1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 /// Code Transformations to Augment the Scope of Loop Fusion in a
14 /// Production Compiler
15 /// Christopher Mark Barton
16 /// MSc Thesis
17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 /// 1. The loops must be adjacent (there cannot be any statements between
23 /// the two loops).
24 /// 2. The loops must be conforming (they must execute the same number of
25 /// iterations).
26 /// 3. The loops must be control flow equivalent (if one loop executes, the
27 /// other is guaranteed to execute).
28 /// 4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
67
68 using namespace llvm;
69
70 #define DEBUG_TYPE "loop-fusion"
71
72 STATISTIC(FuseCounter, "Loops fused");
73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
74 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
75 STATISTIC(InvalidHeader, "Loop has invalid header");
76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
78 STATISTIC(InvalidLatch, "Loop has invalid latch");
79 STATISTIC(InvalidLoop, "Loop is invalid");
80 STATISTIC(AddressTakenBB, "Basic block has address taken");
81 STATISTIC(MayThrowException, "Loop may throw an exception");
82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
85 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
88 STATISTIC(NonAdjacent, "Loops are not adjacent");
89 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
90 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
91 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
92 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
93 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
94 STATISTIC(NotRotated, "Candidate is not rotated");
95
96 enum FusionDependenceAnalysisChoice {
97 FUSION_DEPENDENCE_ANALYSIS_SCEV,
98 FUSION_DEPENDENCE_ANALYSIS_DA,
99 FUSION_DEPENDENCE_ANALYSIS_ALL,
100 };
101
102 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
103 "loop-fusion-dependence-analysis",
104 cl::desc("Which dependence analysis should loop fusion use?"),
105 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
106 "Use the scalar evolution interface"),
107 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
108 "Use the dependence analysis interface"),
109 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
110 "Use all available analyses")),
111 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
112
113 #ifndef NDEBUG
114 static cl::opt<bool>
115 VerboseFusionDebugging("loop-fusion-verbose-debug",
116 cl::desc("Enable verbose debugging for Loop Fusion"),
117 cl::Hidden, cl::init(false), cl::ZeroOrMore);
118 #endif
119
120 namespace {
121 /// This class is used to represent a candidate for loop fusion. When it is
122 /// constructed, it checks the conditions for loop fusion to ensure that it
123 /// represents a valid candidate. It caches several parts of a loop that are
124 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
125 /// of continually querying the underlying Loop to retrieve these values. It is
126 /// assumed these will not change throughout loop fusion.
127 ///
128 /// The invalidate method should be used to indicate that the FusionCandidate is
129 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
130 /// be used to ensure that the FusionCandidate is still valid for fusion.
131 struct FusionCandidate {
132 /// Cache of parts of the loop used throughout loop fusion. These should not
133 /// need to change throughout the analysis and transformation.
134 /// These parts are cached to avoid repeatedly looking up in the Loop class.
135
136 /// Preheader of the loop this candidate represents
137 BasicBlock *Preheader;
138 /// Header of the loop this candidate represents
139 BasicBlock *Header;
140 /// Blocks in the loop that exit the loop
141 BasicBlock *ExitingBlock;
142 /// The successor block of this loop (where the exiting blocks go to)
143 BasicBlock *ExitBlock;
144 /// Latch of the loop
145 BasicBlock *Latch;
146 /// The loop that this fusion candidate represents
147 Loop *L;
148 /// Vector of instructions in this loop that read from memory
149 SmallVector<Instruction *, 16> MemReads;
150 /// Vector of instructions in this loop that write to memory
151 SmallVector<Instruction *, 16> MemWrites;
152 /// Are all of the members of this fusion candidate still valid
153 bool Valid;
154 /// Guard branch of the loop, if it exists
155 BranchInst *GuardBranch;
156
157 /// Dominator and PostDominator trees are needed for the
158 /// FusionCandidateCompare function, required by FusionCandidateSet to
159 /// determine where the FusionCandidate should be inserted into the set. These
160 /// are used to establish ordering of the FusionCandidates based on dominance.
161 const DominatorTree *DT;
162 const PostDominatorTree *PDT;
163
164 OptimizationRemarkEmitter &ORE;
165
FusionCandidate__anond8dd5b980111::FusionCandidate166 FusionCandidate(Loop *L, const DominatorTree *DT,
167 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
168 : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
169 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
170 Latch(L->getLoopLatch()), L(L), Valid(true),
171 GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {
172
173 // Walk over all blocks in the loop and check for conditions that may
174 // prevent fusion. For each block, walk over all instructions and collect
175 // the memory reads and writes If any instructions that prevent fusion are
176 // found, invalidate this object and return.
177 for (BasicBlock *BB : L->blocks()) {
178 if (BB->hasAddressTaken()) {
179 invalidate();
180 reportInvalidCandidate(AddressTakenBB);
181 return;
182 }
183
184 for (Instruction &I : *BB) {
185 if (I.mayThrow()) {
186 invalidate();
187 reportInvalidCandidate(MayThrowException);
188 return;
189 }
190 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
191 if (SI->isVolatile()) {
192 invalidate();
193 reportInvalidCandidate(ContainsVolatileAccess);
194 return;
195 }
196 }
197 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
198 if (LI->isVolatile()) {
199 invalidate();
200 reportInvalidCandidate(ContainsVolatileAccess);
201 return;
202 }
203 }
204 if (I.mayWriteToMemory())
205 MemWrites.push_back(&I);
206 if (I.mayReadFromMemory())
207 MemReads.push_back(&I);
208 }
209 }
210 }
211
212 /// Check if all members of the class are valid.
isValid__anond8dd5b980111::FusionCandidate213 bool isValid() const {
214 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
215 !L->isInvalid() && Valid;
216 }
217
218 /// Verify that all members are in sync with the Loop object.
verify__anond8dd5b980111::FusionCandidate219 void verify() const {
220 assert(isValid() && "Candidate is not valid!!");
221 assert(!L->isInvalid() && "Loop is invalid!");
222 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
223 assert(Header == L->getHeader() && "Header is out of sync");
224 assert(ExitingBlock == L->getExitingBlock() &&
225 "Exiting Blocks is out of sync");
226 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
227 assert(Latch == L->getLoopLatch() && "Latch is out of sync");
228 }
229
230 /// Get the entry block for this fusion candidate.
231 ///
232 /// If this fusion candidate represents a guarded loop, the entry block is the
233 /// loop guard block. If it represents an unguarded loop, the entry block is
234 /// the preheader of the loop.
getEntryBlock__anond8dd5b980111::FusionCandidate235 BasicBlock *getEntryBlock() const {
236 if (GuardBranch)
237 return GuardBranch->getParent();
238 else
239 return Preheader;
240 }
241
242 /// Given a guarded loop, get the successor of the guard that is not in the
243 /// loop.
244 ///
245 /// This method returns the successor of the loop guard that is not located
246 /// within the loop (i.e., the successor of the guard that is not the
247 /// preheader).
