stride of " << instr_name << " <id> "
1473 << _.getIdName(inst->id()) << " must be OpConstant. Found Op"
1474 << spvOpcodeString(stride->opcode()) << '.';
1475 }
1476 // Stride type must be OpTypeInt
1477 const auto stride_type = _.FindDef(stride->type_id());
1478 if (stride_type->opcode() != spv::Op::OpTypeInt) {
1479 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1480 << "The type of Stride of " << instr_name << " <id> "
1481 << _.getIdName(inst->id()) << " must be OpTypeInt. Found Op"
1482 << spvOpcodeString(stride_type->opcode()) << '.';
1483 }
1484
1485 // Index and Offset type must be OpTypeInt with a width of 32
1486 const auto ValidateType = [&](const char* name,
1487 int operandIndex) -> spv_result_t {
1488 const auto value = _.FindDef(inst->GetOperandAs<uint32_t>(operandIndex));
1489 const auto value_type = _.FindDef(value->type_id());
1490 if (value_type->opcode() != spv::Op::OpTypeInt) {
1491 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1492 << "The type of " << name << " of " << instr_name << " <id> "
1493 << _.getIdName(inst->id()) << " must be OpTypeInt. Found Op"
1494 << spvOpcodeString(value_type->opcode()) << '.';
1495 }
1496 const auto width = value_type->GetOperandAs<uint32_t>(1);
1497 if (width != 32) {
1498 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1499 << "The integer width of " << name << " of " << instr_name
1500 << " <id> " << _.getIdName(inst->id()) << " must be 32. Found "
1501 << width << '.';
1502 }
1503 return SPV_SUCCESS;
1504 };
1505 spv_result_t result;
1506 result = ValidateType("Index", 4);
1507 if (result != SPV_SUCCESS) {
1508 return result;
1509 }
1510 result = ValidateType("Offset", 5);
1511 if (result != SPV_SUCCESS) {
1512 return result;
1513 }
1514
1515 uint32_t access_operands = 0;
1516 if (inst->operands().size() >= 7) {
1517 access_operands = inst->GetOperandAs<uint32_t>(6);
1518 }
1519 if (access_operands &
1520 uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
1521 uint64_t stride_value = 0;
1522 if (_.EvalConstantValUint64(stride->id(), &stride_value) &&
1523 stride_value == 0) {
1524 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1525 << "Stride must not be zero when per-element robustness is used.";
1526 }
1527 }
1528 if (access_operands &
1529 uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerComponentNV) ||
1530 access_operands &
1531 uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
1532 if (storage_class == spv::StorageClass::PhysicalStorageBuffer) {
1533 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1534 << "Storage class cannot be PhysicalStorageBuffer when "
1535 "raw access chain robustness is used.";
1536 }
1537 }
1538 if (access_operands &
1539 uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerComponentNV) &&
1540 access_operands &
1541 uint32_t(spv::RawAccessChainOperandsMask::RobustnessPerElementNV)) {
1542 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1543 << "Per-component robustness and per-element robustness are "
1544 "mutually exclusive.";
1545 }
1546
1547 return SPV_SUCCESS;
1548 }
1549
ValidatePtrAccessChain(ValidationState_t & _,const Instruction * inst)1550 spv_result_t ValidatePtrAccessChain(ValidationState_t& _,
1551 const Instruction* inst) {
1552 if (_.addressing_model() == spv::AddressingModel::Logical) {
