1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/MC/SubtargetFeature.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/MachineValueType.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstdint>
34 #include <utility>
35
36 using namespace llvm;
37
38 #define DEBUG_TYPE "armtti"
39
40 static cl::opt<bool> EnableMaskedLoadStores(
41 "enable-arm-maskedldst", cl::Hidden, cl::init(true),
42 cl::desc("Enable the generation of masked loads and stores"));
43
44 static cl::opt<bool> DisableLowOverheadLoops(
45 "disable-arm-loloops", cl::Hidden, cl::init(false),
46 cl::desc("Disable the generation of low-overhead loops"));
47
48 extern cl::opt<bool> DisableTailPredication;
49
50 extern cl::opt<bool> EnableMaskedGatherScatters;
51
areInlineCompatible(const Function * Caller,const Function * Callee) const52 bool ARMTTIImpl::areInlineCompatible(const Function *Caller,
53 const Function *Callee) const {
54 const TargetMachine &TM = getTLI()->getTargetMachine();
55 const FeatureBitset &CallerBits =
56 TM.getSubtargetImpl(*Caller)->getFeatureBits();
57 const FeatureBitset &CalleeBits =
58 TM.getSubtargetImpl(*Callee)->getFeatureBits();
59
60 // To inline a callee, all features not in the whitelist must match exactly.
61 bool MatchExact = (CallerBits & ~InlineFeatureWhitelist) ==
62 (CalleeBits & ~InlineFeatureWhitelist);
63 // For features in the whitelist, the callee's features must be a subset of
64 // the callers'.
65 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeatureWhitelist) ==
66 (CalleeBits & InlineFeatureWhitelist);
67 return MatchExact && MatchSubset;
68 }
69
getIntImmCost(const APInt & Imm,Type * Ty)70 int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
71 assert(Ty->isIntegerTy());
72
73 unsigned Bits = Ty->getPrimitiveSizeInBits();
74 if (Bits == 0 || Imm.getActiveBits() >= 64)
75 return 4;
76
77 int64_t SImmVal = Imm.getSExtValue();
78 uint64_t ZImmVal = Imm.getZExtValue();
79 if (!ST->isThumb()) {
80 if ((SImmVal >= 0 && SImmVal < 65536) ||
81 (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
82 (ARM_AM::getSOImmVal(~ZImmVal) != -1))
83 return 1;
84 return ST->hasV6T2Ops() ? 2 : 3;
85 }
86 if (ST->isThumb2()) {
87 if ((SImmVal >= 0 && SImmVal < 65536) ||
88 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
89 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
90 return 1;
91 return ST->hasV6T2Ops() ? 2 : 3;
92 }
93 // Thumb1, any i8 imm cost 1.
94 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
95 return 1;
96 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
97 return 2;
98 // Load from constantpool.
99 return 3;
100 }
101
102 // Constants smaller than 256 fit in the immediate field of
103 // Thumb1 instructions so we return a zero cost and 1 otherwise.
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)104 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
105 const APInt &Imm, Type *Ty) {
106 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
107 return 0;
108
109 return 1;
110 }
111
getIntImmCostInst(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)112 int ARMTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm,
113 Type *Ty) {
114 // Division by a constant can be turned into multiplication, but only if we
115 // know it's constant. So it's not so much that the immediate is cheap (it's
116 // not), but that the alternative is worse.
117 // FIXME: this is probably unneeded with GlobalISel.
118 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
119 Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
120 Idx == 1)
121 return 0;
122
123 if (Opcode == Instruction::And) {
124 // UXTB/UXTH
125 if (Imm == 255 || Imm == 65535)
126 return 0;
127 // Conversion to BIC is free, and means we can use ~Imm instead.
128 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(~Imm, Ty));
129 }
130
131 if (Opcode == Instruction::Add)
132 // Conversion to SUB is free, and means we can use -Imm instead.
133 return std::min(getIntImmCost(Imm, Ty), getIntImmCost(-Imm, Ty));
134
135 if (Opcode == Instruction::ICmp && Imm.isNegative() &&
136 Ty->getIntegerBitWidth() == 32) {
137 int64_t NegImm = -Imm.getSExtValue();
138 if (ST->isThumb2() && NegImm < 1<<12)
139 // icmp X, #-C -> cmn X, #C
140 return 0;
141 if (ST->isThumb() && NegImm < 1<<8)
142 // icmp X, #-C -> adds X, #C
143 return 0;
144 }
145
146 // xor a, -1 can always be folded to MVN
147 if (Opcode == Instruction::Xor && Imm.isAllOnesValue())
148 return 0;
149
150 return getIntImmCost(Imm, Ty);
151 }
152
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)153 int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
154 const Instruction *I) {
155 int ISD = TLI->InstructionOpcodeToISD(Opcode);
156 assert(ISD && "Invalid opcode");
157
158 // Single to/from double precision conversions.