248 /// This method is only valid for guarded loops.
getNonLoopBlock__anond8dd5b980111::FusionCandidate249 BasicBlock *getNonLoopBlock() const {
250 assert(GuardBranch && "Only valid on guarded loops.");
251 assert(GuardBranch->isConditional() &&
252 "Expecting guard to be a conditional branch.");
253 return (GuardBranch->getSuccessor(0) == Preheader)
254 ? GuardBranch->getSuccessor(1)
255 : GuardBranch->getSuccessor(0);
256 }
257
258 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump__anond8dd5b980111::FusionCandidate259 LLVM_DUMP_METHOD void dump() const {
260 dbgs() << "\tGuardBranch: ";
261 if (GuardBranch)
262 dbgs() << *GuardBranch;
263 else
264 dbgs() << "nullptr";
265 dbgs() << "\n"
266 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
267 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
268 << "\n"
269 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
270 << "\tExitingBB: "
271 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
272 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
273 << "\n"
274 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
275 << "\tEntryBlock: "
276 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
277 << "\n";
278 }
279 #endif
280
281 /// Determine if a fusion candidate (representing a loop) is eligible for
282 /// fusion. Note that this only checks whether a single loop can be fused - it
283 /// does not check whether it is *legal* to fuse two loops together.
isEligibleForFusion__anond8dd5b980111::FusionCandidate284 bool isEligibleForFusion(ScalarEvolution &SE) const {
285 if (!isValid()) {
286 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
287 if (!Preheader)
288 ++InvalidPreheader;
289 if (!Header)
290 ++InvalidHeader;
291 if (!ExitingBlock)
292 ++InvalidExitingBlock;
293 if (!ExitBlock)
294 ++InvalidExitBlock;
295 if (!Latch)
296 ++InvalidLatch;
297 if (L->isInvalid())
298 ++InvalidLoop;
299
300 return false;
301 }
302
303 // Require ScalarEvolution to be able to determine a trip count.
304 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
305 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
306 << " trip count not computable!\n");
307 return reportInvalidCandidate(UnknownTripCount);
308 }
309
310 if (!L->isLoopSimplifyForm()) {
311 LLVM_DEBUG(dbgs() << "Loop " << L->getName()
312 << " is not in simplified form!\n");
313 return reportInvalidCandidate(NotSimplifiedForm);
314 }
315
316 if (!L->isRotatedForm()) {
317 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
318 return reportInvalidCandidate(NotRotated);
319 }
320
321 return true;
322 }
323
324 private:
325 // This is only used internally for now, to clear the MemWrites and MemReads
326 // list and setting Valid to false. I can't envision other uses of this right
327 // now, since once FusionCandidates are put into the FusionCandidateSet they
328 // are immutable. Thus, any time we need to change/update a FusionCandidate,
329 // we must create a new one and insert it into the FusionCandidateSet to
330 // ensure the FusionCandidateSet remains ordered correctly.
invalidate__anond8dd5b980111::FusionCandidate331 void invalidate() {
332 MemWrites.clear();
333 MemReads.clear();
334 Valid = false;
335 }
336
reportInvalidCandidate__anond8dd5b980111::FusionCandidate337 bool reportInvalidCandidate(llvm::Statistic &Stat) const {
338 using namespace ore;
339 assert(L && Preheader && "Fusion candidate not initialized properly!");
340 ++Stat;
341 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
342 L->getStartLoc(), Preheader)
343 << "[" << Preheader->getParent()->getName() << "]: "
344 << "Loop is not a candidate for fusion: " << Stat.getDesc());
345 return false;
346 }
347 };
348
349 struct FusionCandidateCompare {
350 /// Comparison functor to sort two Control Flow Equivalent fusion candidates
351 /// into dominance order.
352 /// If LHS dominates RHS and RHS post-dominates LHS, return true;
353 /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
operator ()__anond8dd5b980111::FusionCandidateCompare354 bool operator()(const FusionCandidate &LHS,
355 const FusionCandidate &RHS) const {
356 const DominatorTree *DT = LHS.DT;
357
358 BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
359 BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
360
361 // Do not save PDT to local variable as it is only used in asserts and thus
362 // will trigger an unused variable warning if building without asserts.
363 assert(DT && LHS.PDT && "Expecting valid dominator tree");
364
365 // Do this compare first so if LHS == RHS, function returns false.
366 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
367 // RHS dominates LHS
368 // Verify LHS post-dominates RHS
369 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
370 return false;
371 }
372
373 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
374 // Verify RHS Postdominates LHS
375 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
376 return true;
377 }
378
379 // If LHS does not dominate RHS and RHS does not dominate LHS then there is
380 // no dominance relationship between the two FusionCandidates. Thus, they
381 // should not be in the same set together.
382 llvm_unreachable(
383 "No dominance relationship between these fusion candidates!");
384 }
385 };
386
387 using LoopVector = SmallVector<Loop *, 4>;
388
389 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
390 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
391 // dominates FC1 and FC1 post-dominates FC0.
392 // std::set was chosen because we want a sorted data structure with stable
393 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
394 // loops by moving intervening code around. When this intervening code contains
395 // loops, those loops will be moved also. The corresponding FusionCandidates
396 // will also need to be moved accordingly. As this is done, having stable
397 // iterators will simplify the logic. Similarly, having an efficient insert that
398 // keeps the FusionCandidateSet sorted will also simplify the implementation.
399 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
400 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
401
402 #if !defined(NDEBUG)
operator <<(llvm::raw_ostream & OS,const FusionCandidate & FC)403 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
404 const FusionCandidate &FC) {
405 if (FC.isValid())
406 OS << FC.Preheader->getName();
407 else
408 OS << "<Invalid>";
409
410 return OS;
411 }
412
operator <<(llvm::raw_ostream & OS,const FusionCandidateSet & CandSet)413 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
414 const FusionCandidateSet &CandSet) {
415 for (const FusionCandidate &FC : CandSet)
416 OS << FC << '\n';
417
418 return OS;
419 }
420
421 static void
printFusionCandidates(const FusionCandidateCollection & FusionCandidates)422 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
423 dbgs() << "Fusion Candidates: \n";
424 for (const auto &CandidateSet : FusionCandidates) {
425 dbgs() << "*** Fusion Candidate Set ***\n";
426 dbgs() << CandidateSet;
427 dbgs() << "****************************\n";
428 }
429 }
430 #endif
431
432 /// Collect all loops in function at the same nest level, starting at the
433 /// outermost level.
434 ///
435 /// This data structure collects all loops at the same nest level for a
436 /// given function (specified by the LoopInfo object). It starts at the
437 /// outermost level.