1553 if (!_.features().variable_pointers) {
1554 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1555 << "Generating variable pointers requires capability "
1556 << "VariablePointers or VariablePointersStorageBuffer";
1557 }
1558 }
1559
1560 // Need to call first, will make sure Base is a valid ID
1561 if (auto error = ValidateAccessChain(_, inst)) return error;
1562
1563 const auto base_id = inst->GetOperandAs<uint32_t>(2);
1564 const auto base = _.FindDef(base_id);
1565 const auto base_type = _.FindDef(base->type_id());
1566 const auto base_type_storage_class =
1567 base_type->GetOperandAs<spv::StorageClass>(1);
1568
1569 if (_.HasCapability(spv::Capability::Shader) &&
1570 (base_type_storage_class == spv::StorageClass::Uniform ||
1571 base_type_storage_class == spv::StorageClass::StorageBuffer ||
1572 base_type_storage_class == spv::StorageClass::PhysicalStorageBuffer ||
1573 base_type_storage_class == spv::StorageClass::PushConstant ||
1574 (_.HasCapability(spv::Capability::WorkgroupMemoryExplicitLayoutKHR) &&
1575 base_type_storage_class == spv::StorageClass::Workgroup)) &&
1576 !_.HasDecoration(base_type->id(), spv::Decoration::ArrayStride)) {
1577 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1578 << "OpPtrAccessChain must have a Base whose type is decorated "
1579 "with ArrayStride";
1580 }
1581
1582 if (spvIsVulkanEnv(_.context()->target_env)) {
1583 if (base_type_storage_class == spv::StorageClass::Workgroup) {
1584 if (!_.HasCapability(spv::Capability::VariablePointers)) {
1585 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1586 << _.VkErrorID(7651)
1587 << "OpPtrAccessChain Base operand pointing to Workgroup "
1588 "storage class must use VariablePointers capability";
1589 }
1590 } else if (base_type_storage_class == spv::StorageClass::StorageBuffer) {
1591 if (!_.features().variable_pointers) {
1592 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1593 << _.VkErrorID(7652)
1594 << "OpPtrAccessChain Base operand pointing to StorageBuffer "
1595 "storage class must use VariablePointers or "
1596 "VariablePointersStorageBuffer capability";
1597 }
1598 } else if (base_type_storage_class !=
1599 spv::StorageClass::PhysicalStorageBuffer) {
1600 return _.diag(SPV_ERROR_INVALID_DATA, inst)
1601 << _.VkErrorID(7650)
1602 << "OpPtrAccessChain Base operand must point to Workgroup, "
1603 "StorageBuffer, or PhysicalStorageBuffer storage class";
1604 }
1605 }
1606
1607 return SPV_SUCCESS;
1608 }
1609
ValidateArrayLength(ValidationState_t & state,const Instruction * inst)1610 spv_result_t ValidateArrayLength(ValidationState_t& state,
1611 const Instruction* inst) {
1612 std::string instr_name =
1613 "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));
1614
1615 // Result type must be a 32-bit unsigned int.
1616 auto result_type = state.FindDef(inst->type_id());
1617 if (result_type->opcode() != spv::Op::OpTypeInt ||
1618 result_type->GetOperandAs<uint32_t>(1) != 32 ||
1619 result_type->GetOperandAs<uint32_t>(2) != 0) {
1620 return state.diag(SPV_ERROR_INVALID_ID, inst)
1621 << "The Result Type of " << instr_name << " <id> "
1622 << state.getIdName(inst->id())
1623 << " must be OpTypeInt with width 32 and signedness 0.";
1624 }
1625
1626 // The structure that is passed in must be an pointer to a structure, whose
1627 // last element is a runtime array.
