1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86FrameLowering.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/WinEHFuncInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCObjectFileInfo.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include <cstdlib>
38
39 #define DEBUG_TYPE "x86-fl"
40
41 STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue");
42 STATISTIC(NumFrameExtraProbe,
43 "Number of extra stack probes generated in prologue");
44
45 using namespace llvm;
46
X86FrameLowering(const X86Subtarget & STI,MaybeAlign StackAlignOverride)47 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
48 MaybeAlign StackAlignOverride)
49 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
50 STI.is64Bit() ? -8 : -4),
51 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
52 // Cache a bunch of frame-related predicates for this subtarget.
53 SlotSize = TRI->getSlotSize();
54 Is64Bit = STI.is64Bit();
55 IsLP64 = STI.isTarget64BitLP64();
56 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
57 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
58 StackPtr = TRI->getStackRegister();
59 }
60
hasReservedCallFrame(const MachineFunction & MF) const61 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
62 return !MF.getFrameInfo().hasVarSizedObjects() &&
63 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() &&
64 !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall();
65 }
66
67 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
68 /// call frame pseudos can be simplified. Having a FP, as in the default
69 /// implementation, is not sufficient here since we can't always use it.
70 /// Use a more nuanced condition.
71 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const72 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
73 return hasReservedCallFrame(MF) ||
74 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
75 (hasFP(MF) && !TRI->hasStackRealignment(MF)) ||
76 TRI->hasBasePointer(MF);
77 }
78
79 // needsFrameIndexResolution - Do we need to perform FI resolution for
80 // this function. Normally, this is required only when the function
81 // has any stack objects. However, FI resolution actually has another job,
82 // not apparent from the title - it resolves callframesetup/destroy
83 // that were not simplified earlier.
84 // So, this is required for x86 functions that have push sequences even
85 // when there are no stack objects.
86 bool
needsFrameIndexResolution(const MachineFunction & MF) const87 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
88 return MF.getFrameInfo().hasStackObjects() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
90 }
91
92 /// hasFP - Return true if the specified function should have a dedicated frame
93 /// pointer register. This is true if the function has variable sized allocas
94 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const95 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
96 const MachineFrameInfo &MFI = MF.getFrameInfo();
97 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
98 TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
99 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
100 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
101 MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() ||
102 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
103 MFI.hasStackMap() || MFI.hasPatchPoint() ||
104 (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment()));
105 }
106
getSUBriOpcode(bool IsLP64,int64_t Imm)107 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::SUB64ri8;
111 return X86::SUB64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::SUB32ri8;
115 return X86::SUB32ri;
116 }
117 }
118
getADDriOpcode(bool IsLP64,int64_t Imm)119 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
120 if (IsLP64) {
121 if (isInt<8>(Imm))
122 return X86::ADD64ri8;
123 return X86::ADD64ri32;
124 } else {
125 if (isInt<8>(Imm))
126 return X86::ADD32ri8;
127 return X86::ADD32ri;
128 }
129 }
130
getSUBrrOpcode(bool IsLP64)131 static unsigned getSUBrrOpcode(bool IsLP64) {
132 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
133 }
134
getADDrrOpcode(bool IsLP64)135 static unsigned getADDrrOpcode(bool IsLP64) {
136 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
137 }
138
getANDriOpcode(bool IsLP64,int64_t Imm)139 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
140 if (IsLP64) {
141 if (isInt<8>(Imm))
142 return X86::AND64ri8;
143 return X86::AND64ri32;
144 }
145 if (isInt<8>(Imm))
146 return X86::AND32ri8;
147 return X86::AND32ri;
148 }
149
getLEArOpcode(bool IsLP64)150 static unsigned getLEArOpcode(bool IsLP64) {
151 return IsLP64 ? X86::LEA64r : X86::LEA32r;
152 }
153
getMOVriOpcode(bool Use64BitReg,int64_t Imm)154 static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) {
155 if (Use64BitReg) {
156 if (isUInt<32>(Imm))
157 return X86::MOV32ri64;
158 if (isInt<32>(Imm))
159 return X86::MOV64ri32;
160 return X86::MOV64ri;
161 }
162 return X86::MOV32ri;
163 }
164
isEAXLiveIn(MachineBasicBlock & MBB)165 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
166 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
167 unsigned Reg = RegMask.PhysReg;
168
169 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
170 Reg == X86::AH || Reg == X86::AL)
171 return true;
172 }
173
174 return false;
175 }
176
177 /// Check if the flags need to be preserved before the terminators.
178 /// This would be the case, if the eflags is live-in of the region
179 /// composed by the terminators or live-out of that region, without
180 /// being defined by a terminator.
181 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)182 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
183 for (const MachineInstr &MI : MBB.terminators()) {
184 bool BreakNext = false;
185 for (const MachineOperand &MO : MI.operands()) {
186 if (!MO.isReg())
187 continue;
188 Register Reg = MO.getReg();
189 if (Reg != X86::EFLAGS)
190 continue;
191
192 // This terminator needs an eflags that is not defined
193 // by a previous another terminator:
194 // EFLAGS is live-in of the region composed by the terminators.
195 if (!MO.isDef())
196 return true;
197 // This terminator defines the eflags, i.e., we don't need to preserve it.
198 // However, we still need to check this specific terminator does not
199 // read a live-in value.
200 BreakNext = true;
201 }
202 // We found a definition of the eflags, no need to preserve them.
203 if (BreakNext)
204 return false;
205 }
206
207 // None of the terminators use or define the eflags.
208 // Check if they are live-out, that would imply we need to preserve them.
209 for (const MachineBasicBlock *Succ : MBB.successors())
210 if (Succ->isLiveIn(X86::EFLAGS))
211 return true;
212
213 return false;
214 }
215
216 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
217 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & DL,int64_t NumBytes,bool InEpilogue) const218 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
219 MachineBasicBlock::iterator &MBBI,
220 const DebugLoc &DL,
221 int64_t NumBytes, bool InEpilogue) const {
222 bool isSub = NumBytes < 0;
223 uint64_t Offset = isSub ? -NumBytes : NumBytes;
224 MachineInstr::MIFlag Flag =
225 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
226
227 uint64_t Chunk = (1LL << 31) - 1;
228
229 MachineFunction &MF = *MBB.getParent();
230 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
231 const X86TargetLowering &TLI = *STI.getTargetLowering();
232 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
233
234 // It's ok to not take into account large chunks when probing, as the
235 // allocation is split in smaller chunks anyway.
236 if (EmitInlineStackProbe && !InEpilogue) {
237
238 // This pseudo-instruction is going to be expanded, potentially using a
239 // loop, by inlineStackProbe().
240 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING)).addImm(Offset);
241 return;
242 } else if (Offset > Chunk) {
243 // Rather than emit a long series of instructions for large offsets,
244 // load the offset into a register and do one sub/add
245 unsigned Reg = 0;
246 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
247
248 if (isSub && !isEAXLiveIn(MBB))
249 Reg = Rax;
250 else
251 Reg = TRI->findDeadCallerSavedReg(MBB, MBBI);
252
253 unsigned AddSubRROpc =
254 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
255 if (Reg) {
256 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Reg)
257 .addImm(Offset)
258 .setMIFlag(Flag);
259 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
260 .addReg(StackPtr)
261 .addReg(Reg);
262 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
263 return;
264 } else if (Offset > 8 * Chunk) {
265 // If we would need more than 8 add or sub instructions (a >16GB stack
266 // frame), it's worth spilling RAX to materialize this immediate.
267 // pushq %rax
268 // movabsq +-$Offset+-SlotSize, %rax
269 // addq %rsp, %rax
270 // xchg %rax, (%rsp)
271 // movq (%rsp), %rsp
272 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
273 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
274 .addReg(Rax, RegState::Kill)
275 .setMIFlag(Flag);
276 // Subtract is not commutative, so negate the offset and always use add.
277 // Subtract 8 less and add 8 more to account for the PUSH we just did.
278 if (isSub)
279 Offset = -(Offset - SlotSize);
280 else
281 Offset = Offset + SlotSize;
282 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Offset)), Rax)
283 .addImm(Offset)
284 .setMIFlag(Flag);
285 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
286 .addReg(Rax)
287 .addReg(StackPtr);
288 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
289 // Exchange the new SP in RAX with the top of the stack.
290 addRegOffset(
291 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
292 StackPtr, false, 0);
293 // Load new SP from the top of the stack into RSP.
294 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
295 StackPtr, false, 0);
296 return;
297 }
298 }
299
300 while (Offset) {
301 uint64_t ThisVal = std::min(Offset, Chunk);
302 if (ThisVal == SlotSize) {
303 // Use push / pop for slot sized adjustments as a size optimization. We
304 // need to find a dead register when using pop.
305 unsigned Reg = isSub
306 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
307 : TRI->findDeadCallerSavedReg(MBB, MBBI);
308 if (Reg) {
309 unsigned Opc = isSub
310 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
311 : (Is64Bit ? X86::POP64r : X86::POP32r);
312 BuildMI(MBB, MBBI, DL, TII.get(Opc))
313 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
314 .setMIFlag(Flag);
315 Offset -= ThisVal;
316 continue;
317 }
318 }
319
320 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
321 .setMIFlag(Flag);
322
323 Offset -= ThisVal;
324 }
325 }
326
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const327 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
328 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
329 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
330 assert(Offset != 0 && "zero offset stack adjustment requested");
331
332 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
333 // is tricky.
334 bool UseLEA;
335 if (!InEpilogue) {
336 // Check if inserting the prologue at the beginning
337 // of MBB would require to use LEA operations.
338 // We need to use LEA operations if EFLAGS is live in, because
339 // it means an instruction will read it before it gets defined.
340 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
341 } else {
342 // If we can use LEA for SP but we shouldn't, check that none
343 // of the terminators uses the eflags. Otherwise we will insert
344 // a ADD that will redefine the eflags and break the condition.
345 // Alternatively, we could move the ADD, but this may not be possible
346 // and is an optimization anyway.
347 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
348 if (UseLEA && !STI.useLeaForSP())
349 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
350 // If that assert breaks, that means we do not do the right thing
351 // in canUseAsEpilogue.
352 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
353 "We shouldn't have allowed this insertion point");
354 }
355
356 MachineInstrBuilder MI;
357 if (UseLEA) {
358 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
359 TII.get(getLEArOpcode(Uses64BitFramePtr)),
360 StackPtr),
361 StackPtr, false, Offset);
362 } else {
363 bool IsSub = Offset < 0;
364 uint64_t AbsOffset = IsSub ? -Offset : Offset;
365 const unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
366 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
367 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
368 .addReg(StackPtr)
369 .addImm(AbsOffset);
370 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
371 }
372 return MI;
373 }
374
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const375 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
376 MachineBasicBlock::iterator &MBBI,
377 bool doMergeWithPrevious) const {
378 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
379 (!doMergeWithPrevious && MBBI == MBB.end()))
380 return 0;
381
382 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
383
384 PI = skipDebugInstructionsBackward(PI, MBB.begin());
385 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
386 // instruction, and that there are no DBG_VALUE or other instructions between
387 // ADD/SUB/LEA and its corresponding CFI instruction.
388 /* TODO: Add support for the case where there are multiple CFI instructions
389 below the ADD/SUB/LEA, e.g.:
390 ...
391 add
392 cfi_def_cfa_offset
393 cfi_offset
394 ...
