1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
10 //
11 // On AArch64, stack frames are structured as follows:
12 //
13 // The stack grows downward.
14 //
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
17 // in the frame.
18 //
19 // At function entry, the "frame" looks as follows:
20 //
21 // | | Higher address
22 // |-----------------------------------|
23 // | |
24 // | arguments passed on the stack |
25 // | |
26 // |-----------------------------------| <- sp
27 // | | Lower address
28 //
29 //
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
34 // for completeness.
35 //
36 // | | Higher address
37 // |-----------------------------------|
38 // | |
39 // | arguments passed on the stack |
40 // | |
41 // |-----------------------------------|
42 // | |
43 // | (Win64 only) varargs from reg |
44 // | |
45 // |-----------------------------------|
46 // | |
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
51 // | prev_fp | <--'
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
55 // | |
56 // | callee-saved fp/simd/SVE regs |
57 // | |
58 // |-----------------------------------|
59 // | |
60 // | SVE stack objects |
61 // | |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
67 // | |
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
75 // | | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
91 //
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
99 // as:
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
105 //
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
109 // or stores.
110 //
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
117 //
118 // FIXME: also explain the redzone concept.
119 //
120 // An example of the prologue:
121 //
122 // .globl __foo
123 // .align 2
124 // __foo:
125 // Ltmp0:
126 // .cfi_startproc
127 // .cfi_personality 155, ___gxx_personality_v0
128 // Leh_func_begin:
129 // .cfi_lsda 16, Lexception33
130 //
131 // stp xa,bx, [sp, -#offset]!
132 // ...
133 // stp x28, x27, [sp, #offset-32]
134 // stp fp, lr, [sp, #offset-16]
135 // add fp, sp, #offset - 16
136 // sub sp, sp, #1360
137 //
138 // The Stack:
139 // +-------------------------------------------+
140 // 10000 | ........ | ........ | ........ | ........ |
141 // 10004 | ........ | ........ | ........ | ........ |
142 // +-------------------------------------------+
143 // 10008 | ........ | ........ | ........ | ........ |
144 // 1000c | ........ | ........ | ........ | ........ |
145 // +===========================================+
146 // 10010 | X28 Register |
147 // 10014 | X28 Register |
148 // +-------------------------------------------+
149 // 10018 | X27 Register |
150 // 1001c | X27 Register |
151 // +===========================================+
152 // 10020 | Frame Pointer |
153 // 10024 | Frame Pointer |
154 // +-------------------------------------------+
155 // 10028 | Link Register |
156 // 1002c | Link Register |
157 // +===========================================+
158 // 10030 | ........ | ........ | ........ | ........ |
159 // 10034 | ........ | ........ | ........ | ........ |
160 // +-------------------------------------------+
161 // 10038 | ........ | ........ | ........ | ........ |
162 // 1003c | ........ | ........ | ........ | ........ |
163 // +-------------------------------------------+
164 //
165 // [sp] = 10030 :: >>initial value<<
166 // sp = 10020 :: stp fp, lr, [sp, #-16]!
167 // fp = sp == 10020 :: mov fp, sp
168 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
169 // sp == 10010 :: >>final value<<
170 //
171 // The frame pointer (w29) points to address 10020. If we use an offset of
172 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
173 // for w27, and -32 for w28:
174 //
175 // Ltmp1:
176 // .cfi_def_cfa w29, 16
177 // Ltmp2:
178 // .cfi_offset w30, -8
179 // Ltmp3:
180 // .cfi_offset w29, -16
181 // Ltmp4:
182 // .cfi_offset w27, -24
183 // Ltmp5:
184 // .cfi_offset w28, -32
185 //
186 //===----------------------------------------------------------------------===//
187
188 #include "AArch64FrameLowering.h"
189 #include "AArch64InstrInfo.h"
190 #include "AArch64MachineFunctionInfo.h"
191 #include "AArch64RegisterInfo.h"
192 #include "AArch64Subtarget.h"
193 #include "AArch64TargetMachine.h"
194 #include "MCTargetDesc/AArch64AddressingModes.h"
195 #include "MCTargetDesc/AArch64MCTargetDesc.h"
196 #include "llvm/ADT/ScopeExit.h"
197 #include "llvm/ADT/SmallVector.h"
198 #include "llvm/ADT/Statistic.h"
199 #include "llvm/CodeGen/LivePhysRegs.h"
200 #include "llvm/CodeGen/MachineBasicBlock.h"
201 #include "llvm/CodeGen/MachineFrameInfo.h"
202 #include "llvm/CodeGen/MachineFunction.h"
203 #include "llvm/CodeGen/MachineInstr.h"
204 #include "llvm/CodeGen/MachineInstrBuilder.h"
205 #include "llvm/CodeGen/MachineMemOperand.h"
206 #include "llvm/CodeGen/MachineModuleInfo.h"
207 #include "llvm/CodeGen/MachineOperand.h"
208 #include "llvm/CodeGen/MachineRegisterInfo.h"
209 #include "llvm/CodeGen/RegisterScavenging.h"
210 #include "llvm/CodeGen/TargetInstrInfo.h"
211 #include "llvm/CodeGen/TargetRegisterInfo.h"
212 #include "llvm/CodeGen/TargetSubtargetInfo.h"
213 #include "llvm/CodeGen/WinEHFuncInfo.h"
214 #include "llvm/IR/Attributes.h"
215 #include "llvm/IR/CallingConv.h"
216 #include "llvm/IR/DataLayout.h"
217 #include "llvm/IR/DebugLoc.h"
218 #include "llvm/IR/Function.h"
219 #include "llvm/MC/MCAsmInfo.h"
220 #include "llvm/MC/MCDwarf.h"
221 #include "llvm/Support/CommandLine.h"
222 #include "llvm/Support/Debug.h"
223 #include "llvm/Support/ErrorHandling.h"
224 #include "llvm/Support/MathExtras.h"
225 #include "llvm/Support/raw_ostream.h"
226 #include "llvm/Target/TargetMachine.h"
227 #include "llvm/Target/TargetOptions.h"
228 #include <cassert>
229 #include <cstdint>
230 #include <iterator>
231 #include <optional>
232 #include <vector>
233
234 using namespace llvm;
235
236 #define DEBUG_TYPE "frame-info"
237
238 static cl::opt<bool> EnableRedZone("aarch64-redzone",
239 cl::desc("enable use of redzone on AArch64"),
240 cl::init(false), cl::Hidden);
241
242 static cl::opt<bool>
243 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
244 cl::desc("reverse the CSR restore sequence"),
245 cl::init(false), cl::Hidden);
246
247 static cl::opt<bool> StackTaggingMergeSetTag(
248 "stack-tagging-merge-settag",
249 cl::desc("merge settag instruction in function epilog"), cl::init(true),
250 cl::Hidden);
251
252 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
253 cl::desc("sort stack allocations"),
254 cl::init(true), cl::Hidden);
255
256 cl::opt<bool> EnableHomogeneousPrologEpilog(
257 "homogeneous-prolog-epilog", cl::Hidden,
258 cl::desc("Emit homogeneous prologue and epilogue for the size "
259 "optimization (default = off)"));
260
261 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
262
263 /// Returns how much of the incoming argument stack area (in bytes) we should
264 /// clean up in an epilogue. For the C calling convention this will be 0, for
265 /// guaranteed tail call conventions it can be positive (a normal return or a
266 /// tail call to a function that uses less stack space for arguments) or
267 /// negative (for a tail call to a function that needs more stack space than us
268 /// for arguments).
getArgumentStackToRestore(MachineFunction & MF,MachineBasicBlock & MBB)269 static int64_t getArgumentStackToRestore(MachineFunction &MF,
270 MachineBasicBlock &MBB) {
271 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
272 bool IsTailCallReturn = false;
273 if (MBB.end() != MBBI) {
274 unsigned RetOpcode = MBBI->getOpcode();
275 IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
276 RetOpcode == AArch64::TCRETURNri ||
277 RetOpcode == AArch64::TCRETURNriBTI;
278 }
279 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
280
281 int64_t ArgumentPopSize = 0;
282 if (IsTailCallReturn) {
283 MachineOperand &StackAdjust = MBBI->getOperand(1);
284
285 // For a tail-call in a callee-pops-arguments environment, some or all of
286 // the stack may actually be in use for the call's arguments, this is
287 // calculated during LowerCall and consumed here...
288 ArgumentPopSize = StackAdjust.getImm();
289 } else {
290 // ... otherwise the amount to pop is *all* of the argument space,
291 // conveniently stored in the MachineFunctionInfo by
292 // LowerFormalArguments. This will, of course, be zero for the C calling
293 // convention.
294 ArgumentPopSize = AFI->getArgumentStackToRestore();
295 }
296
297 return ArgumentPopSize;
298 }
299
300 static bool produceCompactUnwindFrame(MachineFunction &MF);
301 static bool needsWinCFI(const MachineFunction &MF);
302 static StackOffset getSVEStackSize(const MachineFunction &MF);
303 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF);
304
305 /// Returns true if a homogeneous prolog or epilog code can be emitted
306 /// for the size optimization. If possible, a frame helper call is injected.
307 /// When Exit block is given, this check is for epilog.
homogeneousPrologEpilog(MachineFunction & MF,MachineBasicBlock * Exit) const308 bool AArch64FrameLowering::homogeneousPrologEpilog(
309 MachineFunction &MF, MachineBasicBlock *Exit) const {
310 if (!MF.getFunction().hasMinSize())
311 return false;
312 if (!EnableHomogeneousPrologEpilog)
313 return false;
314 if (ReverseCSRRestoreSeq)
315 return false;
316 if (EnableRedZone)
317 return false;
318
319 // TODO: Window is supported yet.
320 if (needsWinCFI(MF))
321 return false;
322 // TODO: SVE is not supported yet.
323 if (getSVEStackSize(MF))
324 return false;
325
326 // Bail on stack adjustment needed on return for simplicity.
327 const MachineFrameInfo &MFI = MF.getFrameInfo();
328 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
329 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
330 return false;
331 if (Exit && getArgumentStackToRestore(MF, *Exit))
332 return false;
333
334 return true;
335 }
336
337 /// Returns true if CSRs should be paired.
producePairRegisters(MachineFunction & MF) const338 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
339 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
340 }
341
342 /// This is the biggest offset to the stack pointer we can encode in aarch64
343 /// instructions (without using a separate calculation and a temp register).
344 /// Note that the exception here are vector stores/loads which cannot encode any
345 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
346 static const unsigned DefaultSafeSPDisplacement = 255;
347
348 /// Look at each instruction that references stack frames and return the stack
349 /// size limit beyond which some of these instructions will require a scratch
350 /// register during their expansion later.
estimateRSStackSizeLimit(MachineFunction & MF)351 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
352 // FIXME: For now, just conservatively guestimate based on unscaled indexing
353 // range. We'll end up allocating an unnecessary spill slot a lot, but
354 // realistically that's not a big deal at this stage of the game.
355 for (MachineBasicBlock &MBB : MF) {
356 for (MachineInstr &MI : MBB) {
357 if (MI.isDebugInstr() || MI.isPseudo() ||
358 MI.getOpcode() == AArch64::ADDXri ||
359 MI.getOpcode() == AArch64::ADDSXri)
360 continue;
361
362 for (const MachineOperand &MO : MI.operands()) {
363 if (!MO.isFI())
364 continue;
365
366 StackOffset Offset;
367 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
368 AArch64FrameOffsetCannotUpdate)
369 return 0;
370 }
371 }
372 }
373 return DefaultSafeSPDisplacement;
374 }
375
376 TargetStackID::Value
getStackIDForScalableVectors() const377 AArch64FrameLowering::getStackIDForScalableVectors() const {
378 return TargetStackID::ScalableVector;
379 }
380
381 /// Returns the size of the fixed object area (allocated next to sp on entry)
382 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
getFixedObjectSize(const MachineFunction & MF,const AArch64FunctionInfo * AFI,bool IsWin64,bool IsFunclet)383 static unsigned getFixedObjectSize(const MachineFunction &MF,
384 const AArch64FunctionInfo *AFI, bool IsWin64,
385 bool IsFunclet) {
386 if (!IsWin64 || IsFunclet) {
387 return AFI->getTailCallReservedStack();
388 } else {
389 if (AFI->getTailCallReservedStack() != 0)
390 report_fatal_error("cannot generate ABI-changing tail call for Win64");
391 // Var args are stored here in the primary function.
392 const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
393 // To support EH funclets we allocate an UnwindHelp object
394 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
395 return alignTo(VarArgsArea + UnwindHelpObject, 16);
396 }
397 }
398
399 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
getSVEStackSize(const MachineFunction & MF)400 static StackOffset getSVEStackSize(const MachineFunction &MF) {
401 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
402 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
403 }
404
canUseRedZone(const MachineFunction & MF) const405 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
406 if (!EnableRedZone)
407 return false;
408
409 // Don't use the red zone if the function explicitly asks us not to.
410 // This is typically used for kernel code.
411 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
412 const unsigned RedZoneSize =
413 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
414 if (!RedZoneSize)
415 return false;
416
417 const MachineFrameInfo &MFI = MF.getFrameInfo();
418 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
419 uint64_t NumBytes = AFI->getLocalStackSize();
420
421 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
422 getSVEStackSize(MF));
423 }
424
425 /// hasFP - Return true if the specified function should have a dedicated frame
426 /// pointer register.
hasFP(const MachineFunction & MF) const427 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
428 const MachineFrameInfo &MFI = MF.getFrameInfo();
429 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
430 // Win64 EH requires a frame pointer if funclets are present, as the locals
431 // are accessed off the frame pointer in both the parent function and the
432 // funclets.
433 if (MF.hasEHFunclets())
434 return true;
435 // Retain behavior of always omitting the FP for leaf functions when possible.
436 if (MF.getTarget().Options.DisableFramePointerElim(MF))
437 return true;
438 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
439 MFI.hasStackMap() || MFI.hasPatchPoint() ||
440 RegInfo->hasStackRealignment(MF))
441 return true;
442 // With large callframes around we may need to use FP to access the scavenging
443 // emergency spillslot.
444 //
445 // Unfortunately some calls to hasFP() like machine verifier ->
446 // getReservedReg() -> hasFP in the middle of global isel are too early
447 // to know the max call frame size. Hopefully conservatively returning "true"
448 // in those cases is fine.
449 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
450 if (!MFI.isMaxCallFrameSizeComputed() ||
451 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
452 return true;
453
454 return false;
455 }
456
457 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
458 /// not required, we reserve argument space for call sites in the function
459 /// immediately on entry to the current function. This eliminates the need for
460 /// add/sub sp brackets around call sites. Returns true if the call frame is
461 /// included as part of the stack frame.
462 bool
hasReservedCallFrame(const MachineFunction & MF) const463 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
464 return !MF.getFrameInfo().hasVarSizedObjects();
465 }
466
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const467 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
468 MachineFunction &MF, MachineBasicBlock &MBB,
469 MachineBasicBlock::iterator I) const {
470 const AArch64InstrInfo *TII =
471 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
472 DebugLoc DL = I->getDebugLoc();
473 unsigned Opc = I->getOpcode();
474 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
475 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
476
477 if (!hasReservedCallFrame(MF)) {
478 int64_t Amount = I->getOperand(0).getImm();
479 Amount = alignTo(Amount, getStackAlign());
480 if (!IsDestroy)
481 Amount = -Amount;
482
483 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
484 // doesn't have to pop anything), then the first operand will be zero too so
485 // this adjustment is a no-op.
486 if (CalleePopAmount == 0) {
487 // FIXME: in-function stack adjustment for calls is limited to 24-bits
488 // because there's no guaranteed temporary register available.
489 //
490 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
491 // 1) For offset <= 12-bit, we use LSL #0
492 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
493 // LSL #0, and the other uses LSL #12.
494 //
495 // Most call frames will be allocated at the start of a function so
496 // this is OK, but it is a limitation that needs dealing with.
497 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
498 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
499 StackOffset::getFixed(Amount), TII);
500 }
501 } else if (CalleePopAmount != 0) {
502 // If the calling convention demands that the callee pops arguments from the
503 // stack, we want to add it back if we have a reserved call frame.
504 assert(CalleePopAmount < 0xffffff && "call frame too large");
505 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
506 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
507 }
508 return MBB.erase(I);
509 }
510
emitCalleeSavedGPRLocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const511 void AArch64FrameLowering::emitCalleeSavedGPRLocations(
512 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
513 MachineFunction &MF = *MBB.getParent();
514 MachineFrameInfo &MFI = MF.getFrameInfo();
515
516 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
517 if (CSI.empty())
518 return;
519
520 const TargetSubtargetInfo &STI = MF.getSubtarget();
521 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
522 const TargetInstrInfo &TII = *STI.getInstrInfo();
523 DebugLoc DL = MBB.findDebugLoc(MBBI);
524
525 for (const auto &Info : CSI) {
526 if (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)
527 continue;
528
529 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
530 unsigned DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
531
532 int64_t Offset =
533 MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea();
534 unsigned CFIIndex = MF.addFrameInst(
535 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
536 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
537 .addCFIIndex(CFIIndex)
538 .setMIFlags(MachineInstr::FrameSetup);
539 }
540 }
541
emitCalleeSavedSVELocations(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const542 void AArch64FrameLowering::emitCalleeSavedSVELocations(
543 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
544 MachineFunction &MF = *MBB.getParent();
545 MachineFrameInfo &MFI = MF.getFrameInfo();
546
547 // Add callee saved registers to move list.