438 struct LoopDepthTree {
439 using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
440 using iterator = LoopsOnLevelTy::iterator;
441 using const_iterator = LoopsOnLevelTy::const_iterator;
442
LoopDepthTree__anond8dd5b980111::LoopDepthTree443 LoopDepthTree(LoopInfo &LI) : Depth(1) {
444 if (!LI.empty())
445 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
446 }
447
448 /// Test whether a given loop has been removed from the function, and thus is
449 /// no longer valid.
isRemovedLoop__anond8dd5b980111::LoopDepthTree450 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
451
452 /// Record that a given loop has been removed from the function and is no
453 /// longer valid.
removeLoop__anond8dd5b980111::LoopDepthTree454 void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
455
456 /// Descend the tree to the next (inner) nesting level
descend__anond8dd5b980111::LoopDepthTree457 void descend() {
458 LoopsOnLevelTy LoopsOnNextLevel;
459
460 for (const LoopVector &LV : *this)
461 for (Loop *L : LV)
462 if (!isRemovedLoop(L) && L->begin() != L->end())
463 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
464
465 LoopsOnLevel = LoopsOnNextLevel;
466 RemovedLoops.clear();
467 Depth++;
468 }
469
empty__anond8dd5b980111::LoopDepthTree470 bool empty() const { return size() == 0; }
size__anond8dd5b980111::LoopDepthTree471 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
getDepth__anond8dd5b980111::LoopDepthTree472 unsigned getDepth() const { return Depth; }
473
begin__anond8dd5b980111::LoopDepthTree474 iterator begin() { return LoopsOnLevel.begin(); }
end__anond8dd5b980111::LoopDepthTree475 iterator end() { return LoopsOnLevel.end(); }
begin__anond8dd5b980111::LoopDepthTree476 const_iterator begin() const { return LoopsOnLevel.begin(); }
end__anond8dd5b980111::LoopDepthTree477 const_iterator end() const { return LoopsOnLevel.end(); }
478
479 private:
480 /// Set of loops that have been removed from the function and are no longer
481 /// valid.
482 SmallPtrSet<const Loop *, 8> RemovedLoops;
483
484 /// Depth of the current level, starting at 1 (outermost loops).
485 unsigned Depth;
486
487 /// Vector of loops at the current depth level that have the same parent loop
488 LoopsOnLevelTy LoopsOnLevel;
489 };
490
491 #ifndef NDEBUG
printLoopVector(const LoopVector & LV)492 static void printLoopVector(const LoopVector &LV) {
493 dbgs() << "****************************\n";
494 for (auto L : LV)
495 printLoop(*L, dbgs());
496 dbgs() << "****************************\n";
497 }
498 #endif
499
500 struct LoopFuser {
501 private:
502 // Sets of control flow equivalent fusion candidates for a given nest level.
503 FusionCandidateCollection FusionCandidates;
504
505 LoopDepthTree LDT;
506 DomTreeUpdater DTU;
507
508 LoopInfo &LI;
509 DominatorTree &DT;
510 DependenceInfo &DI;
511 ScalarEvolution &SE;
512 PostDominatorTree &PDT;
513 OptimizationRemarkEmitter &ORE;
514
515 public:
LoopFuser__anond8dd5b980111::LoopFuser516 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
517 ScalarEvolution &SE, PostDominatorTree &PDT,
518 OptimizationRemarkEmitter &ORE, const DataLayout &DL)
519 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
520 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
521
522 /// This is the main entry point for loop fusion. It will traverse the
523 /// specified function and collect candidate loops to fuse, starting at the
524 /// outermost nesting level and working inwards.
fuseLoops__anond8dd5b980111::LoopFuser525 bool fuseLoops(Function &F) {
526 #ifndef NDEBUG
527 if (VerboseFusionDebugging) {
528 LI.print(dbgs());
529 }
530 #endif
531
532 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
533 << "\n");
534 bool Changed = false;
535
536 while (!LDT.empty()) {
537 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
538 << LDT.getDepth() << "\n";);
539
540 for (const LoopVector &LV : LDT) {
541 assert(LV.size() > 0 && "Empty loop set was build!");
542
543 // Skip singleton loop sets as they do not offer fusion opportunities on
544 // this level.
545 if (LV.size() == 1)
546 continue;
547 #ifndef NDEBUG
548 if (VerboseFusionDebugging) {
549 LLVM_DEBUG({
550 dbgs() << " Visit loop set (#" << LV.size() << "):\n";
551 printLoopVector(LV);
552 });
553 }
554 #endif
555
556 collectFusionCandidates(LV);
557 Changed |= fuseCandidates();
558 }
559
560 // Finished analyzing candidates at this level.
561 // Descend to the next level and clear all of the candidates currently
562 // collected. Note that it will not be possible to fuse any of the
563 // existing candidates with new candidates because the new candidates will
564 // be at a different nest level and thus not be control flow equivalent
565 // with all of the candidates collected so far.
566 LLVM_DEBUG(dbgs() << "Descend one level!\n");
567 LDT.descend();
568 FusionCandidates.clear();
569 }
570
571 if (Changed)
572 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
573
574 #ifndef NDEBUG
575 assert(DT.verify());
576 assert(PDT.verify());
577 LI.verify(DT);
578 SE.verify();
579 #endif
580
581 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
582 return Changed;
583 }
584
585 private:
586 /// Determine if two fusion candidates are control flow equivalent.
587 ///
588 /// Two fusion candidates are control flow equivalent if when one executes,
589 /// the other is guaranteed to execute. This is determined using dominators
590 /// and post-dominators: if A dominates B and B post-dominates A then A and B
591 /// are control-flow equivalent.
isControlFlowEquivalent__anond8dd5b980111::LoopFuser592 bool isControlFlowEquivalent(const FusionCandidate &FC0,
593 const FusionCandidate &FC1) const {
594 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
595
596 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
597 DT, PDT);
598 }
599
600 /// Iterate over all loops in the given loop set and identify the loops that
601 /// are eligible for fusion. Place all eligible fusion candidates into Control
602 /// Flow Equivalent sets, sorted by dominance.
collectFusionCandidates__anond8dd5b980111::LoopFuser603 void collectFusionCandidates(const LoopVector &LV) {
604 for (Loop *L : LV) {
605 FusionCandidate CurrCand(L, &DT, &PDT, ORE);
606 if (!CurrCand.isEligibleForFusion(SE))
607 continue;
608
609 // Go through each list in FusionCandidates and determine if L is control
610 // flow equivalent with the first loop in that list. If it is, append LV.
611 // If not, go to the next list.
612 // If no suitable list is found, start another list and add it to
613 // FusionCandidates.
614 bool FoundSet = false;
615
616 for (auto &CurrCandSet : FusionCandidates) {
617 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
618 CurrCandSet.insert(CurrCand);
619 FoundSet = true;
620 #ifndef NDEBUG
621 if (VerboseFusionDebugging)
622 LLVM_DEBUG(dbgs() << "Adding " << CurrCand
623 << " to existing candidate set\n");
624 #endif
625 break;
626 }
627 }
628 if (!FoundSet) {
629 // No set was found. Create a new set and add to FusionCandidates
630 #ifndef NDEBUG
631 if (VerboseFusionDebugging)
632 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
633 #endif
634 FusionCandidateSet NewCandSet;
635 NewCandSet.insert(CurrCand);
636 FusionCandidates.push_back(NewCandSet);
637 }
638 NumFusionCandidates++;
639 }
640 }
641
642 /// Determine if it is beneficial to fuse two loops.
643 ///
644 /// For now, this method simply returns true because we want to fuse as much
645 /// as possible (primarily to test the pass). This method will evolve, over
646 /// time, to add heuristics for profitability of fusion.
isBeneficialFusion__anond8dd5b980111::LoopFuser647 bool isBeneficialFusion(const FusionCandidate &FC0,
648 const FusionCandidate &FC1) {
649 return true;
650 }
651
652 /// Determine if two fusion candidates have the same trip count (i.e., they
653 /// execute the same number of iterations).