1628 auto pointer = state.FindDef(inst->GetOperandAs<uint32_t>(2));
1629 auto pointer_type = state.FindDef(pointer->type_id());
1630 if (pointer_type->opcode() != spv::Op::OpTypePointer) {
1631 return state.diag(SPV_ERROR_INVALID_ID, inst)
1632 << "The Structure's type in " << instr_name << " <id> "
1633 << state.getIdName(inst->id())
1634 << " must be a pointer to an OpTypeStruct.";
1635 }
1636
1637 auto structure_type = state.FindDef(pointer_type->GetOperandAs<uint32_t>(2));
1638 if (structure_type->opcode() != spv::Op::OpTypeStruct) {
1639 return state.diag(SPV_ERROR_INVALID_ID, inst)
1640 << "The Structure's type in " << instr_name << " <id> "
1641 << state.getIdName(inst->id())
1642 << " must be a pointer to an OpTypeStruct.";
1643 }
1644
1645 auto num_of_members = structure_type->operands().size() - 1;
1646 auto last_member =
1647 state.FindDef(structure_type->GetOperandAs<uint32_t>(num_of_members));
1648 if (last_member->opcode() != spv::Op::OpTypeRuntimeArray) {
1649 return state.diag(SPV_ERROR_INVALID_ID, inst)
1650 << "The Structure's last member in " << instr_name << " <id> "
1651 << state.getIdName(inst->id()) << " must be an OpTypeRuntimeArray.";
1652 }
1653
1654 // The array member must the index of the last element (the run time
1655 // array).
1656 if (inst->GetOperandAs<uint32_t>(3) != num_of_members - 1) {
1657 return state.diag(SPV_ERROR_INVALID_ID, inst)
1658 << "The array member in " << instr_name << " <id> "
1659 << state.getIdName(inst->id())
1660 << " must be an the last member of the struct.";
1661 }
1662 return SPV_SUCCESS;
1663 }
1664
ValidateCooperativeMatrixLengthNV(ValidationState_t & state,const Instruction * inst)1665 spv_result_t ValidateCooperativeMatrixLengthNV(ValidationState_t& state,
1666 const Instruction* inst) {
1667 std::string instr_name =
1668 "Op" + std::string(spvOpcodeString(static_cast<spv::Op>(inst->opcode())));
1669
1670 // Result type must be a 32-bit unsigned int.
1671 auto result_type = state.FindDef(inst->type_id());
1672 if (result_type->opcode() != spv::Op::OpTypeInt ||
1673 result_type->GetOperandAs<uint32_t>(1) != 32 ||
1674 result_type->GetOperandAs<uint32_t>(2) != 0) {
1675 return state.diag(SPV_ERROR_INVALID_ID, inst)
1676 << "The Result Type of " << instr_name << " <id> "
1677 << state.getIdName(inst->id())
1678 << " must be OpTypeInt with width 32 and signedness 0.";
1679 }
1680
1681 bool isKhr = inst->opcode() == spv::Op::OpCooperativeMatrixLengthKHR;
1682 auto type_id = inst->GetOperandAs<uint32_t>(2);
1683 auto type = state.FindDef(type_id);
1684 if (isKhr && type->opcode() != spv::Op::OpTypeCooperativeMatrixKHR) {
1685 return state.diag(SPV_ERROR_INVALID_ID, inst)
1686 << "The type in " << instr_name << " <id> "
1687 << state.getIdName(type_id)
1688 << " must be OpTypeCooperativeMatrixKHR.";
1689 } else if (!isKhr && type->opcode() != spv::Op::OpTypeCooperativeMatrixNV) {
1690 return state.diag(SPV_ERROR_INVALID_ID, inst)
1691 << "The type in " << instr_name << " <id> "
1692 << state.getIdName(type_id) << " must be OpTypeCooperativeMatrixNV.";
1693 }
1694 return SPV_SUCCESS;
1695 }
1696
ValidateCooperativeMatrixLoadStoreNV(ValidationState_t & _,const Instruction * inst)1697 spv_result_t ValidateCooperativeMatrixLoadStoreNV(ValidationState_t& _,
1698 const Instruction* inst) {
