1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
20
21 using namespace llvm;
22
23 #define DEBUG_TYPE "systemz-isel"
24 #define PASS_NAME "SystemZ DAG->DAG Pattern Instruction Selection"
25
26 namespace {
27 // Used to build addressing modes.
28 struct SystemZAddressingMode {
29 // The shape of the address.
30 enum AddrForm {
31 // base+displacement
32 FormBD,
33
34 // base+displacement+index for load and store operands
35 FormBDXNormal,
36
37 // base+displacement+index for load address operands
38 FormBDXLA,
39
40 // base+displacement+index+ADJDYNALLOC
41 FormBDXDynAlloc
42 };
43 AddrForm Form;
44
45 // The type of displacement. The enum names here correspond directly
46 // to the definitions in SystemZOperand.td. We could split them into
47 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
48 enum DispRange {
49 Disp12Only,
50 Disp12Pair,
51 Disp20Only,
52 Disp20Only128,
53 Disp20Pair
54 };
55 DispRange DR;
56
57 // The parts of the address. The address is equivalent to:
58 //
59 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
60 SDValue Base;
61 int64_t Disp;
62 SDValue Index;
63 bool IncludesDynAlloc;
64
SystemZAddressingMode__anon790a75190111::SystemZAddressingMode65 SystemZAddressingMode(AddrForm form, DispRange dr)
66 : Form(form), DR(dr), Disp(0), IncludesDynAlloc(false) {}
67
68 // True if the address can have an index register.
hasIndexField__anon790a75190111::SystemZAddressingMode69 bool hasIndexField() { return Form != FormBD; }
70
71 // True if the address can (and must) include ADJDYNALLOC.
isDynAlloc__anon790a75190111::SystemZAddressingMode72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
73
dump__anon790a75190111::SystemZAddressingMode74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
76
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(DAG);
80 else
81 errs() << "null\n";
82
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(DAG);
87 else
88 errs() << "null\n";
89 }
90
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
95 }
96 };
97
98 // Return a mask with Count low bits set.
allOnes(unsigned int Count)99 static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
104 }
105
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
109 //
110 // (or (rotl Input, Rotate), ~Mask)
111 //
112 // for RNSBG and:
113 //
114 // (and (rotl Input, Rotate), Mask)
115 //
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
RxSBGOperands__anon790a75190111::RxSBGOperands120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
124
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
132 };
133
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
136
137 // Used by SystemZOperands.td to create integer constants.
getImm(const SDNode * Node,uint64_t Imm) const138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
140 }
141
getTargetMachine() const142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
144 }
145
getInstrInfo() const146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
148 }
149
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
153
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
156
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
162
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
168
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
174
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
181
182 // PC-relative address matching routines used by SystemZOperands.td.
selectPCRelAddress(SDValue Addr,SDValue & Target) const183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Addr.getOpcode())) {
185 Target = Addr.getOperand(0);
186 return true;
187 }
188 return false;
189 }
190
191 // BD matching routines used by SystemZOperands.td.
selectBDAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp) const192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
194 }
selectBDAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
197 }
selectBDAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp) const198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
200 }
selectBDAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
203 }
204
205 // MVI matching routines used by SystemZOperands.td.
selectMVIAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
208 }
selectMVIAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp) const209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
211 }
212
213 // BDX matching routines used by SystemZOperands.td.
selectBDXAddr12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217 SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
219 }
selectBDXAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223 SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
225 }
selectDynAlloc12Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229 SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
231 }
selectBDXAddr20Only(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235 SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
237 }
selectBDXAddr20Only128(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241 SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
243 }
selectBDXAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247 SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
249 }
selectLAAddr12Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253 SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
255 }
selectLAAddr20Pair(SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259 SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
261 }
262
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
269
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
274
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
278
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
282
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
285
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
288
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
292
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
296
297 // If Op0 is null, then Node is a constant that can be loaded using:
298 //
299 // (Opcode UpperVal LowerVal)
300 //
301 // If Op0 is nonnull, then Node can be implemented using:
302 //
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
306
307 void loadVectorConstant(const SystemZVectorConstantInfo &VCI,
308 SDNode *Node);
309
310 // Try to use gather instruction Opcode to implement vector insertion N.
311 bool tryGather(SDNode *N, unsigned Opcode);
312
313 // Try to use scatter instruction Opcode to implement store Store.
314 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
315
316 // Change a chain of {load; op; store} of the same value into a simple op
317 // through memory of that value, if the uses of the modified value and its
318 // address are suitable.
319 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
320
321 // Return true if Load and Store are loads and stores of the same size
322 // and are guaranteed not to overlap. Such operations can be implemented
323 // using block (SS-format) instructions.
324 //
325 // Partial overlap would lead to incorrect code, since the block operations
326 // are logically bytewise, even though they have a fast path for the
327 // non-overlapping case. We also need to avoid full overlap (i.e. two
328 // addresses that might be equal at run time) because although that case
329 // would be handled correctly, it might be implemented by millicode.
330 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
331
332 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
333 // from Y to X.
334 bool storeLoadCanUseMVC(SDNode *N) const;
335
336 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
337 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
338 // to X.
339 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
340
341 // Return true if N (a load or a store) fullfills the alignment
342 // requirements for a PC-relative access.
343 bool storeLoadIsAligned(SDNode *N) const;
344
345 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
346 SDValue expandSelectBoolean(SDNode *Node);
347
348 public:
349 static char ID;
350
351 SystemZDAGToDAGISel() = delete;
352
SystemZDAGToDAGISel(SystemZTargetMachine & TM,CodeGenOpt::Level OptLevel)353 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
354 : SelectionDAGISel(ID, TM, OptLevel) {}
355
runOnMachineFunction(MachineFunction & MF)356 bool runOnMachineFunction(MachineFunction &MF) override {
357 const Function &F = MF.getFunction();
358 if (F.getFnAttribute("fentry-call").getValueAsString() != "true") {
359 if (F.hasFnAttribute("mnop-mcount"))
360 report_fatal_error("mnop-mcount only supported with fentry-call");
361 if (F.hasFnAttribute("mrecord-mcount"))
362 report_fatal_error("mrecord-mcount only supported with fentry-call");
363 }
364
365 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
366 return SelectionDAGISel::runOnMachineFunction(MF);
367 }
368
369 // Override SelectionDAGISel.
370 void Select(SDNode *Node) override;
371 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
372 std::vector<SDValue> &OutOps) override;
373 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
374 void PreprocessISelDAG() override;
375
376 // Include the pieces autogenerated from the target description.
377 #include "SystemZGenDAGISel.inc"
378 };
379 } // end anonymous namespace
380
381 char SystemZDAGToDAGISel::ID = 0;
382
INITIALIZE_PASS(SystemZDAGToDAGISel,DEBUG_TYPE,PASS_NAME,false,false)383 INITIALIZE_PASS(SystemZDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
384
385 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
386 CodeGenOpt::Level OptLevel) {
387 return new SystemZDAGToDAGISel(TM, OptLevel);
388 }
389
390 // Return true if Val should be selected as a displacement for an address
391 // with range DR. Here we're interested in the range of both the instruction
392 // described by DR and of any pairing instruction.
selectDisp(SystemZAddressingMode::DispRange DR,int64_t Val)393 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
394 switch (DR) {
395 case SystemZAddressingMode::Disp12Only:
396 return isUInt<12>(Val);
397
398 case SystemZAddressingMode::Disp12Pair:
399 case SystemZAddressingMode::Disp20Only:
400 case SystemZAddressingMode::Disp20Pair:
401 return isInt<20>(Val);
402
403 case SystemZAddressingMode::Disp20Only128:
404 return isInt<20>(Val) && isInt<20>(Val + 8);
405 }
406 llvm_unreachable("Unhandled displacement range");
407 }
408
409 // Change the base or index in AM to Value, where IsBase selects
410 // between the base and index.