654 ///
655 /// Note that for now this method simply returns a boolean value because there
656 /// are no mechanisms in loop fusion to handle different trip counts. In the
657 /// future, this behaviour can be extended to adjust one of the loops to make
658 /// the trip counts equal (e.g., loop peeling). When this is added, this
659 /// interface may need to change to return more information than just a
660 /// boolean value.
identicalTripCounts__anond8dd5b980111::LoopFuser661 bool identicalTripCounts(const FusionCandidate &FC0,
662 const FusionCandidate &FC1) const {
663 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
664 if (isa<SCEVCouldNotCompute>(TripCount0)) {
665 UncomputableTripCount++;
666 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
667 return false;
668 }
669
670 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
671 if (isa<SCEVCouldNotCompute>(TripCount1)) {
672 UncomputableTripCount++;
673 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
674 return false;
675 }
676 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
677 << *TripCount1 << " are "
678 << (TripCount0 == TripCount1 ? "identical" : "different")
679 << "\n");
680
681 return (TripCount0 == TripCount1);
682 }
683
684 /// Walk each set of control flow equivalent fusion candidates and attempt to
685 /// fuse them. This does a single linear traversal of all candidates in the
686 /// set. The conditions for legal fusion are checked at this point. If a pair
687 /// of fusion candidates passes all legality checks, they are fused together
688 /// and a new fusion candidate is created and added to the FusionCandidateSet.
689 /// The original fusion candidates are then removed, as they are no longer
690 /// valid.
fuseCandidates__anond8dd5b980111::LoopFuser691 bool fuseCandidates() {
692 bool Fused = false;
693 LLVM_DEBUG(printFusionCandidates(FusionCandidates));
694 for (auto &CandidateSet : FusionCandidates) {
695 if (CandidateSet.size() < 2)
696 continue;
697
698 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
699 << CandidateSet << "\n");
700
701 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
702 assert(!LDT.isRemovedLoop(FC0->L) &&
703 "Should not have removed loops in CandidateSet!");
704 auto FC1 = FC0;
705 for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
706 assert(!LDT.isRemovedLoop(FC1->L) &&
707 "Should not have removed loops in CandidateSet!");
708
709 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
710 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
711
712 FC0->verify();
713 FC1->verify();
714
715 if (!identicalTripCounts(*FC0, *FC1)) {
716 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
717 "counts. Not fusing.\n");
718 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
719 NonEqualTripCount);
720 continue;
721 }
722
723 if (!isAdjacent(*FC0, *FC1)) {
724 LLVM_DEBUG(dbgs()
725 << "Fusion candidates are not adjacent. Not fusing.\n");
726 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
727 continue;
728 }
729
730 // Ensure that FC0 and FC1 have identical guards.
731 // If one (or both) are not guarded, this check is not necessary.
732 if (FC0->GuardBranch && FC1->GuardBranch &&
733 !haveIdenticalGuards(*FC0, *FC1)) {
734 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
735 "guards. Not Fusing.\n");
736 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
737 NonIdenticalGuards);
738 continue;
739 }
740
741 // The following three checks look for empty blocks in FC0 and FC1. If
742 // any of these blocks are non-empty, we do not fuse. This is done
743 // because we currently do not have the safety checks to determine if
744 // it is safe to move the blocks past other blocks in the loop. Once
745 // these checks are added, these conditions can be relaxed.
746 if (!isEmptyPreheader(*FC1)) {
747 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
748 "preheader. Not fusing.\n");
749 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
750 NonEmptyPreheader);
751 continue;
752 }
753
754 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
755 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
756 "block. Not fusing.\n");
757 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
758 NonEmptyExitBlock);
759 continue;
760 }
761
762 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
763 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
764 "block. Not fusing.\n");
765 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
766 NonEmptyGuardBlock);
767 continue;
768 }
769
770 // Check the dependencies across the loops and do not fuse if it would
771 // violate them.
772 if (!dependencesAllowFusion(*FC0, *FC1)) {
773 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
774 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
775 InvalidDependencies);
776 continue;
777 }
778
779 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
780 LLVM_DEBUG(dbgs()
781 << "\tFusion appears to be "
782 << (BeneficialToFuse ? "" : "un") << "profitable!\n");
783 if (!BeneficialToFuse) {
784 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
785 FusionNotBeneficial);
786 continue;
787 }
788 // All analysis has completed and has determined that fusion is legal
789 // and profitable. At this point, start transforming the code and
790 // perform fusion.
791
792 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
793 << *FC1 << "\n");
794
795 // Report fusion to the Optimization Remarks.
796 // Note this needs to be done *before* performFusion because
797 // performFusion will change the original loops, making it not
798 // possible to identify them after fusion is complete.
799 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
800
801 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
802 FusedCand.verify();
803 assert(FusedCand.isEligibleForFusion(SE) &&
804 "Fused candidate should be eligible for fusion!");
805
806 // Notify the loop-depth-tree that these loops are not valid objects
807 LDT.removeLoop(FC1->L);
808
809 CandidateSet.erase(FC0);
810 CandidateSet.erase(FC1);
811
812 auto InsertPos = CandidateSet.insert(FusedCand);
813
814 assert(InsertPos.second &&
815 "Unable to insert TargetCandidate in CandidateSet!");
816
817 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
818 // of the FC1 loop will attempt to fuse the new (fused) loop with the
819 // remaining candidates in the current candidate set.
820 FC0 = FC1 = InsertPos.first;
821
822 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
823 << "\n");
824
825 Fused = true;
826 }
827 }
828 }
829 return Fused;
830 }
831
832 /// Rewrite all additive recurrences in a SCEV to use a new loop.
833 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
834 public:
AddRecLoopReplacer(ScalarEvolution & SE,const Loop & OldL,const Loop & NewL,bool UseMax=true)835 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
836 bool UseMax = true)
837 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
838 NewL(NewL) {}
839
visitAddRecExpr(const SCEVAddRecExpr * Expr)840 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
841 const Loop *ExprL = Expr->getLoop();
842 SmallVector<const SCEV *, 2> Operands;
843 if (ExprL == &OldL) {
844 Operands.append(Expr->op_begin(), Expr->op_end());
845 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
846 }
847
848 if (OldL.contains(ExprL)) {
849 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
850 if (!UseMax || !Pos || !Expr->isAffine()) {
851 Valid = false;
852 return Expr;
853 }
854 return visit(Expr->getStart());
855 }
856
857 for (const SCEV *Op : Expr->operands())
858 Operands.push_back(visit(Op));
859 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
860 }
861
wasValidSCEV() const862 bool wasValidSCEV() const { return Valid; }
863
864 private:
865 bool Valid, UseMax;
866 const Loop &OldL, &NewL;
867 };
868
869 /// Return false if the access functions of \p I0 and \p I1 could cause
870 /// a negative dependence.
accessDiffIsPositive__anond8dd5b980111::LoopFuser871 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
872 Instruction &I1, bool EqualIsInvalid) {
873 Value *Ptr0 = getLoadStorePointerOperand(&I0);
874 Value *Ptr1 = getLoadStorePointerOperand(&I1);
875 if (!Ptr0 || !Ptr1)
876 return false;
877
878 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
879 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
880 #ifndef NDEBUG
881 if (VerboseFusionDebugging)
882 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
883 << *SCEVPtr1 << "\n");
884 #endif
885 AddRecLoopReplacer Rewriter(SE, L0, L1);
886 SCEVPtr0 = Rewriter.visit(SCEVPtr0);
887 #ifndef NDEBUG
888 if (VerboseFusionDebugging)
889 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
890 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
891 #endif
892 if (!Rewriter.wasValidSCEV())
893 return false;
894
895 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
896 // L0) and the other is not. We could check if it is monotone and test
897 // the beginning and end value instead.