548 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
549 if (CSI.empty())
550 return;
551
552 const TargetSubtargetInfo &STI = MF.getSubtarget();
553 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
554 const TargetInstrInfo &TII = *STI.getInstrInfo();
555 DebugLoc DL = MBB.findDebugLoc(MBBI);
556 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
557
558 for (const auto &Info : CSI) {
559 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
560 continue;
561
562 // Not all unwinders may know about SVE registers, so assume the lowest
563 // common demoninator.
564 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
565 unsigned Reg = Info.getReg();
566 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
567 continue;
568
569 StackOffset Offset =
570 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
571 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
572
573 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
574 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
575 .addCFIIndex(CFIIndex)
576 .setMIFlags(MachineInstr::FrameSetup);
577 }
578 }
579
insertCFISameValue(const MCInstrDesc & Desc,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertPt,unsigned DwarfReg)580 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
581 MachineBasicBlock &MBB,
582 MachineBasicBlock::iterator InsertPt,
583 unsigned DwarfReg) {
584 unsigned CFIIndex =
585 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
586 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
587 }
588
resetCFIToInitialState(MachineBasicBlock & MBB) const589 void AArch64FrameLowering::resetCFIToInitialState(
590 MachineBasicBlock &MBB) const {
591
592 MachineFunction &MF = *MBB.getParent();
593 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
594 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
595 const auto &TRI =
596 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
597 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
598
599 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
600 DebugLoc DL;
601
602 // Reset the CFA to `SP + 0`.
603 MachineBasicBlock::iterator InsertPt = MBB.begin();
604 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
605 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
606 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
607
608 // Flip the RA sign state.
609 if (MFI.shouldSignReturnAddress(MF)) {
610 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
611 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
612 }
613
614 // Shadow call stack uses X18, reset it.
615 if (needsShadowCallStackPrologueEpilogue(MF))
616 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
617 TRI.getDwarfRegNum(AArch64::X18, true));
618
619 // Emit .cfi_same_value for callee-saved registers.
620 const std::vector<CalleeSavedInfo> &CSI =
621 MF.getFrameInfo().getCalleeSavedInfo();
622 for (const auto &Info : CSI) {
623 unsigned Reg = Info.getReg();
624 if (!TRI.regNeedsCFI(Reg, Reg))
625 continue;
626 insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
627 TRI.getDwarfRegNum(Reg, true));
628 }
629 }
630
emitCalleeSavedRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,bool SVE)631 static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
632 MachineBasicBlock::iterator MBBI,
633 bool SVE) {
634 MachineFunction &MF = *MBB.getParent();
635 MachineFrameInfo &MFI = MF.getFrameInfo();
636
637 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
638 if (CSI.empty())
639 return;
640
641 const TargetSubtargetInfo &STI = MF.getSubtarget();
642 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
643 const TargetInstrInfo &TII = *STI.getInstrInfo();
644 DebugLoc DL = MBB.findDebugLoc(MBBI);
645
646 for (const auto &Info : CSI) {
647 if (SVE !=
648 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
649 continue;
650
651 unsigned Reg = Info.getReg();
652 if (SVE &&
653 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
654 continue;
655
656 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
657 nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
658 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
659 .addCFIIndex(CFIIndex)
660 .setMIFlags(MachineInstr::FrameDestroy);
661 }
662 }
663
emitCalleeSavedGPRRestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const664 void AArch64FrameLowering::emitCalleeSavedGPRRestores(
665 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
666 emitCalleeSavedRestores(MBB, MBBI, false);
667 }
668
emitCalleeSavedSVERestores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const669 void AArch64FrameLowering::emitCalleeSavedSVERestores(
670 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
671 emitCalleeSavedRestores(MBB, MBBI, true);
672 }
673
getRegisterOrZero(MCRegister Reg,bool HasSVE)674 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
675 switch (Reg.id()) {
676 default:
677 // The called routine is expected to preserve r19-r28
678 // r29 and r30 are used as frame pointer and link register resp.
679 return 0;
680
681 // GPRs
682 #define CASE(n) \
683 case AArch64::W##n: \
684 case AArch64::X##n: \
685 return AArch64::X##n
686 CASE(0);
687 CASE(1);
688 CASE(2);
689 CASE(3);
690 CASE(4);
691 CASE(5);
692 CASE(6);
693 CASE(7);
694 CASE(8);
695 CASE(9);
696 CASE(10);
697 CASE(11);
698 CASE(12);
699 CASE(13);
700 CASE(14);
701 CASE(15);
702 CASE(16);
703 CASE(17);
704 CASE(18);
705 #undef CASE
706
707 // FPRs
708 #define CASE(n) \
709 case AArch64::B##n: \
710 case AArch64::H##n: \
711 case AArch64::S##n: \
712 case AArch64::D##n: \
713 case AArch64::Q##n: \
714 return HasSVE ? AArch64::Z##n : AArch64::Q##n
715 CASE(0);
716 CASE(1);
717 CASE(2);
718 CASE(3);
719 CASE(4);
720 CASE(5);
721 CASE(6);
722 CASE(7);
723 CASE(8);
724 CASE(9);
725 CASE(10);
726 CASE(11);
727 CASE(12);
728 CASE(13);
729 CASE(14);
730 CASE(15);
731 CASE(16);
732 CASE(17);
733 CASE(18);
734 CASE(19);
735 CASE(20);
736 CASE(21);
737 CASE(22);
738 CASE(23);
739 CASE(24);
740 CASE(25);
741 CASE(26);
742 CASE(27);
743 CASE(28);
744 CASE(29);
745 CASE(30);
746 CASE(31);
747 #undef CASE
748 }
749 }
750
emitZeroCallUsedRegs(BitVector RegsToZero,MachineBasicBlock & MBB) const751 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
752 MachineBasicBlock &MBB) const {
753 // Insertion point.
754 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
755
756 // Fake a debug loc.
757 DebugLoc DL;
758 if (MBBI != MBB.end())
759 DL = MBBI->getDebugLoc();
760
761 const MachineFunction &MF = *MBB.getParent();
762 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
763 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
764
765 BitVector GPRsToZero(TRI.getNumRegs());
766 BitVector FPRsToZero(TRI.getNumRegs());
767 bool HasSVE = STI.hasSVE();
768 for (MCRegister Reg : RegsToZero.set_bits()) {
769 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
770 // For GPRs, we only care to clear out the 64-bit register.
771 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
772 GPRsToZero.set(XReg);
773 } else if (AArch64::FPR128RegClass.contains(Reg) ||
774 AArch64::FPR64RegClass.contains(Reg) ||
775 AArch64::FPR32RegClass.contains(Reg) ||
776 AArch64::FPR16RegClass.contains(Reg) ||
777 AArch64::FPR8RegClass.contains(Reg)) {
778 // For FPRs,
779 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
780 FPRsToZero.set(XReg);
781 }
782 }
783
784 const AArch64InstrInfo &TII = *STI.getInstrInfo();
785
786 // Zero out GPRs.
787 for (MCRegister Reg : GPRsToZero.set_bits())
788 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), Reg).addImm(0);
789
790 // Zero out FP/vector registers.
791 for (MCRegister Reg : FPRsToZero.set_bits())
792 if (HasSVE)
793 BuildMI(MBB, MBBI, DL, TII.get(AArch64::DUP_ZI_D), Reg)
794 .addImm(0)
795 .addImm(0);
796 else
797 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVIv2d_ns), Reg).addImm(0);
798
799 if (HasSVE) {
800 for (MCRegister PReg :
801 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
802 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
803 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
804 AArch64::P15}) {
805 if (RegsToZero[PReg])
806 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
807 }
808 }
809 }
810
811 // Find a scratch register that we can use at the start of the prologue to
812 // re-align the stack pointer. We avoid using callee-save registers since they
813 // may appear to be free when this is called from canUseAsPrologue (during
814 // shrink wrapping), but then no longer be free when this is called from
815 // emitPrologue.
816 //
817 // FIXME: This is a bit conservative, since in the above case we could use one
818 // of the callee-save registers as a scratch temp to re-align the stack pointer,
819 // but we would then have to make sure that we were in fact saving at least one
820 // callee-save register in the prologue, which is additional complexity that
821 // doesn't seem worth the benefit.
findScratchNonCalleeSaveRegister(MachineBasicBlock * MBB)822 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
823 MachineFunction *MF = MBB->getParent();
824
825 // If MBB is an entry block, use X9 as the scratch register
826 if (&MF->front() == MBB)
827 return AArch64::X9;
828
829 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
830 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
831 LivePhysRegs LiveRegs(TRI);
832 LiveRegs.addLiveIns(*MBB);
833
834 // Mark callee saved registers as used so we will not choose them.
835 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
836 for (unsigned i = 0; CSRegs[i]; ++i)
837 LiveRegs.addReg(CSRegs[i]);
838
839 // Prefer X9 since it was historically used for the prologue scratch reg.
840 const MachineRegisterInfo &MRI = MF->getRegInfo();
841 if (LiveRegs.available(MRI, AArch64::X9))
842 return AArch64::X9;
843
844 for (unsigned Reg : AArch64::GPR64RegClass) {
845 if (LiveRegs.available(MRI, Reg))
846 return Reg;
847 }
848 return AArch64::NoRegister;
849 }
850
canUseAsPrologue(const MachineBasicBlock & MBB) const851 bool AArch64FrameLowering::canUseAsPrologue(
852 const MachineBasicBlock &MBB) const {
853 const MachineFunction *MF = MBB.getParent();
854 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
855 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
856 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
857
858 // Don't need a scratch register if we're not going to re-align the stack.
859 if (!RegInfo->hasStackRealignment(*MF))
860 return true;
861 // Otherwise, we can use any block as long as it has a scratch register
862 // available.
863 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
864 }
865
windowsRequiresStackProbe(MachineFunction & MF,uint64_t StackSizeInBytes)866 static bool windowsRequiresStackProbe(MachineFunction &MF,
867 uint64_t StackSizeInBytes) {
868 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
869 if (!Subtarget.isTargetWindows())
870 return false;
871 const Function &F = MF.getFunction();
872 // TODO: When implementing stack protectors, take that into account
873 // for the probe threshold.
874 unsigned StackProbeSize =
875 F.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
876 return (StackSizeInBytes >= StackProbeSize) &&
877 !F.hasFnAttribute("no-stack-arg-probe");
878 }
879
needsWinCFI(const MachineFunction & MF)880 static bool needsWinCFI(const MachineFunction &MF) {
881 const Function &F = MF.getFunction();
882 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
883 F.needsUnwindTableEntry();
884 }
885
shouldCombineCSRLocalStackBump(MachineFunction & MF,uint64_t StackBumpBytes) const886 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
887 MachineFunction &MF, uint64_t StackBumpBytes) const {
888 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
889 const MachineFrameInfo &MFI = MF.getFrameInfo();
890 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
891 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
892 if (homogeneousPrologEpilog(MF))
893 return false;
894
895 if (AFI->getLocalStackSize() == 0)
896 return false;
897
898 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
899 // (to force a stp with predecrement) to match the packed unwind format,
900 // provided that there actually are any callee saved registers to merge the
901 // decrement with.
902 // This is potentially marginally slower, but allows using the packed
903 // unwind format for functions that both have a local area and callee saved
904 // registers. Using the packed unwind format notably reduces the size of
905 // the unwind info.
906 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
907 MF.getFunction().hasOptSize())
908 return false;
909
910 // 512 is the maximum immediate for stp/ldp that will be used for
911 // callee-save save/restores
912 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
913 return false;
914
915 if (MFI.hasVarSizedObjects())
916 return false;
917
918 if (RegInfo->hasStackRealignment(MF))
919 return false;
920
921 // This isn't strictly necessary, but it simplifies things a bit since the
922 // current RedZone handling code assumes the SP is adjusted by the
923 // callee-save save/restore code.
924 if (canUseRedZone(MF))
925 return false;
926
927 // When there is an SVE area on the stack, always allocate the
928 // callee-saves and spills/locals separately.
929 if (getSVEStackSize(MF))
930 return false;
931
932 return true;
933 }
934
shouldCombineCSRLocalStackBumpInEpilogue(MachineBasicBlock & MBB,unsigned StackBumpBytes) const935 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
936 MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
937 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
938 return false;
939
940 if (MBB.empty())
941 return true;
942
943 // Disable combined SP bump if the last instruction is an MTE tag store. It
944 // is almost always better to merge SP adjustment into those instructions.
945 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
946 MachineBasicBlock::iterator Begin = MBB.begin();
947 while (LastI != Begin) {
948 --LastI;
949 if (LastI->isTransient())
950 continue;
951 if (!LastI->getFlag(MachineInstr::FrameDestroy))
952 break;
953 }
954 switch (LastI->getOpcode()) {
955 case AArch64::STGloop:
956 case AArch64::STZGloop:
957 case AArch64::STGOffset:
958 case AArch64::STZGOffset:
959 case AArch64::ST2GOffset:
960 case AArch64::STZ2GOffset:
961 return false;
962 default:
963 return true;
964 }
965 llvm_unreachable("unreachable");
966 }
967
968 // Given a load or a store instruction, generate an appropriate unwinding SEH
969 // code on Windows.
InsertSEH(MachineBasicBlock::iterator MBBI,const TargetInstrInfo & TII,MachineInstr::MIFlag Flag)970 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
971 const TargetInstrInfo &TII,
972 MachineInstr::MIFlag Flag) {
973 unsigned Opc = MBBI->getOpcode();
974 MachineBasicBlock *MBB = MBBI->getParent();
975 MachineFunction &MF = *MBB->getParent();
976 DebugLoc DL = MBBI->getDebugLoc();
977 unsigned ImmIdx = MBBI->getNumOperands() - 1;
978 int Imm = MBBI->getOperand(ImmIdx).getImm();
979 MachineInstrBuilder MIB;
980 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
981 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
982
983 switch (Opc) {
984 default:
985 llvm_unreachable("No SEH Opcode for this instruction");
986 case AArch64::LDPDpost:
987 Imm = -Imm;
988 [[fallthrough]];
989 case AArch64::STPDpre: {
990 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
991 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
992 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
993 .addImm(Reg0)
994 .addImm(Reg1)
995 .addImm(Imm * 8)
996 .setMIFlag(Flag);
997 break;
998 }
999 case AArch64::LDPXpost:
1000 Imm = -Imm;
1001 [[fallthrough]];
1002 case AArch64::STPXpre: {
1003 Register Reg0 = MBBI->getOperand(1).getReg();
1004 Register Reg1 = MBBI->getOperand(2).getReg();
1005 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1006 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1007 .addImm(Imm * 8)
1008 .setMIFlag(Flag);
1009 else
1010 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1011 .addImm(RegInfo->getSEHRegNum(Reg0))
1012 .addImm(RegInfo->getSEHRegNum(Reg1))
1013 .addImm(Imm * 8)
1014 .setMIFlag(Flag);
1015 break;
1016 }
1017 case AArch64::LDRDpost:
1018 Imm = -Imm;
1019 [[fallthrough]];
1020 case AArch64::STRDpre: {
1021 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1022 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1023 .addImm(Reg)
1024 .addImm(Imm)
1025 .setMIFlag(Flag);
1026 break;
1027 }
1028 case AArch64::LDRXpost:
1029 Imm = -Imm;
1030 [[fallthrough]];
1031 case AArch64::STRXpre: {
1032 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1033 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1034 .addImm(Reg)
1035 .addImm(Imm)
1036 .setMIFlag(Flag);
1037 break;
1038 }
1039 case AArch64::STPDi:
1040 case AArch64::LDPDi: {
1041 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1042 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1043 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1044 .addImm(Reg0)
1045 .addImm(Reg1)
1046 .addImm(Imm * 8)
1047 .setMIFlag(Flag);
1048 break;
1049 }
1050 case AArch64::STPXi:
1051 case AArch64::LDPXi: {
1052 Register Reg0 = MBBI->getOperand(0).getReg();
1053 Register Reg1 = MBBI->getOperand(1).getReg();
1054 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1055 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1056 .addImm(Imm * 8)
1057 .setMIFlag(Flag);
1058 else
1059 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1060 .addImm(RegInfo->getSEHRegNum(Reg0))
1061 .addImm(RegInfo->getSEHRegNum(Reg1))
1062 .addImm(Imm * 8)
1063 .setMIFlag(Flag);
1064 break;
1065 }
1066 case AArch64::STRXui:
1067 case AArch64::LDRXui: {
1068 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1069 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1070 .addImm(Reg)
1071 .addImm(Imm * 8)
1072 .setMIFlag(Flag);
1073 break;
1074 }
1075 case AArch64::STRDui:
1076 case AArch64::LDRDui: {
1077 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1078 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1079 .addImm(Reg)
1080 .addImm(Imm * 8)
1081 .setMIFlag(Flag);
1082 break;
1083 }
1084 }
1085 auto I = MBB->insertAfter(MBBI, MIB);
1086 return I;
1087 }
1088
1089 // Fix up the SEH opcode associated with the save/restore instruction.