159 static const CostTblEntry NEONFltDblTbl[] = {
160 // Vector fptrunc/fpext conversions.
161 { ISD::FP_ROUND, MVT::v2f64, 2 },
162 { ISD::FP_EXTEND, MVT::v2f32, 2 },
163 { ISD::FP_EXTEND, MVT::v4f32, 4 }
164 };
165
166 if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
167 ISD == ISD::FP_EXTEND)) {
168 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
169 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
170 return LT.first * Entry->Cost;
171 }
172
173 EVT SrcTy = TLI->getValueType(DL, Src);
174 EVT DstTy = TLI->getValueType(DL, Dst);
175
176 if (!SrcTy.isSimple() || !DstTy.isSimple())
177 return BaseT::getCastInstrCost(Opcode, Dst, Src);
178
179 // The extend of a load is free
180 if (I && isa<LoadInst>(I->getOperand(0))) {
181 static const TypeConversionCostTblEntry LoadConversionTbl[] = {
182 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
183 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
184 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
185 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
186 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
187 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
188 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
189 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
190 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
191 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
192 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
193 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
194 };
195 if (const auto *Entry = ConvertCostTableLookup(
196 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
197 return Entry->Cost;
198
199 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
200 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
201 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
202 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
203 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
204 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
205 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
206 };
207 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
208 if (const auto *Entry =
209 ConvertCostTableLookup(MVELoadConversionTbl, ISD,
210 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
211 return Entry->Cost;
212 }
213 }
214
215 // Some arithmetic, load and store operations have specific instructions
216 // to cast up/down their types automatically at no extra cost.
217 // TODO: Get these tables to know at least what the related operations are.
218 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
219 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
220 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
221 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
222 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
223 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
224 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
225
226 // The number of vmovl instructions for the extension.
227 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
228 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
229 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
230 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
231 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
232 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
233 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
234 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
235 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
236 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
237
238 // Operations that we legalize using splitting.
239 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
240 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
241
242 // Vector float <-> i32 conversions.
243 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
244 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
245
246 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
247 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
248 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
249 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
250 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
251 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
252 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
253 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
254 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
255 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
256 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
257 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
258 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
259 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
260 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
261 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
262 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
263 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
264 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
265 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
266
267 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
268 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
269 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
270 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
271 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
272 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
273
274 // Vector double <-> i32 conversions.
275 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
276 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
277
278 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
279 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
280 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
281 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
282 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
283 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
284
285 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
286 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
287 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
288 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
289 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
290 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
291 };
292
293 if (SrcTy.isVector() && ST->hasNEON()) {
294 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
295 DstTy.getSimpleVT(),
296 SrcTy.getSimpleVT()))
297 return Entry->Cost;
298 }
299
300 // Scalar float to integer conversions.
301 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
302 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
303 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
304 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
305 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
306 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
307 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
308 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
309 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
310 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
311 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
312 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
313 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
314 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
315 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
316 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
317 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
318 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
319 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
320 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
321 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
322 };
323 if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
324 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
325 DstTy.getSimpleVT(),
326 SrcTy.getSimpleVT()))
327 return Entry->Cost;
328 }
329
330 // Scalar integer to float conversions.
331 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
332 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
333 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
334 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
335 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
336 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
337 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
338 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
339 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
340 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
341 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
342 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
343 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
344 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
345 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
346 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
347 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
348 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
349 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
350 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
351 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
352 };
353
354 if (SrcTy.isInteger() && ST->hasNEON()) {
355 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
356 ISD, DstTy.getSimpleVT(),
357 SrcTy.getSimpleVT()))
358 return Entry->Cost;
359 }
360
361 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
362 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
363 // are linearised so take more.
364 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
365 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
366 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
367 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
368 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
369 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
370 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
371 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
372 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
373 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
374 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
375 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
376 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
377 };
378
379 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
380 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
381 ISD, DstTy.getSimpleVT(),
382 SrcTy.getSimpleVT()))
383 return Entry->Cost * ST->getMVEVectorCostFactor();
384 }
385
386 // Scalar integer conversion costs.
387 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
388 // i16 -> i64 requires two dependent operations.
389 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
390
391 // Truncates on i64 are assumed to be free.
392 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
393 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
394 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
395 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
396 };
397
398 if (SrcTy.isInteger()) {
399 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
400 DstTy.getSimpleVT(),
401 SrcTy.getSimpleVT()))
402 return Entry->Cost;
403 }
404
405 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
406 ? ST->getMVEVectorCostFactor()
407 : 1;
408 return BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src);
409 }
410
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)411 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
412 unsigned Index) {
413 // Penalize inserting into an D-subregister. We end up with a three times
414 // lower estimated throughput on swift.
415 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
416 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
417 return 3;
418
419 if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
420 Opcode == Instruction::ExtractElement)) {
421 // Cross-class copies are expensive on many microarchitectures,
422 // so assume they are expensive by default.