898
899 BasicBlock *L0Header = L0.getHeader();
900 auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
901 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
902 if (!AddRec)
903 return false;
904 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
905 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
906 };
907 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
908 return false;
909
910 ICmpInst::Predicate Pred =
911 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
912 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
913 #ifndef NDEBUG
914 if (VerboseFusionDebugging)
915 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
916 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
917 << "\n");
918 #endif
919 return IsAlwaysGE;
920 }
921
922 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
923 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
924 /// specified by @p DepChoice are used to determine this.
dependencesAllowFusion__anond8dd5b980111::LoopFuser925 bool dependencesAllowFusion(const FusionCandidate &FC0,
926 const FusionCandidate &FC1, Instruction &I0,
927 Instruction &I1, bool AnyDep,
928 FusionDependenceAnalysisChoice DepChoice) {
929 #ifndef NDEBUG
930 if (VerboseFusionDebugging) {
931 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
932 << DepChoice << "\n");
933 }
934 #endif
935 switch (DepChoice) {
936 case FUSION_DEPENDENCE_ANALYSIS_SCEV:
937 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
938 case FUSION_DEPENDENCE_ANALYSIS_DA: {
939 auto DepResult = DI.depends(&I0, &I1, true);
940 if (!DepResult)
941 return true;
942 #ifndef NDEBUG
943 if (VerboseFusionDebugging) {
944 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
945 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
946 << (DepResult->isOrdered() ? "true" : "false")
947 << "]\n");
948 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
949 << "\n");
950 }
951 #endif
952
953 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
954 LLVM_DEBUG(
955 dbgs() << "TODO: Implement pred/succ dependence handling!\n");
956
957 // TODO: Can we actually use the dependence info analysis here?
958 return false;
959 }
960
961 case FUSION_DEPENDENCE_ANALYSIS_ALL:
962 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
963 FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
964 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
965 FUSION_DEPENDENCE_ANALYSIS_DA);
966 }
967
968 llvm_unreachable("Unknown fusion dependence analysis choice!");
969 }
970
971 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
dependencesAllowFusion__anond8dd5b980111::LoopFuser972 bool dependencesAllowFusion(const FusionCandidate &FC0,
973 const FusionCandidate &FC1) {
974 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
975 << "\n");
976 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
977 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
978
979 for (Instruction *WriteL0 : FC0.MemWrites) {
980 for (Instruction *WriteL1 : FC1.MemWrites)
981 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
982 /* AnyDep */ false,
983 FusionDependenceAnalysis)) {
984 InvalidDependencies++;
985 return false;
986 }
987 for (Instruction *ReadL1 : FC1.MemReads)
988 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
989 /* AnyDep */ false,
990 FusionDependenceAnalysis)) {
991 InvalidDependencies++;
992 return false;
993 }
994 }
995
996 for (Instruction *WriteL1 : FC1.MemWrites) {
997 for (Instruction *WriteL0 : FC0.MemWrites)
998 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
999 /* AnyDep */ false,
1000 FusionDependenceAnalysis)) {
1001 InvalidDependencies++;
1002 return false;
1003 }
1004 for (Instruction *ReadL0 : FC0.MemReads)
1005 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1006 /* AnyDep */ false,
1007 FusionDependenceAnalysis)) {
1008 InvalidDependencies++;
1009 return false;
1010 }
1011 }
1012
1013 // Walk through all uses in FC1. For each use, find the reaching def. If the
1014 // def is located in FC0 then it is is not safe to fuse.
1015 for (BasicBlock *BB : FC1.L->blocks())
1016 for (Instruction &I : *BB)
1017 for (auto &Op : I.operands())
1018 if (Instruction *Def = dyn_cast<Instruction>(Op))
1019 if (FC0.L->contains(Def->getParent())) {
1020 InvalidDependencies++;
1021 return false;
1022 }
1023
1024 return true;
1025 }
1026
1027 /// Determine if two fusion candidates are adjacent in the CFG.
1028 ///
1029 /// This method will determine if there are additional basic blocks in the CFG
1030 /// between the exit of \p FC0 and the entry of \p FC1.
1031 /// If the two candidates are guarded loops, then it checks whether the
1032 /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1033 /// FC1. If not, then the loops are not adjacent. If the two candidates are
1034 /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1035 /// preheader of \p FC1.
isAdjacent__anond8dd5b980111::LoopFuser1036 bool isAdjacent(const FusionCandidate &FC0,
1037 const FusionCandidate &FC1) const {
1038 // If the successor of the guard branch is FC1, then the loops are adjacent
1039 if (FC0.GuardBranch)
1040 return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1041 else
1042 return FC0.ExitBlock == FC1.getEntryBlock();
1043 }
1044
1045 /// Determine if two fusion candidates have identical guards
1046 ///
1047 /// This method will determine if two fusion candidates have the same guards.
1048 /// The guards are considered the same if:
1049 /// 1. The instructions to compute the condition used in the compare are
1050 /// identical.
1051 /// 2. The successors of the guard have the same flow into/around the loop.
1052 /// If the compare instructions are identical, then the first successor of the
1053 /// guard must go to the same place (either the preheader of the loop or the
1054 /// NonLoopBlock). In other words, the the first successor of both loops must
1055 /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1056 /// the NonLoopBlock). The same must be true for the second successor.
haveIdenticalGuards__anond8dd5b980111::LoopFuser1057 bool haveIdenticalGuards(const FusionCandidate &FC0,
1058 const FusionCandidate &FC1) const {
1059 assert(FC0.GuardBranch && FC1.GuardBranch &&
1060 "Expecting FC0 and FC1 to be guarded loops.");
1061
1062 if (auto FC0CmpInst =
1063 dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1064 if (auto FC1CmpInst =
1065 dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1066 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1067 return false;
1068
1069 // The compare instructions are identical.
1070 // Now make sure the successor of the guards have the same flow into/around
1071 // the loop
1072 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1073 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1074 else
1075 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1076 }
1077
1078 /// Check that the guard for \p FC *only* contains the cmp/branch for the
1079 /// guard.