fixupSEHOpcode(MachineBasicBlock::iterator MBBI,unsigned LocalStackSize)1090 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1091 unsigned LocalStackSize) {
1092 MachineOperand *ImmOpnd = nullptr;
1093 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1094 switch (MBBI->getOpcode()) {
1095 default:
1096 llvm_unreachable("Fix the offset in the SEH instruction");
1097 case AArch64::SEH_SaveFPLR:
1098 case AArch64::SEH_SaveRegP:
1099 case AArch64::SEH_SaveReg:
1100 case AArch64::SEH_SaveFRegP:
1101 case AArch64::SEH_SaveFReg:
1102 ImmOpnd = &MBBI->getOperand(ImmIdx);
1103 break;
1104 }
1105 if (ImmOpnd)
1106 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1107 }
1108
1109 // Convert callee-save register save/restore instruction to do stack pointer
1110 // decrement/increment to allocate/deallocate the callee-save stack area by
1111 // converting store/load to use pre/post increment version.
convertCalleeSaveRestoreToSPPrePostIncDec(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const TargetInstrInfo * TII,int CSStackSizeInc,bool NeedsWinCFI,bool * HasWinCFI,bool EmitCFI,MachineInstr::MIFlag FrameFlag=MachineInstr::FrameSetup,int CFAOffset=0)1112 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1113 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1114 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1115 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1116 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1117 int CFAOffset = 0) {
1118 unsigned NewOpc;
1119 switch (MBBI->getOpcode()) {
1120 default:
1121 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1122 case AArch64::STPXi:
1123 NewOpc = AArch64::STPXpre;
1124 break;
1125 case AArch64::STPDi:
1126 NewOpc = AArch64::STPDpre;
1127 break;
1128 case AArch64::STPQi:
1129 NewOpc = AArch64::STPQpre;
1130 break;
1131 case AArch64::STRXui:
1132 NewOpc = AArch64::STRXpre;
1133 break;
1134 case AArch64::STRDui:
1135 NewOpc = AArch64::STRDpre;
1136 break;
1137 case AArch64::STRQui:
1138 NewOpc = AArch64::STRQpre;
1139 break;
1140 case AArch64::LDPXi:
1141 NewOpc = AArch64::LDPXpost;
1142 break;
1143 case AArch64::LDPDi:
1144 NewOpc = AArch64::LDPDpost;
1145 break;
1146 case AArch64::LDPQi:
1147 NewOpc = AArch64::LDPQpost;
1148 break;
1149 case AArch64::LDRXui:
1150 NewOpc = AArch64::LDRXpost;
1151 break;
1152 case AArch64::LDRDui:
1153 NewOpc = AArch64::LDRDpost;
1154 break;
1155 case AArch64::LDRQui:
1156 NewOpc = AArch64::LDRQpost;
1157 break;
1158 }
1159 // Get rid of the SEH code associated with the old instruction.
1160 if (NeedsWinCFI) {
1161 auto SEH = std::next(MBBI);
1162 if (AArch64InstrInfo::isSEHInstruction(*SEH))
1163 SEH->eraseFromParent();
1164 }
1165
1166 TypeSize Scale = TypeSize::Fixed(1);
1167 unsigned Width;
1168 int64_t MinOffset, MaxOffset;
1169 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1170 NewOpc, Scale, Width, MinOffset, MaxOffset);
1171 (void)Success;
1172 assert(Success && "unknown load/store opcode");
1173
1174 // If the first store isn't right where we want SP then we can't fold the
1175 // update in so create a normal arithmetic instruction instead.
1176 MachineFunction &MF = *MBB.getParent();
1177 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1178 CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1179 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1180 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1181 false, false, nullptr, EmitCFI,
1182 StackOffset::getFixed(CFAOffset));
1183
1184 return std::prev(MBBI);
1185 }
1186
1187 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1188 MIB.addReg(AArch64::SP, RegState::Define);
1189
1190 // Copy all operands other than the immediate offset.
1191 unsigned OpndIdx = 0;
1192 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1193 ++OpndIdx)
1194 MIB.add(MBBI->getOperand(OpndIdx));
1195
1196 assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1197 "Unexpected immediate offset in first/last callee-save save/restore "
1198 "instruction!");
1199 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1200 "Unexpected base register in callee-save save/restore instruction!");
1201 assert(CSStackSizeInc % Scale == 0);
1202 MIB.addImm(CSStackSizeInc / (int)Scale);
1203
1204 MIB.setMIFlags(MBBI->getFlags());
1205 MIB.setMemRefs(MBBI->memoperands());
1206
1207 // Generate a new SEH code that corresponds to the new instruction.
1208 if (NeedsWinCFI) {
1209 *HasWinCFI = true;
1210 InsertSEH(*MIB, *TII, FrameFlag);
1211 }
1212
1213 if (EmitCFI) {
1214 unsigned CFIIndex = MF.addFrameInst(
1215 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1216 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1217 .addCFIIndex(CFIIndex)
1218 .setMIFlags(FrameFlag);
1219 }
1220
1221 return std::prev(MBB.erase(MBBI));
1222 }
1223
1224 // Fixup callee-save register save/restore instructions to take into account
1225 // combined SP bump by adding the local stack size to the stack offsets.
fixupCalleeSaveRestoreStackOffset(MachineInstr & MI,uint64_t LocalStackSize,bool NeedsWinCFI,bool * HasWinCFI)1226 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1227 uint64_t LocalStackSize,
1228 bool NeedsWinCFI,
1229 bool *HasWinCFI) {
1230 if (AArch64InstrInfo::isSEHInstruction(MI))
1231 return;
1232
1233 unsigned Opc = MI.getOpcode();
1234 unsigned Scale;
1235 switch (Opc) {
1236 case AArch64::STPXi:
1237 case AArch64::STRXui:
1238 case AArch64::STPDi:
1239 case AArch64::STRDui:
1240 case AArch64::LDPXi:
1241 case AArch64::LDRXui:
1242 case AArch64::LDPDi:
1243 case AArch64::LDRDui:
1244 Scale = 8;
1245 break;
1246 case AArch64::STPQi:
1247 case AArch64::STRQui:
1248 case AArch64::LDPQi:
1249 case AArch64::LDRQui:
1250 Scale = 16;
1251 break;
1252 default:
1253 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1254 }
1255
1256 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1257 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1258 "Unexpected base register in callee-save save/restore instruction!");
1259 // Last operand is immediate offset that needs fixing.
1260 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1261 // All generated opcodes have scaled offsets.
1262 assert(LocalStackSize % Scale == 0);
1263 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1264
1265 if (NeedsWinCFI) {
1266 *HasWinCFI = true;
1267 auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1268 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1269 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1270 "Expecting a SEH instruction");
1271 fixupSEHOpcode(MBBI, LocalStackSize);
1272 }
1273 }
1274
isTargetWindows(const MachineFunction & MF)1275 static bool isTargetWindows(const MachineFunction &MF) {
1276 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1277 }
1278
1279 // Convenience function to determine whether I is an SVE callee save.
IsSVECalleeSave(MachineBasicBlock::iterator I)1280 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1281 switch (I->getOpcode()) {
1282 default:
1283 return false;
1284 case AArch64::STR_ZXI:
1285 case AArch64::STR_PXI:
1286 case AArch64::LDR_ZXI:
1287 case AArch64::LDR_PXI:
1288 return I->getFlag(MachineInstr::FrameSetup) ||
1289 I->getFlag(MachineInstr::FrameDestroy);
1290 }
1291 }
1292
needsShadowCallStackPrologueEpilogue(MachineFunction & MF)1293 static bool needsShadowCallStackPrologueEpilogue(MachineFunction &MF) {
1294 if (!(llvm::any_of(
1295 MF.getFrameInfo().getCalleeSavedInfo(),
1296 [](const auto &Info) { return Info.getReg() == AArch64::LR; }) &&
1297 MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)))
1298 return false;
1299
1300 if (!MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(18))
1301 report_fatal_error("Must reserve x18 to use shadow call stack");
1302
1303 return true;
1304 }
1305
emitShadowCallStackPrologue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool NeedsWinCFI,bool NeedsUnwindInfo)1306 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1307 MachineFunction &MF,
1308 MachineBasicBlock &MBB,
1309 MachineBasicBlock::iterator MBBI,
1310 const DebugLoc &DL, bool NeedsWinCFI,
1311 bool NeedsUnwindInfo) {
1312 // Shadow call stack prolog: str x30, [x18], #8
1313 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1314 .addReg(AArch64::X18, RegState::Define)
1315 .addReg(AArch64::LR)
1316 .addReg(AArch64::X18)
1317 .addImm(8)
1318 .setMIFlag(MachineInstr::FrameSetup);
1319
1320 // This instruction also makes x18 live-in to the entry block.
1321 MBB.addLiveIn(AArch64::X18);
1322
1323 if (NeedsWinCFI)
1324 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1325 .setMIFlag(MachineInstr::FrameSetup);
1326
1327 if (NeedsUnwindInfo) {
1328 // Emit a CFI instruction that causes 8 to be subtracted from the value of
1329 // x18 when unwinding past this frame.
1330 static const char CFIInst[] = {
1331 dwarf::DW_CFA_val_expression,
1332 18, // register
1333 2, // length
1334 static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1335 static_cast<char>(-8) & 0x7f, // addend (sleb128)
1336 };
1337 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1338 nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1339 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1340 .addCFIIndex(CFIIndex)
1341 .setMIFlag(MachineInstr::FrameSetup);
1342 }
1343 }
1344
emitShadowCallStackEpilogue(const TargetInstrInfo & TII,MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL)1345 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1346 MachineFunction &MF,
1347 MachineBasicBlock &MBB,
1348 MachineBasicBlock::iterator MBBI,
1349 const DebugLoc &DL) {
1350 // Shadow call stack epilog: ldr x30, [x18, #-8]!
1351 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1352 .addReg(AArch64::X18, RegState::Define)
1353 .addReg(AArch64::LR, RegState::Define)
1354 .addReg(AArch64::X18)
1355 .addImm(-8)
1356 .setMIFlag(MachineInstr::FrameDestroy);
1357
1358 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1359 unsigned CFIIndex =
1360 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1361 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1362 .addCFIIndex(CFIIndex)
1363 .setMIFlags(MachineInstr::FrameDestroy);
1364 }
1365 }
1366
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1367 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1368 MachineBasicBlock &MBB) const {
1369 MachineBasicBlock::iterator MBBI = MBB.begin();
1370 const MachineFrameInfo &MFI = MF.getFrameInfo();
1371 const Function &F = MF.getFunction();
1372 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1373 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1374 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1375 MachineModuleInfo &MMI = MF.getMMI();
1376 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1377 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1378 bool HasFP = hasFP(MF);
1379 bool NeedsWinCFI = needsWinCFI(MF);
1380 bool HasWinCFI = false;
1381 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1382
1383 bool IsFunclet = MBB.isEHFuncletEntry();
1384
1385 // At this point, we're going to decide whether or not the function uses a
1386 // redzone. In most cases, the function doesn't have a redzone so let's
1387 // assume that's false and set it to true in the case that there's a redzone.
1388 AFI->setHasRedZone(false);
1389
1390 // Debug location must be unknown since the first debug location is used
1391 // to determine the end of the prologue.
1392 DebugLoc DL;
1393
1394 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1395 if (needsShadowCallStackPrologueEpilogue(MF))
1396 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1397 MFnI.needsDwarfUnwindInfo(MF));
1398
1399 if (MFnI.shouldSignReturnAddress(MF)) {
1400 if (MFnI.shouldSignWithBKey()) {
1401 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
1402 .setMIFlag(MachineInstr::FrameSetup);
1403 }
1404
1405 // No SEH opcode for this one; it doesn't materialize into an
1406 // instruction on Windows.
1407 BuildMI(MBB, MBBI, DL,
1408 TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSP
1409 : AArch64::PACIASP))
1410 .setMIFlag(MachineInstr::FrameSetup);
1411
1412 if (EmitCFI) {
1413 unsigned CFIIndex =
1414 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1415 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1416 .addCFIIndex(CFIIndex)
1417 .setMIFlags(MachineInstr::FrameSetup);
1418 } else if (NeedsWinCFI) {
1419 HasWinCFI = true;
1420 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1421 .setMIFlag(MachineInstr::FrameSetup);
1422 }
1423 }
1424 if (EmitCFI && MFnI.isMTETagged()) {
1425 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1426 .setMIFlag(MachineInstr::FrameSetup);
1427 }
1428
1429 // We signal the presence of a Swift extended frame to external tools by
1430 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1431 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1432 // bits so that is still true.
1433 if (HasFP && AFI->hasSwiftAsyncContext()) {
1434 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1435 case SwiftAsyncFramePointerMode::DeploymentBased:
1436 if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1437 // The special symbol below is absolute and has a *value* that can be
1438 // combined with the frame pointer to signal an extended frame.
1439 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1440 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1441 AArch64II::MO_GOT);
1442 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1443 .addUse(AArch64::FP)
1444 .addUse(AArch64::X16)
1445 .addImm(Subtarget.isTargetILP32() ? 32 : 0);
1446 break;
1447 }
1448 [[fallthrough]];
1449
1450 case SwiftAsyncFramePointerMode::Always:
1451 // ORR x29, x29, #0x1000_0000_0000_0000
1452 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1453 .addUse(AArch64::FP)
1454 .addImm(0x1100)
1455 .setMIFlag(MachineInstr::FrameSetup);
1456 break;
1457
1458 case SwiftAsyncFramePointerMode::Never:
1459 break;
1460 }
1461 }
1462
1463 // All calls are tail calls in GHC calling conv, and functions have no
1464 // prologue/epilogue.
1465 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1466 return;
1467
1468 // Set tagged base pointer to the requested stack slot.
1469 // Ideally it should match SP value after prologue.
1470 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1471 if (TBPI)
1472 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1473 else
1474 AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1475
1476 const StackOffset &SVEStackSize = getSVEStackSize(MF);
1477
1478 // getStackSize() includes all the locals in its size calculation. We don't
1479 // include these locals when computing the stack size of a funclet, as they
1480 // are allocated in the parent's stack frame and accessed via the frame
1481 // pointer from the funclet. We only save the callee saved registers in the
1482 // funclet, which are really the callee saved registers of the parent
1483 // function, including the funclet.
1484 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1485 : MFI.getStackSize();
1486 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1487 assert(!HasFP && "unexpected function without stack frame but with FP");
1488 assert(!SVEStackSize &&
1489 "unexpected function without stack frame but with SVE objects");
1490 // All of the stack allocation is for locals.
1491 AFI->setLocalStackSize(NumBytes);
1492 if (!NumBytes)
1493 return;
1494 // REDZONE: If the stack size is less than 128 bytes, we don't need
1495 // to actually allocate.
1496 if (canUseRedZone(MF)) {
1497 AFI->setHasRedZone(true);
1498 ++NumRedZoneFunctions;
1499 } else {
1500 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1501 StackOffset::getFixed(-NumBytes), TII,
1502 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1503 if (EmitCFI) {
1504 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1505 MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
1506 // Encode the stack size of the leaf function.
1507 unsigned CFIIndex = MF.addFrameInst(
1508 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1509 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1510 .addCFIIndex(CFIIndex)
1511 .setMIFlags(MachineInstr::FrameSetup);
1512 }
1513 }
1514
1515 if (NeedsWinCFI) {
1516 HasWinCFI = true;
1517 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1518 .setMIFlag(MachineInstr::FrameSetup);
1519 }
1520
1521 return;
1522 }
1523
1524 bool IsWin64 =
1525 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1526 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1527
1528 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1529 // All of the remaining stack allocations are for locals.
1530 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1531 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1532 bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1533 if (CombineSPBump) {
1534 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1535 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1536 StackOffset::getFixed(-NumBytes), TII,
1537 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1538 EmitCFI);
1539 NumBytes = 0;
1540 } else if (HomPrologEpilog) {
1541 // Stack has been already adjusted.
1542 NumBytes -= PrologueSaveSize;
1543 } else if (PrologueSaveSize != 0) {
1544 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1545 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1546 EmitCFI);
1547 NumBytes -= PrologueSaveSize;
1548 }
1549 assert(NumBytes >= 0 && "Negative stack allocation size!?");
1550
1551 // Move past the saves of the callee-saved registers, fixing up the offsets
1552 // and pre-inc if we decided to combine the callee-save and local stack
1553 // pointer bump above.
1554 MachineBasicBlock::iterator End = MBB.end();
1555 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1556 !IsSVECalleeSave(MBBI)) {
1557 if (CombineSPBump)
1558 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1559 NeedsWinCFI, &HasWinCFI);
1560 ++MBBI;
1561 }
1562
1563 // For funclets the FP belongs to the containing function.
1564 if (!IsFunclet && HasFP) {
1565 // Only set up FP if we actually need to.
1566 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1567
1568 if (CombineSPBump)
1569 FPOffset += AFI->getLocalStackSize();
1570
1571 if (AFI->hasSwiftAsyncContext()) {
1572 // Before we update the live FP we have to ensure there's a valid (or
1573 // null) asynchronous context in its slot just before FP in the frame
1574 // record, so store it now.
