1 //===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 // Arguments to kernel and device functions are passed via param space,
11 // which imposes certain restrictions:
12 // http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13 //
14 // Kernel parameters are read-only and accessible only via ld.param
15 // instruction, directly or via a pointer. Pointers to kernel
16 // arguments can't be converted to generic address space.
17 //
18 // Device function parameters are directly accessible via
19 // ld.param/st.param, but taking the address of one returns a pointer
20 // to a copy created in local space which *can't* be used with
21 // ld.param/st.param.
22 //
23 // Copying a byval struct into local memory in IR allows us to enforce
24 // the param space restrictions, gives the rest of IR a pointer w/o
25 // param space restrictions, and gives us an opportunity to eliminate
26 // the copy.
27 //
28 // Pointer arguments to kernel functions need more work to be lowered:
29 //
30 // 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
31 // global address space. This allows later optimizations to emit
32 // ld.global.*/st.global.* for accessing these pointer arguments. For
33 // example,
34 //
35 // define void @foo(float* %input) {
36 // %v = load float, float* %input, align 4
37 // ...
38 // }
39 //
40 // becomes
41 //
42 // define void @foo(float* %input) {
43 // %input2 = addrspacecast float* %input to float addrspace(1)*
44 // %input3 = addrspacecast float addrspace(1)* %input2 to float*
45 // %v = load float, float* %input3, align 4
46 // ...
47 // }
48 //
49 // Later, NVPTXInferAddressSpaces will optimize it to
50 //
51 // define void @foo(float* %input) {
52 // %input2 = addrspacecast float* %input to float addrspace(1)*
53 // %v = load float, float addrspace(1)* %input2, align 4
54 // ...
55 // }
56 //
57 // 2. Convert pointers in a byval kernel parameter to pointers in the global
58 // address space. As #2, it allows NVPTX to emit more ld/st.global. E.g.,
59 //
60 // struct S {
61 // int *x;
62 // int *y;
63 // };
64 // __global__ void foo(S s) {
65 // int *b = s.y;
66 // // use b
67 // }
68 //
69 // "b" points to the global address space. In the IR level,
70 //
71 // define void @foo({i32*, i32*}* byval %input) {
72 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
73 // %b = load i32*, i32** %b_ptr
74 // ; use %b
75 // }
76 //
77 // becomes
78 //
79 // define void @foo({i32*, i32*}* byval %input) {
80 // %b_ptr = getelementptr {i32*, i32*}, {i32*, i32*}* %input, i64 0, i32 1
81 // %b = load i32*, i32** %b_ptr
82 // %b_global = addrspacecast i32* %b to i32 addrspace(1)*
83 // %b_generic = addrspacecast i32 addrspace(1)* %b_global to i32*
84 // ; use %b_generic
85 // }
86 //
87 // TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
88 // cancel the addrspacecast pair this pass emits.
89 //===----------------------------------------------------------------------===//
90
91 #include "MCTargetDesc/NVPTXBaseInfo.h"
92 #include "NVPTX.h"
93 #include "NVPTXTargetMachine.h"
94 #include "NVPTXUtilities.h"
95 #include "llvm/Analysis/ValueTracking.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/Pass.h"
101 #include <numeric>
102 #include <queue>
103
104 #define DEBUG_TYPE "nvptx-lower-args"
105
106 using namespace llvm;
107
108 namespace llvm {
109 void initializeNVPTXLowerArgsPass(PassRegistry &);
110 }
111
112 namespace {
113 class NVPTXLowerArgs : public FunctionPass {
114 bool runOnFunction(Function &F) override;
115
116 bool runOnKernelFunction(Function &F);
117 bool runOnDeviceFunction(Function &F);
118
119 // handle byval parameters
120 void handleByValParam(Argument *Arg);
121 // Knowing Ptr must point to the global address space, this function
122 // addrspacecasts Ptr to global and then back to generic. This allows
123 // NVPTXInferAddressSpaces to fold the global-to-generic cast into
124 // loads/stores that appear later.