changeComponent(SystemZAddressingMode & AM,bool IsBase,SDValue Value)411 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
412 SDValue Value) {
413 if (IsBase)
414 AM.Base = Value;
415 else
416 AM.Index = Value;
417 }
418
419 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
420 // where IsBase selects between the base and index. Try to fold the
421 // ADJDYNALLOC into AM.
expandAdjDynAlloc(SystemZAddressingMode & AM,bool IsBase,SDValue Value)422 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
423 SDValue Value) {
424 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
425 changeComponent(AM, IsBase, Value);
426 AM.IncludesDynAlloc = true;
427 return true;
428 }
429 return false;
430 }
431
432 // The base of AM is equivalent to Base + Index. Try to use Index as
433 // the index register.
expandIndex(SystemZAddressingMode & AM,SDValue Base,SDValue Index)434 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
435 SDValue Index) {
436 if (AM.hasIndexField() && !AM.Index.getNode()) {
437 AM.Base = Base;
438 AM.Index = Index;
439 return true;
440 }
441 return false;
442 }
443
444 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
445 // between the base and index. Try to fold Op1 into AM's displacement.
expandDisp(SystemZAddressingMode & AM,bool IsBase,SDValue Op0,uint64_t Op1)446 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
447 SDValue Op0, uint64_t Op1) {
448 // First try adjusting the displacement.
449 int64_t TestDisp = AM.Disp + Op1;
450 if (selectDisp(AM.DR, TestDisp)) {
451 changeComponent(AM, IsBase, Op0);
452 AM.Disp = TestDisp;
453 return true;
454 }
455
456 // We could consider forcing the displacement into a register and
457 // using it as an index, but it would need to be carefully tuned.
458 return false;
459 }
460
expandAddress(SystemZAddressingMode & AM,bool IsBase) const461 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
462 bool IsBase) const {
463 SDValue N = IsBase ? AM.Base : AM.Index;
464 unsigned Opcode = N.getOpcode();
465 if (Opcode == ISD::TRUNCATE) {
466 N = N.getOperand(0);
467 Opcode = N.getOpcode();
468 }
469 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
470 SDValue Op0 = N.getOperand(0);
471 SDValue Op1 = N.getOperand(1);
472
473 unsigned Op0Code = Op0->getOpcode();
474 unsigned Op1Code = Op1->getOpcode();
475
476 if (Op0Code == SystemZISD::ADJDYNALLOC)
477 return expandAdjDynAlloc(AM, IsBase, Op1);
478 if (Op1Code == SystemZISD::ADJDYNALLOC)
479 return expandAdjDynAlloc(AM, IsBase, Op0);
480
481 if (Op0Code == ISD::Constant)
482 return expandDisp(AM, IsBase, Op1,
483 cast<ConstantSDNode>(Op0)->getSExtValue());
484 if (Op1Code == ISD::Constant)
485 return expandDisp(AM, IsBase, Op0,
486 cast<ConstantSDNode>(Op1)->getSExtValue());
487
488 if (IsBase && expandIndex(AM, Op0, Op1))
489 return true;
490 }
491 if (Opcode == SystemZISD::PCREL_OFFSET) {
492 SDValue Full = N.getOperand(0);
493 SDValue Base = N.getOperand(1);
494 SDValue Anchor = Base.getOperand(0);
495 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
496 cast<GlobalAddressSDNode>(Anchor)->getOffset());
497 return expandDisp(AM, IsBase, Base, Offset);
498 }
499 return false;
500 }
501
502 // Return true if an instruction with displacement range DR should be
503 // used for displacement value Val. selectDisp(DR, Val) must already hold.
isValidDisp(SystemZAddressingMode::DispRange DR,int64_t Val)504 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
505 assert(selectDisp(DR, Val) && "Invalid displacement");
506 switch (DR) {
507 case SystemZAddressingMode::Disp12Only:
508 case SystemZAddressingMode::Disp20Only:
509 case SystemZAddressingMode::Disp20Only128:
510 return true;
511
512 case SystemZAddressingMode::Disp12Pair:
513 // Use the other instruction if the displacement is too large.
514 return isUInt<12>(Val);
515
516 case SystemZAddressingMode::Disp20Pair:
517 // Use the other instruction if the displacement is small enough.
518 return !isUInt<12>(Val);
519 }
520 llvm_unreachable("Unhandled displacement range");
521 }
522
523 // Return true if Base + Disp + Index should be performed by LA(Y).
shouldUseLA(SDNode * Base,int64_t Disp,SDNode * Index)524 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
525 // Don't use LA(Y) for constants.
526 if (!Base)
527 return false;
528
529 // Always use LA(Y) for frame addresses, since we know that the destination
530 // register is almost always (perhaps always) going to be different from
531 // the frame register.
532 if (Base->getOpcode() == ISD::FrameIndex)
533 return true;
534
535 if (Disp) {
536 // Always use LA(Y) if there is a base, displacement and index.
537 if (Index)
538 return true;
539
540 // Always use LA if the displacement is small enough. It should always
541 // be no worse than AGHI (and better if it avoids a move).
542 if (isUInt<12>(Disp))
543 return true;
544
545 // For similar reasons, always use LAY if the constant is too big for AGHI.
546 // LAY should be no worse than AGFI.
547 if (!isInt<16>(Disp))
548 return true;
549 } else {
550 // Don't use LA for plain registers.
551 if (!Index)
552 return false;
553
554 // Don't use LA for plain addition if the index operand is only used
555 // once. It should be a natural two-operand addition in that case.
556 if (Index->hasOneUse())
557 return false;
558
559 // Prefer addition if the second operation is sign-extended, in the
560 // hope of using AGF.
561 unsigned IndexOpcode = Index->getOpcode();
562 if (IndexOpcode == ISD::SIGN_EXTEND ||
563 IndexOpcode == ISD::SIGN_EXTEND_INREG)
564 return false;
565 }
566
567 // Don't use LA for two-operand addition if either operand is only
568 // used once. The addition instructions are better in that case.
569 if (Base->hasOneUse())
570 return false;
571
572 return true;
573 }
574
575 // Return true if Addr is suitable for AM, updating AM if so.
selectAddress(SDValue Addr,SystemZAddressingMode & AM) const576 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
577 SystemZAddressingMode &AM) const {
578 // Start out assuming that the address will need to be loaded separately,
579 // then try to extend it as much as we can.
580 AM.Base = Addr;
581
582 // First try treating the address as a constant.
583 if (Addr.getOpcode() == ISD::Constant &&
584 expandDisp(AM, true, SDValue(),
585 cast<ConstantSDNode>(Addr)->getSExtValue()))
586 ;
587 // Also see if it's a bare ADJDYNALLOC.
588 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
589 expandAdjDynAlloc(AM, true, SDValue()))
590 ;
591 else
592 // Otherwise try expanding each component.
593 while (expandAddress(AM, true) ||
594 (AM.Index.getNode() && expandAddress(AM, false)))
595 continue;
596
597 // Reject cases where it isn't profitable to use LA(Y).
598 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
599 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
600 return false;
601
602 // Reject cases where the other instruction in a pair should be used.
603 if (!isValidDisp(AM.DR, AM.Disp))
604 return false;
605
606 // Make sure that ADJDYNALLOC is included where necessary.
607 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
608 return false;
609
610 LLVM_DEBUG(AM.dump(CurDAG));
611 return true;
612 }
613
614 // Insert a node into the DAG at least before Pos. This will reposition
615 // the node as needed, and will assign it a node ID that is <= Pos's ID.
616 // Note that this does *not* preserve the uniqueness of node IDs!