1575 const auto &Attrs = MF.getFunction().getAttributes();
1576 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1577 if (HaveInitialContext)
1578 MBB.addLiveIn(AArch64::X22);
1579 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1580 .addUse(HaveInitialContext ? AArch64::X22 : AArch64::XZR)
1581 .addUse(AArch64::SP)
1582 .addImm(FPOffset - 8)
1583 .setMIFlags(MachineInstr::FrameSetup);
1584 }
1585
1586 if (HomPrologEpilog) {
1587 auto Prolog = MBBI;
1588 --Prolog;
1589 assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1590 Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1591 } else {
1592 // Issue sub fp, sp, FPOffset or
1593 // mov fp,sp when FPOffset is zero.
1594 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1595 // This code marks the instruction(s) that set the FP also.
1596 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
1597 StackOffset::getFixed(FPOffset), TII,
1598 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1599 if (NeedsWinCFI && HasWinCFI) {
1600 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1601 .setMIFlag(MachineInstr::FrameSetup);
1602 // After setting up the FP, the rest of the prolog doesn't need to be
1603 // included in the SEH unwind info.
1604 NeedsWinCFI = false;
1605 }
1606 }
1607 if (EmitCFI) {
1608 // Define the current CFA rule to use the provided FP.
1609 const int OffsetToFirstCalleeSaveFromFP =
1610 AFI->getCalleeSaveBaseToFrameRecordOffset() -
1611 AFI->getCalleeSavedStackSize();
1612 Register FramePtr = RegInfo->getFrameRegister(MF);
1613 unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
1614 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1615 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1616 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1617 .addCFIIndex(CFIIndex)
1618 .setMIFlags(MachineInstr::FrameSetup);
1619 }
1620 }
1621
1622 // Now emit the moves for whatever callee saved regs we have (including FP,
1623 // LR if those are saved). Frame instructions for SVE register are emitted
1624 // later, after the instruction which actually save SVE regs.
1625 if (EmitCFI)
1626 emitCalleeSavedGPRLocations(MBB, MBBI);
1627
1628 // Alignment is required for the parent frame, not the funclet
1629 const bool NeedsRealignment =
1630 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
1631 int64_t RealignmentPadding =
1632 (NeedsRealignment && MFI.getMaxAlign() > Align(16))
1633 ? MFI.getMaxAlign().value() - 16
1634 : 0;
1635
1636 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
1637 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
1638 if (NeedsWinCFI) {
1639 HasWinCFI = true;
1640 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1641 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1642 // This is at most two instructions, MOVZ follwed by MOVK.
1643 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1644 // exceeding 256MB in size.
1645 if (NumBytes >= (1 << 28))
1646 report_fatal_error("Stack size cannot exceed 256MB for stack "
1647 "unwinding purposes");
1648
1649 uint32_t LowNumWords = NumWords & 0xFFFF;
1650 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
1651 .addImm(LowNumWords)
1652 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
1653 .setMIFlag(MachineInstr::FrameSetup);
1654 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1655 .setMIFlag(MachineInstr::FrameSetup);
1656 if ((NumWords & 0xFFFF0000) != 0) {
1657 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
1658 .addReg(AArch64::X15)
1659 .addImm((NumWords & 0xFFFF0000) >> 16) // High half
1660 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
1661 .setMIFlag(MachineInstr::FrameSetup);
1662 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1663 .setMIFlag(MachineInstr::FrameSetup);
1664 }
1665 } else {
1666 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
1667 .addImm(NumWords)
1668 .setMIFlags(MachineInstr::FrameSetup);
1669 }
1670
1671 const char* ChkStk = Subtarget.getChkStkName();
1672 switch (MF.getTarget().getCodeModel()) {
1673 case CodeModel::Tiny:
1674 case CodeModel::Small:
1675 case CodeModel::Medium:
1676 case CodeModel::Kernel:
1677 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
1678 .addExternalSymbol(ChkStk)
1679 .addReg(AArch64::X15, RegState::Implicit)
1680 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1681 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1682 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1683 .setMIFlags(MachineInstr::FrameSetup);
1684 if (NeedsWinCFI) {
1685 HasWinCFI = true;
1686 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1687 .setMIFlag(MachineInstr::FrameSetup);
1688 }
1689 break;
1690 case CodeModel::Large:
1691 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
1692 .addReg(AArch64::X16, RegState::Define)
1693 .addExternalSymbol(ChkStk)
1694 .addExternalSymbol(ChkStk)
1695 .setMIFlags(MachineInstr::FrameSetup);
1696 if (NeedsWinCFI) {
1697 HasWinCFI = true;
1698 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1699 .setMIFlag(MachineInstr::FrameSetup);
1700 }
1701
1702 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
1703 .addReg(AArch64::X16, RegState::Kill)
1704 .addReg(AArch64::X15, RegState::Implicit | RegState::Define)
1705 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
1706 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
1707 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
1708 .setMIFlags(MachineInstr::FrameSetup);
1709 if (NeedsWinCFI) {
1710 HasWinCFI = true;
1711 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1712 .setMIFlag(MachineInstr::FrameSetup);
1713 }
1714 break;
1715 }
1716
1717 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
1718 .addReg(AArch64::SP, RegState::Kill)
1719 .addReg(AArch64::X15, RegState::Kill)
1720 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
1721 .setMIFlags(MachineInstr::FrameSetup);
1722 if (NeedsWinCFI) {
1723 HasWinCFI = true;
1724 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
1725 .addImm(NumBytes)
1726 .setMIFlag(MachineInstr::FrameSetup);
1727 }
1728 NumBytes = 0;
1729
1730 if (RealignmentPadding > 0) {
1731 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
1732 .addReg(AArch64::SP)
1733 .addImm(RealignmentPadding)
1734 .addImm(0);
1735
1736 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1737 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1738 .addReg(AArch64::X15, RegState::Kill)
1739 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1740 AFI->setStackRealigned(true);
1741
1742 // No need for SEH instructions here; if we're realigning the stack,
1743 // we've set a frame pointer and already finished the SEH prologue.
1744 assert(!NeedsWinCFI);
1745 }
1746 }
1747
1748 StackOffset AllocateBefore = SVEStackSize, AllocateAfter = {};
1749 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
1750
1751 // Process the SVE callee-saves to determine what space needs to be
1752 // allocated.
1753 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
1754 // Find callee save instructions in frame.
1755 CalleeSavesBegin = MBBI;
1756 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
1757 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
1758 ++MBBI;
1759 CalleeSavesEnd = MBBI;
1760
1761 AllocateBefore = StackOffset::getScalable(CalleeSavedSize);
1762 AllocateAfter = SVEStackSize - AllocateBefore;
1763 }
1764
1765 // Allocate space for the callee saves (if any).
1766 emitFrameOffset(
1767 MBB, CalleeSavesBegin, DL, AArch64::SP, AArch64::SP, -AllocateBefore, TII,
1768 MachineInstr::FrameSetup, false, false, nullptr,
1769 EmitCFI && !HasFP && AllocateBefore,
1770 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1771
1772 if (EmitCFI)
1773 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
1774
1775 // Finally allocate remaining SVE stack space.
1776 emitFrameOffset(MBB, CalleeSavesEnd, DL, AArch64::SP, AArch64::SP,
1777 -AllocateAfter, TII, MachineInstr::FrameSetup, false, false,
1778 nullptr, EmitCFI && !HasFP && AllocateAfter,
1779 AllocateBefore + StackOffset::getFixed(
1780 (int64_t)MFI.getStackSize() - NumBytes));
1781
1782 // Allocate space for the rest of the frame.
1783 if (NumBytes) {
1784 unsigned scratchSPReg = AArch64::SP;
1785
1786 if (NeedsRealignment) {
1787 scratchSPReg = findScratchNonCalleeSaveRegister(&MBB);
1788 assert(scratchSPReg != AArch64::NoRegister);
1789 }
1790
1791 // If we're a leaf function, try using the red zone.
1792 if (!canUseRedZone(MF)) {
1793 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1794 // the correct value here, as NumBytes also includes padding bytes,
1795 // which shouldn't be counted here.
1796 emitFrameOffset(
1797 MBB, MBBI, DL, scratchSPReg, AArch64::SP,
1798 StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup,
1799 false, NeedsWinCFI, &HasWinCFI, EmitCFI && !HasFP,
1800 SVEStackSize +
1801 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes));
1802 }
1803 if (NeedsRealignment) {
1804 assert(MFI.getMaxAlign() > Align(1));
1805 assert(scratchSPReg != AArch64::SP);
1806
1807 // SUB X9, SP, NumBytes
1808 // -- X9 is temporary register, so shouldn't contain any live data here,
1809 // -- free to use. This is already produced by emitFrameOffset above.
1810 // AND SP, X9, 0b11111...0000
1811 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
1812
1813 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
1814 .addReg(scratchSPReg, RegState::Kill)
1815 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
1816 AFI->setStackRealigned(true);
1817
1818 // No need for SEH instructions here; if we're realigning the stack,
1819 // we've set a frame pointer and already finished the SEH prologue.
1820 assert(!NeedsWinCFI);
1821 }
1822 }
1823
1824 // If we need a base pointer, set it up here. It's whatever the value of the
1825 // stack pointer is at this point. Any variable size objects will be allocated
1826 // after this, so we can still use the base pointer to reference locals.
1827 //
1828 // FIXME: Clarify FrameSetup flags here.
1829 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1830 // needed.
1831 // For funclets the BP belongs to the containing function.
1832 if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
1833 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
1834 false);
1835 if (NeedsWinCFI) {
1836 HasWinCFI = true;
1837 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1838 .setMIFlag(MachineInstr::FrameSetup);
1839 }
1840 }
1841
1842 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1843 // SEH opcode indicating the prologue end.
1844 if (NeedsWinCFI && HasWinCFI) {
1845 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1846 .setMIFlag(MachineInstr::FrameSetup);
1847 }
1848
1849 // SEH funclets are passed the frame pointer in X1. If the parent
1850 // function uses the base register, then the base register is used
1851 // directly, and is not retrieved from X1.
1852 if (IsFunclet && F.hasPersonalityFn()) {
1853 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
1854 if (isAsynchronousEHPersonality(Per)) {
1855 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
1856 .addReg(AArch64::X1)
1857 .setMIFlag(MachineInstr::FrameSetup);
1858 MBB.addLiveIn(AArch64::X1);
1859 }
1860 }
1861 }
1862
InsertReturnAddressAuth(MachineFunction & MF,MachineBasicBlock & MBB,bool NeedsWinCFI,bool * HasWinCFI)1863 static void InsertReturnAddressAuth(MachineFunction &MF, MachineBasicBlock &MBB,
1864 bool NeedsWinCFI, bool *HasWinCFI) {
1865 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
1866 if (!MFI.shouldSignReturnAddress(MF))
1867 return;
1868 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1869 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1870
1871 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1872 DebugLoc DL;
1873 if (MBBI != MBB.end())
1874 DL = MBBI->getDebugLoc();
1875
1876 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1877 // this instruction can safely used for any v8a architecture.
1878 // From v8.3a onwards there are optimised authenticate LR and return
1879 // instructions, namely RETA{A,B}, that can be used instead. In this case the
1880 // DW_CFA_AARCH64_negate_ra_state can't be emitted.
1881 if (Subtarget.hasPAuth() &&
1882 !MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack) &&
1883 MBBI != MBB.end() && MBBI->getOpcode() == AArch64::RET_ReallyLR &&
1884 !NeedsWinCFI) {
1885 BuildMI(MBB, MBBI, DL,
1886 TII->get(MFI.shouldSignWithBKey() ? AArch64::RETAB : AArch64::RETAA))
1887 .copyImplicitOps(*MBBI);
1888 MBB.erase(MBBI);
1889 } else {
1890 BuildMI(
1891 MBB, MBBI, DL,
1892 TII->get(MFI.shouldSignWithBKey() ? AArch64::AUTIBSP : AArch64::AUTIASP))
1893 .setMIFlag(MachineInstr::FrameDestroy);
1894
1895 unsigned CFIIndex =
1896 MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1897 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1898 .addCFIIndex(CFIIndex)
1899 .setMIFlags(MachineInstr::FrameDestroy);
1900 if (NeedsWinCFI) {
1901 *HasWinCFI = true;
1902 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
1903 .setMIFlag(MachineInstr::FrameDestroy);
1904 }
1905 }
1906 }
1907
isFuncletReturnInstr(const MachineInstr & MI)1908 static bool isFuncletReturnInstr(const MachineInstr &MI) {
1909 switch (MI.getOpcode()) {
1910 default:
1911 return false;
1912 case AArch64::CATCHRET:
1913 case AArch64::CLEANUPRET:
1914 return true;
1915 }
1916 }
1917
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1918 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
1919 MachineBasicBlock &MBB) const {
1920 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
1921 MachineFrameInfo &MFI = MF.getFrameInfo();
1922 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1923 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1924 DebugLoc DL;
1925 bool NeedsWinCFI = needsWinCFI(MF);
1926 bool EmitCFI =
1927 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1928 bool HasWinCFI = false;
1929 bool IsFunclet = false;
1930 auto WinCFI = make_scope_exit([&]() { assert(HasWinCFI == MF.hasWinCFI()); });
1931
1932 if (MBB.end() != MBBI) {
1933 DL = MBBI->getDebugLoc();
1934 IsFunclet = isFuncletReturnInstr(*MBBI);
1935 }
1936
1937 auto FinishingTouches = make_scope_exit([&]() {
1938 InsertReturnAddressAuth(MF, MBB, NeedsWinCFI, &HasWinCFI);
1939 if (needsShadowCallStackPrologueEpilogue(MF))
1940 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
1941 if (EmitCFI)
1942 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
1943 if (HasWinCFI)
1944 BuildMI(MBB, MBB.getFirstTerminator(), DL,
1945 TII->get(AArch64::SEH_EpilogEnd))
1946 .setMIFlag(MachineInstr::FrameDestroy);
1947 });
1948
1949 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
1950 : MFI.getStackSize();
1951 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1952
1953 // All calls are tail calls in GHC calling conv, and functions have no
1954 // prologue/epilogue.
1955 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1956 return;
1957
1958 // How much of the stack used by incoming arguments this function is expected
1959 // to restore in this particular epilogue.
1960 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
1961 bool IsWin64 =
1962 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
1963 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1964
1965 int64_t AfterCSRPopSize = ArgumentStackToRestore;
1966 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1967 // We cannot rely on the local stack size set in emitPrologue if the function
1968 // has funclets, as funclets have different local stack size requirements, and
1969 // the current value set in emitPrologue may be that of the containing
1970 // function.
1971 if (MF.hasEHFunclets())
1972 AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1973 if (homogeneousPrologEpilog(MF, &MBB)) {
1974 assert(!NeedsWinCFI);
1975 auto LastPopI = MBB.getFirstTerminator();
1976 if (LastPopI != MBB.begin()) {
1977 auto HomogeneousEpilog = std::prev(LastPopI);
1978 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
1979 LastPopI = HomogeneousEpilog;
1980 }
1981
1982 // Adjust local stack
1983 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
1984 StackOffset::getFixed(AFI->getLocalStackSize()), TII,
1985 MachineInstr::FrameDestroy, false, NeedsWinCFI);
1986
1987 // SP has been already adjusted while restoring callee save regs.
1988 // We've bailed-out the case with adjusting SP for arguments.
1989 assert(AfterCSRPopSize == 0);
1990 return;
1991 }
1992 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
1993 // Assume we can't combine the last pop with the sp restore.
1994
1995 bool CombineAfterCSRBump = false;
1996 if (!CombineSPBump && PrologueSaveSize != 0) {
1997 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
1998 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
1999 AArch64InstrInfo::isSEHInstruction(*Pop))
2000 Pop = std::prev(Pop);
2001 // Converting the last ldp to a post-index ldp is valid only if the last
2002 // ldp's offset is 0.
2003 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2004 // If the offset is 0 and the AfterCSR pop is not actually trying to
2005 // allocate more stack for arguments (in space that an untimely interrupt
2006 // may clobber), convert it to a post-index ldp.
2007 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2008 convertCalleeSaveRestoreToSPPrePostIncDec(
2009 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2010 MachineInstr::FrameDestroy, PrologueSaveSize);
2011 } else {
2012 // If not, make sure to emit an add after the last ldp.
2013 // We're doing this by transfering the size to be restored from the
2014 // adjustment *before* the CSR pops to the adjustment *after* the CSR
2015 // pops.
2016 AfterCSRPopSize += PrologueSaveSize;
2017 CombineAfterCSRBump = true;
2018 }
2019 }
2020
2021 // Move past the restores of the callee-saved registers.
2022 // If we plan on combining the sp bump of the local stack size and the callee
2023 // save stack size, we might need to adjust the CSR save and restore offsets.
2024 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2025 MachineBasicBlock::iterator Begin = MBB.begin();
2026 while (LastPopI != Begin) {
2027 --LastPopI;
2028 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2029 IsSVECalleeSave(LastPopI)) {
2030 ++LastPopI;
2031 break;
2032 } else if (CombineSPBump)
2033 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2034 NeedsWinCFI, &HasWinCFI);
2035 }
2036
2037 if (MF.hasWinCFI()) {
2038 // If the prologue didn't contain any SEH opcodes and didn't set the
2039 // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
2040 // EpilogStart - to avoid generating CFI for functions that don't need it.