395 */
396 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
397 PI = std::prev(PI);
398
399 unsigned Opc = PI->getOpcode();
400 int Offset = 0;
401
402 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
403 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
404 PI->getOperand(0).getReg() == StackPtr){
405 assert(PI->getOperand(1).getReg() == StackPtr);
406 Offset = PI->getOperand(2).getImm();
407 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
408 PI->getOperand(0).getReg() == StackPtr &&
409 PI->getOperand(1).getReg() == StackPtr &&
410 PI->getOperand(2).getImm() == 1 &&
411 PI->getOperand(3).getReg() == X86::NoRegister &&
412 PI->getOperand(5).getReg() == X86::NoRegister) {
413 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
414 Offset = PI->getOperand(4).getImm();
415 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
416 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
417 PI->getOperand(0).getReg() == StackPtr) {
418 assert(PI->getOperand(1).getReg() == StackPtr);
419 Offset = -PI->getOperand(2).getImm();
420 } else
421 return 0;
422
423 PI = MBB.erase(PI);
424 if (PI != MBB.end() && PI->isCFIInstruction()) {
425 auto CIs = MBB.getParent()->getFrameInstructions();
426 MCCFIInstruction CI = CIs[PI->getOperand(0).getCFIIndex()];
427 if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset ||
428 CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset)
429 PI = MBB.erase(PI);
430 }
431 if (!doMergeWithPrevious)
432 MBBI = skipDebugInstructionsForward(PI, MBB.end());
433
434 return Offset;
435 }
436
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst,MachineInstr::MIFlag Flag) const437 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
438 MachineBasicBlock::iterator MBBI,
439 const DebugLoc &DL,
440 const MCCFIInstruction &CFIInst,
441 MachineInstr::MIFlag Flag) const {
442 MachineFunction &MF = *MBB.getParent();
443 unsigned CFIIndex = MF.addFrameInst(CFIInst);
444 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
445 .addCFIIndex(CFIIndex)
446 .setMIFlag(Flag);
447 }
448
449 /// Emits Dwarf Info specifying offsets of callee saved registers and
450 /// frame pointer. This is called only when basic block sections are enabled.
emitCalleeSavedFrameMovesFullCFA(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI) const451 void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA(
452 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
453 MachineFunction &MF = *MBB.getParent();
454 if (!hasFP(MF)) {
455 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
456 return;
457 }
458 const MachineModuleInfo &MMI = MF.getMMI();
459 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
460 const Register FramePtr = TRI->getFrameRegister(MF);
461 const Register MachineFramePtr =
462 STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(FramePtr, 64))
463 : FramePtr;
464 unsigned DwarfReg = MRI->getDwarfRegNum(MachineFramePtr, true);
465 // Offset = space for return address + size of the frame pointer itself.
466 unsigned Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4);
467 BuildCFI(MBB, MBBI, DebugLoc{},
468 MCCFIInstruction::createOffset(nullptr, DwarfReg, -Offset));
469 emitCalleeSavedFrameMoves(MBB, MBBI, DebugLoc{}, true);
470 }
471
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool IsPrologue) const472 void X86FrameLowering::emitCalleeSavedFrameMoves(
473 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
474 const DebugLoc &DL, bool IsPrologue) const {
475 MachineFunction &MF = *MBB.getParent();
476 MachineFrameInfo &MFI = MF.getFrameInfo();
477 MachineModuleInfo &MMI = MF.getMMI();
478 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
479
480 // Add callee saved registers to move list.
481 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
482
483 // Calculate offsets.
484 for (const CalleeSavedInfo &I : CSI) {
485 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
486 Register Reg = I.getReg();
487 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
488
489 if (IsPrologue) {
490 BuildCFI(MBB, MBBI, DL,
491 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
492 } else {
493 BuildCFI(MBB, MBBI, DL,
494 MCCFIInstruction::createRestore(nullptr, DwarfReg));
495 }
496 }
497 }
498
emitZeroCallUsedRegs(BitVector RegsToZero,MachineBasicBlock & MBB) const499 void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
500 MachineBasicBlock &MBB) const {
501 const MachineFunction &MF = *MBB.getParent();
502
503 // Insertion point.
504 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
505
506 // Fake a debug loc.
507 DebugLoc DL;
508 if (MBBI != MBB.end())
509 DL = MBBI->getDebugLoc();
510
511 // Zero out FP stack if referenced. Do this outside of the loop below so that
512 // it's done only once.
513 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
514 for (MCRegister Reg : RegsToZero.set_bits()) {
515 if (!X86::RFP80RegClass.contains(Reg))
516 continue;
517
518 unsigned NumFPRegs = ST.is64Bit() ? 8 : 7;
519 for (unsigned i = 0; i != NumFPRegs; ++i)
520 BuildMI(MBB, MBBI, DL, TII.get(X86::LD_F0));
521
522 for (unsigned i = 0; i != NumFPRegs; ++i)
523 BuildMI(MBB, MBBI, DL, TII.get(X86::ST_FPrr)).addReg(X86::ST0);
524 break;
525 }
526
527 // For GPRs, we only care to clear out the 32-bit register.
528 BitVector GPRsToZero(TRI->getNumRegs());
529 for (MCRegister Reg : RegsToZero.set_bits())
530 if (TRI->isGeneralPurposeRegister(MF, Reg)) {
531 GPRsToZero.set(getX86SubSuperRegisterOrZero(Reg, 32));
532 RegsToZero.reset(Reg);
533 }
534
535 for (MCRegister Reg : GPRsToZero.set_bits())
536 BuildMI(MBB, MBBI, DL, TII.get(X86::XOR32rr), Reg)
537 .addReg(Reg, RegState::Undef)
538 .addReg(Reg, RegState::Undef);
539
540 // Zero out registers.
541 for (MCRegister Reg : RegsToZero.set_bits()) {
542 if (ST.hasMMX() && X86::VR64RegClass.contains(Reg))
543 // FIXME: Ignore MMX registers?
544 continue;
545
546 unsigned XorOp;
547 if (X86::VR128RegClass.contains(Reg)) {
548 // XMM#
549 if (!ST.hasSSE1())
550 continue;
551 XorOp = X86::PXORrr;
552 } else if (X86::VR256RegClass.contains(Reg)) {
553 // YMM#
554 if (!ST.hasAVX())
555 continue;
556 XorOp = X86::VPXORrr;
557 } else if (X86::VR512RegClass.contains(Reg)) {
558 // ZMM#
559 if (!ST.hasAVX512())
560 continue;
561 XorOp = X86::VPXORYrr;
562 } else if (X86::VK1RegClass.contains(Reg) ||
563 X86::VK2RegClass.contains(Reg) ||
564 X86::VK4RegClass.contains(Reg) ||
565 X86::VK8RegClass.contains(Reg) ||
566 X86::VK16RegClass.contains(Reg)) {
567 if (!ST.hasVLX())
568 continue;
569 XorOp = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr;
570 } else {
571 continue;
572 }
573
574 BuildMI(MBB, MBBI, DL, TII.get(XorOp), Reg)
575 .addReg(Reg, RegState::Undef)
576 .addReg(Reg, RegState::Undef);
577 }
578 }
579
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog,std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const580 void X86FrameLowering::emitStackProbe(
581 MachineFunction &MF, MachineBasicBlock &MBB,
582 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
583 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
584 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
585 if (STI.isTargetWindowsCoreCLR()) {
586 if (InProlog) {
587 BuildMI(MBB, MBBI, DL, TII.get(X86::STACKALLOC_W_PROBING))
588 .addImm(0 /* no explicit stack size */);
589 } else {
590 emitStackProbeInline(MF, MBB, MBBI, DL, false);
591 }
592 } else {
593 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum);
594 }
595 }
596
stackProbeFunctionModifiesSP() const597 bool X86FrameLowering::stackProbeFunctionModifiesSP() const {
598 return STI.isOSWindows() && !STI.isTargetWin64();
599 }
600
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const601 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
602 MachineBasicBlock &PrologMBB) const {
603 auto Where = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
604 return MI.getOpcode() == X86::STACKALLOC_W_PROBING;
605 });
606 if (Where != PrologMBB.end()) {
607 DebugLoc DL = PrologMBB.findDebugLoc(Where);
608 emitStackProbeInline(MF, PrologMBB, Where, DL, true);
609 Where->eraseFromParent();
610 }
611 }
612
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const613 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
614 MachineBasicBlock &MBB,
615 MachineBasicBlock::iterator MBBI,
616 const DebugLoc &DL,
617 bool InProlog) const {
618 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
619 if (STI.isTargetWindowsCoreCLR() && STI.is64Bit())
620 emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog);
621 else
622 emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog);
623 }
624
emitStackProbeInlineGeneric(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const625 void X86FrameLowering::emitStackProbeInlineGeneric(
626 MachineFunction &MF, MachineBasicBlock &MBB,
627 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
628 MachineInstr &AllocWithProbe = *MBBI;
629 uint64_t Offset = AllocWithProbe.getOperand(0).getImm();
630
631 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
632 const X86TargetLowering &TLI = *STI.getTargetLowering();
633 assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) &&
634 "different expansion expected for CoreCLR 64 bit");
635
636 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
637 uint64_t ProbeChunk = StackProbeSize * 8;
638
639 uint64_t MaxAlign =
640 TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0;
641
642 // Synthesize a loop or unroll it, depending on the number of iterations.
643 // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left
644 // between the unaligned rsp and current rsp.
645 if (Offset > ProbeChunk) {
646 emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset,
647 MaxAlign % StackProbeSize);
648 } else {
649 emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset,
650 MaxAlign % StackProbeSize);
651 }
652 }
653
emitStackProbeInlineGenericBlock(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const654 void X86FrameLowering::emitStackProbeInlineGenericBlock(
655 MachineFunction &MF, MachineBasicBlock &MBB,
656 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
657 uint64_t AlignOffset) const {
658
659 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
660 const bool HasFP = hasFP(MF);
661 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
662 const X86TargetLowering &TLI = *STI.getTargetLowering();
663 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
664 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
665
666 uint64_t CurrentOffset = 0;
667
668 assert(AlignOffset < StackProbeSize);
669
670 // If the offset is so small it fits within a page, there's nothing to do.
671 if (StackProbeSize < Offset + AlignOffset) {
672
673 uint64_t StackAdjustment = StackProbeSize - AlignOffset;
674 BuildStackAdjustment(MBB, MBBI, DL, -StackAdjustment, /*InEpilogue=*/false)
675 .setMIFlag(MachineInstr::FrameSetup);
676 if (!HasFP && NeedsDwarfCFI) {
677 BuildCFI(
678 MBB, MBBI, DL,
679 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment));
680 }
681
682 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
683 .setMIFlag(MachineInstr::FrameSetup),
684 StackPtr, false, 0)
685 .addImm(0)
686 .setMIFlag(MachineInstr::FrameSetup);
687 NumFrameExtraProbe++;
688 CurrentOffset = StackProbeSize - AlignOffset;
689 }
690
691 // For the next N - 1 pages, just probe. I tried to take advantage of
692 // natural probes but it implies much more logic and there was very few
693 // interesting natural probes to interleave.
694 while (CurrentOffset + StackProbeSize < Offset) {
695 BuildStackAdjustment(MBB, MBBI, DL, -StackProbeSize, /*InEpilogue=*/false)
696 .setMIFlag(MachineInstr::FrameSetup);
697
698 if (!HasFP && NeedsDwarfCFI) {
699 BuildCFI(
700 MBB, MBBI, DL,
701 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackProbeSize));
702 }
703 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
704 .setMIFlag(MachineInstr::FrameSetup),
705 StackPtr, false, 0)
706 .addImm(0)
707 .setMIFlag(MachineInstr::FrameSetup);
708 NumFrameExtraProbe++;
709 CurrentOffset += StackProbeSize;
710 }
711
712 // No need to probe the tail, it is smaller than a Page.
713 uint64_t ChunkSize = Offset - CurrentOffset;
714 if (ChunkSize == SlotSize) {
715 // Use push for slot sized adjustments as a size optimization,
716 // like emitSPUpdate does when not probing.
717 unsigned Reg = Is64Bit ? X86::RAX : X86::EAX;
718 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
719 BuildMI(MBB, MBBI, DL, TII.get(Opc))
720 .addReg(Reg, RegState::Undef)
721 .setMIFlag(MachineInstr::FrameSetup);
722 } else {
723 BuildStackAdjustment(MBB, MBBI, DL, -ChunkSize, /*InEpilogue=*/false)
724 .setMIFlag(MachineInstr::FrameSetup);
725 }
726 // No need to adjust Dwarf CFA offset here, the last position of the stack has
727 // been defined
728 }
729
emitStackProbeInlineGenericLoop(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,uint64_t Offset,uint64_t AlignOffset) const730 void X86FrameLowering::emitStackProbeInlineGenericLoop(
731 MachineFunction &MF, MachineBasicBlock &MBB,
732 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset,
733 uint64_t AlignOffset) const {
734 assert(Offset && "null offset");
735
736 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
737 MachineBasicBlock::LQR_Live &&
738 "Inline stack probe loop will clobber live EFLAGS.");
739
740 const bool NeedsDwarfCFI = needsDwarfCFI(MF);
741 const bool HasFP = hasFP(MF);
742 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
743 const X86TargetLowering &TLI = *STI.getTargetLowering();
744 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
745 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
746
747 if (AlignOffset) {
748 if (AlignOffset < StackProbeSize) {
749 // Perform a first smaller allocation followed by a probe.