617 // The selection DAG must no longer depend on their uniqueness when this
618 // function is used.
insertDAGNode(SelectionDAG * DAG,SDNode * Pos,SDValue N)619 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
620 if (N->getNodeId() == -1 ||
621 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
622 SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
623 DAG->RepositionNode(Pos->getIterator(), N.getNode());
624 // Mark Node as invalid for pruning as after this it may be a successor to a
625 // selected node but otherwise be in the same position of Pos.
626 // Conservatively mark it with the same -abs(Id) to assure node id
627 // invariant is preserved.
628 N->setNodeId(Pos->getNodeId());
629 SelectionDAGISel::InvalidateNodeId(N.getNode());
630 }
631 }
632
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp) const633 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
634 EVT VT, SDValue &Base,
635 SDValue &Disp) const {
636 Base = AM.Base;
637 if (!Base.getNode())
638 // Register 0 means "no base". This is mostly useful for shifts.
639 Base = CurDAG->getRegister(0, VT);
640 else if (Base.getOpcode() == ISD::FrameIndex) {
641 // Lower a FrameIndex to a TargetFrameIndex.
642 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
643 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
644 } else if (Base.getValueType() != VT) {
645 // Truncate values from i64 to i32, for shifts.
646 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
647 "Unexpected truncation");
648 SDLoc DL(Base);
649 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
650 insertDAGNode(CurDAG, Base.getNode(), Trunc);
651 Base = Trunc;
652 }
653
654 // Lower the displacement to a TargetConstant.
655 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
656 }
657
getAddressOperands(const SystemZAddressingMode & AM,EVT VT,SDValue & Base,SDValue & Disp,SDValue & Index) const658 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
659 EVT VT, SDValue &Base,
660 SDValue &Disp,
661 SDValue &Index) const {
662 getAddressOperands(AM, VT, Base, Disp);
663
664 Index = AM.Index;
665 if (!Index.getNode())
666 // Register 0 means "no index".
667 Index = CurDAG->getRegister(0, VT);
668 }
669
selectBDAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const670 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
671 SDValue Addr, SDValue &Base,
672 SDValue &Disp) const {
673 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
674 if (!selectAddress(Addr, AM))
675 return false;
676
677 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
678 return true;
679 }
680
selectMVIAddr(SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp) const681 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
682 SDValue Addr, SDValue &Base,
683 SDValue &Disp) const {
684 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
685 if (!selectAddress(Addr, AM) || AM.Index.getNode())
686 return false;
687
688 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
689 return true;
690 }
691
selectBDXAddr(SystemZAddressingMode::AddrForm Form,SystemZAddressingMode::DispRange DR,SDValue Addr,SDValue & Base,SDValue & Disp,SDValue & Index) const692 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
693 SystemZAddressingMode::DispRange DR,
694 SDValue Addr, SDValue &Base,
695 SDValue &Disp, SDValue &Index) const {
696 SystemZAddressingMode AM(Form, DR);
697 if (!selectAddress(Addr, AM))
698 return false;
699
700 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
701 return true;
702 }
703
selectBDVAddr12Only(SDValue Addr,SDValue Elem,SDValue & Base,SDValue & Disp,SDValue & Index) const704 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
705 SDValue &Base,
706 SDValue &Disp,
707 SDValue &Index) const {
708 SDValue Regs[2];
709 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
710 Regs[0].getNode() && Regs[1].getNode()) {
711 for (unsigned int I = 0; I < 2; ++I) {
712 Base = Regs[I];
713 Index = Regs[1 - I];
714 // We can't tell here whether the index vector has the right type
715 // for the access; the caller needs to do that instead.
716 if (Index.getOpcode() == ISD::ZERO_EXTEND)
717 Index = Index.getOperand(0);
718 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
719 Index.getOperand(1) == Elem) {
720 Index = Index.getOperand(0);
721 return true;
722 }
723 }
724 }
725 return false;
726 }
727
detectOrAndInsertion(SDValue & Op,uint64_t InsertMask) const728 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
729 uint64_t InsertMask) const {
730 // We're only interested in cases where the insertion is into some operand
731 // of Op, rather than into Op itself. The only useful case is an AND.
732 if (Op.getOpcode() != ISD::AND)
733 return false;
734
735 // We need a constant mask.
736 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
737 if (!MaskNode)
738 return false;
739
740 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
741 uint64_t AndMask = MaskNode->getZExtValue();
742 if (InsertMask & AndMask)
743 return false;
744
745 // It's only an insertion if all bits are covered or are known to be zero.
746 // The inner check covers all cases but is more expensive.
747 uint64_t Used = allOnes(Op.getValueSizeInBits());
748 if (Used != (AndMask | InsertMask)) {
749 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
750 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
751 return false;
752 }
753
754 Op = Op.getOperand(0);
755 return true;
756 }
757
refineRxSBGMask(RxSBGOperands & RxSBG,uint64_t Mask) const758 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
759 uint64_t Mask) const {
760 const SystemZInstrInfo *TII = getInstrInfo();
761 if (RxSBG.Rotate != 0)
762 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
763 Mask &= RxSBG.Mask;
764 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
765 RxSBG.Mask = Mask;
766 return true;
767 }
768 return false;
769 }
770
771 // Return true if any bits of (RxSBG.Input & Mask) are significant.
maskMatters(RxSBGOperands & RxSBG,uint64_t Mask)772 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
773 // Rotate the mask in the same way as RxSBG.Input is rotated.
774 if (RxSBG.Rotate != 0)
775 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
776 return (Mask & RxSBG.Mask) != 0;
777 }
778
expandRxSBG(RxSBGOperands & RxSBG) const779 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
780 SDValue N = RxSBG.Input;
781 unsigned Opcode = N.getOpcode();
782 switch (Opcode) {
783 case ISD::TRUNCATE: {
784 if (RxSBG.Opcode == SystemZ::RNSBG)
785 return false;
786 uint64_t BitSize = N.getValueSizeInBits();
787 uint64_t Mask = allOnes(BitSize);
788 if (!refineRxSBGMask(RxSBG, Mask))
789 return false;
790 RxSBG.Input = N.getOperand(0);
791 return true;
792 }
793 case ISD::AND: {
794 if (RxSBG.Opcode == SystemZ::RNSBG)
795 return false;
796
797 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
798 if (!MaskNode)
799 return false;
800
801 SDValue Input = N.getOperand(0);
802 uint64_t Mask = MaskNode->getZExtValue();
803 if (!refineRxSBGMask(RxSBG, Mask)) {
804 // If some bits of Input are already known zeros, those bits will have
805 // been removed from the mask. See if adding them back in makes the
806 // mask suitable.
807 KnownBits Known = CurDAG->computeKnownBits(Input);
808 Mask |= Known.Zero.getZExtValue();
809 if (!refineRxSBGMask(RxSBG, Mask))
810 return false;
811 }
812 RxSBG.Input = Input;
813 return true;
814 }
815
816 case ISD::OR: {
817 if (RxSBG.Opcode != SystemZ::RNSBG)
818 return false;
819
820 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
821 if (!MaskNode)
822 return false;
823
824 SDValue Input = N.getOperand(0);
825 uint64_t Mask = ~MaskNode->getZExtValue();
826 if (!refineRxSBGMask(RxSBG, Mask)) {
827 // If some bits of Input are already known ones, those bits will have
828 // been removed from the mask. See if adding them back in makes the
829 // mask suitable.
830 KnownBits Known = CurDAG->computeKnownBits(Input);
831 Mask &= ~Known.One.getZExtValue();
832 if (!refineRxSBGMask(RxSBG, Mask))
833 return false;
834 }
835 RxSBG.Input = Input;
836 return true;
837 }
838
839 case ISD::ROTL: {
840 // Any 64-bit rotate left can be merged into the RxSBG.
841 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
842 return false;
843 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
844 if (!CountNode)
845 return false;
846
847 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
848 RxSBG.Input = N.getOperand(0);
849 return true;
850 }
851
852 case ISD::ANY_EXTEND:
853 // Bits above the extended operand are don't-care.