2041 // (And as we didn't generate any prologue at all, it would be asymmetrical
2042 // to the epilogue.) By the end of the function, we assert that
2043 // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
2044 HasWinCFI = true;
2045 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2046 .setMIFlag(MachineInstr::FrameDestroy);
2047 }
2048
2049 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2050 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2051 case SwiftAsyncFramePointerMode::DeploymentBased:
2052 // Avoid the reload as it is GOT relative, and instead fall back to the
2053 // hardcoded value below. This allows a mismatch between the OS and
2054 // application without immediately terminating on the difference.
2055 [[fallthrough]];
2056 case SwiftAsyncFramePointerMode::Always:
2057 // We need to reset FP to its untagged state on return. Bit 60 is
2058 // currently used to show the presence of an extended frame.
2059
2060 // BIC x29, x29, #0x1000_0000_0000_0000
2061 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2062 AArch64::FP)
2063 .addUse(AArch64::FP)
2064 .addImm(0x10fe)
2065 .setMIFlag(MachineInstr::FrameDestroy);
2066 break;
2067
2068 case SwiftAsyncFramePointerMode::Never:
2069 break;
2070 }
2071 }
2072
2073 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2074
2075 // If there is a single SP update, insert it before the ret and we're done.
2076 if (CombineSPBump) {
2077 assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2078
2079 // When we are about to restore the CSRs, the CFA register is SP again.
2080 if (EmitCFI && hasFP(MF)) {
2081 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2082 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2083 unsigned CFIIndex =
2084 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2085 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2086 .addCFIIndex(CFIIndex)
2087 .setMIFlags(MachineInstr::FrameDestroy);
2088 }
2089
2090 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2091 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2092 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2093 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2094 return;
2095 }
2096
2097 NumBytes -= PrologueSaveSize;
2098 assert(NumBytes >= 0 && "Negative stack allocation size!?");
2099
2100 // Process the SVE callee-saves to determine what space needs to be
2101 // deallocated.
2102 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2103 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2104 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2105 RestoreBegin = std::prev(RestoreEnd);
2106 while (RestoreBegin != MBB.begin() &&
2107 IsSVECalleeSave(std::prev(RestoreBegin)))
2108 --RestoreBegin;
2109
2110 assert(IsSVECalleeSave(RestoreBegin) &&
2111 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2112
2113 StackOffset CalleeSavedSizeAsOffset =
2114 StackOffset::getScalable(CalleeSavedSize);
2115 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2116 DeallocateAfter = CalleeSavedSizeAsOffset;
2117 }
2118
2119 // Deallocate the SVE area.
2120 if (SVEStackSize) {
2121 // If we have stack realignment or variable sized objects on the stack,
2122 // restore the stack pointer from the frame pointer prior to SVE CSR
2123 // restoration.
2124 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2125 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2126 // Set SP to start of SVE callee-save area from which they can
2127 // be reloaded. The code below will deallocate the stack space
2128 // space by moving FP -> SP.
2129 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2130 StackOffset::getScalable(-CalleeSavedSize), TII,
2131 MachineInstr::FrameDestroy);
2132 }
2133 } else {
2134 if (AFI->getSVECalleeSavedStackSize()) {
2135 // Deallocate the non-SVE locals first before we can deallocate (and
2136 // restore callee saves) from the SVE area.
2137 emitFrameOffset(
2138 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2139 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2140 false, false, nullptr, EmitCFI && !hasFP(MF),
2141 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2142 NumBytes = 0;
2143 }
2144
2145 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2146 DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2147 false, nullptr, EmitCFI && !hasFP(MF),
2148 SVEStackSize +
2149 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2150
2151 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2152 DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2153 false, nullptr, EmitCFI && !hasFP(MF),
2154 DeallocateAfter +
2155 StackOffset::getFixed(NumBytes + PrologueSaveSize));
2156 }
2157 if (EmitCFI)
2158 emitCalleeSavedSVERestores(MBB, RestoreEnd);
2159 }
2160
2161 if (!hasFP(MF)) {
2162 bool RedZone = canUseRedZone(MF);
2163 // If this was a redzone leaf function, we don't need to restore the
2164 // stack pointer (but we may need to pop stack args for fastcc).
2165 if (RedZone && AfterCSRPopSize == 0)
2166 return;
2167
2168 // Pop the local variables off the stack. If there are no callee-saved
2169 // registers, it means we are actually positioned at the terminator and can
2170 // combine stack increment for the locals and the stack increment for
2171 // callee-popped arguments into (possibly) a single instruction and be done.
2172 bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2173 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2174 if (NoCalleeSaveRestore)
2175 StackRestoreBytes += AfterCSRPopSize;
2176
2177 emitFrameOffset(
2178 MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2179 StackOffset::getFixed(StackRestoreBytes), TII,
2180 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2181 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2182
2183 // If we were able to combine the local stack pop with the argument pop,
2184 // then we're done.
2185 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2186 return;
2187 }
2188
2189 NumBytes = 0;
2190 }
2191
2192 // Restore the original stack pointer.
2193 // FIXME: Rather than doing the math here, we should instead just use
2194 // non-post-indexed loads for the restores if we aren't actually going to
2195 // be able to save any instructions.
2196 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2197 emitFrameOffset(
2198 MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2199 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2200 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI);
2201 } else if (NumBytes)
2202 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2203 StackOffset::getFixed(NumBytes), TII,
2204 MachineInstr::FrameDestroy, false, NeedsWinCFI);
2205
2206 // When we are about to restore the CSRs, the CFA register is SP again.
2207 if (EmitCFI && hasFP(MF)) {
2208 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2209 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2210 unsigned CFIIndex = MF.addFrameInst(
2211 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2212 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2213 .addCFIIndex(CFIIndex)
2214 .setMIFlags(MachineInstr::FrameDestroy);
2215 }
2216
2217 // This must be placed after the callee-save restore code because that code
2218 // assumes the SP is at the same location as it was after the callee-save save
2219 // code in the prologue.
2220 if (AfterCSRPopSize) {
2221 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2222 "interrupt may have clobbered");
2223
2224 emitFrameOffset(
2225 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2226 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2227 false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2228 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2229 }
2230 }
2231
2232 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2233 /// debug info. It's the same as what we use for resolving the code-gen
2234 /// references for now. FIXME: This can go wrong when references are
2235 /// SP-relative and simple call frames aren't used.
2236 StackOffset
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2237 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2238 Register &FrameReg) const {
2239 return resolveFrameIndexReference(
2240 MF, FI, FrameReg,
2241 /*PreferFP=*/
2242 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress),
2243 /*ForSimm=*/false);
2244 }
2245
2246 StackOffset
getNonLocalFrameIndexReference(const MachineFunction & MF,int FI) const2247 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2248 int FI) const {
2249 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2250 }
2251
getFPOffset(const MachineFunction & MF,int64_t ObjectOffset)2252 static StackOffset getFPOffset(const MachineFunction &MF,
2253 int64_t ObjectOffset) {
2254 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2255 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2256 bool IsWin64 =
2257 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv());
2258 unsigned FixedObject =
2259 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2260 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2261 int64_t FPAdjust =
2262 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2263 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2264 }
2265
getStackOffset(const MachineFunction & MF,int64_t ObjectOffset)2266 static StackOffset getStackOffset(const MachineFunction &MF,
2267 int64_t ObjectOffset) {
2268 const auto &MFI = MF.getFrameInfo();
2269 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2270 }
2271
2272 // TODO: This function currently does not work for scalable vectors.
getSEHFrameIndexOffset(const MachineFunction & MF,int FI) const2273 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2274 int FI) const {
2275 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2276 MF.getSubtarget().getRegisterInfo());
2277 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2278 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2279 ? getFPOffset(MF, ObjectOffset).getFixed()
2280 : getStackOffset(MF, ObjectOffset).getFixed();
2281 }
2282
resolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,bool PreferFP,bool ForSimm) const2283 StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2284 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2285 bool ForSimm) const {
2286 const auto &MFI = MF.getFrameInfo();
2287 int64_t ObjectOffset = MFI.getObjectOffset(FI);
2288 bool isFixed = MFI.isFixedObjectIndex(FI);
2289 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2290 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2291 PreferFP, ForSimm);
2292 }
2293
resolveFrameOffsetReference(const MachineFunction & MF,int64_t ObjectOffset,bool isFixed,bool isSVE,Register & FrameReg,bool PreferFP,bool ForSimm) const2294 StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2295 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2296 Register &FrameReg, bool PreferFP, bool ForSimm) const {
2297 const auto &MFI = MF.getFrameInfo();
2298 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2299 MF.getSubtarget().getRegisterInfo());
2300 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2301 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2302
2303 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2304 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2305 bool isCSR =
2306 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2307
2308 const StackOffset &SVEStackSize = getSVEStackSize(MF);
2309
2310 // Use frame pointer to reference fixed objects. Use it for locals if
2311 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2312 // reliable as a base). Make sure useFPForScavengingIndex() does the
2313 // right thing for the emergency spill slot.
2314 bool UseFP = false;
2315 if (AFI->hasStackFrame() && !isSVE) {
2316 // We shouldn't prefer using the FP to access fixed-sized stack objects when
2317 // there are scalable (SVE) objects in between the FP and the fixed-sized
2318 // objects.
2319 PreferFP &= !SVEStackSize;
2320
2321 // Note: Keeping the following as multiple 'if' statements rather than
2322 // merging to a single expression for readability.
2323 //
2324 // Argument access should always use the FP.
2325 if (isFixed) {
2326 UseFP = hasFP(MF);
2327 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2328 // References to the CSR area must use FP if we're re-aligning the stack
2329 // since the dynamically-sized alignment padding is between the SP/BP and
2330 // the CSR area.
2331 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2332 UseFP = true;
2333 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2334 // If the FPOffset is negative and we're producing a signed immediate, we
2335 // have to keep in mind that the available offset range for negative
2336 // offsets is smaller than for positive ones. If an offset is available
2337 // via the FP and the SP, use whichever is closest.
2338 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2339 PreferFP |= Offset > -FPOffset && !SVEStackSize;
2340
2341 if (MFI.hasVarSizedObjects()) {
2342 // If we have variable sized objects, we can use either FP or BP, as the
2343 // SP offset is unknown. We can use the base pointer if we have one and
2344 // FP is not preferred. If not, we're stuck with using FP.
2345 bool CanUseBP = RegInfo->hasBasePointer(MF);
2346 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2347 UseFP = PreferFP;
2348 else if (!CanUseBP) // Can't use BP. Forced to use FP.
2349 UseFP = true;
2350 // else we can use BP and FP, but the offset from FP won't fit.
2351 // That will make us scavenge registers which we can probably avoid by
2352 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2353 } else if (FPOffset >= 0) {
2354 // Use SP or FP, whichever gives us the best chance of the offset
2355 // being in range for direct access. If the FPOffset is positive,
2356 // that'll always be best, as the SP will be even further away.
2357 UseFP = true;
2358 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2359 // Funclets access the locals contained in the parent's stack frame
2360 // via the frame pointer, so we have to use the FP in the parent
2361 // function.
2362 (void) Subtarget;
2363 assert(
2364 Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()) &&
2365 "Funclets should only be present on Win64");
2366 UseFP = true;
2367 } else {
2368 // We have the choice between FP and (SP or BP).
2369 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2370 UseFP = true;
2371 }
2372 }
2373 }
2374
2375 assert(
2376 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2377 "In the presence of dynamic stack pointer realignment, "
2378 "non-argument/CSR objects cannot be accessed through the frame pointer");
2379
2380 if (isSVE) {
2381 StackOffset FPOffset =
2382 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2383 StackOffset SPOffset =
2384 SVEStackSize +
2385 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2386 ObjectOffset);
2387 // Always use the FP for SVE spills if available and beneficial.
2388 if (hasFP(MF) && (SPOffset.getFixed() ||
2389 FPOffset.getScalable() < SPOffset.getScalable() ||
2390 RegInfo->hasStackRealignment(MF))) {
2391 FrameReg = RegInfo->getFrameRegister(MF);
2392 return FPOffset;
2393 }
2394
2395 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2396 : (unsigned)AArch64::SP;
2397 return SPOffset;
2398 }
2399
2400 StackOffset ScalableOffset = {};
2401 if (UseFP && !(isFixed || isCSR))
2402 ScalableOffset = -SVEStackSize;
2403 if (!UseFP && (isFixed || isCSR))
2404 ScalableOffset = SVEStackSize;
2405
2406 if (UseFP) {
2407 FrameReg = RegInfo->getFrameRegister(MF);
2408 return StackOffset::getFixed(FPOffset) + ScalableOffset;
2409 }
2410
2411 // Use the base pointer if we have one.
2412 if (RegInfo->hasBasePointer(MF))
2413 FrameReg = RegInfo->getBaseRegister();
2414 else {
2415 assert(!MFI.hasVarSizedObjects() &&
2416 "Can't use SP when we have var sized objects.");
2417 FrameReg = AArch64::SP;
2418 // If we're using the red zone for this function, the SP won't actually
2419 // be adjusted, so the offsets will be negative. They're also all
2420 // within range of the signed 9-bit immediate instructions.
2421 if (canUseRedZone(MF))
2422 Offset -= AFI->getLocalStackSize();
2423 }
2424
2425 return StackOffset::getFixed(Offset) + ScalableOffset;
2426 }
2427
getPrologueDeath(MachineFunction & MF,unsigned Reg)2428 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2429 // Do not set a kill flag on values that are also marked as live-in. This
2430 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2431 // callee saved registers.
2432 // Omitting the kill flags is conservatively correct even if the live-in
2433 // is not used after all.
2434 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2435 return getKillRegState(!IsLiveIn);
2436 }
2437
produceCompactUnwindFrame(MachineFunction & MF)2438 static bool produceCompactUnwindFrame(MachineFunction &MF) {
2439 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2440 AttributeList Attrs = MF.getFunction().getAttributes();
2441 return Subtarget.isTargetMachO() &&
2442 !(Subtarget.getTargetLowering()->supportSwiftError() &&
2443 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2444 MF.getFunction().getCallingConv() != CallingConv::SwiftTail;
2445 }
2446
invalidateWindowsRegisterPairing(unsigned Reg1,unsigned Reg2,bool NeedsWinCFI,bool IsFirst,const TargetRegisterInfo * TRI)2447 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2448 bool NeedsWinCFI, bool IsFirst,
2449 const TargetRegisterInfo *TRI) {
2450 // If we are generating register pairs for a Windows function that requires
2451 // EH support, then pair consecutive registers only. There are no unwind
2452 // opcodes for saves/restores of non-consectuve register pairs.
2453 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2454 // save_lrpair.
2455 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2456
2457 if (Reg2 == AArch64::FP)
2458 return true;
2459 if (!NeedsWinCFI)
2460 return false;
2461 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2462 return false;
2463 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2464 // opcode. If this is the first register pair, it would end up with a
2465 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2466 // if LR is paired with something else than the first register.
2467 // The save_lrpair opcode requires the first register to be an odd one.
2468 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2469 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2470 return false;
2471 return true;
2472 }
2473
2474 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2475 /// WindowsCFI requires that only consecutive registers can be paired.
2476 /// LR and FP need to be allocated together when the frame needs to save
2477 /// the frame-record. This means any other register pairing with LR is invalid.
invalidateRegisterPairing(unsigned Reg1,unsigned Reg2,bool UsesWinAAPCS,bool NeedsWinCFI,bool NeedsFrameRecord,bool IsFirst,const TargetRegisterInfo * TRI)2478 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2479 bool UsesWinAAPCS, bool NeedsWinCFI,
2480 bool NeedsFrameRecord, bool IsFirst,
2481 const TargetRegisterInfo *TRI) {
2482 if (UsesWinAAPCS)
2483 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2484 TRI);
2485
2486 // If we need to store the frame record, don't pair any register
2487 // with LR other than FP.
2488 if (NeedsFrameRecord)
2489 return Reg2 == AArch64::LR;
2490
2491 return false;
2492 }
2493
2494 namespace {
2495
2496 struct RegPairInfo {
2497 unsigned Reg1 = AArch64::NoRegister;
2498 unsigned Reg2 = AArch64::NoRegister;
2499 int FrameIdx;
2500 int Offset;
2501 enum RegType { GPR, FPR64, FPR128, PPR, ZPR } Type;
2502
2503 RegPairInfo() = default;
2504
isPaired__anon8f060c770511::RegPairInfo2505 bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2506
getScale__anon8f060c770511::RegPairInfo2507 unsigned getScale() const {
2508 switch (Type) {
2509 case PPR:
2510 return 2;
2511 case GPR:
2512 case FPR64:
2513 return 8;
2514 case ZPR:
2515 case FPR128:
2516 return 16;
2517 }
2518 llvm_unreachable("Unsupported type");
2519 }
2520
isScalable__anon8f060c770511::RegPairInfo2521 bool isScalable() const { return Type == PPR || Type == ZPR; }
2522 };
2523
2524 } // end anonymous namespace
2525
computeCalleeSaveRegisterPairs(MachineFunction & MF,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI,SmallVectorImpl<RegPairInfo> & RegPairs,bool NeedsFrameRecord)2526 static void computeCalleeSaveRegisterPairs(
2527 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2528 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2529 bool NeedsFrameRecord) {
2530
2531 if (CSI.empty())
2532 return;
2533
2534 bool IsWindows = isTargetWindows(MF);
2535 bool NeedsWinCFI = needsWinCFI(MF);
2536 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2537 MachineFrameInfo &MFI = MF.getFrameInfo();
2538 CallingConv::ID CC = MF.getFunction().getCallingConv();
2539 unsigned Count = CSI.size();
2540 (void)CC;
2541 // MachO's compact unwind format relies on all registers being stored in
2542 // pairs.