125 void markPointerAsGlobal(Value *Ptr);
126
127 public:
128 static char ID; // Pass identification, replacement for typeid
NVPTXLowerArgs(const NVPTXTargetMachine * TM=nullptr)129 NVPTXLowerArgs(const NVPTXTargetMachine *TM = nullptr)
130 : FunctionPass(ID), TM(TM) {}
getPassName() const131 StringRef getPassName() const override {
132 return "Lower pointer arguments of CUDA kernels";
133 }
134
135 private:
136 const NVPTXTargetMachine *TM;
137 };
138 } // namespace
139
140 char NVPTXLowerArgs::ID = 1;
141
142 INITIALIZE_PASS(NVPTXLowerArgs, "nvptx-lower-args",
143 "Lower arguments (NVPTX)", false, false)
144
145 // =============================================================================
146 // If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
147 // and we can't guarantee that the only accesses are loads,
148 // then add the following instructions to the first basic block:
149 //
150 // %temp = alloca %struct.x, align 8
151 // %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
152 // %tv = load %struct.x addrspace(101)* %tempd
153 // store %struct.x %tv, %struct.x* %temp, align 8
154 //
155 // The above code allocates some space in the stack and copies the incoming
156 // struct from param space to local space.
157 // Then replace all occurrences of %d by %temp.
158 //
159 // In case we know that all users are GEPs or Loads, replace them with the same
160 // ones in parameter AS, so we can access them using ld.param.
161 // =============================================================================
162
163 // Replaces the \p OldUser instruction with the same in parameter AS.
164 // Only Load and GEP are supported.
convertToParamAS(Value * OldUser,Value * Param)165 static void convertToParamAS(Value *OldUser, Value *Param) {
166 Instruction *I = dyn_cast<Instruction>(OldUser);
167 assert(I && "OldUser must be an instruction");
168 struct IP {
169 Instruction *OldInstruction;
170 Value *NewParam;
171 };
172 SmallVector<IP> ItemsToConvert = {{I, Param}};
173 SmallVector<Instruction *> InstructionsToDelete;
174
175 auto CloneInstInParamAS = [](const IP &I) -> Value * {
176 if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
177 LI->setOperand(0, I.NewParam);
178 return LI;
179 }
180 if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
181 SmallVector<Value *, 4> Indices(GEP->indices());
182 auto *NewGEP = GetElementPtrInst::Create(GEP->getSourceElementType(),
183 I.NewParam, Indices,
184 GEP->getName(), GEP);
185 NewGEP->setIsInBounds(GEP->isInBounds());
186 return NewGEP;
187 }
188 if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
189 auto *NewBCType = PointerType::getWithSamePointeeType(
190 cast<PointerType>(BC->getType()), ADDRESS_SPACE_PARAM);
191 return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
192 BC->getName(), BC);
193 }
194 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
195 assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
196 (void)ASC;
197 // Just pass through the argument, the old ASC is no longer needed.
198 return I.NewParam;
199 }
200 llvm_unreachable("Unsupported instruction");
201 };
202
203 while (!ItemsToConvert.empty()) {
204 IP I = ItemsToConvert.pop_back_val();
205 Value *NewInst = CloneInstInParamAS(I);
206
207 if (NewInst && NewInst != I.OldInstruction) {
208 // We've created a new instruction. Queue users of the old instruction to
209 // be converted and the instruction itself to be deleted. We can't delete
210 // the old instruction yet, because it's still in use by a load somewhere.
211 for (Value *V : I.OldInstruction->users())
212 ItemsToConvert.push_back({cast<Instruction>(V), NewInst});
213
214 InstructionsToDelete.push_back(I.OldInstruction);
215 }
216 }
217
218 // Now we know that all argument loads are using addresses in parameter space
219 // and we can finally remove the old instructions in generic AS. Instructions
220 // scheduled for removal should be processed in reverse order so the ones
221 // closest to the load are deleted first. Otherwise they may still be in use.
222 // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
223 // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
224 // the BitCast.
225 for (Instruction *I : llvm::reverse(InstructionsToDelete))
226 I->eraseFromParent();
227 }
228
229 // Adjust alignment of arguments passed byval in .param address space. We can
230 // increase alignment of such arguments in a way that ensures that we can
231 // effectively vectorize their loads. We should also traverse all loads from
232 // byval pointer and adjust their alignment, if those were using known offset.