750 BuildStackAdjustment(MBB, MBBI, DL, -AlignOffset, /*InEpilogue=*/false)
751 .setMIFlag(MachineInstr::FrameSetup);
752
753 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MovMIOpc))
754 .setMIFlag(MachineInstr::FrameSetup),
755 StackPtr, false, 0)
756 .addImm(0)
757 .setMIFlag(MachineInstr::FrameSetup);
758 NumFrameExtraProbe++;
759 Offset -= AlignOffset;
760 }
761 }
762
763 // Synthesize a loop
764 NumFrameLoopProbe++;
765 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
766
767 MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(LLVM_BB);
768 MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(LLVM_BB);
769
770 MachineFunction::iterator MBBIter = ++MBB.getIterator();
771 MF.insert(MBBIter, testMBB);
772 MF.insert(MBBIter, tailMBB);
773
774 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
775 : Is64Bit ? X86::R11D
776 : X86::EAX;
777
778 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
779 .addReg(StackPtr)
780 .setMIFlag(MachineInstr::FrameSetup);
781
782 // save loop bound
783 {
784 const unsigned BoundOffset = alignDown(Offset, StackProbeSize);
785 const unsigned SUBOpc = getSUBriOpcode(Uses64BitFramePtr, BoundOffset);
786 BuildMI(MBB, MBBI, DL, TII.get(SUBOpc), FinalStackProbed)
787 .addReg(FinalStackProbed)
788 .addImm(BoundOffset)
789 .setMIFlag(MachineInstr::FrameSetup);
790
791 // while in the loop, use loop-invariant reg for CFI,
792 // instead of the stack pointer, which changes during the loop
793 if (!HasFP && NeedsDwarfCFI) {
794 // x32 uses the same DWARF register numbers as x86-64,
795 // so there isn't a register number for r11d, we must use r11 instead
796 const Register DwarfFinalStackProbed =
797 STI.isTarget64BitILP32()
798 ? Register(getX86SubSuperRegister(FinalStackProbed, 64))
799 : FinalStackProbed;
800
801 BuildCFI(MBB, MBBI, DL,
802 MCCFIInstruction::createDefCfaRegister(
803 nullptr, TRI->getDwarfRegNum(DwarfFinalStackProbed, true)));
804 BuildCFI(MBB, MBBI, DL,
805 MCCFIInstruction::createAdjustCfaOffset(nullptr, BoundOffset));
806 }
807 }
808
809 // allocate a page
810 BuildStackAdjustment(*testMBB, testMBB->end(), DL, -StackProbeSize,
811 /*InEpilogue=*/false)
812 .setMIFlag(MachineInstr::FrameSetup);
813
814 // touch the page
815 addRegOffset(BuildMI(testMBB, DL, TII.get(MovMIOpc))
816 .setMIFlag(MachineInstr::FrameSetup),
817 StackPtr, false, 0)
818 .addImm(0)
819 .setMIFlag(MachineInstr::FrameSetup);
820
821 // cmp with stack pointer bound
822 BuildMI(testMBB, DL, TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
823 .addReg(StackPtr)
824 .addReg(FinalStackProbed)
825 .setMIFlag(MachineInstr::FrameSetup);
826
827 // jump
828 BuildMI(testMBB, DL, TII.get(X86::JCC_1))
829 .addMBB(testMBB)
830 .addImm(X86::COND_NE)
831 .setMIFlag(MachineInstr::FrameSetup);
832 testMBB->addSuccessor(testMBB);
833 testMBB->addSuccessor(tailMBB);
834
835 // BB management
836 tailMBB->splice(tailMBB->end(), &MBB, MBBI, MBB.end());
837 tailMBB->transferSuccessorsAndUpdatePHIs(&MBB);
838 MBB.addSuccessor(testMBB);
839
840 // handle tail
841 const uint64_t TailOffset = Offset % StackProbeSize;
842 MachineBasicBlock::iterator TailMBBIter = tailMBB->begin();
843 if (TailOffset) {
844 BuildStackAdjustment(*tailMBB, TailMBBIter, DL, -TailOffset,
845 /*InEpilogue=*/false)
846 .setMIFlag(MachineInstr::FrameSetup);
847 }
848
849 // after the loop, switch back to stack pointer for CFI
850 if (!HasFP && NeedsDwarfCFI) {
851 // x32 uses the same DWARF register numbers as x86-64,
852 // so there isn't a register number for esp, we must use rsp instead
853 const Register DwarfStackPtr =
854 STI.isTarget64BitILP32()
855 ? Register(getX86SubSuperRegister(StackPtr, 64))
856 : Register(StackPtr);
857
858 BuildCFI(*tailMBB, TailMBBIter, DL,
859 MCCFIInstruction::createDefCfaRegister(
860 nullptr, TRI->getDwarfRegNum(DwarfStackPtr, true)));
861 }
862
863 // Update Live In information
864 recomputeLiveIns(*testMBB);
865 recomputeLiveIns(*tailMBB);
866 }
867
emitStackProbeInlineWindowsCoreCLR64(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const868 void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64(
869 MachineFunction &MF, MachineBasicBlock &MBB,
870 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
871 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
872 assert(STI.is64Bit() && "different expansion needed for 32 bit");
873 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
874 const TargetInstrInfo &TII = *STI.getInstrInfo();
875 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
876
877 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
878 MachineBasicBlock::LQR_Live &&
879 "Inline stack probe loop will clobber live EFLAGS.");
880
881 // RAX contains the number of bytes of desired stack adjustment.
882 // The handling here assumes this value has already been updated so as to
883 // maintain stack alignment.
884 //
885 // We need to exit with RSP modified by this amount and execute suitable
886 // page touches to notify the OS that we're growing the stack responsibly.
887 // All stack probing must be done without modifying RSP.
888 //
889 // MBB:
890 // SizeReg = RAX;
891 // ZeroReg = 0
892 // CopyReg = RSP
893 // Flags, TestReg = CopyReg - SizeReg
894 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
895 // LimitReg = gs magic thread env access
896 // if FinalReg >= LimitReg goto ContinueMBB
897 // RoundBB:
898 // RoundReg = page address of FinalReg
899 // LoopMBB:
900 // LoopReg = PHI(LimitReg,ProbeReg)
901 // ProbeReg = LoopReg - PageSize
902 // [ProbeReg] = 0
903 // if (ProbeReg > RoundReg) goto LoopMBB
904 // ContinueMBB:
905 // RSP = RSP - RAX
906 // [rest of original MBB]
907
908 // Set up the new basic blocks
909 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
910 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
911 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
912
913 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
914 MF.insert(MBBIter, RoundMBB);
915 MF.insert(MBBIter, LoopMBB);
916 MF.insert(MBBIter, ContinueMBB);
917
918 // Split MBB and move the tail portion down to ContinueMBB.
919 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
920 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
921 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
922
923 // Some useful constants
924 const int64_t ThreadEnvironmentStackLimit = 0x10;
925 const int64_t PageSize = 0x1000;
926 const int64_t PageMask = ~(PageSize - 1);
927
928 // Registers we need. For the normal case we use virtual
929 // registers. For the prolog expansion we use RAX, RCX and RDX.
930 MachineRegisterInfo &MRI = MF.getRegInfo();
931 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
932 const Register SizeReg = InProlog ? X86::RAX
933 : MRI.createVirtualRegister(RegClass),
934 ZeroReg = InProlog ? X86::RCX
935 : MRI.createVirtualRegister(RegClass),
936 CopyReg = InProlog ? X86::RDX
937 : MRI.createVirtualRegister(RegClass),
938 TestReg = InProlog ? X86::RDX
939 : MRI.createVirtualRegister(RegClass),
940 FinalReg = InProlog ? X86::RDX
941 : MRI.createVirtualRegister(RegClass),
942 RoundedReg = InProlog ? X86::RDX
943 : MRI.createVirtualRegister(RegClass),
944 LimitReg = InProlog ? X86::RCX
945 : MRI.createVirtualRegister(RegClass),
946 JoinReg = InProlog ? X86::RCX
947 : MRI.createVirtualRegister(RegClass),
948 ProbeReg = InProlog ? X86::RCX
949 : MRI.createVirtualRegister(RegClass);
950
951 // SP-relative offsets where we can save RCX and RDX.
952 int64_t RCXShadowSlot = 0;
953 int64_t RDXShadowSlot = 0;
954
955 // If inlining in the prolog, save RCX and RDX.
956 if (InProlog) {
957 // Compute the offsets. We need to account for things already
958 // pushed onto the stack at this point: return address, frame
959 // pointer (if used), and callee saves.
960 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
961 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
962 const bool HasFP = hasFP(MF);
963
964 // Check if we need to spill RCX and/or RDX.
965 // Here we assume that no earlier prologue instruction changes RCX and/or
966 // RDX, so checking the block live-ins is enough.
967 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
968 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
969 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
970 // Assign the initial slot to both registers, then change RDX's slot if both
971 // need to be spilled.
972 if (IsRCXLiveIn)
973 RCXShadowSlot = InitSlot;
974 if (IsRDXLiveIn)
975 RDXShadowSlot = InitSlot;
976 if (IsRDXLiveIn && IsRCXLiveIn)
977 RDXShadowSlot += 8;
978 // Emit the saves if needed.
979 if (IsRCXLiveIn)
980 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
981 RCXShadowSlot)
982 .addReg(X86::RCX);
983 if (IsRDXLiveIn)
984 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
985 RDXShadowSlot)
986 .addReg(X86::RDX);
987 } else {
988 // Not in the prolog. Copy RAX to a virtual reg.
989 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
990 }
991
992 // Add code to MBB to check for overflow and set the new target stack pointer
993 // to zero if so.
994 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
995 .addReg(ZeroReg, RegState::Undef)
996 .addReg(ZeroReg, RegState::Undef);
997 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
998 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
999 .addReg(CopyReg)
1000 .addReg(SizeReg);
1001 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
1002 .addReg(TestReg)
1003 .addReg(ZeroReg)
1004 .addImm(X86::COND_B);
1005
1006 // FinalReg now holds final stack pointer value, or zero if
1007 // allocation would overflow. Compare against the current stack
1008 // limit from the thread environment block. Note this limit is the
1009 // lowest touched page on the stack, not the point at which the OS
1010 // will cause an overflow exception, so this is just an optimization
1011 // to avoid unnecessarily touching pages that are below the current
1012 // SP but already committed to the stack by the OS.
1013 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
1014 .addReg(0)
1015 .addImm(1)
1016 .addReg(0)
1017 .addImm(ThreadEnvironmentStackLimit)
1018 .addReg(X86::GS);
1019 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
1020 // Jump if the desired stack pointer is at or above the stack limit.
1021 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
1022
1023 // Add code to roundMBB to round the final stack pointer to a page boundary.
1024 RoundMBB->addLiveIn(FinalReg);
1025 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
1026 .addReg(FinalReg)
1027 .addImm(PageMask);
1028 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
1029
1030 // LimitReg now holds the current stack limit, RoundedReg page-rounded
1031 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
1032 // and probe until we reach RoundedReg.
1033 if (!InProlog) {
1034 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
1035 .addReg(LimitReg)
1036 .addMBB(RoundMBB)
1037 .addReg(ProbeReg)
1038 .addMBB(LoopMBB);
1039 }
1040
1041 LoopMBB->addLiveIn(JoinReg);
1042 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
1043 false, -PageSize);
1044
1045 // Probe by storing a byte onto the stack.