1699 uint32_t type_id;
1700 const char* opname;
1701 if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) {
1702 type_id = inst->type_id();
1703 opname = "spv::Op::OpCooperativeMatrixLoadNV";
1704 } else {
1705 // get Object operand's type
1706 type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
1707 opname = "spv::Op::OpCooperativeMatrixStoreNV";
1708 }
1709
1710 auto matrix_type = _.FindDef(type_id);
1711
1712 if (matrix_type->opcode() != spv::Op::OpTypeCooperativeMatrixNV) {
1713 if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) {
1714 return _.diag(SPV_ERROR_INVALID_ID, inst)
1715 << "spv::Op::OpCooperativeMatrixLoadNV Result Type <id> "
1716 << _.getIdName(type_id) << " is not a cooperative matrix type.";
1717 } else {
1718 return _.diag(SPV_ERROR_INVALID_ID, inst)
1719 << "spv::Op::OpCooperativeMatrixStoreNV Object type <id> "
1720 << _.getIdName(type_id) << " is not a cooperative matrix type.";
1721 }
1722 }
1723
1724 const auto pointer_index =
1725 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 2u : 0u;
1726 const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
1727 const auto pointer = _.FindDef(pointer_id);
1728 if (!pointer ||
1729 ((_.addressing_model() == spv::AddressingModel::Logical) &&
1730 ((!_.features().variable_pointers &&
1731 !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
1732 (_.features().variable_pointers &&
1733 !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
1734 return _.diag(SPV_ERROR_INVALID_ID, inst)
1735 << opname << " Pointer <id> " << _.getIdName(pointer_id)
1736 << " is not a logical pointer.";
1737 }
1738
1739 const auto pointer_type_id = pointer->type_id();
1740 const auto pointer_type = _.FindDef(pointer_type_id);
1741 if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
1742 return _.diag(SPV_ERROR_INVALID_ID, inst)
1743 << opname << " type for pointer <id> " << _.getIdName(pointer_id)
1744 << " is not a pointer type.";
1745 }
1746
1747 const auto storage_class_index = 1u;
1748 const auto storage_class =
1749 pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);
1750
1751 if (storage_class != spv::StorageClass::Workgroup &&
1752 storage_class != spv::StorageClass::StorageBuffer &&
1753 storage_class != spv::StorageClass::PhysicalStorageBuffer) {
1754 return _.diag(SPV_ERROR_INVALID_ID, inst)
1755 << opname << " storage class for pointer type <id> "
1756 << _.getIdName(pointer_type_id)
1757 << " is not Workgroup or StorageBuffer.";
1758 }
1759
1760 const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
1761 const auto pointee_type = _.FindDef(pointee_id);
1762 if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) ||
1763 _.IsFloatScalarOrVectorType(pointee_id))) {
1764 return _.diag(SPV_ERROR_INVALID_ID, inst)
1765 << opname << " Pointer <id> " << _.getIdName(pointer->id())
1766 << "s Type must be a scalar or vector type.";
1767 }
1768
1769 const auto stride_index =
1770 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 3u : 2u;
1771 const auto stride_id = inst->GetOperandAs<uint32_t>(stride_index);
1772 const auto stride = _.FindDef(stride_id);
1773 if (!stride || !_.IsIntScalarType(stride->type_id())) {
1774 return _.diag(SPV_ERROR_INVALID_ID, inst)
1775 << "Stride operand <id> " << _.getIdName(stride_id)
1776 << " must be a scalar integer type.";