423 if (ValTy->getVectorElementType()->isIntegerTy())
424 return 3;
425
426 // Even if it's not a cross class copy, this likely leads to mixing
427 // of NEON and VFP code and should be therefore penalized.
428 if (ValTy->isVectorTy() &&
429 ValTy->getScalarSizeInBits() <= 32)
430 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
431 }
432
433 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
434 Opcode == Instruction::ExtractElement)) {
435 // We say MVE moves costs at least the MVEVectorCostFactor, even though
436 // they are scalar instructions. This helps prevent mixing scalar and
437 // vector, to prevent vectorising where we end up just scalarising the
438 // result anyway.
439 return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index),
440 ST->getMVEVectorCostFactor()) *
441 ValTy->getVectorNumElements() / 2;
442 }
443
444 return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
445 }
446
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)447 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
448 const Instruction *I) {
449 int ISD = TLI->InstructionOpcodeToISD(Opcode);
450 // On NEON a vector select gets lowered to vbsl.
451 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
452 // Lowering of some vector selects is currently far from perfect.
453 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
454 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
455 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
456 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
457 };
458
459 EVT SelCondTy = TLI->getValueType(DL, CondTy);
460 EVT SelValTy = TLI->getValueType(DL, ValTy);
461 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
462 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
463 SelCondTy.getSimpleVT(),
464 SelValTy.getSimpleVT()))
465 return Entry->Cost;
466 }
467
468 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
469 return LT.first;
470 }
471
472 int BaseCost = ST->hasMVEIntegerOps() && ValTy->isVectorTy()
473 ? ST->getMVEVectorCostFactor()
474 : 1;
475 return BaseCost * BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
476 }
477
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)478 int ARMTTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
479 const SCEV *Ptr) {
480 // Address computations in vectorized code with non-consecutive addresses will
481 // likely result in more instructions compared to scalar code where the
482 // computation can more often be merged into the index mode. The resulting
483 // extra micro-ops can significantly decrease throughput.
484 unsigned NumVectorInstToHideOverhead = 10;
485 int MaxMergeDistance = 64;
486
487 if (ST->hasNEON()) {
488 if (Ty->isVectorTy() && SE &&
489 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
490 return NumVectorInstToHideOverhead;
491
492 // In many cases the address computation is not merged into the instruction
493 // addressing mode.
494 return 1;
495 }
496 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
497 }
498
isLegalMaskedLoad(Type * DataTy,MaybeAlign Alignment)499 bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
500 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
501 return false;
502
503 if (auto *VecTy = dyn_cast<VectorType>(DataTy)) {
504 // Don't support v2i1 yet.
505 if (VecTy->getNumElements() == 2)
506 return false;
507
508 // We don't support extending fp types.
509 unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
510 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
511 return false;
512 }
513
514 unsigned EltWidth = DataTy->getScalarSizeInBits();
515 return (EltWidth == 32 && (!Alignment || Alignment >= 4)) ||
516 (EltWidth == 16 && (!Alignment || Alignment >= 2)) ||
517 (EltWidth == 8);
518 }
519
isLegalMaskedGather(Type * Ty,MaybeAlign Alignment)520 bool ARMTTIImpl::isLegalMaskedGather(Type *Ty, MaybeAlign Alignment) {
521 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
522 return false;
523
524 // This method is called in 2 places:
525 // - from the vectorizer with a scalar type, in which case we need to get
526 // this as good as we can with the limited info we have (and rely on the cost
527 // model for the rest).
528 // - from the masked intrinsic lowering pass with the actual vector type.
529 // For MVE, we have a custom lowering pass that will already have custom
530 // legalised any gathers that we can to MVE intrinsics, and want to expand all
531 // the rest. The pass runs before the masked intrinsic lowering pass, so if we
532 // are here, we know we want to expand.
533 if (isa<VectorType>(Ty))
534 return false;
535
536 unsigned EltWidth = Ty->getScalarSizeInBits();
537 return ((EltWidth == 32 && (!Alignment || Alignment >= 4)) ||
538 (EltWidth == 16 && (!Alignment || Alignment >= 2)) || EltWidth == 8);
539 }
540
getMemcpyCost(const Instruction * I)541 int ARMTTIImpl::getMemcpyCost(const Instruction *I) {
542 const MemCpyInst *MI = dyn_cast<MemCpyInst>(I);
543 assert(MI && "MemcpyInst expected");
544 ConstantInt *C = dyn_cast<ConstantInt>(MI->getLength());
545
546 // To model the cost of a library call, we assume 1 for the call, and
547 // 3 for the argument setup.
548 const unsigned LibCallCost = 4;
549
550 // If 'size' is not a constant, a library call will be generated.