2543 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2544 CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2545 (Count & 1) == 0) &&
2546 "Odd number of callee-saved regs to spill!");
2547 int ByteOffset = AFI->getCalleeSavedStackSize();
2548 int StackFillDir = -1;
2549 int RegInc = 1;
2550 unsigned FirstReg = 0;
2551 if (NeedsWinCFI) {
2552 // For WinCFI, fill the stack from the bottom up.
2553 ByteOffset = 0;
2554 StackFillDir = 1;
2555 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2556 // backwards, to pair up registers starting from lower numbered registers.
2557 RegInc = -1;
2558 FirstReg = Count - 1;
2559 }
2560 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2561 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2562
2563 // When iterating backwards, the loop condition relies on unsigned wraparound.
2564 for (unsigned i = FirstReg; i < Count; i += RegInc) {
2565 RegPairInfo RPI;
2566 RPI.Reg1 = CSI[i].getReg();
2567
2568 if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2569 RPI.Type = RegPairInfo::GPR;
2570 else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2571 RPI.Type = RegPairInfo::FPR64;
2572 else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2573 RPI.Type = RegPairInfo::FPR128;
2574 else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2575 RPI.Type = RegPairInfo::ZPR;
2576 else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2577 RPI.Type = RegPairInfo::PPR;
2578 else
2579 llvm_unreachable("Unsupported register class.");
2580
2581 // Add the next reg to the pair if it is in the same register class.
2582 if (unsigned(i + RegInc) < Count) {
2583 Register NextReg = CSI[i + RegInc].getReg();
2584 bool IsFirst = i == FirstReg;
2585 switch (RPI.Type) {
2586 case RegPairInfo::GPR:
2587 if (AArch64::GPR64RegClass.contains(NextReg) &&
2588 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
2589 NeedsWinCFI, NeedsFrameRecord, IsFirst,
2590 TRI))
2591 RPI.Reg2 = NextReg;
2592 break;
2593 case RegPairInfo::FPR64:
2594 if (AArch64::FPR64RegClass.contains(NextReg) &&
2595 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
2596 IsFirst, TRI))
2597 RPI.Reg2 = NextReg;
2598 break;
2599 case RegPairInfo::FPR128:
2600 if (AArch64::FPR128RegClass.contains(NextReg))
2601 RPI.Reg2 = NextReg;
2602 break;
2603 case RegPairInfo::PPR:
2604 case RegPairInfo::ZPR:
2605 break;
2606 }
2607 }
2608
2609 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2610 // list to come in sorted by frame index so that we can issue the store
2611 // pair instructions directly. Assert if we see anything otherwise.
2612 //
2613 // The order of the registers in the list is controlled by
2614 // getCalleeSavedRegs(), so they will always be in-order, as well.
2615 assert((!RPI.isPaired() ||
2616 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
2617 "Out of order callee saved regs!");
2618
2619 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
2620 RPI.Reg1 == AArch64::LR) &&
2621 "FrameRecord must be allocated together with LR");
2622
2623 // Windows AAPCS has FP and LR reversed.
2624 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
2625 RPI.Reg2 == AArch64::LR) &&
2626 "FrameRecord must be allocated together with LR");
2627
2628 // MachO's compact unwind format relies on all registers being stored in
2629 // adjacent register pairs.
2630 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2631 CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 ||
2632 (RPI.isPaired() &&
2633 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
2634 RPI.Reg1 + 1 == RPI.Reg2))) &&
2635 "Callee-save registers not saved as adjacent register pair!");
2636
2637 RPI.FrameIdx = CSI[i].getFrameIdx();
2638 if (NeedsWinCFI &&
2639 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2640 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
2641
2642 int Scale = RPI.getScale();
2643
2644 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2645 assert(OffsetPre % Scale == 0);
2646
2647 if (RPI.isScalable())
2648 ScalableByteOffset += StackFillDir * Scale;
2649 else
2650 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
2651
2652 // Swift's async context is directly before FP, so allocate an extra
2653 // 8 bytes for it.
2654 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2655 RPI.Reg2 == AArch64::FP)
2656 ByteOffset += StackFillDir * 8;
2657
2658 assert(!(RPI.isScalable() && RPI.isPaired()) &&
2659 "Paired spill/fill instructions don't exist for SVE vectors");
2660
2661 // Round up size of non-pair to pair size if we need to pad the
2662 // callee-save area to ensure 16-byte alignment.
2663 if (NeedGapToAlignStack && !NeedsWinCFI &&
2664 !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 &&
2665 !RPI.isPaired() && ByteOffset % 16 != 0) {
2666 ByteOffset += 8 * StackFillDir;
2667 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
2668 // A stack frame with a gap looks like this, bottom up:
2669 // d9, d8. x21, gap, x20, x19.
2670 // Set extra alignment on the x21 object to create the gap above it.
2671 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
2672 NeedGapToAlignStack = false;
2673 }
2674
2675 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
2676 assert(OffsetPost % Scale == 0);
2677 // If filling top down (default), we want the offset after incrementing it.
2678 // If fillibg bootom up (WinCFI) we need the original offset.
2679 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
2680
2681 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2682 // Swift context can directly precede FP.
2683 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
2684 RPI.Reg2 == AArch64::FP)
2685 Offset += 8;
2686 RPI.Offset = Offset / Scale;
2687
2688 assert(((!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
2689 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
2690 "Offset out of bounds for LDP/STP immediate");
2691
2692 // Save the offset to frame record so that the FP register can point to the
2693 // innermost frame record (spilled FP and LR registers).
2694 if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR &&
2695 RPI.Reg2 == AArch64::FP) ||
2696 (IsWindows && RPI.Reg1 == AArch64::FP &&
2697 RPI.Reg2 == AArch64::LR)))
2698 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
2699
2700 RegPairs.push_back(RPI);
2701 if (RPI.isPaired())
2702 i += RegInc;
2703 }
2704 if (NeedsWinCFI) {
2705 // If we need an alignment gap in the stack, align the topmost stack
2706 // object. A stack frame with a gap looks like this, bottom up:
2707 // x19, d8. d9, gap.
2708 // Set extra alignment on the topmost stack object (the first element in
2709 // CSI, which goes top down), to create the gap above it.
2710 if (AFI->hasCalleeSaveStackFreeSpace())
2711 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
2712 // We iterated bottom up over the registers; flip RegPairs back to top
2713 // down order.
2714 std::reverse(RegPairs.begin(), RegPairs.end());
2715 }
2716 }
2717
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2718 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2719 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2720 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2721 MachineFunction &MF = *MBB.getParent();
2722 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2723 bool NeedsWinCFI = needsWinCFI(MF);
2724 DebugLoc DL;
2725 SmallVector<RegPairInfo, 8> RegPairs;
2726
2727 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2728
2729 const MachineRegisterInfo &MRI = MF.getRegInfo();
2730 if (homogeneousPrologEpilog(MF)) {
2731 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
2732 .setMIFlag(MachineInstr::FrameSetup);
2733
2734 for (auto &RPI : RegPairs) {
2735 MIB.addReg(RPI.Reg1);
2736 MIB.addReg(RPI.Reg2);
2737
2738 // Update register live in.
2739 if (!MRI.isReserved(RPI.Reg1))
2740 MBB.addLiveIn(RPI.Reg1);
2741 if (!MRI.isReserved(RPI.Reg2))
2742 MBB.addLiveIn(RPI.Reg2);
2743 }
2744 return true;
2745 }
2746 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
2747 unsigned Reg1 = RPI.Reg1;
2748 unsigned Reg2 = RPI.Reg2;
2749 unsigned StrOpc;
2750
2751 // Issue sequence of spills for cs regs. The first spill may be converted
2752 // to a pre-decrement store later by emitPrologue if the callee-save stack
2753 // area allocation can't be combined with the local stack area allocation.
2754 // For example:
2755 // stp x22, x21, [sp, #0] // addImm(+0)
2756 // stp x20, x19, [sp, #16] // addImm(+2)
2757 // stp fp, lr, [sp, #32] // addImm(+4)
2758 // Rationale: This sequence saves uop updates compared to a sequence of
2759 // pre-increment spills like stp xi,xj,[sp,#-16]!
2760 // Note: Similar rationale and sequence for restores in epilog.
2761 unsigned Size;
2762 Align Alignment;
2763 switch (RPI.Type) {
2764 case RegPairInfo::GPR:
2765 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2766 Size = 8;
2767 Alignment = Align(8);
2768 break;
2769 case RegPairInfo::FPR64:
2770 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2771 Size = 8;
2772 Alignment = Align(8);
2773 break;
2774 case RegPairInfo::FPR128:
2775 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2776 Size = 16;
2777 Alignment = Align(16);
2778 break;
2779 case RegPairInfo::ZPR:
2780 StrOpc = AArch64::STR_ZXI;
2781 Size = 16;
2782 Alignment = Align(16);
2783 break;
2784 case RegPairInfo::PPR:
2785 StrOpc = AArch64::STR_PXI;
2786 Size = 2;
2787 Alignment = Align(2);
2788 break;
2789 }
2790 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2791 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2792 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2793 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2794 dbgs() << ")\n");
2795
2796 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2797 "Windows unwdinding requires a consecutive (FP,LR) pair");
2798 // Windows unwind codes require consecutive registers if registers are
2799 // paired. Make the switch here, so that the code below will save (x,x+1)
2800 // and not (x+1,x).
2801 unsigned FrameIdxReg1 = RPI.FrameIdx;
2802 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2803 if (NeedsWinCFI && RPI.isPaired()) {
2804 std::swap(Reg1, Reg2);
2805 std::swap(FrameIdxReg1, FrameIdxReg2);
2806 }
2807 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2808 if (!MRI.isReserved(Reg1))
2809 MBB.addLiveIn(Reg1);
2810 if (RPI.isPaired()) {
2811 if (!MRI.isReserved(Reg2))
2812 MBB.addLiveIn(Reg2);
2813 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2814 MIB.addMemOperand(MF.getMachineMemOperand(
2815 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2816 MachineMemOperand::MOStore, Size, Alignment));
2817 }
2818 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2819 .addReg(AArch64::SP)
2820 .addImm(RPI.Offset) // [sp, #offset*scale],
2821 // where factor*scale is implicit
2822 .setMIFlag(MachineInstr::FrameSetup);
2823 MIB.addMemOperand(MF.getMachineMemOperand(
2824 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2825 MachineMemOperand::MOStore, Size, Alignment));
2826 if (NeedsWinCFI)
2827 InsertSEH(MIB, TII, MachineInstr::FrameSetup);
2828
2829 // Update the StackIDs of the SVE stack slots.
2830 MachineFrameInfo &MFI = MF.getFrameInfo();
2831 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR)
2832 MFI.setStackID(RPI.FrameIdx, TargetStackID::ScalableVector);
2833
2834 }
2835 return true;
2836 }
2837
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2838 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2839 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2840 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2841 MachineFunction &MF = *MBB.getParent();
2842 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2843 DebugLoc DL;
2844 SmallVector<RegPairInfo, 8> RegPairs;
2845 bool NeedsWinCFI = needsWinCFI(MF);
2846
2847 if (MBBI != MBB.end())
2848 DL = MBBI->getDebugLoc();
2849
2850 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
2851
2852 auto EmitMI = [&](const RegPairInfo &RPI) -> MachineBasicBlock::iterator {
2853 unsigned Reg1 = RPI.Reg1;
2854 unsigned Reg2 = RPI.Reg2;
2855
2856 // Issue sequence of restores for cs regs. The last restore may be converted
2857 // to a post-increment load later by emitEpilogue if the callee-save stack
2858 // area allocation can't be combined with the local stack area allocation.
2859 // For example:
2860 // ldp fp, lr, [sp, #32] // addImm(+4)
2861 // ldp x20, x19, [sp, #16] // addImm(+2)
2862 // ldp x22, x21, [sp, #0] // addImm(+0)
2863 // Note: see comment in spillCalleeSavedRegisters()
2864 unsigned LdrOpc;
2865 unsigned Size;
2866 Align Alignment;
2867 switch (RPI.Type) {
2868 case RegPairInfo::GPR:
2869 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2870 Size = 8;
2871 Alignment = Align(8);
2872 break;
2873 case RegPairInfo::FPR64:
2874 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2875 Size = 8;
2876 Alignment = Align(8);
2877 break;
2878 case RegPairInfo::FPR128:
2879 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2880 Size = 16;
2881 Alignment = Align(16);
2882 break;
2883 case RegPairInfo::ZPR:
2884 LdrOpc = AArch64::LDR_ZXI;
2885 Size = 16;
2886 Alignment = Align(16);
2887 break;
2888 case RegPairInfo::PPR:
2889 LdrOpc = AArch64::LDR_PXI;
2890 Size = 2;
2891 Alignment = Align(2);
2892 break;
2893 }
2894 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2895 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
2896 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2897 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
2898 dbgs() << ")\n");
2899
2900 // Windows unwind codes require consecutive registers if registers are
2901 // paired. Make the switch here, so that the code below will save (x,x+1)
2902 // and not (x+1,x).
2903 unsigned FrameIdxReg1 = RPI.FrameIdx;
2904 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2905 if (NeedsWinCFI && RPI.isPaired()) {
2906 std::swap(Reg1, Reg2);
2907 std::swap(FrameIdxReg1, FrameIdxReg2);
2908 }
2909 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2910 if (RPI.isPaired()) {
2911 MIB.addReg(Reg2, getDefRegState(true));
2912 MIB.addMemOperand(MF.getMachineMemOperand(
2913 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2914 MachineMemOperand::MOLoad, Size, Alignment));
2915 }
2916 MIB.addReg(Reg1, getDefRegState(true))
2917 .addReg(AArch64::SP)
2918 .addImm(RPI.Offset) // [sp, #offset*scale]
2919 // where factor*scale is implicit
2920 .setMIFlag(MachineInstr::FrameDestroy);
2921 MIB.addMemOperand(MF.getMachineMemOperand(
2922 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2923 MachineMemOperand::MOLoad, Size, Alignment));
2924 if (NeedsWinCFI)
2925 InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
2926
2927 return MIB->getIterator();
2928 };
2929
2930 // SVE objects are always restored in reverse order.
2931 for (const RegPairInfo &RPI : reverse(RegPairs))
2932 if (RPI.isScalable())
2933 EmitMI(RPI);
2934
2935 if (homogeneousPrologEpilog(MF, &MBB)) {
2936 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2937 .setMIFlag(MachineInstr::FrameDestroy);
2938 for (auto &RPI : RegPairs) {
2939 MIB.addReg(RPI.Reg1, RegState::Define);
2940 MIB.addReg(RPI.Reg2, RegState::Define);
2941 }
2942 return true;
2943 }
2944
2945 if (ReverseCSRRestoreSeq) {
2946 MachineBasicBlock::iterator First = MBB.end();
2947 for (const RegPairInfo &RPI : reverse(RegPairs)) {
2948 if (RPI.isScalable())
2949 continue;
2950 MachineBasicBlock::iterator It = EmitMI(RPI);
2951 if (First == MBB.end())
2952 First = It;
2953 }
2954 if (First != MBB.end())
2955 MBB.splice(MBBI, &MBB, First);
2956 } else {
2957 for (const RegPairInfo &RPI : RegPairs) {
2958 if (RPI.isScalable())
2959 continue;
2960 (void)EmitMI(RPI);
2961 }
2962 }
2963
2964 return true;
2965 }
2966
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2967 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
2968 BitVector &SavedRegs,
2969 RegScavenger *RS) const {
2970 // All calls are tail calls in GHC calling conv, and functions have no
2971 // prologue/epilogue.
2972 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2973 return;
2974
2975 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2976 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
2977 MF.getSubtarget().getRegisterInfo());
2978 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2979 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2980 unsigned UnspilledCSGPR = AArch64::NoRegister;
2981 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2982
2983 MachineFrameInfo &MFI = MF.getFrameInfo();
2984 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2985
2986 unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
2987 ? RegInfo->getBaseRegister()
2988 : (unsigned)AArch64::NoRegister;
2989
2990 unsigned ExtraCSSpill = 0;
2991 // Figure out which callee-saved registers to save/restore.
2992 for (unsigned i = 0; CSRegs[i]; ++i) {
2993 const unsigned Reg = CSRegs[i];
2994
2995 // Add the base pointer register to SavedRegs if it is callee-save.