1080 /// Once we are able to handle intervening code, any code in the guard block
1081 /// for FC1 will need to be treated as intervening code and checked whether
1082 /// it can safely move around the loops.
isEmptyGuardBlock__anond8dd5b980111::LoopFuser1083 bool isEmptyGuardBlock(const FusionCandidate &FC) const {
1084 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
1085 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
1086 auto *GuardBlock = FC.GuardBranch->getParent();
1087 // If the generation of the cmp value is in GuardBlock, then the size of
1088 // the guard block should be 2 (cmp + branch). If the generation of the
1089 // cmp value is in a different block, then the size of the guard block
1090 // should only be 1.
1091 if (CmpInst->getParent() == GuardBlock)
1092 return GuardBlock->size() == 2;
1093 else
1094 return GuardBlock->size() == 1;
1095 }
1096
1097 return false;
1098 }
1099
isEmptyPreheader__anond8dd5b980111::LoopFuser1100 bool isEmptyPreheader(const FusionCandidate &FC) const {
1101 assert(FC.Preheader && "Expecting a valid preheader");
1102 return FC.Preheader->size() == 1;
1103 }
1104
isEmptyExitBlock__anond8dd5b980111::LoopFuser1105 bool isEmptyExitBlock(const FusionCandidate &FC) const {
1106 assert(FC.ExitBlock && "Expecting a valid exit block");
1107 return FC.ExitBlock->size() == 1;
1108 }
1109
1110 /// Simplify the condition of the latch branch of \p FC to true, when both of
1111 /// its successors are the same.
simplifyLatchBranch__anond8dd5b980111::LoopFuser1112 void simplifyLatchBranch(const FusionCandidate &FC) const {
1113 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1114 if (FCLatchBranch) {
1115 assert(FCLatchBranch->isConditional() &&
1116 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1117 "Expecting the two successors of FCLatchBranch to be the same");
1118 FCLatchBranch->setCondition(
1119 llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
1120 }
1121 }
1122
1123 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1124 /// successor, then merge FC0.Latch with its unique successor.
mergeLatch__anond8dd5b980111::LoopFuser1125 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1126 moveInstsBottomUp(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1127 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1128 MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1129 DTU.flush();
1130 }
1131 }
1132
1133 /// Fuse two fusion candidates, creating a new fused loop.
1134 ///
1135 /// This method contains the mechanics of fusing two loops, represented by \p
1136 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1137 /// postdominates \p FC0 (making them control flow equivalent). It also
1138 /// assumes that the other conditions for fusion have been met: adjacent,
1139 /// identical trip counts, and no negative distance dependencies exist that
1140 /// would prevent fusion. Thus, there is no checking for these conditions in
1141 /// this method.
1142 ///
1143 /// Fusion is performed by rewiring the CFG to update successor blocks of the
1144 /// components of tho loop. Specifically, the following changes are done:
1145 ///
1146 /// 1. The preheader of \p FC1 is removed as it is no longer necessary
1147 /// (because it is currently only a single statement block).
1148 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1149 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1150 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1151 ///
1152 /// All of these modifications are done with dominator tree updates, thus
1153 /// keeping the dominator (and post dominator) information up-to-date.
1154 ///
1155 /// This can be improved in the future by actually merging blocks during
1156 /// fusion. For example, the preheader of \p FC1 can be merged with the
1157 /// preheader of \p FC0. This would allow loops with more than a single
1158 /// statement in the preheader to be fused. Similarly, the latch blocks of the
1159 /// two loops could also be fused into a single block. This will require
1160 /// analysis to prove it is safe to move the contents of the block past
1161 /// existing code, which currently has not been implemented.
performFusion__anond8dd5b980111::LoopFuser1162 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1163 assert(FC0.isValid() && FC1.isValid() &&
1164 "Expecting valid fusion candidates");
1165
1166 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1167 dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1168
1169 // Fusing guarded loops is handled slightly differently than non-guarded
1170 // loops and has been broken out into a separate method instead of trying to
1171 // intersperse the logic within a single method.
1172 if (FC0.GuardBranch)
1173 return fuseGuardedLoops(FC0, FC1);
1174
1175 assert(FC1.Preheader == FC0.ExitBlock);
1176 assert(FC1.Preheader->size() == 1 &&
1177 FC1.Preheader->getSingleSuccessor() == FC1.Header);
1178
1179 // Remember the phi nodes originally in the header of FC0 in order to rewire
1180 // them later. However, this is only necessary if the new loop carried
1181 // values might not dominate the exiting branch. While we do not generally
1182 // test if this is the case but simply insert intermediate phi nodes, we
1183 // need to make sure these intermediate phi nodes have different
1184 // predecessors. To this end, we filter the special case where the exiting
1185 // block is the latch block of the first loop. Nothing needs to be done
1186 // anyway as all loop carried values dominate the latch and thereby also the
1187 // exiting branch.
1188 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1189 if (FC0.ExitingBlock != FC0.Latch)
1190 for (PHINode &PHI : FC0.Header->phis())
1191 OriginalFC0PHIs.push_back(&PHI);
1192
1193 // Replace incoming blocks for header PHIs first.
1194 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1195 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1196
1197 // Then modify the control flow and update DT and PDT.
1198 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1199
1200 // The old exiting block of the first loop (FC0) has to jump to the header
1201 // of the second as we need to execute the code in the second header block
1202 // regardless of the trip count. That is, if the trip count is 0, so the
1203 // back edge is never taken, we still have to execute both loop headers,
1204 // especially (but not only!) if the second is a do-while style loop.
1205 // However, doing so might invalidate the phi nodes of the first loop as
1206 // the new values do only need to dominate their latch and not the exiting
1207 // predicate. To remedy this potential problem we always introduce phi
1208 // nodes in the header of the second loop later that select the loop carried
1209 // value, if the second header was reached through an old latch of the
1210 // first, or undef otherwise. This is sound as exiting the first implies the
1211 // second will exit too, __without__ taking the back-edge. [Their
1212 // trip-counts are equal after all.
1213 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1214 // to FC1.Header? I think this is basically what the three sequences are
1215 // trying to accomplish; however, doing this directly in the CFG may mean
1216 // the DT/PDT becomes invalid
1217 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1218 FC1.Header);
1219 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1220 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1221 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1222 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1223
1224 // The pre-header of L1 is not necessary anymore.
1225 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1226 FC1.Preheader->getTerminator()->eraseFromParent();
1227 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1228 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1229 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1230
1231 // Moves the phi nodes from the second to the first loops header block.
1232 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1233 if (SE.isSCEVable(PHI->getType()))
1234 SE.forgetValue(PHI);
1235 if (PHI->hasNUsesOrMore(1))
1236 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1237 else
1238 PHI->eraseFromParent();
1239 }
1240
1241 // Introduce new phi nodes in the second loop header to ensure
1242 // exiting the first and jumping to the header of the second does not break
1243 // the SSA property of the phis originally in the first loop. See also the
1244 // comment above.
1245 Instruction *L1HeaderIP = &FC1.Header->front();
1246 for (PHINode *LCPHI : OriginalFC0PHIs) {
1247 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1248 assert(L1LatchBBIdx >= 0 &&
1249 "Expected loop carried value to be rewired at this point!");
1250
1251 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1252
1253 PHINode *L1HeaderPHI = PHINode::Create(
1254 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1255 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1256 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1257 FC0.ExitingBlock);
1258
1259 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1260 }
1261
1262 // Replace latch terminator destinations.