551 if (!C)
552 return LibCallCost;
553
554 const unsigned Size = C->getValue().getZExtValue();
555 const unsigned DstAlign = MI->getDestAlignment();
556 const unsigned SrcAlign = MI->getSourceAlignment();
557 const Function *F = I->getParent()->getParent();
558 const unsigned Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
559 std::vector<EVT> MemOps;
560
561 // MemOps will be poplulated with a list of data types that needs to be
562 // loaded and stored. That's why we multiply the number of elements by 2 to
563 // get the cost for this memcpy.
564 if (getTLI()->findOptimalMemOpLowering(
565 MemOps, Limit, Size, DstAlign, SrcAlign, false /*IsMemset*/,
566 false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
567 MI->getDestAddressSpace(), MI->getSourceAddressSpace(),
568 F->getAttributes()))
569 return MemOps.size() * 2;
570
571 // If we can't find an optimal memop lowering, return the default cost
572 return LibCallCost;
573 }
574
getShuffleCost(TTI::ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)575 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
576 Type *SubTp) {
577 if (ST->hasNEON()) {
578 if (Kind == TTI::SK_Broadcast) {
579 static const CostTblEntry NEONDupTbl[] = {
580 // VDUP handles these cases.
581 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
582 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
583 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
584 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
585 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
586 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
587
588 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
589 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
590 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
591 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
592
593 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
594
595 if (const auto *Entry =
596 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
597 return LT.first * Entry->Cost;
598 }
599 if (Kind == TTI::SK_Reverse) {
600 static const CostTblEntry NEONShuffleTbl[] = {
601 // Reverse shuffle cost one instruction if we are shuffling within a
602 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
603 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
604 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
605 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
606 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
607 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
608 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
609
610 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
611 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
612 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
613 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
614
615 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
616
617 if (const auto *Entry =
618 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
619 return LT.first * Entry->Cost;
620 }
621 if (Kind == TTI::SK_Select) {
622 static const CostTblEntry NEONSelShuffleTbl[] = {
623 // Select shuffle cost table for ARM. Cost is the number of
624 // instructions
625 // required to create the shuffled vector.
626
627 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
628 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
629 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
630 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
631
632 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
633 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
634 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
635
636 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
637
638 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
639
640 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
641 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
642 ISD::VECTOR_SHUFFLE, LT.second))
643 return LT.first * Entry->Cost;
644 }
645 }
646 if (ST->hasMVEIntegerOps()) {
647 if (Kind == TTI::SK_Broadcast) {
648 static const CostTblEntry MVEDupTbl[] = {
649 // VDUP handles these cases.
650 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
651 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
652 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
653 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
654 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
655
656 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
657
658 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
659 LT.second))
660 return LT.first * Entry->Cost * ST->getMVEVectorCostFactor();
661 }
662 }
663 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
664 ? ST->getMVEVectorCostFactor()
665 : 1;
666 return BaseCost * BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
667 }
668
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Op1Info,TTI::OperandValueKind Op2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)669 int ARMTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
670 TTI::OperandValueKind Op1Info,
671 TTI::OperandValueKind Op2Info,
672 TTI::OperandValueProperties Opd1PropInfo,
673 TTI::OperandValueProperties Opd2PropInfo,
674 ArrayRef<const Value *> Args,
675 const Instruction *CxtI) {
676 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
677 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
678
679 if (ST->hasNEON()) {
680 const unsigned FunctionCallDivCost = 20;
681 const unsigned ReciprocalDivCost = 10;
682 static const CostTblEntry CostTbl[] = {
683 // Division.
684 // These costs are somewhat random. Choose a cost of 20 to indicate that
685 // vectorizing devision (added function call) is going to be very expensive.
686 // Double registers types.
687 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
688 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
689 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
690 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
691 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
692 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
693 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
694 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
695 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
696 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
697 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
698 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
699 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
700 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
701 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
702 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
703 // Quad register types.
704 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
705 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
706 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
707 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
708 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
709 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
710 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
711 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
712 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
713 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
714 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
715 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
716 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
717 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
718 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
719 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
720 // Multiplication.
721 };
722
723 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
724 return LT.first * Entry->Cost;
725
726 int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
727 Opd1PropInfo, Opd2PropInfo);
728
729 // This is somewhat of a hack. The problem that we are facing is that SROA
730 // creates a sequence of shift, and, or instructions to construct values.
731 // These sequences are recognized by the ISel and have zero-cost. Not so for
732 // the vectorized code. Because we have support for v2i64 but not i64 those
733 // sequences look particularly beneficial to vectorize.
734 // To work around this we increase the cost of v2i64 operations to make them
735 // seem less beneficial.
736 if (LT.second == MVT::v2i64 &&
737 Op2Info == TargetTransformInfo::OK_UniformConstantValue)
738 Cost += 4;
739
740 return Cost;
741 }
742
743 // If this operation is a shift on arm/thumb2, it might well be folded into
744 // the following instruction, hence having a cost of 0.