854 RxSBG.Input = N.getOperand(0);
855 return true;
856
857 case ISD::ZERO_EXTEND:
858 if (RxSBG.Opcode != SystemZ::RNSBG) {
859 // Restrict the mask to the extended operand.
860 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
861 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
862 return false;
863
864 RxSBG.Input = N.getOperand(0);
865 return true;
866 }
867 [[fallthrough]];
868
869 case ISD::SIGN_EXTEND: {
870 // Check that the extension bits are don't-care (i.e. are masked out
871 // by the final mask).
872 unsigned BitSize = N.getValueSizeInBits();
873 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
874 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
875 // In the case where only the sign bit is active, increase Rotate with
876 // the extension width.
877 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
878 RxSBG.Rotate += (BitSize - InnerBitSize);
879 else
880 return false;
881 }
882
883 RxSBG.Input = N.getOperand(0);
884 return true;
885 }
886
887 case ISD::SHL: {
888 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
889 if (!CountNode)
890 return false;
891
892 uint64_t Count = CountNode->getZExtValue();
893 unsigned BitSize = N.getValueSizeInBits();
894 if (Count < 1 || Count >= BitSize)
895 return false;
896
897 if (RxSBG.Opcode == SystemZ::RNSBG) {
898 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
899 // count bits from RxSBG.Input are ignored.
900 if (maskMatters(RxSBG, allOnes(Count)))
901 return false;
902 } else {
903 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
904 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
905 return false;
906 }
907
908 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
909 RxSBG.Input = N.getOperand(0);
910 return true;
911 }
912
913 case ISD::SRL:
914 case ISD::SRA: {
915 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
916 if (!CountNode)
917 return false;
918
919 uint64_t Count = CountNode->getZExtValue();
920 unsigned BitSize = N.getValueSizeInBits();
921 if (Count < 1 || Count >= BitSize)
922 return false;
923
924 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
925 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
926 // count bits from RxSBG.Input are ignored.
927 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
928 return false;
929 } else {
930 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
931 // which is similar to SLL above.
932 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
933 return false;
934 }
935
936 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
937 RxSBG.Input = N.getOperand(0);
938 return true;
939 }
940 default:
941 return false;
942 }
943 }
944
getUNDEF(const SDLoc & DL,EVT VT) const945 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
946 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
947 return SDValue(N, 0);
948 }
949
convertTo(const SDLoc & DL,EVT VT,SDValue N) const950 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
951 SDValue N) const {
952 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
953 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
954 DL, VT, getUNDEF(DL, MVT::i64), N);
955 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
956 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
957 assert(N.getValueType() == VT && "Unexpected value types");
958 return N;
959 }
960
tryRISBGZero(SDNode * N)961 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
962 SDLoc DL(N);
963 EVT VT = N->getValueType(0);
964 if (!VT.isInteger() || VT.getSizeInBits() > 64)
965 return false;
966 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
967 unsigned Count = 0;
968 while (expandRxSBG(RISBG))
969 // The widening or narrowing is expected to be free.
970 // Counting widening or narrowing as a saved operation will result in
971 // preferring an R*SBG over a simple shift/logical instruction.
972 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
973 RISBG.Input.getOpcode() != ISD::TRUNCATE)
974 Count += 1;
975 if (Count == 0 || isa<ConstantSDNode>(RISBG.Input))
976 return false;
977
978 // Prefer to use normal shift instructions over RISBG, since they can handle
979 // all cases and are sometimes shorter.
980 if (Count == 1 && N->getOpcode() != ISD::AND)
981 return false;
982
983 // Prefer register extensions like LLC over RISBG. Also prefer to start
984 // out with normal ANDs if one instruction would be enough. We can convert
985 // these ANDs into an RISBG later if a three-address instruction is useful.
986 if (RISBG.Rotate == 0) {
987 bool PreferAnd = false;
988 // Prefer AND for any 32-bit and-immediate operation.
989 if (VT == MVT::i32)
990 PreferAnd = true;
991 // As well as for any 64-bit operation that can be implemented via LLC(R),
992 // LLH(R), LLGT(R), or one of the and-immediate instructions.
993 else if (RISBG.Mask == 0xff ||
994 RISBG.Mask == 0xffff ||
995 RISBG.Mask == 0x7fffffff ||
996 SystemZ::isImmLF(~RISBG.Mask) ||
997 SystemZ::isImmHF(~RISBG.Mask))
998 PreferAnd = true;
999 // And likewise for the LLZRGF instruction, which doesn't have a register
1000 // to register version.
1001 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
1002 if (Load->getMemoryVT() == MVT::i32 &&
1003 (Load->getExtensionType() == ISD::EXTLOAD ||
1004 Load->getExtensionType() == ISD::ZEXTLOAD) &&
1005 RISBG.Mask == 0xffffff00 &&
1006 Subtarget->hasLoadAndZeroRightmostByte())
1007 PreferAnd = true;
1008 }
1009 if (PreferAnd) {
1010 // Replace the current node with an AND. Note that the current node
1011 // might already be that same AND, in which case it is already CSE'd
1012 // with it, and we must not call ReplaceNode.
1013 SDValue In = convertTo(DL, VT, RISBG.Input);
1014 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
1015 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
1016 if (N != New.getNode()) {
1017 insertDAGNode(CurDAG, N, Mask);
1018 insertDAGNode(CurDAG, N, New);
1019 ReplaceNode(N, New.getNode());
1020 N = New.getNode();
1021 }
1022 // Now, select the machine opcode to implement this operation.
1023 if (!N->isMachineOpcode())
1024 SelectCode(N);
1025 return true;
1026 }
1027 }
1028
1029 unsigned Opcode = SystemZ::RISBG;
1030 // Prefer RISBGN if available, since it does not clobber CC.
1031 if (Subtarget->hasMiscellaneousExtensions())
1032 Opcode = SystemZ::RISBGN;
1033 EVT OpcodeVT = MVT::i64;
1034 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1035 // We can only use the 32-bit instructions if all source bits are
1036 // in the low 32 bits without wrapping, both after rotation (because
1037 // of the smaller range for Start and End) and before rotation
1038 // (because the input value is truncated).
1039 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1040 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1041 ((RISBG.End + RISBG.Rotate) & 63) >=
1042 ((RISBG.Start + RISBG.Rotate) & 63)) {
1043 Opcode = SystemZ::RISBMux;
1044 OpcodeVT = MVT::i32;
1045 RISBG.Start &= 31;
1046 RISBG.End &= 31;
1047 }
1048 SDValue Ops[5] = {
1049 getUNDEF(DL, OpcodeVT),
1050 convertTo(DL, OpcodeVT, RISBG.Input),
1051 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1052 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1053 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1054 };
1055 SDValue New = convertTo(
1056 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1057 ReplaceNode(N, New.getNode());
1058 return true;
1059 }
1060
tryRxSBG(SDNode * N,unsigned Opcode)1061 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1062 SDLoc DL(N);
1063 EVT VT = N->getValueType(0);
1064 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1065 return false;
1066 // Try treating each operand of N as the second operand of the RxSBG
1067 // and see which goes deepest.
1068 RxSBGOperands RxSBG[] = {
1069 RxSBGOperands(Opcode, N->getOperand(0)),
1070 RxSBGOperands(Opcode, N->getOperand(1))
1071 };
1072 unsigned Count[] = { 0, 0 };
1073 for (unsigned I = 0; I < 2; ++I)
1074 while (RxSBG[I].Input->hasOneUse() && expandRxSBG(RxSBG[I]))
1075 // In cases of multiple users it seems better to keep the simple
1076 // instruction as they are one cycle faster, and it also helps in cases
1077 // where both inputs share a common node.
1078 // The widening or narrowing is expected to be free. Counting widening
1079 // or narrowing as a saved operation will result in preferring an R*SBG
1080 // over a simple shift/logical instruction.