1777 }
1778
1779 const auto colmajor_index =
1780 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 4u : 3u;
1781 const auto colmajor_id = inst->GetOperandAs<uint32_t>(colmajor_index);
1782 const auto colmajor = _.FindDef(colmajor_id);
1783 if (!colmajor || !_.IsBoolScalarType(colmajor->type_id()) ||
1784 !(spvOpcodeIsConstant(colmajor->opcode()) ||
1785 spvOpcodeIsSpecConstant(colmajor->opcode()))) {
1786 return _.diag(SPV_ERROR_INVALID_ID, inst)
1787 << "Column Major operand <id> " << _.getIdName(colmajor_id)
1788 << " must be a boolean constant instruction.";
1789 }
1790
1791 const auto memory_access_index =
1792 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadNV) ? 5u : 4u;
1793 if (inst->operands().size() > memory_access_index) {
1794 if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
1795 return error;
1796 }
1797
1798 return SPV_SUCCESS;
1799 }
1800
ValidateCooperativeMatrixLoadStoreKHR(ValidationState_t & _,const Instruction * inst)1801 spv_result_t ValidateCooperativeMatrixLoadStoreKHR(ValidationState_t& _,
1802 const Instruction* inst) {
1803 uint32_t type_id;
1804 const char* opname;
1805 if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) {
1806 type_id = inst->type_id();
1807 opname = "spv::Op::OpCooperativeMatrixLoadKHR";
1808 } else {
1809 // get Object operand's type
1810 type_id = _.FindDef(inst->GetOperandAs<uint32_t>(1))->type_id();
1811 opname = "spv::Op::OpCooperativeMatrixStoreKHR";
1812 }
1813
1814 auto matrix_type = _.FindDef(type_id);
1815
1816 if (matrix_type->opcode() != spv::Op::OpTypeCooperativeMatrixKHR) {
1817 if (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) {
1818 return _.diag(SPV_ERROR_INVALID_ID, inst)
1819 << "spv::Op::OpCooperativeMatrixLoadKHR Result Type <id> "
1820 << _.getIdName(type_id) << " is not a cooperative matrix type.";
1821 } else {
1822 return _.diag(SPV_ERROR_INVALID_ID, inst)
1823 << "spv::Op::OpCooperativeMatrixStoreKHR Object type <id> "
1824 << _.getIdName(type_id) << " is not a cooperative matrix type.";
1825 }
1826 }
1827
1828 const auto pointer_index =
1829 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 2u : 0u;
1830 const auto pointer_id = inst->GetOperandAs<uint32_t>(pointer_index);
1831 const auto pointer = _.FindDef(pointer_id);
1832 if (!pointer ||
1833 ((_.addressing_model() == spv::AddressingModel::Logical) &&
1834 ((!_.features().variable_pointers &&
1835 !spvOpcodeReturnsLogicalPointer(pointer->opcode())) ||
1836 (_.features().variable_pointers &&
1837 !spvOpcodeReturnsLogicalVariablePointer(pointer->opcode()))))) {
1838 return _.diag(SPV_ERROR_INVALID_ID, inst)
1839 << opname << " Pointer <id> " << _.getIdName(pointer_id)
1840 << " is not a logical pointer.";
1841 }
1842
1843 const auto pointer_type_id = pointer->type_id();
1844 const auto pointer_type = _.FindDef(pointer_type_id);
1845 if (!pointer_type || pointer_type->opcode() != spv::Op::OpTypePointer) {
1846 return _.diag(SPV_ERROR_INVALID_ID, inst)
1847 << opname << " type for pointer <id> " << _.getIdName(pointer_id)
1848 << " is not a pointer type.";
1849 }
1850
1851 const auto storage_class_index = 1u;
1852 const auto storage_class =
1853 pointer_type->GetOperandAs<spv::StorageClass>(storage_class_index);
1854
1855 if (storage_class != spv::StorageClass::Workgroup &&