745 auto LooksLikeAFreeShift = [&]() {
746 if (ST->isThumb1Only() || Ty->isVectorTy())
747 return false;
748
749 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
750 return false;
751 if (Op2Info != TargetTransformInfo::OK_UniformConstantValue)
752 return false;
753
754 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
755 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
756 case Instruction::Add:
757 case Instruction::Sub:
758 case Instruction::And:
759 case Instruction::Xor:
760 case Instruction::Or:
761 case Instruction::ICmp:
762 return true;
763 default:
764 return false;
765 }
766 };
767 if (LooksLikeAFreeShift())
768 return 0;
769
770 int BaseCost = ST->hasMVEIntegerOps() && Ty->isVectorTy()
771 ? ST->getMVEVectorCostFactor()
772 : 1;
773
774 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
775 // without treating floats as more expensive that scalars or increasing the
776 // costs for custom operations. The results is also multiplied by the
777 // MVEVectorCostFactor where appropriate.
778 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
779 return LT.first * BaseCost;
780
781 // Else this is expand, assume that we need to scalarize this op.
782 if (Ty->isVectorTy()) {
783 unsigned Num = Ty->getVectorNumElements();
784 unsigned Cost = getArithmeticInstrCost(Opcode, Ty->getScalarType());
785 // Return the cost of multiple scalar invocation plus the cost of
786 // inserting and extracting the values.
787 return BaseT::getScalarizationOverhead(Ty, Args) + Num * Cost;
788 }
789
790 return BaseCost;
791 }
792
getMemoryOpCost(unsigned Opcode,Type * Src,MaybeAlign Alignment,unsigned AddressSpace,const Instruction * I)793 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
794 MaybeAlign Alignment, unsigned AddressSpace,
795 const Instruction *I) {
796 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
797
798 if (ST->hasNEON() && Src->isVectorTy() &&
799 (Alignment && *Alignment != Align(16)) &&
800 Src->getVectorElementType()->isDoubleTy()) {
801 // Unaligned loads/stores are extremely inefficient.
802 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
803 return LT.first * 4;
804 }
805 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
806 ? ST->getMVEVectorCostFactor()
807 : 1;
808 return BaseCost * LT.first;
809 }
810
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace,bool UseMaskForCond,bool UseMaskForGaps)811 int ARMTTIImpl::getInterleavedMemoryOpCost(
812 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
813 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
814 bool UseMaskForGaps) {
815 assert(Factor >= 2 && "Invalid interleave factor");
816 assert(isa<VectorType>(VecTy) && "Expect a vector type");
817
818 // vldN/vstN doesn't support vector types of i64/f64 element.
819 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
820
821 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
822 !UseMaskForCond && !UseMaskForGaps) {
823 unsigned NumElts = VecTy->getVectorNumElements();
824 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
825
826 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
827 // Accesses having vector types that are a multiple of 128 bits can be
828 // matched to more than one vldN/vstN instruction.
829 int BaseCost = ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor() : 1;
830 if (NumElts % Factor == 0 &&
831 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, DL))
832 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
833
834 // Some smaller than legal interleaved patterns are cheap as we can make
835 // use of the vmovn or vrev patterns to interleave a standard load. This is
836 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
837 // promoted differently). The cost of 2 here is then a load and vrev or
838 // vmovn.
839 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
840 VecTy->isIntOrIntVectorTy() && DL.getTypeSizeInBits(SubVecTy) <= 64)
841 return 2 * BaseCost;
842 }
843
844 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
845 Alignment, AddressSpace,
846 UseMaskForCond, UseMaskForGaps);
847 }
848
isLoweredToCall(const Function * F)849 bool ARMTTIImpl::isLoweredToCall(const Function *F) {
850 if (!F->isIntrinsic())
851 BaseT::isLoweredToCall(F);
852
853 // Assume all Arm-specific intrinsics map to an instruction.
854 if (F->getName().startswith("llvm.arm"))
855 return false;
856
857 switch (F->getIntrinsicID()) {
858 default: break;
859 case Intrinsic::powi:
860 case Intrinsic::sin:
861 case Intrinsic::cos:
862 case Intrinsic::pow:
863 case Intrinsic::log:
864 case Intrinsic::log10:
865 case Intrinsic::log2:
866 case Intrinsic::exp:
867 case Intrinsic::exp2:
868 return true;
869 case Intrinsic::sqrt:
870 case Intrinsic::fabs:
871 case Intrinsic::copysign:
872 case Intrinsic::floor:
873 case Intrinsic::ceil:
874 case Intrinsic::trunc:
875 case Intrinsic::rint:
876 case Intrinsic::nearbyint:
877 case Intrinsic::round:
878 case Intrinsic::canonicalize:
879 case Intrinsic::lround:
880 case Intrinsic::llround:
881 case Intrinsic::lrint:
882 case Intrinsic::llrint:
883 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
884 return true;
885 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
886 return true;
887 // Some operations can be handled by vector instructions and assume
888 // unsupported vectors will be expanded into supported scalar ones.
889 // TODO Handle scalar operations properly.