1046 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
1047 .addReg(ProbeReg)
1048 .addImm(1)
1049 .addReg(0)
1050 .addImm(0)
1051 .addReg(0)
1052 .addImm(0);
1053
1054 LoopMBB->addLiveIn(RoundedReg);
1055 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
1056 .addReg(RoundedReg)
1057 .addReg(ProbeReg);
1058 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
1059
1060 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
1061
1062 // If in prolog, restore RDX and RCX.
1063 if (InProlog) {
1064 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
1065 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1066 TII.get(X86::MOV64rm), X86::RCX),
1067 X86::RSP, false, RCXShadowSlot);
1068 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
1069 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
1070 TII.get(X86::MOV64rm), X86::RDX),
1071 X86::RSP, false, RDXShadowSlot);
1072 }
1073
1074 // Now that the probing is done, add code to continueMBB to update
1075 // the stack pointer for real.
1076 ContinueMBB->addLiveIn(SizeReg);
1077 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
1078 .addReg(X86::RSP)
1079 .addReg(SizeReg);
1080
1081 // Add the control flow edges we need.
1082 MBB.addSuccessor(ContinueMBB);
1083 MBB.addSuccessor(RoundMBB);
1084 RoundMBB->addSuccessor(LoopMBB);
1085 LoopMBB->addSuccessor(ContinueMBB);
1086 LoopMBB->addSuccessor(LoopMBB);
1087
1088 // Mark all the instructions added to the prolog as frame setup.
1089 if (InProlog) {
1090 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
1091 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
1092 }
1093 for (MachineInstr &MI : *RoundMBB) {
1094 MI.setFlag(MachineInstr::FrameSetup);
1095 }
1096 for (MachineInstr &MI : *LoopMBB) {
1097 MI.setFlag(MachineInstr::FrameSetup);
1098 }
1099 for (MachineInstr &MI :
1100 llvm::make_range(ContinueMBB->begin(), ContinueMBBI)) {
1101 MI.setFlag(MachineInstr::FrameSetup);
1102 }
1103 }
1104 }
1105
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog,std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const1106 void X86FrameLowering::emitStackProbeCall(
1107 MachineFunction &MF, MachineBasicBlock &MBB,
1108 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog,
1109 std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const {
1110 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
1111
1112 // FIXME: Add indirect thunk support and remove this.
1113 if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls())
1114 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
1115 "code model and indirect thunks not yet implemented.");
1116
1117 assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) !=
1118 MachineBasicBlock::LQR_Live &&
1119 "Stack probe calls will clobber live EFLAGS.");
1120
1121 unsigned CallOp;
1122 if (Is64Bit)
1123 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
1124 else
1125 CallOp = X86::CALLpcrel32;
1126
1127 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
1128
1129 MachineInstrBuilder CI;
1130 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
1131
1132 // All current stack probes take AX and SP as input, clobber flags, and
1133 // preserve all registers. x86_64 probes leave RSP unmodified.
1134 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
1135 // For the large code model, we have to call through a register. Use R11,
1136 // as it is scratch in all supported calling conventions.
1137 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
1138 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1139 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
1140 } else {
1141 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
1142 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
1143 }
1144
1145 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
1146 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
1147 CI.addReg(AX, RegState::Implicit)
1148 .addReg(SP, RegState::Implicit)
1149 .addReg(AX, RegState::Define | RegState::Implicit)
1150 .addReg(SP, RegState::Define | RegState::Implicit)
1151 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
1152
1153 MachineInstr *ModInst = CI;
1154 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1155 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
1156 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
1157 // themselves. They also does not clobber %rax so we can reuse it when
1158 // adjusting %rsp.
1159 // All other platforms do not specify a particular ABI for the stack probe
1160 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
1161 ModInst =
1162 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
1163 .addReg(SP)
1164 .addReg(AX);
1165 }
1166
1167 // DebugInfo variable locations -- if there's an instruction number for the
1168 // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that
1169 // modifies SP.
1170 if (InstrNum) {
1171 if (STI.isTargetWin64() || !STI.isOSWindows()) {
1172 // Label destination operand of the subtract.
1173 MF.makeDebugValueSubstitution(*InstrNum,
1174 {ModInst->getDebugInstrNum(), 0});
1175 } else {
1176 // Label the call. The operand number is the penultimate operand, zero
1177 // based.
1178 unsigned SPDefOperand = ModInst->getNumOperands() - 2;
1179 MF.makeDebugValueSubstitution(
1180 *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand});
1181 }
1182 }
1183
1184 if (InProlog) {
1185 // Apply the frame setup flag to all inserted instrs.
1186 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
1187 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
1188 }
1189 }
1190
calculateSetFPREG(uint64_t SPAdjust)1191 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
1192 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
1193 // and might require smaller successive adjustments.
1194 const uint64_t Win64MaxSEHOffset = 128;
1195 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
1196 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
1197 return SEHFrameOffset & -16;
1198 }
1199
1200 // If we're forcing a stack realignment we can't rely on just the frame
1201 // info, we need to know the ABI stack alignment as well in case we
1202 // have a call out. Otherwise just make sure we have some alignment - we'll
1203 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const1204 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
1205 const MachineFrameInfo &MFI = MF.getFrameInfo();
1206 Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment.
1207 Align StackAlign = getStackAlign();
1208 if (MF.getFunction().hasFnAttribute("stackrealign")) {
1209 if (MFI.hasCalls())
1210 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1211 else if (MaxAlign < SlotSize)
1212 MaxAlign = Align(SlotSize);
1213 }
1214 return MaxAlign.value();
1215 }
1216
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const1217 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
1218 MachineBasicBlock::iterator MBBI,
1219 const DebugLoc &DL, unsigned Reg,
1220 uint64_t MaxAlign) const {
1221 uint64_t Val = -MaxAlign;
1222 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
1223
1224 MachineFunction &MF = *MBB.getParent();
1225 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
1226 const X86TargetLowering &TLI = *STI.getTargetLowering();
1227 const uint64_t StackProbeSize = TLI.getStackProbeSize(MF);
1228 const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF);
1229
1230 // We want to make sure that (in worst case) less than StackProbeSize bytes
1231 // are not probed after the AND. This assumption is used in
1232 // emitStackProbeInlineGeneric.
1233 if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) {
1234 {
1235 NumFrameLoopProbe++;
1236 MachineBasicBlock *entryMBB =
1237 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1238 MachineBasicBlock *headMBB =
1239 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1240 MachineBasicBlock *bodyMBB =
1241 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1242 MachineBasicBlock *footMBB =
1243 MF.CreateMachineBasicBlock(MBB.getBasicBlock());
1244
1245 MachineFunction::iterator MBBIter = MBB.getIterator();
1246 MF.insert(MBBIter, entryMBB);
1247 MF.insert(MBBIter, headMBB);
1248 MF.insert(MBBIter, bodyMBB);
1249 MF.insert(MBBIter, footMBB);
1250 const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi;
1251 Register FinalStackProbed = Uses64BitFramePtr ? X86::R11
1252 : Is64Bit ? X86::R11D
1253 : X86::EAX;
1254
1255 // Setup entry block
1256 {
1257
1258 entryMBB->splice(entryMBB->end(), &MBB, MBB.begin(), MBBI);
1259 BuildMI(entryMBB, DL, TII.get(TargetOpcode::COPY), FinalStackProbed)
1260 .addReg(StackPtr)
1261 .setMIFlag(MachineInstr::FrameSetup);
1262 MachineInstr *MI =
1263 BuildMI(entryMBB, DL, TII.get(AndOp), FinalStackProbed)
1264 .addReg(FinalStackProbed)
1265 .addImm(Val)
1266 .setMIFlag(MachineInstr::FrameSetup);
1267
1268 // The EFLAGS implicit def is dead.
1269 MI->getOperand(3).setIsDead();
1270
1271 BuildMI(entryMBB, DL,
1272 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1273 .addReg(FinalStackProbed)
1274 .addReg(StackPtr)
1275 .setMIFlag(MachineInstr::FrameSetup);
1276 BuildMI(entryMBB, DL, TII.get(X86::JCC_1))
1277 .addMBB(&MBB)
1278 .addImm(X86::COND_E)
1279 .setMIFlag(MachineInstr::FrameSetup);
1280 entryMBB->addSuccessor(headMBB);
1281 entryMBB->addSuccessor(&MBB);
1282 }
1283
1284 // Loop entry block
1285
1286 {
1287 const unsigned SUBOpc =
1288 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1289 BuildMI(headMBB, DL, TII.get(SUBOpc), StackPtr)
1290 .addReg(StackPtr)
1291 .addImm(StackProbeSize)
1292 .setMIFlag(MachineInstr::FrameSetup);
1293
1294 BuildMI(headMBB, DL,
1295 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1296 .addReg(StackPtr)
1297 .addReg(FinalStackProbed)
1298 .setMIFlag(MachineInstr::FrameSetup);
1299
1300 // jump to the footer if StackPtr < FinalStackProbed
1301 BuildMI(headMBB, DL, TII.get(X86::JCC_1))
1302 .addMBB(footMBB)
1303 .addImm(X86::COND_B)
1304 .setMIFlag(MachineInstr::FrameSetup);
1305
1306 headMBB->addSuccessor(bodyMBB);
1307 headMBB->addSuccessor(footMBB);
1308 }
1309
1310 // setup loop body
1311 {
1312 addRegOffset(BuildMI(bodyMBB, DL, TII.get(MovMIOpc))
1313 .setMIFlag(MachineInstr::FrameSetup),
1314 StackPtr, false, 0)
1315 .addImm(0)
1316 .setMIFlag(MachineInstr::FrameSetup);
1317
1318 const unsigned SUBOpc =
1319 getSUBriOpcode(Uses64BitFramePtr, StackProbeSize);
1320 BuildMI(bodyMBB, DL, TII.get(SUBOpc), StackPtr)
1321 .addReg(StackPtr)
1322 .addImm(StackProbeSize)
1323 .setMIFlag(MachineInstr::FrameSetup);
1324
1325 // cmp with stack pointer bound
1326 BuildMI(bodyMBB, DL,
1327 TII.get(Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr))
1328 .addReg(FinalStackProbed)
1329 .addReg(StackPtr)
1330 .setMIFlag(MachineInstr::FrameSetup);
1331
1332 // jump back while FinalStackProbed < StackPtr
1333 BuildMI(bodyMBB, DL, TII.get(X86::JCC_1))
1334 .addMBB(bodyMBB)
1335 .addImm(X86::COND_B)
1336 .setMIFlag(MachineInstr::FrameSetup);
1337 bodyMBB->addSuccessor(bodyMBB);
1338 bodyMBB->addSuccessor(footMBB);
1339 }
1340
1341 // setup loop footer
1342 {
1343 BuildMI(footMBB, DL, TII.get(TargetOpcode::COPY), StackPtr)
1344 .addReg(FinalStackProbed)
1345 .setMIFlag(MachineInstr::FrameSetup);
1346 addRegOffset(BuildMI(footMBB, DL, TII.get(MovMIOpc))
1347 .setMIFlag(MachineInstr::FrameSetup),
1348 StackPtr, false, 0)
1349 .addImm(0)
1350 .setMIFlag(MachineInstr::FrameSetup);
1351 footMBB->addSuccessor(&MBB);
1352 }
1353
1354 recomputeLiveIns(*headMBB);
1355 recomputeLiveIns(*bodyMBB);
1356 recomputeLiveIns(*footMBB);
1357 recomputeLiveIns(MBB);
1358 }
1359 } else {
1360 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
1361 .addReg(Reg)
1362 .addImm(Val)
1363 .setMIFlag(MachineInstr::FrameSetup);
1364
1365 // The EFLAGS implicit def is dead.
1366 MI->getOperand(3).setIsDead();
1367 }
1368 }
1369
has128ByteRedZone(const MachineFunction & MF) const1370 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
1371 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
1372 // clobbered by any interrupt handler.