1856 storage_class != spv::StorageClass::StorageBuffer &&
1857 storage_class != spv::StorageClass::PhysicalStorageBuffer) {
1858 return _.diag(SPV_ERROR_INVALID_ID, inst)
1859 << _.VkErrorID(8973) << opname
1860 << " storage class for pointer type <id> "
1861 << _.getIdName(pointer_type_id)
1862 << " is not Workgroup, StorageBuffer, or PhysicalStorageBuffer.";
1863 }
1864
1865 const auto pointee_id = pointer_type->GetOperandAs<uint32_t>(2);
1866 const auto pointee_type = _.FindDef(pointee_id);
1867 if (!pointee_type || !(_.IsIntScalarOrVectorType(pointee_id) ||
1868 _.IsFloatScalarOrVectorType(pointee_id))) {
1869 return _.diag(SPV_ERROR_INVALID_ID, inst)
1870 << opname << " Pointer <id> " << _.getIdName(pointer->id())
1871 << "s Type must be a scalar or vector type.";
1872 }
1873
1874 const auto layout_index =
1875 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 3u : 2u;
1876 const auto colmajor_id = inst->GetOperandAs<uint32_t>(layout_index);
1877 const auto colmajor = _.FindDef(colmajor_id);
1878 if (!colmajor || !_.IsIntScalarType(colmajor->type_id()) ||
1879 !(spvOpcodeIsConstant(colmajor->opcode()) ||
1880 spvOpcodeIsSpecConstant(colmajor->opcode()))) {
1881 return _.diag(SPV_ERROR_INVALID_ID, inst)
1882 << "MemoryLayout operand <id> " << _.getIdName(colmajor_id)
1883 << " must be a 32-bit integer constant instruction.";
1884 }
1885
1886 const auto stride_index =
1887 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 4u : 3u;
1888 if (inst->operands().size() > stride_index) {
1889 const auto stride_id = inst->GetOperandAs<uint32_t>(stride_index);
1890 const auto stride = _.FindDef(stride_id);
1891 if (!stride || !_.IsIntScalarType(stride->type_id())) {
1892 return _.diag(SPV_ERROR_INVALID_ID, inst)
1893 << "Stride operand <id> " << _.getIdName(stride_id)
1894 << " must be a scalar integer type.";
1895 }
1896 }
1897
1898 const auto memory_access_index =
1899 (inst->opcode() == spv::Op::OpCooperativeMatrixLoadKHR) ? 5u : 4u;
1900 if (inst->operands().size() > memory_access_index) {
1901 if (auto error = CheckMemoryAccess(_, inst, memory_access_index))
1902 return error;
1903 }
1904
1905 return SPV_SUCCESS;
1906 }
1907
ValidatePtrComparison(ValidationState_t & _,const Instruction * inst)1908 spv_result_t ValidatePtrComparison(ValidationState_t& _,
1909 const Instruction* inst) {
1910 if (_.addressing_model() == spv::AddressingModel::Logical &&
1911 !_.features().variable_pointers) {
1912 return _.diag(SPV_ERROR_INVALID_ID, inst)
1913 << "Instruction cannot for logical addressing model be used without "
1914 "a variable pointers capability";
1915 }
1916
1917 const auto result_type = _.FindDef(inst->type_id());
1918 if (inst->opcode() == spv::Op::OpPtrDiff) {
1919 if (!result_type || result_type->opcode() != spv::Op::OpTypeInt) {
1920 return _.diag(SPV_ERROR_INVALID_ID, inst)
1921 << "Result Type must be an integer scalar";
1922 }
1923 } else {
1924 if (!result_type || result_type->opcode() != spv::Op::OpTypeBool) {
1925 return _.diag(SPV_ERROR_INVALID_ID, inst)
1926 << "Result Type must be OpTypeBool";
1927 }
1928 }
1929
1930 const auto op1 = _.FindDef(inst->GetOperandAs<uint32_t>(2u));
1931 const auto op2 = _.FindDef(inst->GetOperandAs<uint32_t>(3u));
1932 if (!op1 || !op2 || op1->type_id() != op2->type_id()) {
1933 return _.diag(SPV_ERROR_INVALID_ID, inst)