890 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
891 case Intrinsic::masked_store:
892 case Intrinsic::masked_load:
893 case Intrinsic::masked_gather:
894 case Intrinsic::masked_scatter:
895 return !ST->hasMVEIntegerOps();
896 case Intrinsic::sadd_with_overflow:
897 case Intrinsic::uadd_with_overflow:
898 case Intrinsic::ssub_with_overflow:
899 case Intrinsic::usub_with_overflow:
900 case Intrinsic::sadd_sat:
901 case Intrinsic::uadd_sat:
902 case Intrinsic::ssub_sat:
903 case Intrinsic::usub_sat:
904 return false;
905 }
906
907 return BaseT::isLoweredToCall(F);
908 }
909
isHardwareLoopProfitable(Loop * L,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * LibInfo,HardwareLoopInfo & HWLoopInfo)910 bool ARMTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
911 AssumptionCache &AC,
912 TargetLibraryInfo *LibInfo,
913 HardwareLoopInfo &HWLoopInfo) {
914 // Low-overhead branches are only supported in the 'low-overhead branch'
915 // extension of v8.1-m.
916 if (!ST->hasLOB() || DisableLowOverheadLoops)
917 return false;
918
919 if (!SE.hasLoopInvariantBackedgeTakenCount(L))
920 return false;
921
922 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
923 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
924 return false;
925
926 const SCEV *TripCountSCEV =
927 SE.getAddExpr(BackedgeTakenCount,
928 SE.getOne(BackedgeTakenCount->getType()));
929
930 // We need to store the trip count in LR, a 32-bit register.
931 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32)
932 return false;
933
934 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
935 // point in generating a hardware loop if that's going to happen.
936 auto MaybeCall = [this](Instruction &I) {
937 const ARMTargetLowering *TLI = getTLI();
938 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
939 EVT VT = TLI->getValueType(DL, I.getType(), true);
940 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
941 return true;
942
943 // Check if an intrinsic will be lowered to a call and assume that any
944 // other CallInst will generate a bl.
945 if (auto *Call = dyn_cast<CallInst>(&I)) {
946 if (isa<IntrinsicInst>(Call)) {
947 if (const Function *F = Call->getCalledFunction())
948 return isLoweredToCall(F);
949 }
950 return true;
951 }
952
953 // FPv5 provides conversions between integer, double-precision,
954 // single-precision, and half-precision formats.
955 switch (I.getOpcode()) {
956 default:
957 break;
958 case Instruction::FPToSI:
959 case Instruction::FPToUI:
960 case Instruction::SIToFP:
961 case Instruction::UIToFP:
962 case Instruction::FPTrunc:
963 case Instruction::FPExt:
964 return !ST->hasFPARMv8Base();
965 }
966
967 // FIXME: Unfortunately the approach of checking the Operation Action does
968 // not catch all cases of Legalization that use library calls. Our
969 // Legalization step categorizes some transformations into library calls as
970 // Custom, Expand or even Legal when doing type legalization. So for now
971 // we have to special case for instance the SDIV of 64bit integers and the
972 // use of floating point emulation.
973 if (VT.isInteger() && VT.getSizeInBits() >= 64) {
974 switch (ISD) {
975 default:
976 break;
977 case ISD::SDIV:
978 case ISD::UDIV:
979 case ISD::SREM:
980 case ISD::UREM:
981 case ISD::SDIVREM:
982 case ISD::UDIVREM:
983 return true;
984 }
985 }
986
987 // Assume all other non-float operations are supported.
988 if (!VT.isFloatingPoint())
989 return false;
990
991 // We'll need a library call to handle most floats when using soft.
992 if (TLI->useSoftFloat()) {
993 switch (I.getOpcode()) {
994 default:
995 return true;
996 case Instruction::Alloca:
997 case Instruction::Load:
998 case Instruction::Store:
999 case Instruction::Select:
1000 case Instruction::PHI:
1001 return false;
1002 }
1003 }
1004
1005 // We'll need a libcall to perform double precision operations on a single
1006 // precision only FPU.
1007 if (I.getType()->isDoubleTy() && !ST->hasFP64())
1008 return true;
1009
1010 // Likewise for half precision arithmetic.
1011 if (I.getType()->isHalfTy() && !ST->hasFullFP16())
1012 return true;
1013
1014 return false;
1015 };
1016
1017 auto IsHardwareLoopIntrinsic = [](Instruction &I) {
1018 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
1019 switch (Call->getIntrinsicID()) {
1020 default:
1021 break;
1022 case Intrinsic::set_loop_iterations:
1023 case Intrinsic::test_set_loop_iterations:
1024 case Intrinsic::loop_decrement:
1025 case Intrinsic::loop_decrement_reg:
1026 return true;
1027 }
1028 }
1029 return false;
1030 };
1031
1032 // Scan the instructions to see if there's any that we know will turn into a
1033 // call or if this loop is already a low-overhead loop.