1373 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1374 "MF used frame lowering for wrong subtarget");
1375 const Function &Fn = MF.getFunction();
1376 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
1377 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
1378 }
1379
1380 /// Return true if we need to use the restricted Windows x64 prologue and
1381 /// epilogue code patterns that can be described with WinCFI (.seh_*
1382 /// directives).
isWin64Prologue(const MachineFunction & MF) const1383 bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const {
1384 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1385 }
1386
needsDwarfCFI(const MachineFunction & MF) const1387 bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const {
1388 return !isWin64Prologue(MF) && MF.needsFrameMoves();
1389 }
1390
1391 /// emitPrologue - Push callee-saved registers onto the stack, which
1392 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
1393 /// space for local variables. Also emit labels used by the exception handler to
1394 /// generate the exception handling frames.
1395
1396 /*
1397 Here's a gist of what gets emitted:
1398
1399 ; Establish frame pointer, if needed
1400 [if needs FP]
1401 push %rbp
1402 .cfi_def_cfa_offset 16
1403 .cfi_offset %rbp, -16
1404 .seh_pushreg %rpb
1405 mov %rsp, %rbp
1406 .cfi_def_cfa_register %rbp
1407
1408 ; Spill general-purpose registers
1409 [for all callee-saved GPRs]
1410 pushq %<reg>
1411 [if not needs FP]
1412 .cfi_def_cfa_offset (offset from RETADDR)
1413 .seh_pushreg %<reg>
1414
1415 ; If the required stack alignment > default stack alignment
1416 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
1417 ; of unknown size in the stack frame.
1418 [if stack needs re-alignment]
1419 and $MASK, %rsp
1420
1421 ; Allocate space for locals
1422 [if target is Windows and allocated space > 4096 bytes]
1423 ; Windows needs special care for allocations larger
1424 ; than one page.
1425 mov $NNN, %rax
1426 call ___chkstk_ms/___chkstk
1427 sub %rax, %rsp
1428 [else]
1429 sub $NNN, %rsp
1430
1431 [if needs FP]
1432 .seh_stackalloc (size of XMM spill slots)
1433 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
1434 [else]
1435 .seh_stackalloc NNN
1436
1437 ; Spill XMMs
1438 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
1439 ; they may get spilled on any platform, if the current function
1440 ; calls @llvm.eh.unwind.init
1441 [if needs FP]
1442 [for all callee-saved XMM registers]
1443 movaps %<xmm reg>, -MMM(%rbp)
1444 [for all callee-saved XMM registers]
1445 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
1446 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
1447 [else]
1448 [for all callee-saved XMM registers]
1449 movaps %<xmm reg>, KKK(%rsp)
1450 [for all callee-saved XMM registers]
1451 .seh_savexmm %<xmm reg>, KKK
1452
1453 .seh_endprologue
1454
1455 [if needs base pointer]
1456 mov %rsp, %rbx
1457 [if needs to restore base pointer]
1458 mov %rsp, -MMM(%rbp)
1459
1460 ; Emit CFI info
1461 [if needs FP]
1462 [for all callee-saved registers]
1463 .cfi_offset %<reg>, (offset from %rbp)
1464 [else]
1465 .cfi_def_cfa_offset (offset from RETADDR)
1466 [for all callee-saved registers]
1467 .cfi_offset %<reg>, (offset from %rsp)
1468
1469 Notes:
1470 - .seh directives are emitted only for Windows 64 ABI
1471 - .cv_fpo directives are emitted on win32 when emitting CodeView
1472 - .cfi directives are emitted for all other ABIs
1473 - for 32-bit code, substitute %e?? registers for %r??
1474 */
1475
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const1476 void X86FrameLowering::emitPrologue(MachineFunction &MF,
1477 MachineBasicBlock &MBB) const {
1478 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
1479 "MF used frame lowering for wrong subtarget");
1480 MachineBasicBlock::iterator MBBI = MBB.begin();
1481 MachineFrameInfo &MFI = MF.getFrameInfo();
1482 const Function &Fn = MF.getFunction();
1483 MachineModuleInfo &MMI = MF.getMMI();
1484 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1485 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
1486 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
1487 bool IsFunclet = MBB.isEHFuncletEntry();
1488 EHPersonality Personality = EHPersonality::Unknown;
1489 if (Fn.hasPersonalityFn())
1490 Personality = classifyEHPersonality(Fn.getPersonalityFn());
1491 bool FnHasClrFunclet =
1492 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
1493 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
1494 bool HasFP = hasFP(MF);
1495 bool IsWin64Prologue = isWin64Prologue(MF);
1496 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
1497 // FIXME: Emit FPO data for EH funclets.
1498 bool NeedsWinFPO =
1499 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
1500 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
1501 bool NeedsDwarfCFI = needsDwarfCFI(MF);
1502 Register FramePtr = TRI->getFrameRegister(MF);
1503 const Register MachineFramePtr =
1504 STI.isTarget64BitILP32()
1505 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1506 Register BasePtr = TRI->getBaseRegister();
1507 bool HasWinCFI = false;
1508
1509 // Debug location must be unknown since the first debug location is used
1510 // to determine the end of the prologue.
1511 DebugLoc DL;
1512
1513 // Space reserved for stack-based arguments when making a (ABI-guaranteed)
1514 // tail call.
1515 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
1516 if (TailCallArgReserveSize && IsWin64Prologue)
1517 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1518
1519 const bool EmitStackProbeCall =
1520 STI.getTargetLowering()->hasStackProbeSymbol(MF);
1521 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1522
1523 if (HasFP && X86FI->hasSwiftAsyncContext()) {
1524 switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1525 case SwiftAsyncFramePointerMode::DeploymentBased:
1526 if (STI.swiftAsyncContextIsDynamicallySet()) {
1527 // The special symbol below is absolute and has a *value* suitable to be
1528 // combined with the frame pointer directly.
1529 BuildMI(MBB, MBBI, DL, TII.get(X86::OR64rm), MachineFramePtr)
1530 .addUse(MachineFramePtr)
1531 .addUse(X86::RIP)
1532 .addImm(1)
1533 .addUse(X86::NoRegister)
1534 .addExternalSymbol("swift_async_extendedFramePointerFlags",
1535 X86II::MO_GOTPCREL)
1536 .addUse(X86::NoRegister);
1537 break;
1538 }
1539 [[fallthrough]];
1540
1541 case SwiftAsyncFramePointerMode::Always:
1542 BuildMI(MBB, MBBI, DL, TII.get(X86::BTS64ri8), MachineFramePtr)
1543 .addUse(MachineFramePtr)
1544 .addImm(60)
1545 .setMIFlag(MachineInstr::FrameSetup);
1546 break;
1547
1548 case SwiftAsyncFramePointerMode::Never:
1549 break;
1550 }
1551 }
1552
1553 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1554 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1555 // stack alignment.
1556 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1557 Fn.arg_size() == 2) {
1558 StackSize += 8;
1559 MFI.setStackSize(StackSize);
1560 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1561 }
1562
1563 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1564 // function, and use up to 128 bytes of stack space, don't have a frame
1565 // pointer, calls, or dynamic alloca then we do not need to adjust the
1566 // stack pointer (we fit in the Red Zone). We also check that we don't
1567 // push and pop from the stack.
1568 if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) &&
1569 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1570 !MFI.adjustsStack() && // No calls.
1571 !EmitStackProbeCall && // No stack probes.
1572 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1573 !MF.shouldSplitStack()) { // Regular stack
1574 uint64_t MinSize =
1575 X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta();
1576 if (HasFP) MinSize += SlotSize;
1577 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1578 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1579 MFI.setStackSize(StackSize);
1580 }
1581
1582 // Insert stack pointer adjustment for later moving of return addr. Only
1583 // applies to tail call optimized functions where the callee argument stack
1584 // size is bigger than the callers.
1585 if (TailCallArgReserveSize != 0) {
1586 BuildStackAdjustment(MBB, MBBI, DL, -(int)TailCallArgReserveSize,
1587 /*InEpilogue=*/false)
1588 .setMIFlag(MachineInstr::FrameSetup);
1589 }
1590
1591 // Mapping for machine moves:
1592 //
1593 // DST: VirtualFP AND
1594 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1595 // ELSE => DW_CFA_def_cfa
1596 //
1597 // SRC: VirtualFP AND
1598 // DST: Register => DW_CFA_def_cfa_register
1599 //
1600 // ELSE
1601 // OFFSET < 0 => DW_CFA_offset_extended_sf
1602 // REG < 64 => DW_CFA_offset + Reg
1603 // ELSE => DW_CFA_offset_extended
1604
1605 uint64_t NumBytes = 0;
1606 int stackGrowth = -SlotSize;
1607
1608 // Find the funclet establisher parameter
1609 Register Establisher = X86::NoRegister;
1610 if (IsClrFunclet)
1611 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1612 else if (IsFunclet)
1613 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1614
1615 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1616 // Immediately spill establisher into the home slot.
1617 // The runtime cares about this.
1618 // MOV64mr %rdx, 16(%rsp)
1619 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1620 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1621 .addReg(Establisher)
1622 .setMIFlag(MachineInstr::FrameSetup);
1623 MBB.addLiveIn(Establisher);
1624 }
1625
1626 if (HasFP) {
1627 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1628
1629 // Calculate required stack adjustment.
1630 uint64_t FrameSize = StackSize - SlotSize;
1631 // If required, include space for extra hidden slot for stashing base pointer.
1632 if (X86FI->getRestoreBasePointer())
1633 FrameSize += SlotSize;
1634
1635 NumBytes = FrameSize -
1636 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1637
1638 // Callee-saved registers are pushed on stack before the stack is realigned.
1639 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
1640 NumBytes = alignTo(NumBytes, MaxAlign);
1641
1642 // Save EBP/RBP into the appropriate stack slot.
1643 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1644 .addReg(MachineFramePtr, RegState::Kill)
1645 .setMIFlag(MachineInstr::FrameSetup);
1646
1647 if (NeedsDwarfCFI) {
1648 // Mark the place where EBP/RBP was saved.
1649 // Define the current CFA rule to use the provided offset.
1650 assert(StackSize);
1651 BuildCFI(MBB, MBBI, DL,
1652 MCCFIInstruction::cfiDefCfaOffset(nullptr, -2 * stackGrowth),
1653 MachineInstr::FrameSetup);
1654
1655 // Change the rule for the FramePtr to be an "offset" rule.
1656 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1657 BuildCFI(MBB, MBBI, DL,
1658 MCCFIInstruction::createOffset(nullptr, DwarfFramePtr,
1659 2 * stackGrowth),
1660 MachineInstr::FrameSetup);
1661 }
1662
1663 if (NeedsWinCFI) {
1664 HasWinCFI = true;
1665 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1666 .addImm(FramePtr)
1667 .setMIFlag(MachineInstr::FrameSetup);
1668 }
1669
1670 if (!IsFunclet) {
1671 if (X86FI->hasSwiftAsyncContext()) {
1672 const auto &Attrs = MF.getFunction().getAttributes();
1673
1674 // Before we update the live frame pointer we have to ensure there's a
1675 // valid (or null) asynchronous context in its slot just before FP in
1676 // the frame record, so store it now.
1677 if (Attrs.hasAttrSomewhere(Attribute::SwiftAsync)) {
1678 // We have an initial context in r14, store it just before the frame
1679 // pointer.
1680 MBB.addLiveIn(X86::R14);
1681 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1682 .addReg(X86::R14)
1683 .setMIFlag(MachineInstr::FrameSetup);
1684 } else {
1685 // No initial context, store null so that there's no pointer that
1686 // could be misused.
1687 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64i8))
1688 .addImm(0)
1689 .setMIFlag(MachineInstr::FrameSetup);
1690 }
1691
1692 if (NeedsWinCFI) {
1693 HasWinCFI = true;
1694 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1695 .addImm(X86::R14)
1696 .setMIFlag(MachineInstr::FrameSetup);
1697 }
1698
1699 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr)
1700 .addUse(X86::RSP)
1701 .addImm(1)
1702 .addUse(X86::NoRegister)
1703 .addImm(8)
1704 .addUse(X86::NoRegister)
1705 .setMIFlag(MachineInstr::FrameSetup);
1706 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64ri8), X86::RSP)
1707 .addUse(X86::RSP)
1708 .addImm(8)
1709 .setMIFlag(MachineInstr::FrameSetup);
1710 }
1711
1712 if (!IsWin64Prologue && !IsFunclet) {
1713 // Update EBP with the new base value.