233 // Such alignment changes must be conformed with parameter store and load in
234 // NVPTXTargetLowering::LowerCall.
adjustByValArgAlignment(Argument * Arg,Value * ArgInParamAS,const NVPTXTargetLowering * TLI)235 static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
236 const NVPTXTargetLowering *TLI) {
237 Function *Func = Arg->getParent();
238 Type *StructType = Arg->getParamByValType();
239 const DataLayout DL(Func->getParent());
240
241 uint64_t NewArgAlign =
242 TLI->getFunctionParamOptimizedAlign(Func, StructType, DL).value();
243 uint64_t CurArgAlign =
244 Arg->getAttribute(Attribute::Alignment).getValueAsInt();
245
246 if (CurArgAlign >= NewArgAlign)
247 return;
248
249 LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign << " instead of "
250 << CurArgAlign << " for " << *Arg << '\n');
251
252 auto NewAlignAttr =
253 Attribute::get(Func->getContext(), Attribute::Alignment, NewArgAlign);
254 Arg->removeAttr(Attribute::Alignment);
255 Arg->addAttr(NewAlignAttr);
256
257 struct Load {
258 LoadInst *Inst;
259 uint64_t Offset;
260 };
261
262 struct LoadContext {
263 Value *InitialVal;
264 uint64_t Offset;
265 };
266
267 SmallVector<Load> Loads;
268 std::queue<LoadContext> Worklist;
269 Worklist.push({ArgInParamAS, 0});
270
271 while (!Worklist.empty()) {
272 LoadContext Ctx = Worklist.front();
273 Worklist.pop();
274
275 for (User *CurUser : Ctx.InitialVal->users()) {
276 if (auto *I = dyn_cast<LoadInst>(CurUser)) {
277 Loads.push_back({I, Ctx.Offset});
278 continue;
279 }
280
281 if (auto *I = dyn_cast<BitCastInst>(CurUser)) {
282 Worklist.push({I, Ctx.Offset});
283 continue;
284 }
285
286 if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
287 APInt OffsetAccumulated =
288 APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
289
290 if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
291 continue;
292
293 uint64_t OffsetLimit = -1;
294 uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
295 assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
296
297 Worklist.push({I, Ctx.Offset + Offset});
298 continue;
299 }
300
301 llvm_unreachable("All users must be one of: load, "
302 "bitcast, getelementptr.");
303 }
304 }
305
306 for (Load &CurLoad : Loads) {
307 Align NewLoadAlign(std::gcd(NewArgAlign, CurLoad.Offset));
308 Align CurLoadAlign(CurLoad.Inst->getAlign());
309 CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
310 }
311 }
312
handleByValParam(Argument * Arg)313 void NVPTXLowerArgs::handleByValParam(Argument *Arg) {
314 Function *Func = Arg->getParent();
315 Instruction *FirstInst = &(Func->getEntryBlock().front());
316 Type *StructType = Arg->getParamByValType();
317 assert(StructType && "Missing byval type");
318
319 auto IsALoadChain = [&](Value *Start) {
320 SmallVector<Value *, 16> ValuesToCheck = {Start};
321 auto IsALoadChainInstr = [](Value *V) -> bool {
322 if (isa<GetElementPtrInst>(V) || isa<BitCastInst>(V) || isa<LoadInst>(V))
323 return true;
324 // ASC to param space are OK, too -- we'll just strip them.
325 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(V)) {
326 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM)
327 return true;
328 }
329 return false;
330 };
331
332 while (!ValuesToCheck.empty()) {
333 Value *V = ValuesToCheck.pop_back_val();
334 if (!IsALoadChainInstr(V)) {
335 LLVM_DEBUG(dbgs() << "Need a copy of " << *Arg << " because of " << *V
336 << "\n");
337 (void)Arg;
338 return false;
339 }
340 if (!isa<LoadInst>(V))
341 llvm::append_range(ValuesToCheck, V->users());
342 }
343 return true;
344 };
345
346 if (llvm::all_of(Arg->users(), IsALoadChain)) {
347 // Convert all loads and intermediate operations to use parameter AS and
348 // skip creation of a local copy of the argument.
349 SmallVector<User *, 16> UsersToUpdate(Arg->users());
350 Value *ArgInParamAS = new AddrSpaceCastInst(
351 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
352 FirstInst);
353 for (Value *V : UsersToUpdate)
354 convertToParamAS(V, ArgInParamAS);
355 LLVM_DEBUG(dbgs() << "No need to copy " << *Arg << "\n");
356
357 // Further optimizations require target lowering info.
358 if (!TM)
359 return;
360
361 const auto *TLI =
362 cast<NVPTXTargetLowering>(TM->getSubtargetImpl()->getTargetLowering());
363
364 adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
365
366 return;
367 }
368
369 // Otherwise we have to create a temporary copy.