1034 auto ScanLoop = [&](Loop *L) {
1035 for (auto *BB : L->getBlocks()) {
1036 for (auto &I : *BB) {
1037 if (MaybeCall(I) || IsHardwareLoopIntrinsic(I))
1038 return false;
1039 }
1040 }
1041 return true;
1042 };
1043
1044 // Visit inner loops.
1045 for (auto Inner : *L)
1046 if (!ScanLoop(Inner))
1047 return false;
1048
1049 if (!ScanLoop(L))
1050 return false;
1051
1052 // TODO: Check whether the trip count calculation is expensive. If L is the
1053 // inner loop but we know it has a low trip count, calculating that trip
1054 // count (in the parent loop) may be detrimental.
1055
1056 LLVMContext &C = L->getHeader()->getContext();
1057 HWLoopInfo.CounterInReg = true;
1058 HWLoopInfo.IsNestingLegal = false;
1059 HWLoopInfo.PerformEntryTest = true;
1060 HWLoopInfo.CountType = Type::getInt32Ty(C);
1061 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
1062 return true;
1063 }
1064
canTailPredicateInstruction(Instruction & I,int & ICmpCount)1065 static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
1066 // We don't allow icmp's, and because we only look at single block loops,
1067 // we simply count the icmps, i.e. there should only be 1 for the backedge.
1068 if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
1069 return false;
1070
1071 if (isa<FCmpInst>(&I))
1072 return false;
1073
1074 // We could allow extending/narrowing FP loads/stores, but codegen is
1075 // too inefficient so reject this for now.
1076 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
1077 return false;
1078
1079 // Extends have to be extending-loads
1080 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
1081 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
1082 return false;
1083
1084 // Truncs have to be narrowing-stores
1085 if (isa<TruncInst>(&I) )
1086 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
1087 return false;
1088
1089 return true;
1090 }
1091
1092 // To set up a tail-predicated loop, we need to know the total number of
1093 // elements processed by that loop. Thus, we need to determine the element
1094 // size and:
1095 // 1) it should be uniform for all operations in the vector loop, so we
1096 // e.g. don't want any widening/narrowing operations.
1097 // 2) it should be smaller than i64s because we don't have vector operations
1098 // that work on i64s.
1099 // 3) we don't want elements to be reversed or shuffled, to make sure the
1100 // tail-predication masks/predicates the right lanes.
1101 //
canTailPredicateLoop(Loop * L,LoopInfo * LI,ScalarEvolution & SE,const DataLayout & DL,const LoopAccessInfo * LAI)1102 static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
1103 const DataLayout &DL,
1104 const LoopAccessInfo *LAI) {
1105 PredicatedScalarEvolution PSE = LAI->getPSE();
1106 int ICmpCount = 0;
1107 int Stride = 0;
1108
1109 LLVM_DEBUG(dbgs() << "tail-predication: checking allowed instructions\n");
1110 SmallVector<Instruction *, 16> LoadStores;
1111 for (BasicBlock *BB : L->blocks()) {
1112 for (Instruction &I : BB->instructionsWithoutDebug()) {
1113 if (isa<PHINode>(&I))
1114 continue;
1115 if (!canTailPredicateInstruction(I, ICmpCount)) {
1116 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
1117 return false;
1118 }
1119
1120 Type *T = I.getType();
1121 if (T->isPointerTy())
1122 T = T->getPointerElementType();
1123
1124 if (T->getScalarSizeInBits() > 32) {
1125 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
1126 return false;
1127 }
1128
1129 if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
1130 Value *Ptr = isa<LoadInst>(I) ? I.getOperand(0) : I.getOperand(1);
1131 int64_t NextStride = getPtrStride(PSE, Ptr, L);
1132 // TODO: for now only allow consecutive strides of 1. We could support
1133 // other strides as long as it is uniform, but let's keep it simple for
1134 // now.
1135 if (Stride == 0 && NextStride == 1) {
1136 Stride = NextStride;
1137 continue;
1138 }
1139 if (Stride != NextStride) {
1140 LLVM_DEBUG(dbgs() << "Different strides found, can't "
1141 "tail-predicate\n.");
1142 return false;
1143 }
1144 }
1145 }
1146 }
1147
1148 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
1149 return true;
1150 }
1151
preferPredicateOverEpilogue(Loop * L,LoopInfo * LI,ScalarEvolution & SE,AssumptionCache & AC,TargetLibraryInfo * TLI,DominatorTree * DT,const LoopAccessInfo * LAI)1152 bool ARMTTIImpl::preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
1153 ScalarEvolution &SE,
1154 AssumptionCache &AC,
1155 TargetLibraryInfo *TLI,
1156 DominatorTree *DT,
1157 const LoopAccessInfo *LAI) {
1158 if (DisableTailPredication)
1159 return false;
1160
1161 // Creating a predicated vector loop is the first step for generating a
1162 // tail-predicated hardware loop, for which we need the MVE masked
1163 // load/stores instructions:
1164 if (!ST->hasMVEIntegerOps())
1165 return false;
1166
1167 // For now, restrict this to single block loops.