1714 if (!X86FI->hasSwiftAsyncContext())
1715 BuildMI(MBB, MBBI, DL,
1716 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1717 FramePtr)
1718 .addReg(StackPtr)
1719 .setMIFlag(MachineInstr::FrameSetup);
1720
1721 if (NeedsDwarfCFI) {
1722 // Mark effective beginning of when frame pointer becomes valid.
1723 // Define the current CFA to use the EBP/RBP register.
1724 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1725 BuildCFI(
1726 MBB, MBBI, DL,
1727 MCCFIInstruction::createDefCfaRegister(nullptr, DwarfFramePtr),
1728 MachineInstr::FrameSetup);
1729 }
1730
1731 if (NeedsWinFPO) {
1732 // .cv_fpo_setframe $FramePtr
1733 HasWinCFI = true;
1734 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1735 .addImm(FramePtr)
1736 .addImm(0)
1737 .setMIFlag(MachineInstr::FrameSetup);
1738 }
1739 }
1740 }
1741 } else {
1742 assert(!IsFunclet && "funclets without FPs not yet implemented");
1743 NumBytes = StackSize -
1744 (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize);
1745 }
1746
1747 // Update the offset adjustment, which is mainly used by codeview to translate
1748 // from ESP to VFRAME relative local variable offsets.
1749 if (!IsFunclet) {
1750 if (HasFP && TRI->hasStackRealignment(MF))
1751 MFI.setOffsetAdjustment(-NumBytes);
1752 else
1753 MFI.setOffsetAdjustment(-StackSize);
1754 }
1755
1756 // For EH funclets, only allocate enough space for outgoing calls. Save the
1757 // NumBytes value that we would've used for the parent frame.
1758 unsigned ParentFrameNumBytes = NumBytes;
1759 if (IsFunclet)
1760 NumBytes = getWinEHFuncletFrameSize(MF);
1761
1762 // Skip the callee-saved push instructions.
1763 bool PushedRegs = false;
1764 int StackOffset = 2 * stackGrowth;
1765
1766 while (MBBI != MBB.end() &&
1767 MBBI->getFlag(MachineInstr::FrameSetup) &&
1768 (MBBI->getOpcode() == X86::PUSH32r ||
1769 MBBI->getOpcode() == X86::PUSH64r)) {
1770 PushedRegs = true;
1771 Register Reg = MBBI->getOperand(0).getReg();
1772 ++MBBI;
1773
1774 if (!HasFP && NeedsDwarfCFI) {
1775 // Mark callee-saved push instruction.
1776 // Define the current CFA rule to use the provided offset.
1777 assert(StackSize);
1778 BuildCFI(MBB, MBBI, DL,
1779 MCCFIInstruction::cfiDefCfaOffset(nullptr, -StackOffset),
1780 MachineInstr::FrameSetup);
1781 StackOffset += stackGrowth;
1782 }
1783
1784 if (NeedsWinCFI) {
1785 HasWinCFI = true;
1786 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1787 .addImm(Reg)
1788 .setMIFlag(MachineInstr::FrameSetup);
1789 }
1790 }
1791
1792 // Realign stack after we pushed callee-saved registers (so that we'll be
1793 // able to calculate their offsets from the frame pointer).
1794 // Don't do this for Win64, it needs to realign the stack after the prologue.
1795 if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) {
1796 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1797 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1798
1799 if (NeedsWinCFI) {
1800 HasWinCFI = true;
1801 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1802 .addImm(MaxAlign)
1803 .setMIFlag(MachineInstr::FrameSetup);
1804 }
1805 }
1806
1807 // If there is an SUB32ri of ESP immediately before this instruction, merge
1808 // the two. This can be the case when tail call elimination is enabled and
1809 // the callee has more arguments then the caller.
1810 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1811
1812 // Adjust stack pointer: ESP -= numbytes.
1813
1814 // Windows and cygwin/mingw require a prologue helper routine when allocating
1815 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1816 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1817 // stack and adjust the stack pointer in one go. The 64-bit version of
1818 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1819 // responsible for adjusting the stack pointer. Touching the stack at 4K
1820 // increments is necessary to ensure that the guard pages used by the OS
1821 // virtual memory manager are allocated in correct sequence.
1822 uint64_t AlignedNumBytes = NumBytes;
1823 if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF))
1824 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1825 if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) {
1826 assert(!X86FI->getUsesRedZone() &&
1827 "The Red Zone is not accounted for in stack probes");
1828
1829 // Check whether EAX is livein for this block.
1830 bool isEAXAlive = isEAXLiveIn(MBB);
1831
1832 if (isEAXAlive) {
1833 if (Is64Bit) {
1834 // Save RAX
1835 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1836 .addReg(X86::RAX, RegState::Kill)
1837 .setMIFlag(MachineInstr::FrameSetup);
1838 } else {
1839 // Save EAX
1840 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1841 .addReg(X86::EAX, RegState::Kill)
1842 .setMIFlag(MachineInstr::FrameSetup);
1843 }
1844 }
1845
1846 if (Is64Bit) {
1847 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1848 // Function prologue is responsible for adjusting the stack pointer.
1849 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1850 BuildMI(MBB, MBBI, DL, TII.get(getMOVriOpcode(Is64Bit, Alloc)), X86::RAX)
1851 .addImm(Alloc)
1852 .setMIFlag(MachineInstr::FrameSetup);
1853 } else {
1854 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1855 // We'll also use 4 already allocated bytes for EAX.
1856 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1857 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1858 .setMIFlag(MachineInstr::FrameSetup);
1859 }
1860
1861 // Call __chkstk, __chkstk_ms, or __alloca.
1862 emitStackProbe(MF, MBB, MBBI, DL, true);
1863
1864 if (isEAXAlive) {
1865 // Restore RAX/EAX
1866 MachineInstr *MI;
1867 if (Is64Bit)
1868 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1869 StackPtr, false, NumBytes - 8);
1870 else
1871 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1872 StackPtr, false, NumBytes - 4);
1873 MI->setFlag(MachineInstr::FrameSetup);
1874 MBB.insert(MBBI, MI);
1875 }
1876 } else if (NumBytes) {
1877 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1878 }
1879
1880 if (NeedsWinCFI && NumBytes) {
1881 HasWinCFI = true;
1882 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1883 .addImm(NumBytes)
1884 .setMIFlag(MachineInstr::FrameSetup);
1885 }
1886
1887 int SEHFrameOffset = 0;
1888 unsigned SPOrEstablisher;
1889 if (IsFunclet) {
1890 if (IsClrFunclet) {
1891 // The establisher parameter passed to a CLR funclet is actually a pointer
1892 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1893 // to find the root function establisher frame by loading the PSPSym from
1894 // the intermediate frame.
1895 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1896 MachinePointerInfo NoInfo;
1897 MBB.addLiveIn(Establisher);
1898 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1899 Establisher, false, PSPSlotOffset)
1900 .addMemOperand(MF.getMachineMemOperand(
1901 NoInfo, MachineMemOperand::MOLoad, SlotSize, Align(SlotSize)));
1902 ;
1903 // Save the root establisher back into the current funclet's (mostly
1904 // empty) frame, in case a sub-funclet or the GC needs it.
1905 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1906 false, PSPSlotOffset)
1907 .addReg(Establisher)
1908 .addMemOperand(MF.getMachineMemOperand(
1909 NoInfo,
1910 MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1911 SlotSize, Align(SlotSize)));
1912 }
1913 SPOrEstablisher = Establisher;
1914 } else {
1915 SPOrEstablisher = StackPtr;
1916 }
1917
1918 if (IsWin64Prologue && HasFP) {
1919 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1920 // this calculation on the incoming establisher, which holds the value of
1921 // RSP from the parent frame at the end of the prologue.
1922 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1923 if (SEHFrameOffset)
1924 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1925 SPOrEstablisher, false, SEHFrameOffset);
1926 else
1927 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1928 .addReg(SPOrEstablisher);
1929
1930 // If this is not a funclet, emit the CFI describing our frame pointer.
1931 if (NeedsWinCFI && !IsFunclet) {
1932 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1933 HasWinCFI = true;
1934 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1935 .addImm(FramePtr)
1936 .addImm(SEHFrameOffset)
1937 .setMIFlag(MachineInstr::FrameSetup);
1938 if (isAsynchronousEHPersonality(Personality))
1939 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1940 }
1941 } else if (IsFunclet && STI.is32Bit()) {
1942 // Reset EBP / ESI to something good for funclets.
1943 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1944 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1945 // into the registration node so that the runtime will restore it for us.
1946 if (!MBB.isCleanupFuncletEntry()) {
1947 assert(Personality == EHPersonality::MSVC_CXX);
1948 Register FrameReg;
1949 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1950 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed();
1951 // ESP is the first field, so no extra displacement is needed.
1952 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1953 false, EHRegOffset)
1954 .addReg(X86::ESP);
1955 }
1956 }
1957
1958 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1959 const MachineInstr &FrameInstr = *MBBI;
1960 ++MBBI;
1961
1962 if (NeedsWinCFI) {
1963 int FI;
1964 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1965 if (X86::FR64RegClass.contains(Reg)) {
1966 int Offset;
1967 Register IgnoredFrameReg;
1968 if (IsWin64Prologue && IsFunclet)
1969 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1970 else
1971 Offset =
1972 getFrameIndexReference(MF, FI, IgnoredFrameReg).getFixed() +
1973 SEHFrameOffset;
1974
1975 HasWinCFI = true;
1976 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1977 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1978 .addImm(Reg)
1979 .addImm(Offset)
1980 .setMIFlag(MachineInstr::FrameSetup);
1981 }
1982 }
1983 }
1984 }
1985
1986 if (NeedsWinCFI && HasWinCFI)
1987 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1988 .setMIFlag(MachineInstr::FrameSetup);
1989
1990 if (FnHasClrFunclet && !IsFunclet) {
1991 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1992 // immediately after the prolog) into the PSPSlot so that funclets
1993 // and the GC can recover it.
1994 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1995 auto PSPInfo = MachinePointerInfo::getFixedStack(
1996 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1997 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1998 PSPSlotOffset)
1999 .addReg(StackPtr)
2000 .addMemOperand(MF.getMachineMemOperand(
2001 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
2002 SlotSize, Align(SlotSize)));
2003 }
2004
2005 // Realign stack after we spilled callee-saved registers (so that we'll be
2006 // able to calculate their offsets from the frame pointer).
2007 // Win64 requires aligning the stack after the prologue.
2008 if (IsWin64Prologue && TRI->hasStackRealignment(MF)) {
2009 assert(HasFP && "There should be a frame pointer if stack is realigned.");
2010 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
2011 }
2012
2013 // We already dealt with stack realignment and funclets above.
2014 if (IsFunclet && STI.is32Bit())
2015 return;
2016
2017 // If we need a base pointer, set it up here. It's whatever the value
2018 // of the stack pointer is at this point. Any variable size objects
2019 // will be allocated after this, so we can still use the base pointer
2020 // to reference locals.
2021 if (TRI->hasBasePointer(MF)) {
2022 // Update the base pointer with the current stack pointer.
2023 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
2024 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
2025 .addReg(SPOrEstablisher)
2026 .setMIFlag(MachineInstr::FrameSetup);
2027 if (X86FI->getRestoreBasePointer()) {
2028 // Stash value of base pointer. Saving RSP instead of EBP shortens
2029 // dependence chain. Used by SjLj EH.
2030 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2031 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
2032 FramePtr, true, X86FI->getRestoreBasePointerOffset())
2033 .addReg(SPOrEstablisher)
2034 .setMIFlag(MachineInstr::FrameSetup);
2035 }
2036
2037 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
2038 // Stash the value of the frame pointer relative to the base pointer for
2039 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
2040 // it recovers the frame pointer from the base pointer rather than the
2041 // other way around.