370 const DataLayout &DL = Func->getParent()->getDataLayout();
371 unsigned AS = DL.getAllocaAddrSpace();
372 AllocaInst *AllocA = new AllocaInst(StructType, AS, Arg->getName(), FirstInst);
373 // Set the alignment to alignment of the byval parameter. This is because,
374 // later load/stores assume that alignment, and we are going to replace
375 // the use of the byval parameter with this alloca instruction.
376 AllocA->setAlignment(Func->getParamAlign(Arg->getArgNo())
377 .value_or(DL.getPrefTypeAlign(StructType)));
378 Arg->replaceAllUsesWith(AllocA);
379
380 Value *ArgInParam = new AddrSpaceCastInst(
381 Arg, PointerType::get(StructType, ADDRESS_SPACE_PARAM), Arg->getName(),
382 FirstInst);
383 // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
384 // addrspacecast preserves alignment. Since params are constant, this load is
385 // definitely not volatile.
386 LoadInst *LI =
387 new LoadInst(StructType, ArgInParam, Arg->getName(),
388 /*isVolatile=*/false, AllocA->getAlign(), FirstInst);
389 new StoreInst(LI, AllocA, FirstInst);
390 }
391
markPointerAsGlobal(Value * Ptr)392 void NVPTXLowerArgs::markPointerAsGlobal(Value *Ptr) {
393 if (Ptr->getType()->getPointerAddressSpace() == ADDRESS_SPACE_GLOBAL)
394 return;
395
396 // Deciding where to emit the addrspacecast pair.
397 BasicBlock::iterator InsertPt;
398 if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
399 // Insert at the functon entry if Ptr is an argument.
400 InsertPt = Arg->getParent()->getEntryBlock().begin();
401 } else {
402 // Insert right after Ptr if Ptr is an instruction.
403 InsertPt = ++cast<Instruction>(Ptr)->getIterator();
404 assert(InsertPt != InsertPt->getParent()->end() &&
405 "We don't call this function with Ptr being a terminator.");
406 }
407
408 Instruction *PtrInGlobal = new AddrSpaceCastInst(
409 Ptr,
410 PointerType::getWithSamePointeeType(cast<PointerType>(Ptr->getType()),
411 ADDRESS_SPACE_GLOBAL),
412 Ptr->getName(), &*InsertPt);
413 Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
414 Ptr->getName(), &*InsertPt);
415 // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
416 Ptr->replaceAllUsesWith(PtrInGeneric);
417 PtrInGlobal->setOperand(0, Ptr);
418 }
419
420 // =============================================================================
421 // Main function for this pass.
422 // =============================================================================
runOnKernelFunction(Function & F)423 bool NVPTXLowerArgs::runOnKernelFunction(Function &F) {
424 if (TM && TM->getDrvInterface() == NVPTX::CUDA) {
425 // Mark pointers in byval structs as global.
426 for (auto &B : F) {
427 for (auto &I : B) {
428 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
429 if (LI->getType()->isPointerTy()) {
430 Value *UO = getUnderlyingObject(LI->getPointerOperand());
431 if (Argument *Arg = dyn_cast<Argument>(UO)) {
432 if (Arg->hasByValAttr()) {
433 // LI is a load from a pointer within a byval kernel parameter.
434 markPointerAsGlobal(LI);
435 }
436 }
437 }
438 }
439 }
440 }
441 }
442
443 LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
444 for (Argument &Arg : F.args()) {
445 if (Arg.getType()->isPointerTy()) {
446 if (Arg.hasByValAttr())
447 handleByValParam(&Arg);
448 else if (TM && TM->getDrvInterface() == NVPTX::CUDA)
449 markPointerAsGlobal(&Arg);
450 }
451 }
452 return true;
453 }
454
455 // Device functions only need to copy byval args into local memory.
runOnDeviceFunction(Function & F)456 bool NVPTXLowerArgs::runOnDeviceFunction(Function &F) {
457 LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
458 for (Argument &Arg : F.args())
459 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
460 handleByValParam(&Arg);
461 return true;
462 }
463
runOnFunction(Function & F)464 bool NVPTXLowerArgs::runOnFunction(Function &F) {
465 return isKernelFunction(F) ? runOnKernelFunction(F) : runOnDeviceFunction(F);
466 }
467
468 FunctionPass *
createNVPTXLowerArgsPass(const NVPTXTargetMachine * TM)469 llvm::createNVPTXLowerArgsPass(const NVPTXTargetMachine *TM) {
470 return new NVPTXLowerArgs(TM);
471 }
472