1934 << "The types of Operand 1 and Operand 2 must match";
1935 }
1936 const auto op1_type = _.FindDef(op1->type_id());
1937 if (!op1_type || op1_type->opcode() != spv::Op::OpTypePointer) {
1938 return _.diag(SPV_ERROR_INVALID_ID, inst)
1939 << "Operand type must be a pointer";
1940 }
1941
1942 spv::StorageClass sc = op1_type->GetOperandAs<spv::StorageClass>(1u);
1943 if (_.addressing_model() == spv::AddressingModel::Logical) {
1944 if (sc != spv::StorageClass::Workgroup &&
1945 sc != spv::StorageClass::StorageBuffer) {
1946 return _.diag(SPV_ERROR_INVALID_ID, inst)
1947 << "Invalid pointer storage class";
1948 }
1949
1950 if (sc == spv::StorageClass::Workgroup &&
1951 !_.HasCapability(spv::Capability::VariablePointers)) {
1952 return _.diag(SPV_ERROR_INVALID_ID, inst)
1953 << "Workgroup storage class pointer requires VariablePointers "
1954 "capability to be specified";
1955 }
1956 } else if (sc == spv::StorageClass::PhysicalStorageBuffer) {
1957 return _.diag(SPV_ERROR_INVALID_ID, inst)
1958 << "Cannot use a pointer in the PhysicalStorageBuffer storage class";
1959 }
1960
1961 return SPV_SUCCESS;
1962 }
1963
1964 } // namespace
1965
MemoryPass(ValidationState_t & _,const Instruction * inst)1966 spv_result_t MemoryPass(ValidationState_t& _, const Instruction* inst) {
1967 switch (inst->opcode()) {
1968 case spv::Op::OpVariable:
1969 if (auto error = ValidateVariable(_, inst)) return error;
1970 break;
1971 case spv::Op::OpLoad:
1972 if (auto error = ValidateLoad(_, inst)) return error;
1973 break;
1974 case spv::Op::OpStore:
1975 if (auto error = ValidateStore(_, inst)) return error;
1976 break;
1977 case spv::Op::OpCopyMemory:
1978 case spv::Op::OpCopyMemorySized:
1979 if (auto error = ValidateCopyMemory(_, inst)) return error;
1980 break;
1981 case spv::Op::OpPtrAccessChain:
1982 if (auto error = ValidatePtrAccessChain(_, inst)) return error;
1983 break;
1984 case spv::Op::OpAccessChain:
1985 case spv::Op::OpInBoundsAccessChain:
1986 case spv::Op::OpInBoundsPtrAccessChain:
1987 if (auto error = ValidateAccessChain(_, inst)) return error;
1988 break;
1989 case spv::Op::OpRawAccessChainNV:
1990 if (auto error = ValidateRawAccessChain(_, inst)) return error;
1991 break;
1992 case spv::Op::OpArrayLength:
1993 if (auto error = ValidateArrayLength(_, inst)) return error;
1994 break;
1995 case spv::Op::OpCooperativeMatrixLoadNV:
1996 case spv::Op::OpCooperativeMatrixStoreNV:
1997 if (auto error = ValidateCooperativeMatrixLoadStoreNV(_, inst))
1998 return error;
1999 break;
2000 case spv::Op::OpCooperativeMatrixLengthKHR:
2001 case spv::Op::OpCooperativeMatrixLengthNV:
2002 if (auto error = ValidateCooperativeMatrixLengthNV(_, inst)) return error;
2003 break;
2004 case spv::Op::OpCooperativeMatrixLoadKHR:
2005 case spv::Op::OpCooperativeMatrixStoreKHR:
2006 if (auto error = ValidateCooperativeMatrixLoadStoreKHR(_, inst))
2007 return error;
2008 break;
2009 case spv::Op::OpPtrEqual:
2010 case spv::Op::OpPtrNotEqual:
2011 case spv::Op::OpPtrDiff:
2012 if (auto error = ValidatePtrComparison(_, inst)) return error;
2013 break;
2014 case spv::Op::OpImageTexelPointer:
2015 case spv::Op::OpGenericPtrMemSemantics:
2016 default:
2017 break;
2018 }
2019
2020 return SPV_SUCCESS;
2021 }
2022 } // namespace val
2023 } // namespace spvtools
2024