2042 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
2043 Register UsedReg;
2044 int Offset =
2045 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
2046 .getFixed();
2047 assert(UsedReg == BasePtr);
2048 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
2049 .addReg(FramePtr)
2050 .setMIFlag(MachineInstr::FrameSetup);
2051 }
2052 }
2053
2054 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
2055 // Mark end of stack pointer adjustment.
2056 if (!HasFP && NumBytes) {
2057 // Define the current CFA rule to use the provided offset.
2058 assert(StackSize);
2059 BuildCFI(
2060 MBB, MBBI, DL,
2061 MCCFIInstruction::cfiDefCfaOffset(nullptr, StackSize - stackGrowth),
2062 MachineInstr::FrameSetup);
2063 }
2064
2065 // Emit DWARF info specifying the offsets of the callee-saved registers.
2066 emitCalleeSavedFrameMoves(MBB, MBBI, DL, true);
2067 }
2068
2069 // X86 Interrupt handling function cannot assume anything about the direction
2070 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
2071 // in each prologue of interrupt handler function.
2072 //
2073 // FIXME: Create "cld" instruction only in these cases:
2074 // 1. The interrupt handling function uses any of the "rep" instructions.
2075 // 2. Interrupt handling function calls another function.
2076 //
2077 if (Fn.getCallingConv() == CallingConv::X86_INTR)
2078 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
2079 .setMIFlag(MachineInstr::FrameSetup);
2080
2081 // At this point we know if the function has WinCFI or not.
2082 MF.setHasWinCFI(HasWinCFI);
2083 }
2084
canUseLEAForSPInEpilogue(const MachineFunction & MF) const2085 bool X86FrameLowering::canUseLEAForSPInEpilogue(
2086 const MachineFunction &MF) const {
2087 // We can't use LEA instructions for adjusting the stack pointer if we don't
2088 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
2089 // to deallocate the stack.
2090 // This means that we can use LEA for SP in two situations:
2091 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
2092 // 2. We *have* a frame pointer which means we are permitted to use LEA.
2093 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
2094 }
2095
isFuncletReturnInstr(MachineInstr & MI)2096 static bool isFuncletReturnInstr(MachineInstr &MI) {
2097 switch (MI.getOpcode()) {
2098 case X86::CATCHRET:
2099 case X86::CLEANUPRET:
2100 return true;
2101 default:
2102 return false;
2103 }
2104 llvm_unreachable("impossible");
2105 }
2106
2107 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
2108 // stack. It holds a pointer to the bottom of the root function frame. The
2109 // establisher frame pointer passed to a nested funclet may point to the
2110 // (mostly empty) frame of its parent funclet, but it will need to find
2111 // the frame of the root function to access locals. To facilitate this,
2112 // every funclet copies the pointer to the bottom of the root function
2113 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
2114 // same offset for the PSPSym in the root function frame that's used in the
2115 // funclets' frames allows each funclet to dynamically accept any ancestor
2116 // frame as its establisher argument (the runtime doesn't guarantee the
2117 // immediate parent for some reason lost to history), and also allows the GC,
2118 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
2119 // frame with only a single offset reported for the entire method.
2120 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const2121 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
2122 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
2123 Register SPReg;
2124 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
2125 /*IgnoreSPUpdates*/ true)
2126 .getFixed();
2127 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
2128 return static_cast<unsigned>(Offset);
2129 }
2130
2131 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const2132 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
2133 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2134 // This is the size of the pushed CSRs.
2135 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2136 // This is the size of callee saved XMMs.
2137 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2138 unsigned XMMSize = WinEHXMMSlotInfo.size() *
2139 TRI->getSpillSize(X86::VR128RegClass);
2140 // This is the amount of stack a funclet needs to allocate.
2141 unsigned UsedSize;
2142 EHPersonality Personality =
2143 classifyEHPersonality(MF.getFunction().getPersonalityFn());
2144 if (Personality == EHPersonality::CoreCLR) {
2145 // CLR funclets need to hold enough space to include the PSPSym, at the
2146 // same offset from the stack pointer (immediately after the prolog) as it
2147 // resides at in the main function.
2148 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
2149 } else {
2150 // Other funclets just need enough stack for outgoing call arguments.
2151 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
2152 }
2153 // RBP is not included in the callee saved register block. After pushing RBP,
2154 // everything is 16 byte aligned. Everything we allocate before an outgoing
2155 // call must also be 16 byte aligned.
2156 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlign());
2157 // Subtract out the size of the callee saved registers. This is how much stack
2158 // each funclet will allocate.
2159 return FrameSizeMinusRBP + XMMSize - CSSize;
2160 }
2161
isTailCallOpcode(unsigned Opc)2162 static bool isTailCallOpcode(unsigned Opc) {
2163 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
2164 Opc == X86::TCRETURNmi ||
2165 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
2166 Opc == X86::TCRETURNmi64;
2167 }
2168
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const2169 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
2170 MachineBasicBlock &MBB) const {
2171 const MachineFrameInfo &MFI = MF.getFrameInfo();
2172 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2173 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
2174 MachineBasicBlock::iterator MBBI = Terminator;
2175 DebugLoc DL;
2176 if (MBBI != MBB.end())
2177 DL = MBBI->getDebugLoc();
2178 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
2179 const bool Is64BitILP32 = STI.isTarget64BitILP32();
2180 Register FramePtr = TRI->getFrameRegister(MF);
2181 Register MachineFramePtr =
2182 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
2183
2184 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2185 bool NeedsWin64CFI =
2186 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
2187 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
2188
2189 // Get the number of bytes to allocate from the FrameInfo.
2190 uint64_t StackSize = MFI.getStackSize();
2191 uint64_t MaxAlign = calculateMaxStackAlign(MF);
2192 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2193 unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta();
2194 bool HasFP = hasFP(MF);
2195 uint64_t NumBytes = 0;
2196
2197 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
2198 !MF.getTarget().getTargetTriple().isOSWindows()) &&
2199 MF.needsFrameMoves();
2200
2201 if (IsFunclet) {
2202 assert(HasFP && "EH funclets without FP not yet implemented");
2203 NumBytes = getWinEHFuncletFrameSize(MF);
2204 } else if (HasFP) {
2205 // Calculate required stack adjustment.
2206 uint64_t FrameSize = StackSize - SlotSize;
2207 NumBytes = FrameSize - CSSize - TailCallArgReserveSize;
2208
2209 // Callee-saved registers were pushed on stack before the stack was
2210 // realigned.
2211 if (TRI->hasStackRealignment(MF) && !IsWin64Prologue)
2212 NumBytes = alignTo(FrameSize, MaxAlign);
2213 } else {
2214 NumBytes = StackSize - CSSize - TailCallArgReserveSize;
2215 }
2216 uint64_t SEHStackAllocAmt = NumBytes;
2217
2218 // AfterPop is the position to insert .cfi_restore.
2219 MachineBasicBlock::iterator AfterPop = MBBI;
2220 if (HasFP) {
2221 if (X86FI->hasSwiftAsyncContext()) {
2222 // Discard the context.
2223 int Offset = 16 + mergeSPUpdates(MBB, MBBI, true);
2224 emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue*/true);
2225 }
2226 // Pop EBP.
2227 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
2228 MachineFramePtr)
2229 .setMIFlag(MachineInstr::FrameDestroy);
2230
2231 // We need to reset FP to its untagged state on return. Bit 60 is currently
2232 // used to show the presence of an extended frame.
2233 if (X86FI->hasSwiftAsyncContext()) {
2234 BuildMI(MBB, MBBI, DL, TII.get(X86::BTR64ri8),
2235 MachineFramePtr)
2236 .addUse(MachineFramePtr)
2237 .addImm(60)
2238 .setMIFlag(MachineInstr::FrameDestroy);
2239 }
2240
2241 if (NeedsDwarfCFI) {
2242 unsigned DwarfStackPtr =
2243 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
2244 BuildCFI(MBB, MBBI, DL,
2245 MCCFIInstruction::cfiDefCfa(nullptr, DwarfStackPtr, SlotSize),
2246 MachineInstr::FrameDestroy);
2247 if (!MBB.succ_empty() && !MBB.isReturnBlock()) {
2248 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
2249 BuildCFI(MBB, AfterPop, DL,
2250 MCCFIInstruction::createRestore(nullptr, DwarfFramePtr),
2251 MachineInstr::FrameDestroy);
2252 --MBBI;
2253 --AfterPop;
2254 }
2255 --MBBI;
2256 }
2257 }
2258
2259 MachineBasicBlock::iterator FirstCSPop = MBBI;
2260 // Skip the callee-saved pop instructions.
2261 while (MBBI != MBB.begin()) {
2262 MachineBasicBlock::iterator PI = std::prev(MBBI);
2263 unsigned Opc = PI->getOpcode();
2264
2265 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
2266 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2267 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2268 (Opc != X86::BTR64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)) &&
2269 (Opc != X86::ADD64ri8 || !PI->getFlag(MachineInstr::FrameDestroy)))
2270 break;
2271 FirstCSPop = PI;
2272 }
2273
2274 --MBBI;
2275 }
2276 MBBI = FirstCSPop;
2277
2278 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
2279 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
2280
2281 if (MBBI != MBB.end())
2282 DL = MBBI->getDebugLoc();
2283 // If there is an ADD32ri or SUB32ri of ESP immediately before this
2284 // instruction, merge the two instructions.
2285 if (NumBytes || MFI.hasVarSizedObjects())
2286 NumBytes += mergeSPUpdates(MBB, MBBI, true);
2287
2288 // If dynamic alloca is used, then reset esp to point to the last callee-saved
2289 // slot before popping them off! Same applies for the case, when stack was
2290 // realigned. Don't do this if this was a funclet epilogue, since the funclets
2291 // will not do realignment or dynamic stack allocation.
2292 if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) &&
2293 !IsFunclet) {
2294 if (TRI->hasStackRealignment(MF))
2295 MBBI = FirstCSPop;
2296 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
2297 uint64_t LEAAmount =
2298 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
2299
2300 if (X86FI->hasSwiftAsyncContext())
2301 LEAAmount -= 16;
2302
2303 // There are only two legal forms of epilogue:
2304 // - add SEHAllocationSize, %rsp
2305 // - lea SEHAllocationSize(%FramePtr), %rsp
2306 //
2307 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
2308 // However, we may use this sequence if we have a frame pointer because the
2309 // effects of the prologue can safely be undone.
2310 if (LEAAmount != 0) {
2311 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
2312 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
2313 FramePtr, false, LEAAmount);
2314 --MBBI;
2315 } else {
2316 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
2317 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
2318 .addReg(FramePtr);
2319 --MBBI;
2320 }
2321 } else if (NumBytes) {
2322 // Adjust stack pointer back: ESP += numbytes.
2323 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
2324 if (!HasFP && NeedsDwarfCFI) {
2325 // Define the current CFA rule to use the provided offset.
2326 BuildCFI(MBB, MBBI, DL,
2327 MCCFIInstruction::cfiDefCfaOffset(
2328 nullptr, CSSize + TailCallArgReserveSize + SlotSize),
2329 MachineInstr::FrameDestroy);
2330 }
2331 --MBBI;
2332 }
2333
2334 // Windows unwinder will not invoke function's exception handler if IP is
2335 // either in prologue or in epilogue. This behavior causes a problem when a
2336 // call immediately precedes an epilogue, because the return address points
2337 // into the epilogue. To cope with that, we insert an epilogue marker here,
2338 // then replace it with a 'nop' if it ends up immediately after a CALL in the
2339 // final emitted code.
2340 if (NeedsWin64CFI && MF.hasWinCFI())
2341 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
2342
2343 if (!HasFP && NeedsDwarfCFI) {
2344 MBBI = FirstCSPop;
2345 int64_t Offset = -CSSize - SlotSize;
2346 // Mark callee-saved pop instruction.
2347 // Define the current CFA rule to use the provided offset.
2348 while (MBBI != MBB.end()) {
2349 MachineBasicBlock::iterator PI = MBBI;
2350 unsigned Opc = PI->getOpcode();
2351 ++MBBI;
2352 if (Opc == X86::POP32r || Opc == X86::POP64r) {
2353 Offset += SlotSize;
2354 BuildCFI(MBB, MBBI, DL,
2355 MCCFIInstruction::cfiDefCfaOffset(nullptr, -Offset),
2356 MachineInstr::FrameDestroy);
2357 }
2358 }
2359 }
2360
2361 // Emit DWARF info specifying the restores of the callee-saved registers.