2996 if (Reg == BasePointerReg)
2997 SavedRegs.set(Reg);
2998
2999 bool RegUsed = SavedRegs.test(Reg);
3000 unsigned PairedReg = AArch64::NoRegister;
3001 if (AArch64::GPR64RegClass.contains(Reg) ||
3002 AArch64::FPR64RegClass.contains(Reg) ||
3003 AArch64::FPR128RegClass.contains(Reg))
3004 PairedReg = CSRegs[i ^ 1];
3005
3006 if (!RegUsed) {
3007 if (AArch64::GPR64RegClass.contains(Reg) &&
3008 !RegInfo->isReservedReg(MF, Reg)) {
3009 UnspilledCSGPR = Reg;
3010 UnspilledCSGPRPaired = PairedReg;
3011 }
3012 continue;
3013 }
3014
3015 // MachO's compact unwind format relies on all registers being stored in
3016 // pairs.
3017 // FIXME: the usual format is actually better if unwinding isn't needed.
3018 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3019 !SavedRegs.test(PairedReg)) {
3020 SavedRegs.set(PairedReg);
3021 if (AArch64::GPR64RegClass.contains(PairedReg) &&
3022 !RegInfo->isReservedReg(MF, PairedReg))
3023 ExtraCSSpill = PairedReg;
3024 }
3025 }
3026
3027 if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3028 !Subtarget.isTargetWindows()) {
3029 // For Windows calling convention on a non-windows OS, where X18 is treated
3030 // as reserved, back up X18 when entering non-windows code (marked with the
3031 // Windows calling convention) and restore when returning regardless of
3032 // whether the individual function uses it - it might call other functions
3033 // that clobber it.
3034 SavedRegs.set(AArch64::X18);
3035 }
3036
3037 // Calculates the callee saved stack size.
3038 unsigned CSStackSize = 0;
3039 unsigned SVECSStackSize = 0;
3040 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3041 const MachineRegisterInfo &MRI = MF.getRegInfo();
3042 for (unsigned Reg : SavedRegs.set_bits()) {
3043 auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3044 if (AArch64::PPRRegClass.contains(Reg) ||
3045 AArch64::ZPRRegClass.contains(Reg))
3046 SVECSStackSize += RegSize;
3047 else
3048 CSStackSize += RegSize;
3049 }
3050
3051 // Save number of saved regs, so we can easily update CSStackSize later.
3052 unsigned NumSavedRegs = SavedRegs.count();
3053
3054 // The frame record needs to be created by saving the appropriate registers
3055 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3056 if (hasFP(MF) ||
3057 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3058 SavedRegs.set(AArch64::FP);
3059 SavedRegs.set(AArch64::LR);
3060 }
3061
3062 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3063 for (unsigned Reg
3064 : SavedRegs.set_bits()) dbgs()
3065 << ' ' << printReg(Reg, RegInfo);
3066 dbgs() << "\n";);
3067
3068 // If any callee-saved registers are used, the frame cannot be eliminated.
3069 int64_t SVEStackSize =
3070 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3071 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3072
3073 // The CSR spill slots have not been allocated yet, so estimateStackSize
3074 // won't include them.
3075 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3076
3077 // Conservatively always assume BigStack when there are SVE spills.
3078 bool BigStack = SVEStackSize ||
3079 (EstimatedStackSize + CSStackSize) > EstimatedStackSizeLimit;
3080 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3081 AFI->setHasStackFrame(true);
3082
3083 // Estimate if we might need to scavenge a register at some point in order
3084 // to materialize a stack offset. If so, either spill one additional
3085 // callee-saved register or reserve a special spill slot to facilitate
3086 // register scavenging. If we already spilled an extra callee-saved register
3087 // above to keep the number of spills even, we don't need to do anything else
3088 // here.
3089 if (BigStack) {
3090 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3091 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3092 << " to get a scratch register.\n");
3093 SavedRegs.set(UnspilledCSGPR);
3094 // MachO's compact unwind format relies on all registers being stored in
3095 // pairs, so if we need to spill one extra for BigStack, then we need to
3096 // store the pair.
3097 if (producePairRegisters(MF))
3098 SavedRegs.set(UnspilledCSGPRPaired);
3099 ExtraCSSpill = UnspilledCSGPR;
3100 }
3101
3102 // If we didn't find an extra callee-saved register to spill, create
3103 // an emergency spill slot.
3104 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3105 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3106 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3107 unsigned Size = TRI->getSpillSize(RC);
3108 Align Alignment = TRI->getSpillAlign(RC);
3109 int FI = MFI.CreateStackObject(Size, Alignment, false);
3110 RS->addScavengingFrameIndex(FI);
3111 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3112 << " as the emergency spill slot.\n");
3113 }
3114 }
3115
3116 // Adding the size of additional 64bit GPR saves.
3117 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3118
3119 // A Swift asynchronous context extends the frame record with a pointer
3120 // directly before FP.
3121 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3122 CSStackSize += 8;
3123
3124 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3125 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3126 << EstimatedStackSize + AlignedCSStackSize
3127 << " bytes.\n");
3128
3129 assert((!MFI.isCalleeSavedInfoValid() ||
3130 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3131 "Should not invalidate callee saved info");
3132
3133 // Round up to register pair alignment to avoid additional SP adjustment
3134 // instructions.
3135 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3136 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3137 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3138 }
3139
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * RegInfo,std::vector<CalleeSavedInfo> & CSI,unsigned & MinCSFrameIndex,unsigned & MaxCSFrameIndex) const3140 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3141 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3142 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3143 unsigned &MaxCSFrameIndex) const {
3144 bool NeedsWinCFI = needsWinCFI(MF);
3145 // To match the canonical windows frame layout, reverse the list of
3146 // callee saved registers to get them laid out by PrologEpilogInserter
3147 // in the right order. (PrologEpilogInserter allocates stack objects top
3148 // down. Windows canonical prologs store higher numbered registers at
3149 // the top, thus have the CSI array start from the highest registers.)
3150 if (NeedsWinCFI)
3151 std::reverse(CSI.begin(), CSI.end());
3152
3153 if (CSI.empty())
3154 return true; // Early exit if no callee saved registers are modified!
3155
3156 // Now that we know which registers need to be saved and restored, allocate
3157 // stack slots for them.
3158 MachineFrameInfo &MFI = MF.getFrameInfo();
3159 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3160
3161 bool UsesWinAAPCS = isTargetWindows(MF);
3162 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3163 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3164 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3165 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3166 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3167 }
3168
3169 for (auto &CS : CSI) {
3170 Register Reg = CS.getReg();
3171 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3172
3173 unsigned Size = RegInfo->getSpillSize(*RC);
3174 Align Alignment(RegInfo->getSpillAlign(*RC));
3175 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3176 CS.setFrameIdx(FrameIdx);
3177
3178 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3179 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3180
3181 // Grab 8 bytes below FP for the extended asynchronous frame info.
3182 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3183 Reg == AArch64::FP) {
3184 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3185 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3186 if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx;
3187 if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx;
3188 }
3189 }
3190 return true;
3191 }
3192
enableStackSlotScavenging(const MachineFunction & MF) const3193 bool AArch64FrameLowering::enableStackSlotScavenging(
3194 const MachineFunction &MF) const {
3195 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3196 return AFI->hasCalleeSaveStackFreeSpace();
3197 }
3198
3199 /// returns true if there are any SVE callee saves.
getSVECalleeSaveSlotRange(const MachineFrameInfo & MFI,int & Min,int & Max)3200 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3201 int &Min, int &Max) {
3202 Min = std::numeric_limits<int>::max();
3203 Max = std::numeric_limits<int>::min();
3204
3205 if (!MFI.isCalleeSavedInfoValid())
3206 return false;
3207
3208 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3209 for (auto &CS : CSI) {
3210 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
3211 AArch64::PPRRegClass.contains(CS.getReg())) {
3212 assert((Max == std::numeric_limits<int>::min() ||
3213 Max + 1 == CS.getFrameIdx()) &&
3214 "SVE CalleeSaves are not consecutive");
3215
3216 Min = std::min(Min, CS.getFrameIdx());
3217 Max = std::max(Max, CS.getFrameIdx());
3218 }
3219 }
3220 return Min != std::numeric_limits<int>::max();
3221 }
3222
3223 // Process all the SVE stack objects and determine offsets for each
3224 // object. If AssignOffsets is true, the offsets get assigned.
3225 // Fills in the first and last callee-saved frame indices into
3226 // Min/MaxCSFrameIndex, respectively.
3227 // Returns the size of the stack.
determineSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex,bool AssignOffsets)3228 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
3229 int &MinCSFrameIndex,
3230 int &MaxCSFrameIndex,
3231 bool AssignOffsets) {
3232 #ifndef NDEBUG
3233 // First process all fixed stack objects.
3234 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
3235 assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
3236 "SVE vectors should never be passed on the stack by value, only by "
3237 "reference.");
3238 #endif
3239
3240 auto Assign = [&MFI](int FI, int64_t Offset) {
3241 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
3242 MFI.setObjectOffset(FI, Offset);
3243 };
3244
3245 int64_t Offset = 0;
3246
3247 // Then process all callee saved slots.
3248 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
3249 // Assign offsets to the callee save slots.
3250 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
3251 Offset += MFI.getObjectSize(I);
3252 Offset = alignTo(Offset, MFI.getObjectAlign(I));
3253 if (AssignOffsets)
3254 Assign(I, -Offset);
3255 }
3256 }
3257
3258 // Ensure that the Callee-save area is aligned to 16bytes.
3259 Offset = alignTo(Offset, Align(16U));
3260
3261 // Create a buffer of SVE objects to allocate and sort it.
3262 SmallVector<int, 8> ObjectsToAllocate;
3263 // If we have a stack protector, and we've previously decided that we have SVE
3264 // objects on the stack and thus need it to go in the SVE stack area, then it
3265 // needs to go first.
3266 int StackProtectorFI = -1;
3267 if (MFI.hasStackProtectorIndex()) {
3268 StackProtectorFI = MFI.getStackProtectorIndex();
3269 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
3270 ObjectsToAllocate.push_back(StackProtectorFI);
3271 }
3272 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
3273 unsigned StackID = MFI.getStackID(I);
3274 if (StackID != TargetStackID::ScalableVector)
3275 continue;
3276 if (I == StackProtectorFI)
3277 continue;
3278 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
3279 continue;
3280 if (MFI.isDeadObjectIndex(I))
3281 continue;
3282
3283 ObjectsToAllocate.push_back(I);
3284 }
3285
3286 // Allocate all SVE locals and spills
3287 for (unsigned FI : ObjectsToAllocate) {
3288 Align Alignment = MFI.getObjectAlign(FI);
3289 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3290 // two, we'd need to align every object dynamically at runtime if the
3291 // alignment is larger than 16. This is not yet supported.
3292 if (Alignment > Align(16))
3293 report_fatal_error(
3294 "Alignment of scalable vectors > 16 bytes is not yet supported");
3295
3296 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
3297 if (AssignOffsets)
3298 Assign(FI, -Offset);
3299 }
3300
3301 return Offset;
3302 }
3303
estimateSVEStackObjectOffsets(MachineFrameInfo & MFI) const3304 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3305 MachineFrameInfo &MFI) const {
3306 int MinCSFrameIndex, MaxCSFrameIndex;
3307 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
3308 }
3309
assignSVEStackObjectOffsets(MachineFrameInfo & MFI,int & MinCSFrameIndex,int & MaxCSFrameIndex) const3310 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3311 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
3312 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
3313 true);
3314 }
3315
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3316 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3317 MachineFunction &MF, RegScavenger *RS) const {
3318 MachineFrameInfo &MFI = MF.getFrameInfo();
3319
3320 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
3321 "Upwards growing stack unsupported");
3322
3323 int MinCSFrameIndex, MaxCSFrameIndex;
3324 int64_t SVEStackSize =
3325 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
3326
3327 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3328 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
3329 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
3330
3331 // If this function isn't doing Win64-style C++ EH, we don't need to do
3332 // anything.
3333 if (!MF.hasEHFunclets())
3334 return;
3335 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3336 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3337
3338 MachineBasicBlock &MBB = MF.front();
3339 auto MBBI = MBB.begin();
3340 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3341 ++MBBI;
3342
3343 // Create an UnwindHelp object.
3344 // The UnwindHelp object is allocated at the start of the fixed object area
3345 int64_t FixedObject =
3346 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
3347 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
3348 /*SPOffset*/ -FixedObject,
3349 /*IsImmutable=*/false);
3350 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3351
3352 // We need to store -2 into the UnwindHelp object at the start of the
3353 // function.
3354 DebugLoc DL;
3355 RS->enterBasicBlockEnd(MBB);
3356 RS->backward(std::prev(MBBI));
3357 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3358 assert(DstReg && "There must be a free register after frame setup");
3359 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3360 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3361 .addReg(DstReg, getKillRegState(true))
3362 .addFrameIndex(UnwindHelpFI)
3363 .addImm(0);
3364 }
3365
3366 namespace {
3367 struct TagStoreInstr {
3368 MachineInstr *MI;
3369 int64_t Offset, Size;
TagStoreInstr__anon8f060c770811::TagStoreInstr3370 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3371 : MI(MI), Offset(Offset), Size(Size) {}
3372 };
3373
3374 class TagStoreEdit {
3375 MachineFunction *MF;
3376 MachineBasicBlock *MBB;
3377 MachineRegisterInfo *MRI;
3378 // Tag store instructions that are being replaced.
3379 SmallVector<TagStoreInstr, 8> TagStores;
3380 // Combined memref arguments of the above instructions.
3381 SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
3382
3383 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3384 // FrameRegOffset + Size) with the address tag of SP.
3385 Register FrameReg;
3386 StackOffset FrameRegOffset;
3387 int64_t Size;
3388 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
3389 std::optional<int64_t> FrameRegUpdate;
3390 // MIFlags for any FrameReg updating instructions.
3391 unsigned FrameRegUpdateFlags;
3392
3393 // Use zeroing instruction variants.
3394 bool ZeroData;
3395 DebugLoc DL;
3396
3397 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3398 void emitLoop(MachineBasicBlock::iterator InsertI);
3399
3400 public:
TagStoreEdit(MachineBasicBlock * MBB,bool ZeroData)3401 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3402 : MBB(MBB), ZeroData(ZeroData) {
3403 MF = MBB->getParent();
3404 MRI = &MF->getRegInfo();
3405 }
3406 // Add an instruction to be replaced. Instructions must be added in the
3407 // ascending order of Offset, and have to be adjacent.
addInstruction(TagStoreInstr I)3408 void addInstruction(TagStoreInstr I) {
3409 assert((TagStores.empty() ||
3410 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3411 "Non-adjacent tag store instructions.");
3412 TagStores.push_back(I);
3413 }
clear()3414 void clear() { TagStores.clear(); }
3415 // Emit equivalent code at the given location, and erase the current set of
3416 // instructions. May skip if the replacement is not profitable. May invalidate
3417 // the input iterator and replace it with a valid one.
3418 void emitCode(MachineBasicBlock::iterator &InsertI,
3419 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3420 };
3421
emitUnrolled(MachineBasicBlock::iterator InsertI)3422 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3423 const AArch64InstrInfo *TII =
3424 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3425
3426 const int64_t kMinOffset = -256 * 16;
3427 const int64_t kMaxOffset = 255 * 16;
3428
3429 Register BaseReg = FrameReg;
3430 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3431 if (BaseRegOffsetBytes < kMinOffset ||
3432 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset) {
3433 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3434 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3435 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3436 BaseReg = ScratchReg;
3437 BaseRegOffsetBytes = 0;
3438 }
3439
3440 MachineInstr *LastI = nullptr;
3441 while (Size) {
3442 int64_t InstrSize = (Size > 16) ? 32 : 16;
3443 unsigned Opcode =
3444 InstrSize == 16
3445 ? (ZeroData ? AArch64::STZGOffset : AArch64::STGOffset)
3446 : (ZeroData ? AArch64::STZ2GOffset : AArch64::ST2GOffset);
3447 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3448 .addReg(AArch64::SP)
3449 .addReg(BaseReg)
3450 .addImm(BaseRegOffsetBytes / 16)
3451 .setMemRefs(CombinedMemRefs);
3452 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3453 // final SP adjustment in the epilogue.
3454 if (BaseRegOffsetBytes == 0)
3455 LastI = I;
3456 BaseRegOffsetBytes += InstrSize;
3457 Size -= InstrSize;
3458 }
3459
3460 if (LastI)
3461 MBB->splice(InsertI, MBB, LastI);
3462 }
3463
emitLoop(MachineBasicBlock::iterator InsertI)3464 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3465 const AArch64InstrInfo *TII =
3466 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3467
3468 Register BaseReg = FrameRegUpdate
3469 ? FrameReg
3470 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3471 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3472
3473 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3474
3475 int64_t LoopSize = Size;
3476 // If the loop size is not a multiple of 32, split off one 16-byte store at
3477 // the end to fold BaseReg update into.
3478 if (FrameRegUpdate && *FrameRegUpdate)
3479 LoopSize -= LoopSize % 32;
3480 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3481 TII->get(ZeroData ? AArch64::STZGloop_wback
3482 : AArch64::STGloop_wback))
3483 .addDef(SizeReg)
3484 .addDef(BaseReg)
3485 .addImm(LoopSize)
3486 .addReg(BaseReg)
3487 .setMemRefs(CombinedMemRefs);
3488 if (FrameRegUpdate)
3489 LoopI->setFlags(FrameRegUpdateFlags);
3490
3491 int64_t ExtraBaseRegUpdate =
3492 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3493 if (LoopSize < Size) {
3494 assert(FrameRegUpdate);
3495 assert(Size - LoopSize == 16);
3496 // Tag 16 more bytes at BaseReg and update BaseReg.