1081 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1082 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1083 Count[I] += 1;
1084
1085 // Do nothing if neither operand is suitable.
1086 if (Count[0] == 0 && Count[1] == 0)
1087 return false;
1088
1089 // Pick the deepest second operand.
1090 unsigned I = Count[0] > Count[1] ? 0 : 1;
1091 SDValue Op0 = N->getOperand(I ^ 1);
1092
1093 // Prefer IC for character insertions from memory.
1094 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1095 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1096 if (Load->getMemoryVT() == MVT::i8)
1097 return false;
1098
1099 // See whether we can avoid an AND in the first operand by converting
1100 // ROSBG to RISBG.
1101 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1102 Opcode = SystemZ::RISBG;
1103 // Prefer RISBGN if available, since it does not clobber CC.
1104 if (Subtarget->hasMiscellaneousExtensions())
1105 Opcode = SystemZ::RISBGN;
1106 }
1107
1108 SDValue Ops[5] = {
1109 convertTo(DL, MVT::i64, Op0),
1110 convertTo(DL, MVT::i64, RxSBG[I].Input),
1111 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1112 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1113 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1114 };
1115 SDValue New = convertTo(
1116 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1117 ReplaceNode(N, New.getNode());
1118 return true;
1119 }
1120
splitLargeImmediate(unsigned Opcode,SDNode * Node,SDValue Op0,uint64_t UpperVal,uint64_t LowerVal)1121 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1122 SDValue Op0, uint64_t UpperVal,
1123 uint64_t LowerVal) {
1124 EVT VT = Node->getValueType(0);
1125 SDLoc DL(Node);
1126 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1127 if (Op0.getNode())
1128 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1129
1130 {
1131 // When we haven't passed in Op0, Upper will be a constant. In order to
1132 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1133 // SelectCode first and end up with an opaque machine node. This means that
1134 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1135 // SelectCode.
1136 //
1137 // Note that in the case where Op0 is passed in we could just call
1138 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1139 // the handle at all, but it's fine to do it here.
1140 //
1141 // TODO: This is a pretty hacky way to do this. Can we do something that
1142 // doesn't require a two paragraph explanation?
1143 HandleSDNode Handle(Upper);
1144 SelectCode(Upper.getNode());
1145 Upper = Handle.getValue();
1146 }
1147
1148 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1149 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1150
1151 ReplaceNode(Node, Or.getNode());
1152
1153 SelectCode(Or.getNode());
1154 }
1155
loadVectorConstant(const SystemZVectorConstantInfo & VCI,SDNode * Node)1156 void SystemZDAGToDAGISel::loadVectorConstant(
1157 const SystemZVectorConstantInfo &VCI, SDNode *Node) {
1158 assert((VCI.Opcode == SystemZISD::BYTE_MASK ||
1159 VCI.Opcode == SystemZISD::REPLICATE ||
1160 VCI.Opcode == SystemZISD::ROTATE_MASK) &&
1161 "Bad opcode!");
1162 assert(VCI.VecVT.getSizeInBits() == 128 && "Expected a vector type");
1163 EVT VT = Node->getValueType(0);
1164 SDLoc DL(Node);
1165 SmallVector<SDValue, 2> Ops;
1166 for (unsigned OpVal : VCI.OpVals)
1167 Ops.push_back(CurDAG->getTargetConstant(OpVal, DL, MVT::i32));
1168 SDValue Op = CurDAG->getNode(VCI.Opcode, DL, VCI.VecVT, Ops);
1169
1170 if (VCI.VecVT == VT.getSimpleVT())
1171 ReplaceNode(Node, Op.getNode());
1172 else if (VT.getSizeInBits() == 128) {
1173 SDValue BitCast = CurDAG->getNode(ISD::BITCAST, DL, VT, Op);
1174 ReplaceNode(Node, BitCast.getNode());
1175 SelectCode(BitCast.getNode());
1176 } else { // float or double
1177 unsigned SubRegIdx =
1178 (VT.getSizeInBits() == 32 ? SystemZ::subreg_h32 : SystemZ::subreg_h64);
1179 ReplaceNode(
1180 Node, CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, Op).getNode());
1181 }
1182 SelectCode(Op.getNode());
1183 }
1184
tryGather(SDNode * N,unsigned Opcode)1185 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1186 SDValue ElemV = N->getOperand(2);
1187 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1188 if (!ElemN)
1189 return false;
1190
1191 unsigned Elem = ElemN->getZExtValue();
1192 EVT VT = N->getValueType(0);
1193 if (Elem >= VT.getVectorNumElements())
1194 return false;
1195
1196 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1197 if (!Load || !Load->hasNUsesOfValue(1, 0))
1198 return false;
1199 if (Load->getMemoryVT().getSizeInBits() !=
1200 Load->getValueType(0).getSizeInBits())
1201 return false;
1202
1203 SDValue Base, Disp, Index;
1204 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1205 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1206 return false;
1207
1208 SDLoc DL(Load);
1209 SDValue Ops[] = {
1210 N->getOperand(0), Base, Disp, Index,
1211 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1212 };
1213 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1214 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1215 ReplaceNode(N, Res);
1216 return true;
1217 }
1218
tryScatter(StoreSDNode * Store,unsigned Opcode)1219 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1220 SDValue Value = Store->getValue();
1221 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1222 return false;
1223 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1224 return false;
1225
1226 SDValue ElemV = Value.getOperand(1);
1227 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1228 if (!ElemN)
1229 return false;
1230
1231 SDValue Vec = Value.getOperand(0);
1232 EVT VT = Vec.getValueType();
1233 unsigned Elem = ElemN->getZExtValue();
1234 if (Elem >= VT.getVectorNumElements())
1235 return false;
1236
1237 SDValue Base, Disp, Index;
1238 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1239 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1240 return false;
1241
1242 SDLoc DL(Store);
1243 SDValue Ops[] = {
1244 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1245 Store->getChain()
1246 };
1247 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1248 return true;
1249 }
1250
1251 // Check whether or not the chain ending in StoreNode is suitable for doing
1252 // the {load; op; store} to modify transformation.
isFusableLoadOpStorePattern(StoreSDNode * StoreNode,SDValue StoredVal,SelectionDAG * CurDAG,LoadSDNode * & LoadNode,SDValue & InputChain)1253 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1254 SDValue StoredVal, SelectionDAG *CurDAG,
1255 LoadSDNode *&LoadNode,
1256 SDValue &InputChain) {
1257 // Is the stored value result 0 of the operation?
1258 if (StoredVal.getResNo() != 0)
1259 return false;
1260
1261 // Are there other uses of the loaded value than the operation?
1262 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1263 return false;
1264
1265 // Is the store non-extending and non-indexed?
1266 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1267 return false;
1268
1269 SDValue Load = StoredVal->getOperand(0);
1270 // Is the stored value a non-extending and non-indexed load?
1271 if (!ISD::isNormalLoad(Load.getNode()))
1272 return false;
1273
1274 // Return LoadNode by reference.
1275 LoadNode = cast<LoadSDNode>(Load);
1276
1277 // Is store the only read of the loaded value?
1278 if (!Load.hasOneUse())
1279 return false;
1280
1281 // Is the address of the store the same as the load?
1282 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1283 LoadNode->getOffset() != StoreNode->getOffset())
1284 return false;
1285
1286 // Check if the chain is produced by the load or is a TokenFactor with
1287 // the load output chain as an operand. Return InputChain by reference.
1288 SDValue Chain = StoreNode->getChain();
1289
1290 bool ChainCheck = false;
1291 if (Chain == Load.getValue(1)) {
1292 ChainCheck = true;
1293 InputChain = LoadNode->getChain();
1294 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1295 SmallVector<SDValue, 4> ChainOps;
1296 SmallVector<const SDNode *, 4> LoopWorklist;
1297 SmallPtrSet<const SDNode *, 16> Visited;
1298 const unsigned int Max = 1024;
1299 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1300 SDValue Op = Chain.getOperand(i);
1301 if (Op == Load.getValue(1)) {
1302 ChainCheck = true;
1303 // Drop Load, but keep its chain. No cycle check necessary.