1168 if (L->getNumBlocks() > 1) {
1169 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
1170 "loop.\n");
1171 return false;
1172 }
1173
1174 assert(L->empty() && "preferPredicateOverEpilogue: inner-loop expected");
1175
1176 HardwareLoopInfo HWLoopInfo(L);
1177 if (!HWLoopInfo.canAnalyze(*LI)) {
1178 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
1179 "analyzable.\n");
1180 return false;
1181 }
1182
1183 // This checks if we have the low-overhead branch architecture
1184 // extension, and if we will create a hardware-loop:
1185 if (!isHardwareLoopProfitable(L, SE, AC, TLI, HWLoopInfo)) {
1186 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
1187 "profitable.\n");
1188 return false;
1189 }
1190
1191 if (!HWLoopInfo.isHardwareLoopCandidate(SE, *LI, *DT)) {
1192 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
1193 "a candidate.\n");
1194 return false;
1195 }
1196
1197 return canTailPredicateLoop(L, LI, SE, DL, LAI);
1198 }
1199
1200
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)1201 void ARMTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1202 TTI::UnrollingPreferences &UP) {
1203 // Only currently enable these preferences for M-Class cores.
1204 if (!ST->isMClass())
1205 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP);
1206
1207 // Disable loop unrolling for Oz and Os.
1208 UP.OptSizeThreshold = 0;
1209 UP.PartialOptSizeThreshold = 0;
1210 if (L->getHeader()->getParent()->hasOptSize())
1211 return;
1212
1213 // Only enable on Thumb-2 targets.
1214 if (!ST->isThumb2())
1215 return;
1216
1217 SmallVector<BasicBlock*, 4> ExitingBlocks;
1218 L->getExitingBlocks(ExitingBlocks);
1219 LLVM_DEBUG(dbgs() << "Loop has:\n"
1220 << "Blocks: " << L->getNumBlocks() << "\n"
1221 << "Exit blocks: " << ExitingBlocks.size() << "\n");
1222
1223 // Only allow another exit other than the latch. This acts as an early exit
1224 // as it mirrors the profitability calculation of the runtime unroller.
1225 if (ExitingBlocks.size() > 2)
1226 return;
1227
1228 // Limit the CFG of the loop body for targets with a branch predictor.
1229 // Allowing 4 blocks permits if-then-else diamonds in the body.
1230 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
1231 return;
1232
1233 // Scan the loop: don't unroll loops with calls as this could prevent
1234 // inlining.
1235 unsigned Cost = 0;
1236 for (auto *BB : L->getBlocks()) {
1237 for (auto &I : *BB) {
1238 // Don't unroll vectorised loop. MVE does not benefit from it as much as
1239 // scalar code.
1240 if (I.getType()->isVectorTy())
1241 return;
1242
1243 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1244 ImmutableCallSite CS(&I);
1245 if (const Function *F = CS.getCalledFunction()) {
1246 if (!isLoweredToCall(F))
1247 continue;
1248 }
1249 return;
1250 }
1251
1252 SmallVector<const Value*, 4> Operands(I.value_op_begin(),
1253 I.value_op_end());
1254 Cost += getUserCost(&I, Operands);
1255 }
1256 }
1257
1258 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
1259
1260 UP.Partial = true;
1261 UP.Runtime = true;
1262 UP.UpperBound = true;
1263 UP.UnrollRemainder = true;
1264 UP.DefaultUnrollRuntimeCount = 4;
1265 UP.UnrollAndJam = true;
1266 UP.UnrollAndJamInnerLoopThreshold = 60;
1267
1268 // Force unrolling small loops can be very useful because of the branch
1269 // taken cost of the backedge.
1270 if (Cost < 12)
1271 UP.Force = true;
1272 }
1273
useReductionIntrinsic(unsigned Opcode,Type * Ty,TTI::ReductionFlags Flags) const1274 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
1275 TTI::ReductionFlags Flags) const {
1276 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
1277 unsigned ScalarBits = Ty->getScalarSizeInBits();
1278 if (!ST->hasMVEIntegerOps())
1279 return false;
1280
1281 switch (Opcode) {
1282 case Instruction::FAdd:
1283 case Instruction::FMul:
1284 case Instruction::And:
1285 case Instruction::Or:
1286 case Instruction::Xor:
1287 case Instruction::Mul:
1288 case Instruction::FCmp:
1289 return false;
1290 case Instruction::ICmp:
1291 case Instruction::Add:
1292 return ScalarBits < 64 && ScalarBits * Ty->getVectorNumElements() == 128;
1293 default:
1294 llvm_unreachable("Unhandled reduction opcode");
1295 }
1296 return false;
1297 }
1298