3497 BuildMI(*MBB, InsertI, DL,
3498 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3499 .addDef(BaseReg)
3500 .addReg(BaseReg)
3501 .addReg(BaseReg)
3502 .addImm(1 + ExtraBaseRegUpdate / 16)
3503 .setMemRefs(CombinedMemRefs)
3504 .setMIFlags(FrameRegUpdateFlags);
3505 } else if (ExtraBaseRegUpdate) {
3506 // Update BaseReg.
3507 BuildMI(
3508 *MBB, InsertI, DL,
3509 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3510 .addDef(BaseReg)
3511 .addReg(BaseReg)
3512 .addImm(std::abs(ExtraBaseRegUpdate))
3513 .addImm(0)
3514 .setMIFlags(FrameRegUpdateFlags);
3515 }
3516 }
3517
3518 // Check if *II is a register update that can be merged into STGloop that ends
3519 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3520 // end of the loop.
canMergeRegUpdate(MachineBasicBlock::iterator II,unsigned Reg,int64_t Size,int64_t * TotalOffset)3521 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3522 int64_t Size, int64_t *TotalOffset) {
3523 MachineInstr &MI = *II;
3524 if ((MI.getOpcode() == AArch64::ADDXri ||
3525 MI.getOpcode() == AArch64::SUBXri) &&
3526 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3527 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3528 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3529 if (MI.getOpcode() == AArch64::SUBXri)
3530 Offset = -Offset;
3531 int64_t AbsPostOffset = std::abs(Offset - Size);
3532 const int64_t kMaxOffset =
3533 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3534 if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
3535 *TotalOffset = Offset;
3536 return true;
3537 }
3538 }
3539 return false;
3540 }
3541
mergeMemRefs(const SmallVectorImpl<TagStoreInstr> & TSE,SmallVectorImpl<MachineMemOperand * > & MemRefs)3542 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3543 SmallVectorImpl<MachineMemOperand *> &MemRefs) {
3544 MemRefs.clear();
3545 for (auto &TS : TSE) {
3546 MachineInstr *MI = TS.MI;
3547 // An instruction without memory operands may access anything. Be
3548 // conservative and return an empty list.
3549 if (MI->memoperands_empty()) {
3550 MemRefs.clear();
3551 return;
3552 }
3553 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3554 }
3555 }
3556
emitCode(MachineBasicBlock::iterator & InsertI,const AArch64FrameLowering * TFI,bool TryMergeSPUpdate)3557 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3558 const AArch64FrameLowering *TFI,
3559 bool TryMergeSPUpdate) {
3560 if (TagStores.empty())
3561 return;
3562 TagStoreInstr &FirstTagStore = TagStores[0];
3563 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3564 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3565 DL = TagStores[0].MI->getDebugLoc();
3566
3567 Register Reg;
3568 FrameRegOffset = TFI->resolveFrameOffsetReference(
3569 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
3570 /*PreferFP=*/false, /*ForSimm=*/true);
3571 FrameReg = Reg;
3572 FrameRegUpdate = std::nullopt;
3573
3574 mergeMemRefs(TagStores, CombinedMemRefs);
3575
3576 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3577 for (const auto &Instr
3578 : TagStores) { dbgs() << " " << *Instr.MI; });
3579
3580 // Size threshold where a loop becomes shorter than a linear sequence of
3581 // tagging instructions.
3582 const int kSetTagLoopThreshold = 176;
3583 if (Size < kSetTagLoopThreshold) {
3584 if (TagStores.size() < 2)
3585 return;
3586 emitUnrolled(InsertI);
3587 } else {
3588 MachineInstr *UpdateInstr = nullptr;
3589 int64_t TotalOffset = 0;
3590 if (TryMergeSPUpdate) {
3591 // See if we can merge base register update into the STGloop.
3592 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3593 // but STGloop is way too unusual for that, and also it only
3594 // realistically happens in function epilogue. Also, STGloop is expanded
3595 // before that pass.
3596 if (InsertI != MBB->end() &&
3597 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3598 &TotalOffset)) {
3599 UpdateInstr = &*InsertI++;
3600 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3601 << *UpdateInstr);
3602 }
3603 }
3604
3605 if (!UpdateInstr && TagStores.size() < 2)
3606 return;
3607
3608 if (UpdateInstr) {
3609 FrameRegUpdate = TotalOffset;
3610 FrameRegUpdateFlags = UpdateInstr->getFlags();
3611 }
3612 emitLoop(InsertI);
3613 if (UpdateInstr)
3614 UpdateInstr->eraseFromParent();
3615 }
3616
3617 for (auto &TS : TagStores)
3618 TS.MI->eraseFromParent();
3619 }
3620
isMergeableStackTaggingInstruction(MachineInstr & MI,int64_t & Offset,int64_t & Size,bool & ZeroData)3621 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3622 int64_t &Size, bool &ZeroData) {
3623 MachineFunction &MF = *MI.getParent()->getParent();
3624 const MachineFrameInfo &MFI = MF.getFrameInfo();
3625
3626 unsigned Opcode = MI.getOpcode();
3627 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGOffset ||
3628 Opcode == AArch64::STZ2GOffset);
3629
3630 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3631 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3632 return false;
3633 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3634 return false;
3635 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3636 Size = MI.getOperand(2).getImm();
3637 return true;
3638 }
3639
3640 if (Opcode == AArch64::STGOffset || Opcode == AArch64::STZGOffset)
3641 Size = 16;
3642 else if (Opcode == AArch64::ST2GOffset || Opcode == AArch64::STZ2GOffset)
3643 Size = 32;
3644 else
3645 return false;
3646
3647 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3648 return false;
3649
3650 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3651 16 * MI.getOperand(2).getImm();
3652 return true;
3653 }
3654
3655 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3656 // and replace them with a shorter instruction sequence:
3657 // * replace STG + STG with ST2G
3658 // * replace STGloop + STGloop with STGloop
3659 // This code needs to run when stack slot offsets are already known, but before
3660 // FrameIndex operands in STG instructions are eliminated.
tryMergeAdjacentSTG(MachineBasicBlock::iterator II,const AArch64FrameLowering * TFI,RegScavenger * RS)3661 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
3662 const AArch64FrameLowering *TFI,
3663 RegScavenger *RS) {
3664 bool FirstZeroData;
3665 int64_t Size, Offset;
3666 MachineInstr &MI = *II;
3667 MachineBasicBlock *MBB = MI.getParent();
3668 MachineBasicBlock::iterator NextI = ++II;
3669 if (&MI == &MBB->instr_back())
3670 return II;
3671 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3672 return II;
3673
3674 SmallVector<TagStoreInstr, 4> Instrs;
3675 Instrs.emplace_back(&MI, Offset, Size);
3676
3677 constexpr int kScanLimit = 10;
3678 int Count = 0;
3679 for (MachineBasicBlock::iterator E = MBB->end();
3680 NextI != E && Count < kScanLimit; ++NextI) {
3681 MachineInstr &MI = *NextI;
3682 bool ZeroData;
3683 int64_t Size, Offset;
3684 // Collect instructions that update memory tags with a FrameIndex operand
3685 // and (when applicable) constant size, and whose output registers are dead
3686 // (the latter is almost always the case in practice). Since these
3687 // instructions effectively have no inputs or outputs, we are free to skip
3688 // any non-aliasing instructions in between without tracking used registers.
3689 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3690 if (ZeroData != FirstZeroData)
3691 break;
3692 Instrs.emplace_back(&MI, Offset, Size);
3693 continue;
3694 }
3695
3696 // Only count non-transient, non-tagging instructions toward the scan
3697 // limit.
3698 if (!MI.isTransient())
3699 ++Count;
3700
3701 // Just in case, stop before the epilogue code starts.
3702 if (MI.getFlag(MachineInstr::FrameSetup) ||
3703 MI.getFlag(MachineInstr::FrameDestroy))
3704 break;
3705
3706 // Reject anything that may alias the collected instructions.
3707 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
3708 break;
3709 }
3710
3711 // New code will be inserted after the last tagging instruction we've found.
3712 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3713 InsertI++;
3714
3715 llvm::stable_sort(Instrs,
3716 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3717 return Left.Offset < Right.Offset;
3718 });
3719
3720 // Make sure that we don't have any overlapping stores.
3721 int64_t CurOffset = Instrs[0].Offset;
3722 for (auto &Instr : Instrs) {
3723 if (CurOffset > Instr.Offset)
3724 return NextI;
3725 CurOffset = Instr.Offset + Instr.Size;
3726 }
3727
3728 // Find contiguous runs of tagged memory and emit shorter instruction
3729 // sequencies for them when possible.
3730 TagStoreEdit TSE(MBB, FirstZeroData);
3731 std::optional<int64_t> EndOffset;
3732 for (auto &Instr : Instrs) {
3733 if (EndOffset && *EndOffset != Instr.Offset) {
3734 // Found a gap.
3735 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3736 TSE.clear();
3737 }
3738
3739 TSE.addInstruction(Instr);
3740 EndOffset = Instr.Offset + Instr.Size;
3741 }
3742
3743 const MachineFunction *MF = MBB->getParent();
3744 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3745 TSE.emitCode(
3746 InsertI, TFI, /*TryMergeSPUpdate = */
3747 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
3748
3749 return InsertI;
3750 }
3751 } // namespace
3752
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS=nullptr) const3753 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3754 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3755 if (StackTaggingMergeSetTag)
3756 for (auto &BB : MF)
3757 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();)
3758 II = tryMergeAdjacentSTG(II, this, RS);
3759 }
3760
3761 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3762 /// before the update. This is easily retrieved as it is exactly the offset
3763 /// that is set in processFunctionBeforeFrameFinalized.
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const3764 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
3765 const MachineFunction &MF, int FI, Register &FrameReg,
3766 bool IgnoreSPUpdates) const {
3767 const MachineFrameInfo &MFI = MF.getFrameInfo();
3768 if (IgnoreSPUpdates) {
3769 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3770 << MFI.getObjectOffset(FI) << "\n");
3771 FrameReg = AArch64::SP;
3772 return StackOffset::getFixed(MFI.getObjectOffset(FI));
3773 }
3774
3775 // Go to common code if we cannot provide sp + offset.
3776 if (MFI.hasVarSizedObjects() ||
3777 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
3778 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
3779 return getFrameIndexReference(MF, FI, FrameReg);
3780
3781 FrameReg = AArch64::SP;
3782 return getStackOffset(MF, MFI.getObjectOffset(FI));
3783 }
3784
3785 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3786 /// the parent's frame pointer
getWinEHParentFrameOffset(const MachineFunction & MF) const3787 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3788 const MachineFunction &MF) const {
3789 return 0;
3790 }
3791
3792 /// Funclets only need to account for space for the callee saved registers,
3793 /// as the locals are accounted for in the parent's stack frame.
getWinEHFuncletFrameSize(const MachineFunction & MF) const3794 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3795 const MachineFunction &MF) const {
3796 // This is the size of the pushed CSRs.
3797 unsigned CSSize =
3798 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3799 // This is the amount of stack a funclet needs to allocate.
3800 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3801 getStackAlign());
3802 }
3803
3804 namespace {
3805 struct FrameObject {
3806 bool IsValid = false;
3807 // Index of the object in MFI.
3808 int ObjectIndex = 0;
3809 // Group ID this object belongs to.
3810 int GroupIndex = -1;
3811 // This object should be placed first (closest to SP).
3812 bool ObjectFirst = false;
3813 // This object's group (which always contains the object with
3814 // ObjectFirst==true) should be placed first.
3815 bool GroupFirst = false;
3816 };
3817
3818 class GroupBuilder {
3819 SmallVector<int, 8> CurrentMembers;
3820 int NextGroupIndex = 0;
3821 std::vector<FrameObject> &Objects;
3822
3823 public:
GroupBuilder(std::vector<FrameObject> & Objects)3824 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
AddMember(int Index)3825 void AddMember(int Index) { CurrentMembers.push_back(Index); }
EndCurrentGroup()3826 void EndCurrentGroup() {
3827 if (CurrentMembers.size() > 1) {
3828 // Create a new group with the current member list. This might remove them
3829 // from their pre-existing groups. That's OK, dealing with overlapping
3830 // groups is too hard and unlikely to make a difference.
3831 LLVM_DEBUG(dbgs() << "group:");
3832 for (int Index : CurrentMembers) {
3833 Objects[Index].GroupIndex = NextGroupIndex;
3834 LLVM_DEBUG(dbgs() << " " << Index);
3835 }
3836 LLVM_DEBUG(dbgs() << "\n");
3837 NextGroupIndex++;
3838 }
3839 CurrentMembers.clear();
3840 }
3841 };
3842
FrameObjectCompare(const FrameObject & A,const FrameObject & B)3843 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3844 // Objects at a lower index are closer to FP; objects at a higher index are
3845 // closer to SP.
3846 //
3847 // For consistency in our comparison, all invalid objects are placed
3848 // at the end. This also allows us to stop walking when we hit the
3849 // first invalid item after it's all sorted.
3850 //
3851 // The "first" object goes first (closest to SP), followed by the members of
3852 // the "first" group.
3853 //
3854 // The rest are sorted by the group index to keep the groups together.
3855 // Higher numbered groups are more likely to be around longer (i.e. untagged
3856 // in the function epilogue and not at some earlier point). Place them closer
3857 // to SP.
3858 //
3859 // If all else equal, sort by the object index to keep the objects in the
3860 // original order.
3861 return std::make_tuple(!A.IsValid, A.ObjectFirst, A.GroupFirst, A.GroupIndex,
3862 A.ObjectIndex) <
3863 std::make_tuple(!B.IsValid, B.ObjectFirst, B.GroupFirst, B.GroupIndex,
3864 B.ObjectIndex);
3865 }
3866 } // namespace
3867
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3868 void AArch64FrameLowering::orderFrameObjects(
3869 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3870 if (!OrderFrameObjects || ObjectsToAllocate.empty())
3871 return;
3872
3873 const MachineFrameInfo &MFI = MF.getFrameInfo();
3874 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3875 for (auto &Obj : ObjectsToAllocate) {
3876 FrameObjects[Obj].IsValid = true;
3877 FrameObjects[Obj].ObjectIndex = Obj;
3878 }
3879
3880 // Identify stack slots that are tagged at the same time.
3881 GroupBuilder GB(FrameObjects);
3882 for (auto &MBB : MF) {
3883 for (auto &MI : MBB) {
3884 if (MI.isDebugInstr())
3885 continue;
3886 int OpIndex;
3887 switch (MI.getOpcode()) {
3888 case AArch64::STGloop:
3889 case AArch64::STZGloop:
3890 OpIndex = 3;
3891 break;
3892 case AArch64::STGOffset:
3893 case AArch64::STZGOffset:
3894 case AArch64::ST2GOffset:
3895 case AArch64::STZ2GOffset:
3896 OpIndex = 1;
3897 break;
3898 default:
3899 OpIndex = -1;
3900 }
3901
3902 int TaggedFI = -1;
3903 if (OpIndex >= 0) {
3904 const MachineOperand &MO = MI.getOperand(OpIndex);
3905 if (MO.isFI()) {
3906 int FI = MO.getIndex();
3907 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3908 FrameObjects[FI].IsValid)
3909 TaggedFI = FI;
3910 }
3911 }
3912
3913 // If this is a stack tagging instruction for a slot that is not part of a
3914 // group yet, either start a new group or add it to the current one.
3915 if (TaggedFI >= 0)
3916 GB.AddMember(TaggedFI);
3917 else
3918 GB.EndCurrentGroup();
3919 }
3920 // Groups should never span multiple basic blocks.
3921 GB.EndCurrentGroup();
3922 }
3923
3924 // If the function's tagged base pointer is pinned to a stack slot, we want to
3925 // put that slot first when possible. This will likely place it at SP + 0,
3926 // and save one instruction when generating the base pointer because IRG does
3927 // not allow an immediate offset.
3928 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
3929 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3930 if (TBPI) {
3931 FrameObjects[*TBPI].ObjectFirst = true;
3932 FrameObjects[*TBPI].GroupFirst = true;
3933 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3934 if (FirstGroupIndex >= 0)
3935 for (FrameObject &Object : FrameObjects)
3936 if (Object.GroupIndex == FirstGroupIndex)
3937 Object.GroupFirst = true;
3938 }
3939
3940 llvm::stable_sort(FrameObjects, FrameObjectCompare);
3941
3942 int i = 0;
3943 for (auto &Obj : FrameObjects) {
3944 // All invalid items are sorted at the end, so it's safe to stop.
3945 if (!Obj.IsValid)
3946 break;
3947 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3948 }
3949
3950 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3951 : FrameObjects) {
3952 if (!Obj.IsValid)
3953 break;
3954 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3955 if (Obj.ObjectFirst)
3956 dbgs() << ", first";
3957 if (Obj.GroupFirst)
3958 dbgs() << ", group-first";
3959 dbgs() << "\n";
3960 });
3961 }
3962