1304 ChainOps.push_back(Load.getOperand(0));
1305 continue;
1306 }
1307 LoopWorklist.push_back(Op.getNode());
1308 ChainOps.push_back(Op);
1309 }
1310
1311 if (ChainCheck) {
1312 // Add the other operand of StoredVal to worklist.
1313 for (SDValue Op : StoredVal->ops())
1314 if (Op.getNode() != LoadNode)
1315 LoopWorklist.push_back(Op.getNode());
1316
1317 // Check if Load is reachable from any of the nodes in the worklist.
1318 if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
1319 true))
1320 return false;
1321
1322 // Make a new TokenFactor with all the other input chains except
1323 // for the load.
1324 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1325 MVT::Other, ChainOps);
1326 }
1327 }
1328 if (!ChainCheck)
1329 return false;
1330
1331 return true;
1332 }
1333
1334 // Change a chain of {load; op; store} of the same value into a simple op
1335 // through memory of that value, if the uses of the modified value and its
1336 // address are suitable.
1337 //
1338 // The tablegen pattern memory operand pattern is currently not able to match
1339 // the case where the CC on the original operation are used.
1340 //
1341 // See the equivalent routine in X86ISelDAGToDAG for further comments.
tryFoldLoadStoreIntoMemOperand(SDNode * Node)1342 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1343 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1344 SDValue StoredVal = StoreNode->getOperand(1);
1345 unsigned Opc = StoredVal->getOpcode();
1346 SDLoc DL(StoreNode);
1347
1348 // Before we try to select anything, make sure this is memory operand size
1349 // and opcode we can handle. Note that this must match the code below that
1350 // actually lowers the opcodes.
1351 EVT MemVT = StoreNode->getMemoryVT();
1352 unsigned NewOpc = 0;
1353 bool NegateOperand = false;
1354 switch (Opc) {
1355 default:
1356 return false;
1357 case SystemZISD::SSUBO:
1358 NegateOperand = true;
1359 [[fallthrough]];
1360 case SystemZISD::SADDO:
1361 if (MemVT == MVT::i32)
1362 NewOpc = SystemZ::ASI;
1363 else if (MemVT == MVT::i64)
1364 NewOpc = SystemZ::AGSI;
1365 else
1366 return false;
1367 break;
1368 case SystemZISD::USUBO:
1369 NegateOperand = true;
1370 [[fallthrough]];
1371 case SystemZISD::UADDO:
1372 if (MemVT == MVT::i32)
1373 NewOpc = SystemZ::ALSI;
1374 else if (MemVT == MVT::i64)
1375 NewOpc = SystemZ::ALGSI;
1376 else
1377 return false;
1378 break;
1379 }
1380
1381 LoadSDNode *LoadNode = nullptr;
1382 SDValue InputChain;
1383 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1384 InputChain))
1385 return false;
1386
1387 SDValue Operand = StoredVal.getOperand(1);
1388 auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1389 if (!OperandC)
1390 return false;
1391 auto OperandV = OperandC->getAPIntValue();
1392 if (NegateOperand)
1393 OperandV = -OperandV;
1394 if (OperandV.getMinSignedBits() > 8)
1395 return false;
1396 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1397
1398 SDValue Base, Disp;
1399 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1400 return false;
1401
1402 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1403 MachineSDNode *Result =
1404 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1405 CurDAG->setNodeMemRefs(
1406 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1407
1408 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1409 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1410 CurDAG->RemoveDeadNode(Node);
1411 return true;
1412 }
1413
canUseBlockOperation(StoreSDNode * Store,LoadSDNode * Load) const1414 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1415 LoadSDNode *Load) const {
1416 // Check that the two memory operands have the same size.
1417 if (Load->getMemoryVT() != Store->getMemoryVT())
1418 return false;
1419
1420 // Volatility stops an access from being decomposed.
1421 if (Load->isVolatile() || Store->isVolatile())
1422 return false;
1423
1424 // There's no chance of overlap if the load is invariant.
1425 if (Load->isInvariant() && Load->isDereferenceable())
1426 return true;
1427
1428 // Otherwise we need to check whether there's an alias.
1429 const Value *V1 = Load->getMemOperand()->getValue();
1430 const Value *V2 = Store->getMemOperand()->getValue();
1431 if (!V1 || !V2)
1432 return false;
1433
1434 // Reject equality.
1435 uint64_t Size = Load->getMemoryVT().getStoreSize();
1436 int64_t End1 = Load->getSrcValueOffset() + Size;
1437 int64_t End2 = Store->getSrcValueOffset() + Size;
1438 if (V1 == V2 && End1 == End2)
1439 return false;
1440
1441 return AA->isNoAlias(MemoryLocation(V1, End1, Load->getAAInfo()),
1442 MemoryLocation(V2, End2, Store->getAAInfo()));
1443 }
1444
storeLoadCanUseMVC(SDNode * N) const1445 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1446 auto *Store = cast<StoreSDNode>(N);
1447 auto *Load = cast<LoadSDNode>(Store->getValue());
1448
1449 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1450 // instructions.
1451 uint64_t Size = Load->getMemoryVT().getStoreSize();
1452 if (Size > 1 && Size <= 8) {
1453 // Prefer LHRL, LRL and LGRL.
1454 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1455 return false;
1456 // Prefer STHRL, STRL and STGRL.
1457 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1458 return false;
1459 }
1460
1461 return canUseBlockOperation(Store, Load);
1462 }
1463
storeLoadCanUseBlockBinary(SDNode * N,unsigned I) const1464 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1465 unsigned I) const {
1466 auto *StoreA = cast<StoreSDNode>(N);
1467 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1468 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1469 return !LoadA->isVolatile() && LoadA->getMemoryVT() == LoadB->getMemoryVT() &&
1470 canUseBlockOperation(StoreA, LoadB);
1471 }
1472
storeLoadIsAligned(SDNode * N) const1473 bool SystemZDAGToDAGISel::storeLoadIsAligned(SDNode *N) const {
1474
1475 auto *MemAccess = cast<LSBaseSDNode>(N);
1476 TypeSize StoreSize = MemAccess->getMemoryVT().getStoreSize();
1477 SDValue BasePtr = MemAccess->getBasePtr();
1478 MachineMemOperand *MMO = MemAccess->getMemOperand();
1479 assert(MMO && "Expected a memory operand.");
1480
1481 // The memory access must have a proper alignment and no index register.
1482 if (MemAccess->getAlign().value() < StoreSize ||
1483 !MemAccess->getOffset().isUndef())
1484 return false;
1485
1486 // The MMO must not have an unaligned offset.
1487 if (MMO->getOffset() % StoreSize != 0)
1488 return false;
1489
1490 // An access to GOT or the Constant Pool is aligned.
1491 if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1492 if ((PSV->isGOT() || PSV->isConstantPool()))
1493 return true;
1494
1495 // Check the alignment of a Global Address.
1496 if (BasePtr.getNumOperands())
1497 if (GlobalAddressSDNode *GA =
1498 dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) {
1499 // The immediate offset must be aligned.
1500 if (GA->getOffset() % StoreSize != 0)
1501 return false;
1502
1503 // The alignment of the symbol itself must be at least the store size.
1504 const GlobalValue *GV = GA->getGlobal();
1505 const DataLayout &DL = GV->getParent()->getDataLayout();
1506 if (GV->getPointerAlignment(DL).value() < StoreSize)
1507 return false;
1508 }
1509
1510 return true;
1511 }
1512
Select(SDNode * Node)1513 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1514 // If we have a custom node, we already have selected!