1263 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1264 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1265
1266 // Change the condition of FC0 latch branch to true, as both successors of
1267 // the branch are the same.
1268 simplifyLatchBranch(FC0);
1269
1270 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1271 // performed the updates above.
1272 if (FC0.Latch != FC0.ExitingBlock)
1273 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1274 DominatorTree::Insert, FC0.Latch, FC1.Header));
1275
1276 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1277 FC0.Latch, FC0.Header));
1278 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1279 FC1.Latch, FC0.Header));
1280 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1281 FC1.Latch, FC1.Header));
1282
1283 // Update DT/PDT
1284 DTU.applyUpdates(TreeUpdates);
1285
1286 LI.removeBlock(FC1.Preheader);
1287 DTU.deleteBB(FC1.Preheader);
1288 DTU.flush();
1289
1290 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1291 // and rebuild the information in subsequent passes of fusion?
1292 // Note: Need to forget the loops before merging the loop latches, as
1293 // mergeLatch may remove the only block in FC1.
1294 SE.forgetLoop(FC1.L);
1295 SE.forgetLoop(FC0.L);
1296
1297 // Move instructions from FC0.Latch to FC1.Latch.
1298 // Note: mergeLatch requires an updated DT.
1299 mergeLatch(FC0, FC1);
1300
1301 // Merge the loops.
1302 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1303 FC1.L->block_end());
1304 for (BasicBlock *BB : Blocks) {
1305 FC0.L->addBlockEntry(BB);
1306 FC1.L->removeBlockFromLoop(BB);
1307 if (LI.getLoopFor(BB) != FC1.L)
1308 continue;
1309 LI.changeLoopFor(BB, FC0.L);
1310 }
1311 while (!FC1.L->empty()) {
1312 const auto &ChildLoopIt = FC1.L->begin();
1313 Loop *ChildLoop = *ChildLoopIt;
1314 FC1.L->removeChildLoop(ChildLoopIt);
1315 FC0.L->addChildLoop(ChildLoop);
1316 }
1317
1318 // Delete the now empty loop L1.
1319 LI.erase(FC1.L);
1320
1321 #ifndef NDEBUG
1322 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1323 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1324 assert(PDT.verify());
1325 LI.verify(DT);
1326 SE.verify();
1327 #endif
1328
1329 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1330
1331 return FC0.L;
1332 }
1333
1334 /// Report details on loop fusion opportunities.
1335 ///
1336 /// This template function can be used to report both successful and missed
1337 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1338 /// be one of:
1339 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1340 /// given two valid fusion candidates.
1341 /// - OptimizationRemark to report successful fusion of two fusion
1342 /// candidates.
1343 /// The remarks will be printed using the form:
1344 /// <path/filename>:<line number>:<column number>: [<function name>]:
1345 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1346 template <typename RemarkKind>
reportLoopFusion__anond8dd5b980111::LoopFuser1347 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1348 llvm::Statistic &Stat) {
1349 assert(FC0.Preheader && FC1.Preheader &&
1350 "Expecting valid fusion candidates");
1351 using namespace ore;
1352 ++Stat;
1353 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1354 FC0.Preheader)
1355 << "[" << FC0.Preheader->getParent()->getName()
1356 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1357 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1358 << ": " << Stat.getDesc());
1359 }
1360
1361 /// Fuse two guarded fusion candidates, creating a new fused loop.
1362 ///
1363 /// Fusing guarded loops is handled much the same way as fusing non-guarded
1364 /// loops. The rewiring of the CFG is slightly different though, because of
1365 /// the presence of the guards around the loops and the exit blocks after the
1366 /// loop body. As such, the new loop is rewired as follows:
1367 /// 1. Keep the guard branch from FC0 and use the non-loop block target
1368 /// from the FC1 guard branch.
1369 /// 2. Remove the exit block from FC0 (this exit block should be empty
1370 /// right now).
1371 /// 3. Remove the guard branch for FC1
1372 /// 4. Remove the preheader for FC1.
1373 /// The exit block successor for the latch of FC0 is updated to be the header
1374 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1375 /// be the header of FC0, thus creating the fused loop.
fuseGuardedLoops__anond8dd5b980111::LoopFuser1376 Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1377 const FusionCandidate &FC1) {
1378 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1379
1380 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1381 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1382 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1383 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1384
1385 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1386
1387 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1388
1389 ////////////////////////////////////////////////////////////////////////////
1390 // Update the Loop Guard
1391 ////////////////////////////////////////////////////////////////////////////
1392 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1393 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1394 // Thus, one path from the guard goes to the preheader for FC0 (and thus
1395 // executes the new fused loop) and the other path goes to the NonLoopBlock
1396 // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1397 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1398 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1399 FC1.Header);
1400
1401 // The guard of FC1 is not necessary anymore.
1402 FC1.GuardBranch->eraseFromParent();
1403 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1404
1405 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1406 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1407 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1408 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1409 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1410 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1411 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1412 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1413
1414 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1415 "Expecting guard block to have no predecessors");
1416 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1417 "Expecting guard block to have no successors");
1418
1419 // Remember the phi nodes originally in the header of FC0 in order to rewire
1420 // them later. However, this is only necessary if the new loop carried
1421 // values might not dominate the exiting branch. While we do not generally
1422 // test if this is the case but simply insert intermediate phi nodes, we
1423 // need to make sure these intermediate phi nodes have different
1424 // predecessors. To this end, we filter the special case where the exiting
1425 // block is the latch block of the first loop. Nothing needs to be done
1426 // anyway as all loop carried values dominate the latch and thereby also the
1427 // exiting branch.
1428 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1429 // (because the loops are rotated. Thus, nothing will ever be added to
1430 // OriginalFC0PHIs.
1431 SmallVector<PHINode *, 8> OriginalFC0PHIs;
1432 if (FC0.ExitingBlock != FC0.Latch)
1433 for (PHINode &PHI : FC0.Header->phis())
1434 OriginalFC0PHIs.push_back(&PHI);
1435
1436 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1437
1438 // Replace incoming blocks for header PHIs first.
1439 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1440 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1441
1442 // The old exiting block of the first loop (FC0) has to jump to the header
1443 // of the second as we need to execute the code in the second header block
1444 // regardless of the trip count. That is, if the trip count is 0, so the
1445 // back edge is never taken, we still have to execute both loop headers,
1446 // especially (but not only!) if the second is a do-while style loop.
1447 // However, doing so might invalidate the phi nodes of the first loop as
1448 // the new values do only need to dominate their latch and not the exiting
1449 // predicate. To remedy this potential problem we always introduce phi
1450 // nodes in the header of the second loop later that select the loop carried
1451 // value, if the second header was reached through an old latch of the
1452 // first, or undef otherwise. This is sound as exiting the first implies the
1453 // second will exit too, __without__ taking the back-edge (their
1454 // trip-counts are equal after all).
1455 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1456 FC1.Header);
1457
1458 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1459 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1460 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1461 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1462
1463 // Remove FC0 Exit Block
1464 // The exit block for FC0 is no longer needed since control will flow
1465 // directly to the header of FC1. Since it is an empty block, it can be
1466 // removed at this point.