1515 if (Node->isMachineOpcode()) {
1516 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1517 Node->setNodeId(-1);
1518 return;
1519 }
1520
1521 unsigned Opcode = Node->getOpcode();
1522 switch (Opcode) {
1523 case ISD::OR:
1524 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1525 if (tryRxSBG(Node, SystemZ::ROSBG))
1526 return;
1527 goto or_xor;
1528
1529 case ISD::XOR:
1530 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1531 if (tryRxSBG(Node, SystemZ::RXSBG))
1532 return;
1533 // Fall through.
1534 or_xor:
1535 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1536 // split the operation into two. If both operands here happen to be
1537 // constant, leave this to common code to optimize.
1538 if (Node->getValueType(0) == MVT::i64 &&
1539 Node->getOperand(0).getOpcode() != ISD::Constant)
1540 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1541 uint64_t Val = Op1->getZExtValue();
1542 // Don't split the operation if we can match one of the combined
1543 // logical operations provided by miscellaneous-extensions-3.
1544 if (Subtarget->hasMiscellaneousExtensions3()) {
1545 unsigned ChildOpcode = Node->getOperand(0).getOpcode();
1546 // Check whether this expression matches NAND/NOR/NXOR.
1547 if (Val == (uint64_t)-1 && Opcode == ISD::XOR)
1548 if (ChildOpcode == ISD::AND || ChildOpcode == ISD::OR ||
1549 ChildOpcode == ISD::XOR)
1550 break;
1551 // Check whether this expression matches OR-with-complement
1552 // (or matches an alternate pattern for NXOR).
1553 if (ChildOpcode == ISD::XOR) {
1554 auto Op0 = Node->getOperand(0);
1555 if (auto *Op0Op1 = dyn_cast<ConstantSDNode>(Op0->getOperand(1)))
1556 if (Op0Op1->getZExtValue() == (uint64_t)-1)
1557 break;
1558 }
1559 }
1560 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1561 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1562 Val - uint32_t(Val), uint32_t(Val));
1563 return;
1564 }
1565 }
1566 break;
1567
1568 case ISD::AND:
1569 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1570 if (tryRxSBG(Node, SystemZ::RNSBG))
1571 return;
1572 [[fallthrough]];
1573 case ISD::ROTL:
1574 case ISD::SHL:
1575 case ISD::SRL:
1576 case ISD::ZERO_EXTEND:
1577 if (tryRISBGZero(Node))
1578 return;
1579 break;
1580
1581 case ISD::Constant:
1582 // If this is a 64-bit constant that is out of the range of LLILF,
1583 // LLIHF and LGFI, split it into two 32-bit pieces.
1584 if (Node->getValueType(0) == MVT::i64) {
1585 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1586 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1587 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1588 uint32_t(Val));
1589 return;
1590 }
1591 }
1592 break;
1593
1594 case SystemZISD::SELECT_CCMASK: {
1595 SDValue Op0 = Node->getOperand(0);
1596 SDValue Op1 = Node->getOperand(1);
1597 // Prefer to put any load first, so that it can be matched as a
1598 // conditional load. Likewise for constants in range for LOCHI.
1599 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1600 (Subtarget->hasLoadStoreOnCond2() &&
1601 Node->getValueType(0).isInteger() &&
1602 Op1.getOpcode() == ISD::Constant &&
1603 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1604 !(Op0.getOpcode() == ISD::Constant &&
1605 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1606 SDValue CCValid = Node->getOperand(2);
1607 SDValue CCMask = Node->getOperand(3);
1608 uint64_t ConstCCValid =
1609 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1610 uint64_t ConstCCMask =
1611 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1612 // Invert the condition.
1613 CCMask = CurDAG->getTargetConstant(ConstCCValid ^ ConstCCMask,
1614 SDLoc(Node), CCMask.getValueType());
1615 SDValue Op4 = Node->getOperand(4);
1616 SDNode *UpdatedNode =
1617 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1618 if (UpdatedNode != Node) {
1619 // In case this node already exists then replace Node with it.
1620 ReplaceNode(Node, UpdatedNode);
1621 Node = UpdatedNode;
1622 }
1623 }
1624 break;
1625 }
1626
1627 case ISD::INSERT_VECTOR_ELT: {
1628 EVT VT = Node->getValueType(0);
1629 unsigned ElemBitSize = VT.getScalarSizeInBits();
1630 if (ElemBitSize == 32) {
1631 if (tryGather(Node, SystemZ::VGEF))
1632 return;
1633 } else if (ElemBitSize == 64) {
1634 if (tryGather(Node, SystemZ::VGEG))
1635 return;
1636 }
1637 break;
1638 }
1639
1640 case ISD::BUILD_VECTOR: {
1641 auto *BVN = cast<BuildVectorSDNode>(Node);
1642 SystemZVectorConstantInfo VCI(BVN);
1643 if (VCI.isVectorConstantLegal(*Subtarget)) {
1644 loadVectorConstant(VCI, Node);
1645 return;
1646 }
1647 break;
1648 }
1649
1650 case ISD::ConstantFP: {
1651 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1652 if (Imm.isZero() || Imm.isNegZero())
1653 break;
1654 SystemZVectorConstantInfo VCI(Imm);
1655 bool Success = VCI.isVectorConstantLegal(*Subtarget); (void)Success;
1656 assert(Success && "Expected legal FP immediate");
1657 loadVectorConstant(VCI, Node);
1658 return;
1659 }
1660
1661 case ISD::STORE: {
1662 if (tryFoldLoadStoreIntoMemOperand(Node))
1663 return;
1664 auto *Store = cast<StoreSDNode>(Node);
1665 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1666 if (ElemBitSize == 32) {
1667 if (tryScatter(Store, SystemZ::VSCEF))
1668 return;
1669 } else if (ElemBitSize == 64) {
1670 if (tryScatter(Store, SystemZ::VSCEG))
1671 return;
1672 }
1673 break;
1674 }
1675 }
1676
1677 SelectCode(Node);
1678 }
1679
1680 bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)1681 SelectInlineAsmMemoryOperand(const SDValue &Op,
1682 unsigned ConstraintID,
1683 std::vector<SDValue> &OutOps) {
1684 SystemZAddressingMode::AddrForm Form;
1685 SystemZAddressingMode::DispRange DispRange;
1686 SDValue Base, Disp, Index;
1687
1688 switch(ConstraintID) {
1689 default:
1690 llvm_unreachable("Unexpected asm memory constraint");
1691 case InlineAsm::Constraint_i:
1692 case InlineAsm::Constraint_Q:
1693 case InlineAsm::Constraint_ZQ:
1694 // Accept an address with a short displacement, but no index.
1695 Form = SystemZAddressingMode::FormBD;
1696 DispRange = SystemZAddressingMode::Disp12Only;
1697 break;
1698 case InlineAsm::Constraint_R:
1699 case InlineAsm::Constraint_ZR:
1700 // Accept an address with a short displacement and an index.
1701 Form = SystemZAddressingMode::FormBDXNormal;
1702 DispRange = SystemZAddressingMode::Disp12Only;
1703 break;
1704 case InlineAsm::Constraint_S:
1705 case InlineAsm::Constraint_ZS:
1706 // Accept an address with a long displacement, but no index.
1707 Form = SystemZAddressingMode::FormBD;
1708 DispRange = SystemZAddressingMode::Disp20Only;
1709 break;
1710 case InlineAsm::Constraint_T:
1711 case InlineAsm::Constraint_m:
1712 case InlineAsm::Constraint_o:
1713 case InlineAsm::Constraint_p:
1714 case InlineAsm::Constraint_ZT:
1715 // Accept an address with a long displacement and an index.
1716 // m works the same as T, as this is the most general case.
1717 // We don't really have any special handling of "offsettable"
1718 // memory addresses, so just treat o the same as m.