1467 // TODO: In the future, we can handle non-empty exit blocks my merging any
1468 // instructions from FC0 exit block into FC1 exit block prior to removing
1469 // the block.
1470 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1471 "Expecting exit block to be empty");
1472 FC0.ExitBlock->getTerminator()->eraseFromParent();
1473 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1474
1475 // Remove FC1 Preheader
1476 // The pre-header of L1 is not necessary anymore.
1477 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1478 FC1.Preheader->getTerminator()->eraseFromParent();
1479 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1480 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1481 DominatorTree::Delete, FC1.Preheader, FC1.Header));
1482
1483 // Moves the phi nodes from the second to the first loops header block.
1484 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1485 if (SE.isSCEVable(PHI->getType()))
1486 SE.forgetValue(PHI);
1487 if (PHI->hasNUsesOrMore(1))
1488 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1489 else
1490 PHI->eraseFromParent();
1491 }
1492
1493 // Introduce new phi nodes in the second loop header to ensure
1494 // exiting the first and jumping to the header of the second does not break
1495 // the SSA property of the phis originally in the first loop. See also the
1496 // comment above.
1497 Instruction *L1HeaderIP = &FC1.Header->front();
1498 for (PHINode *LCPHI : OriginalFC0PHIs) {
1499 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1500 assert(L1LatchBBIdx >= 0 &&
1501 "Expected loop carried value to be rewired at this point!");
1502
1503 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1504
1505 PHINode *L1HeaderPHI = PHINode::Create(
1506 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1507 L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1508 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1509 FC0.ExitingBlock);
1510
1511 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1512 }
1513
1514 // Update the latches
1515
1516 // Replace latch terminator destinations.
1517 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1518 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1519
1520 // Change the condition of FC0 latch branch to true, as both successors of
1521 // the branch are the same.
1522 simplifyLatchBranch(FC0);
1523
1524 // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1525 // performed the updates above.
1526 if (FC0.Latch != FC0.ExitingBlock)
1527 TreeUpdates.emplace_back(DominatorTree::UpdateType(
1528 DominatorTree::Insert, FC0.Latch, FC1.Header));
1529
1530 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1531 FC0.Latch, FC0.Header));
1532 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1533 FC1.Latch, FC0.Header));
1534 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1535 FC1.Latch, FC1.Header));
1536
1537 // All done
1538 // Apply the updates to the Dominator Tree and cleanup.
1539
1540 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1541 "FC1GuardBlock has successors!!");
1542 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1543 "FC1GuardBlock has predecessors!!");
1544
1545 // Update DT/PDT
1546 DTU.applyUpdates(TreeUpdates);
1547
1548 LI.removeBlock(FC1.Preheader);
1549 DTU.deleteBB(FC1.Preheader);
1550 DTU.deleteBB(FC0.ExitBlock);
1551 DTU.flush();
1552
1553 // Is there a way to keep SE up-to-date so we don't need to forget the loops
1554 // and rebuild the information in subsequent passes of fusion?
1555 // Note: Need to forget the loops before merging the loop latches, as
1556 // mergeLatch may remove the only block in FC1.
1557 SE.forgetLoop(FC1.L);
1558 SE.forgetLoop(FC0.L);
1559
1560 // Move instructions from FC0.Latch to FC1.Latch.
1561 // Note: mergeLatch requires an updated DT.
1562 mergeLatch(FC0, FC1);
1563
1564 // Merge the loops.
1565 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1566 FC1.L->block_end());
1567 for (BasicBlock *BB : Blocks) {
1568 FC0.L->addBlockEntry(BB);
1569 FC1.L->removeBlockFromLoop(BB);
1570 if (LI.getLoopFor(BB) != FC1.L)
1571 continue;
1572 LI.changeLoopFor(BB, FC0.L);
1573 }
1574 while (!FC1.L->empty()) {
1575 const auto &ChildLoopIt = FC1.L->begin();
1576 Loop *ChildLoop = *ChildLoopIt;
1577 FC1.L->removeChildLoop(ChildLoopIt);
1578 FC0.L->addChildLoop(ChildLoop);
1579 }
1580
1581 // Delete the now empty loop L1.
1582 LI.erase(FC1.L);
1583
1584 #ifndef NDEBUG
1585 assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1586 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1587 assert(PDT.verify());
1588 LI.verify(DT);
1589 SE.verify();
1590 #endif
1591
1592 LLVM_DEBUG(dbgs() << "Fusion done:\n");
1593
1594 return FC0.L;
1595 }
1596 };
1597
1598 struct LoopFuseLegacy : public FunctionPass {
1599
1600 static char ID;
1601
LoopFuseLegacy__anond8dd5b980111::LoopFuseLegacy1602 LoopFuseLegacy() : FunctionPass(ID) {
1603 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1604 }
1605
getAnalysisUsage__anond8dd5b980111::LoopFuseLegacy1606 void getAnalysisUsage(AnalysisUsage &AU) const override {
1607 AU.addRequiredID(LoopSimplifyID);
1608 AU.addRequired<ScalarEvolutionWrapperPass>();
1609 AU.addRequired<LoopInfoWrapperPass>();
1610 AU.addRequired<DominatorTreeWrapperPass>();
1611 AU.addRequired<PostDominatorTreeWrapperPass>();
1612 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1613 AU.addRequired<DependenceAnalysisWrapperPass>();
1614
1615 AU.addPreserved<ScalarEvolutionWrapperPass>();
1616 AU.addPreserved<LoopInfoWrapperPass>();
1617 AU.addPreserved<DominatorTreeWrapperPass>();
1618 AU.addPreserved<PostDominatorTreeWrapperPass>();
1619 }
1620
runOnFunction__anond8dd5b980111::LoopFuseLegacy1621 bool runOnFunction(Function &F) override {
1622 if (skipFunction(F))
1623 return false;
1624 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1625 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1626 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1627 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1628 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1629 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1630
1631 const DataLayout &DL = F.getParent()->getDataLayout();
1632 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1633 return LF.fuseLoops(F);
1634 }
1635 };
1636 } // namespace
1637
run(Function & F,FunctionAnalysisManager & AM)1638 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1639 auto &LI = AM.getResult<LoopAnalysis>(F);
1640 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1641 auto &DI = AM.getResult<DependenceAnalysis>(F);
1642 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1643 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1644 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1645
1646 const DataLayout &DL = F.getParent()->getDataLayout();
1647 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1648 bool Changed = LF.fuseLoops(F);
1649 if (!Changed)
1650 return PreservedAnalyses::all();
1651
1652 PreservedAnalyses PA;
1653 PA.preserve<DominatorTreeAnalysis>();
1654 PA.preserve<PostDominatorTreeAnalysis>();
1655 PA.preserve<ScalarEvolutionAnalysis>();
1656 PA.preserve<LoopAnalysis>();
1657 return PA;
1658 }
1659
1660 char LoopFuseLegacy::ID = 0;
1661
1662 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1663 false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)1664 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1665 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1666 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1667 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1668 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1669 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1670 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1671
1672 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1673