1719 Form = SystemZAddressingMode::FormBDXNormal;
1720 DispRange = SystemZAddressingMode::Disp20Only;
1721 break;
1722 }
1723
1724 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1725 const TargetRegisterClass *TRC =
1726 Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1727 SDLoc DL(Base);
1728 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1729
1730 // Make sure that the base address doesn't go into %r0.
1731 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1732 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1733 Base.getOpcode() != ISD::Register) {
1734 Base =
1735 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1736 DL, Base.getValueType(),
1737 Base, RC), 0);
1738 }
1739
1740 // Make sure that the index register isn't assigned to %r0 either.
1741 if (Index.getOpcode() != ISD::Register) {
1742 Index =
1743 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1744 DL, Index.getValueType(),
1745 Index, RC), 0);
1746 }
1747
1748 OutOps.push_back(Base);
1749 OutOps.push_back(Disp);
1750 OutOps.push_back(Index);
1751 return false;
1752 }
1753
1754 return true;
1755 }
1756
1757 // IsProfitableToFold - Returns true if is profitable to fold the specific
1758 // operand node N of U during instruction selection that starts at Root.
1759 bool
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1760 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1761 SDNode *Root) const {
1762 // We want to avoid folding a LOAD into an ICMP node if as a result
1763 // we would be forced to spill the condition code into a GPR.
1764 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1765 if (!N.hasOneUse() || !U->hasOneUse())
1766 return false;
1767
1768 // The user of the CC value will usually be a CopyToReg into the
1769 // physical CC register, which in turn is glued and chained to the
1770 // actual instruction that uses the CC value. Bail out if we have
1771 // anything else than that.
1772 SDNode *CCUser = *U->use_begin();
1773 SDNode *CCRegUser = nullptr;
1774 if (CCUser->getOpcode() == ISD::CopyToReg ||
1775 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1776 for (auto *U : CCUser->uses()) {
1777 if (CCRegUser == nullptr)
1778 CCRegUser = U;
1779 else if (CCRegUser != U)
1780 return false;
1781 }
1782 }
1783 if (CCRegUser == nullptr)
1784 return false;
1785
1786 // If the actual instruction is a branch, the only thing that remains to be
1787 // checked is whether the CCUser chain is a predecessor of the load.
1788 if (CCRegUser->isMachineOpcode() &&
1789 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1790 return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1791
1792 // Otherwise, the instruction may have multiple operands, and we need to
1793 // verify that none of them are a predecessor of the load. This is exactly
1794 // the same check that would be done by common code if the CC setter were
1795 // glued to the CC user, so simply invoke that check here.
1796 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1797 return false;
1798 }
1799
1800 return true;
1801 }
1802
1803 namespace {
1804 // Represents a sequence for extracting a 0/1 value from an IPM result:
1805 // (((X ^ XORValue) + AddValue) >> Bit)
1806 struct IPMConversion {
IPMConversion__anon790a75190211::IPMConversion1807 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1808 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1809
1810 int64_t XORValue;
1811 int64_t AddValue;
1812 unsigned Bit;
1813 };
1814 } // end anonymous namespace
1815
1816 // Return a sequence for getting a 1 from an IPM result when CC has a
1817 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1818 // The handling of CC values outside CCValid doesn't matter.
getIPMConversion(unsigned CCValid,unsigned CCMask)1819 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1820 // Deal with cases where the result can be taken directly from a bit
1821 // of the IPM result.
1822 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1823 return IPMConversion(0, 0, SystemZ::IPM_CC);
1824 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1825 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1826
1827 // Deal with cases where we can add a value to force the sign bit
1828 // to contain the right value. Putting the bit in 31 means we can
1829 // use SRL rather than RISBG(L), and also makes it easier to get a
1830 // 0/-1 value, so it has priority over the other tests below.
1831 //
1832 // These sequences rely on the fact that the upper two bits of the
1833 // IPM result are zero.
1834 uint64_t TopBit = uint64_t(1) << 31;
1835 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1836 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1837 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1838 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1839 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1840 | SystemZ::CCMASK_1
1841 | SystemZ::CCMASK_2)))
1842 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1843 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1844 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1845 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1846 | SystemZ::CCMASK_2
1847 | SystemZ::CCMASK_3)))
1848 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1849
1850 // Next try inverting the value and testing a bit. 0/1 could be
1851 // handled this way too, but we dealt with that case above.
1852 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1853 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1854
1855 // Handle cases where adding a value forces a non-sign bit to contain
1856 // the right value.
1857 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1858 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1859 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1860 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1861
1862 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1863 // can be done by inverting the low CC bit and applying one of the
1864 // sign-based extractions above.
1865 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1866 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1867 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1868 return IPMConversion(1 << SystemZ::IPM_CC,
1869 TopBit - (3 << SystemZ::IPM_CC), 31);
1870 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1871 | SystemZ::CCMASK_1
1872 | SystemZ::CCMASK_3)))
1873 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1874 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1875 | SystemZ::CCMASK_2
1876 | SystemZ::CCMASK_3)))
1877 return IPMConversion(1 << SystemZ::IPM_CC,
1878 TopBit - (1 << SystemZ::IPM_CC), 31);
1879
1880 llvm_unreachable("Unexpected CC combination");
1881 }
1882
expandSelectBoolean(SDNode * Node)1883 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1884 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1885 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1886 if (!TrueOp || !FalseOp)
1887 return SDValue();
1888 if (FalseOp->getZExtValue() != 0)
1889 return SDValue();
1890 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1891 return SDValue();
1892
1893 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1894 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1895 if (!CCValidOp || !CCMaskOp)
1896 return SDValue();
1897 int CCValid = CCValidOp->getZExtValue();
1898 int CCMask = CCMaskOp->getZExtValue();
1899
1900 SDLoc DL(Node);
1901 SDValue CCReg = Node->getOperand(4);
1902 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1903 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1904
1905 if (IPM.XORValue)
1906 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1907 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1908
1909 if (IPM.AddValue)
1910 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1911 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1912
1913 EVT VT = Node->getValueType(0);
1914 if (VT == MVT::i32 && IPM.Bit == 31) {
1915 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1916 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1917 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1918 } else {
1919 if (VT != MVT::i32)
1920 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1921
1922 if (TrueOp->getSExtValue() == 1) {
1923 // The SHR/AND sequence should get optimized to an RISBG.
1924 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1925 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1926 Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1927 CurDAG->getConstant(1, DL, VT));
1928 } else {
1929 // Sign-extend from IPM.Bit using a pair of shifts.
1930 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1931 int SraAmt = VT.getSizeInBits() - 1;
1932 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1933 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1934 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1935 CurDAG->getConstant(SraAmt, DL, MVT::i32));
1936 }
1937 }
1938
1939 return Result;
1940 }
1941
PreprocessISelDAG()1942 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1943 // If we have conditional immediate loads, we always prefer
1944 // using those over an IPM sequence.
1945 if (Subtarget->hasLoadStoreOnCond2())
1946 return;
1947
1948 bool MadeChange = false;
1949
1950 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1951 E = CurDAG->allnodes_end();
1952 I != E;) {
1953 SDNode *N = &*I++;
1954 if (N->use_empty())
1955 continue;
1956
1957 SDValue Res;
1958 switch (N->getOpcode()) {
1959 default: break;
1960 case SystemZISD::SELECT_CCMASK:
1961 Res = expandSelectBoolean(N);
1962 break;
1963 }
1964
1965 if (Res) {
1966 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1967 LLVM_DEBUG(N->dump(CurDAG));
1968 LLVM_DEBUG(dbgs() << "\nNew: ");
1969 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1970 LLVM_DEBUG(dbgs() << "\n");
1971
1972 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1973 MadeChange = true;
1974 }
1975 }
1976
1977 if (MadeChange)
1978 CurDAG->RemoveDeadNodes();
1979 }
1980