2362 // For epilogue with return inside or being other block without successor,
2363 // no need to generate .cfi_restore for callee-saved registers.
2364 if (NeedsDwarfCFI && !MBB.succ_empty())
2365 emitCalleeSavedFrameMoves(MBB, AfterPop, DL, false);
2366
2367 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
2368 // Add the return addr area delta back since we are not tail calling.
2369 int Offset = -1 * X86FI->getTCReturnAddrDelta();
2370 assert(Offset >= 0 && "TCDelta should never be positive");
2371 if (Offset) {
2372 // Check for possible merge with preceding ADD instruction.
2373 Offset += mergeSPUpdates(MBB, Terminator, true);
2374 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
2375 }
2376 }
2377
2378 // Emit tilerelease for AMX kernel.
2379 if (X86FI->hasVirtualTileReg())
2380 BuildMI(MBB, Terminator, DL, TII.get(X86::TILERELEASE));
2381 }
2382
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const2383 StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF,
2384 int FI,
2385 Register &FrameReg) const {
2386 const MachineFrameInfo &MFI = MF.getFrameInfo();
2387
2388 bool IsFixed = MFI.isFixedObjectIndex(FI);
2389 // We can't calculate offset from frame pointer if the stack is realigned,
2390 // so enforce usage of stack/base pointer. The base pointer is used when we
2391 // have dynamic allocas in addition to dynamic realignment.
2392 if (TRI->hasBasePointer(MF))
2393 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
2394 else if (TRI->hasStackRealignment(MF))
2395 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
2396 else
2397 FrameReg = TRI->getFrameRegister(MF);
2398
2399 // Offset will hold the offset from the stack pointer at function entry to the
2400 // object.
2401 // We need to factor in additional offsets applied during the prologue to the
2402 // frame, base, and stack pointer depending on which is used.
2403 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
2404 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2405 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
2406 uint64_t StackSize = MFI.getStackSize();
2407 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2408 int64_t FPDelta = 0;
2409
2410 // In an x86 interrupt, remove the offset we added to account for the return
2411 // address from any stack object allocated in the caller's frame. Interrupts
2412 // do not have a standard return address. Fixed objects in the current frame,
2413 // such as SSE register spills, should not get this treatment.
2414 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
2415 Offset >= 0) {
2416 Offset += getOffsetOfLocalArea();
2417 }
2418
2419 if (IsWin64Prologue) {
2420 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
2421
2422 // Calculate required stack adjustment.
2423 uint64_t FrameSize = StackSize - SlotSize;
2424 // If required, include space for extra hidden slot for stashing base pointer.
2425 if (X86FI->getRestoreBasePointer())
2426 FrameSize += SlotSize;
2427 uint64_t NumBytes = FrameSize - CSSize;
2428
2429 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
2430 if (FI && FI == X86FI->getFAIndex())
2431 return StackOffset::getFixed(-SEHFrameOffset);
2432
2433 // FPDelta is the offset from the "traditional" FP location of the old base
2434 // pointer followed by return address and the location required by the
2435 // restricted Win64 prologue.
2436 // Add FPDelta to all offsets below that go through the frame pointer.
2437 FPDelta = FrameSize - SEHFrameOffset;
2438 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
2439 "FPDelta isn't aligned per the Win64 ABI!");
2440 }
2441
2442 if (FrameReg == TRI->getFramePtr()) {
2443 // Skip saved EBP/RBP
2444 Offset += SlotSize;
2445
2446 // Account for restricted Windows prologue.
2447 Offset += FPDelta;
2448
2449 // Skip the RETADDR move area
2450 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2451 if (TailCallReturnAddrDelta < 0)
2452 Offset -= TailCallReturnAddrDelta;
2453
2454 return StackOffset::getFixed(Offset);
2455 }
2456
2457 // FrameReg is either the stack pointer or a base pointer. But the base is
2458 // located at the end of the statically known StackSize so the distinction
2459 // doesn't really matter.
2460 if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF))
2461 assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize)));
2462 return StackOffset::getFixed(Offset + StackSize);
2463 }
2464
getWin64EHFrameIndexRef(const MachineFunction & MF,int FI,Register & FrameReg) const2465 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI,
2466 Register &FrameReg) const {
2467 const MachineFrameInfo &MFI = MF.getFrameInfo();
2468 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2469 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2470 const auto it = WinEHXMMSlotInfo.find(FI);
2471
2472 if (it == WinEHXMMSlotInfo.end())
2473 return getFrameIndexReference(MF, FI, FrameReg).getFixed();
2474
2475 FrameReg = TRI->getStackRegister();
2476 return alignDown(MFI.getMaxCallFrameSize(), getStackAlign().value()) +
2477 it->second;
2478 }
2479
2480 StackOffset
getFrameIndexReferenceSP(const MachineFunction & MF,int FI,Register & FrameReg,int Adjustment) const2481 X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI,
2482 Register &FrameReg,
2483 int Adjustment) const {
2484 const MachineFrameInfo &MFI = MF.getFrameInfo();
2485 FrameReg = TRI->getStackRegister();
2486 return StackOffset::getFixed(MFI.getObjectOffset(FI) -
2487 getOffsetOfLocalArea() + Adjustment);
2488 }
2489
2490 StackOffset
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,Register & FrameReg,bool IgnoreSPUpdates) const2491 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
2492 int FI, Register &FrameReg,
2493 bool IgnoreSPUpdates) const {
2494
2495 const MachineFrameInfo &MFI = MF.getFrameInfo();
2496 // Does not include any dynamic realign.
2497 const uint64_t StackSize = MFI.getStackSize();
2498 // LLVM arranges the stack as follows:
2499 // ...
2500 // ARG2
2501 // ARG1
2502 // RETADDR
2503 // PUSH RBP <-- RBP points here
2504 // PUSH CSRs
2505 // ~~~~~~~ <-- possible stack realignment (non-win64)
2506 // ...
2507 // STACK OBJECTS
2508 // ... <-- RSP after prologue points here
2509 // ~~~~~~~ <-- possible stack realignment (win64)
2510 //
2511 // if (hasVarSizedObjects()):
2512 // ... <-- "base pointer" (ESI/RBX) points here
2513 // DYNAMIC ALLOCAS
2514 // ... <-- RSP points here
2515 //
2516 // Case 1: In the simple case of no stack realignment and no dynamic
2517 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
2518 // with fixed offsets from RSP.
2519 //
2520 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
2521 // stack objects are addressed with RBP and regular stack objects with RSP.
2522 //
2523 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
2524 // to address stack arguments for outgoing calls and nothing else. The "base
2525 // pointer" points to local variables, and RBP points to fixed objects.
2526 //
2527 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
2528 // answer we give is relative to the SP after the prologue, and not the
2529 // SP in the middle of the function.
2530
2531 if (MFI.isFixedObjectIndex(FI) && TRI->hasStackRealignment(MF) &&
2532 !STI.isTargetWin64())
2533 return getFrameIndexReference(MF, FI, FrameReg);
2534
2535 // If !hasReservedCallFrame the function might have SP adjustement in the
2536 // body. So, even though the offset is statically known, it depends on where
2537 // we are in the function.
2538 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
2539 return getFrameIndexReference(MF, FI, FrameReg);
2540
2541 // We don't handle tail calls, and shouldn't be seeing them either.
2542 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
2543 "we don't handle this case!");
2544
2545 // This is how the math works out:
2546 //
2547 // %rsp grows (i.e. gets lower) left to right. Each box below is
2548 // one word (eight bytes). Obj0 is the stack slot we're trying to
2549 // get to.
2550 //
2551 // ----------------------------------
2552 // | BP | Obj0 | Obj1 | ... | ObjN |
2553 // ----------------------------------
2554 // ^ ^ ^ ^
2555 // A B C E
2556 //
2557 // A is the incoming stack pointer.
2558 // (B - A) is the local area offset (-8 for x86-64) [1]
2559 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
2560 //
2561 // |(E - B)| is the StackSize (absolute value, positive). For a
2562 // stack that grown down, this works out to be (B - E). [3]
2563 //
2564 // E is also the value of %rsp after stack has been set up, and we
2565 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
2566 // (C - E) == (C - A) - (B - A) + (B - E)
2567 // { Using [1], [2] and [3] above }
2568 // == getObjectOffset - LocalAreaOffset + StackSize
2569
2570 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
2571 }
2572
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2573 bool X86FrameLowering::assignCalleeSavedSpillSlots(
2574 MachineFunction &MF, const TargetRegisterInfo *TRI,
2575 std::vector<CalleeSavedInfo> &CSI) const {
2576 MachineFrameInfo &MFI = MF.getFrameInfo();
2577 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2578
2579 unsigned CalleeSavedFrameSize = 0;
2580 unsigned XMMCalleeSavedFrameSize = 0;
2581 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
2582 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
2583
2584 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2585
2586 if (TailCallReturnAddrDelta < 0) {
2587 // create RETURNADDR area
2588 // arg
2589 // arg
2590 // RETADDR
2591 // { ...
2592 // RETADDR area
2593 // ...
2594 // }
2595 // [EBP]
2596 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
2597 TailCallReturnAddrDelta - SlotSize, true);
2598 }
2599
2600 // Spill the BasePtr if it's used.
2601 if (this->TRI->hasBasePointer(MF)) {
2602 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2603 if (MF.hasEHFunclets()) {
2604 int FI = MFI.CreateSpillStackObject(SlotSize, Align(SlotSize));
2605 X86FI->setHasSEHFramePtrSave(true);
2606 X86FI->setSEHFramePtrSaveIndex(FI);
2607 }
2608 }
2609
2610 if (hasFP(MF)) {
2611 // emitPrologue always spills frame register the first thing.
2612 SpillSlotOffset -= SlotSize;
2613 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2614
2615 // The async context lives directly before the frame pointer, and we
2616 // allocate a second slot to preserve stack alignment.
2617 if (X86FI->hasSwiftAsyncContext()) {
2618 SpillSlotOffset -= SlotSize;
2619 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2620 SpillSlotOffset -= SlotSize;
2621 }
2622
2623 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2624 // the frame register, we can delete it from CSI list and not have to worry
2625 // about avoiding it later.
2626 Register FPReg = TRI->getFrameRegister(MF);
2627 for (unsigned i = 0; i < CSI.size(); ++i) {
2628 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2629 CSI.erase(CSI.begin() + i);
2630 break;
2631 }
2632 }
2633 }
2634
2635 // Assign slots for GPRs. It increases frame size.
2636 for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2637 Register Reg = I.getReg();
2638
2639 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2640 continue;
2641
2642 SpillSlotOffset -= SlotSize;
2643 CalleeSavedFrameSize += SlotSize;
2644
2645 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2646 I.setFrameIdx(SlotIndex);
2647 }
2648
2649 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2650 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2651
2652 // Assign slots for XMMs.
2653 for (CalleeSavedInfo &I : llvm::reverse(CSI)) {
2654 Register Reg = I.getReg();
2655 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2656 continue;
2657
2658 // If this is k-register make sure we lookup via the largest legal type.
2659 MVT VT = MVT::Other;
2660 if (X86::VK16RegClass.contains(Reg))
2661 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2662
2663 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2664 unsigned Size = TRI->getSpillSize(*RC);
2665 Align Alignment = TRI->getSpillAlign(*RC);
2666 // ensure alignment
2667 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2668 SpillSlotOffset = -alignTo(-SpillSlotOffset, Alignment);
2669
2670 // spill into slot
2671 SpillSlotOffset -= Size;
2672 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2673 I.setFrameIdx(SlotIndex);
2674 MFI.ensureMaxAlignment(Alignment);
2675
2676 // Save the start offset and size of XMM in stack frame for funclets.
2677 if (X86::VR128RegClass.contains(Reg)) {
2678 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2679 XMMCalleeSavedFrameSize += Size;
2680 }
2681 }
2682
2683 return true;
2684 }
2685
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2686 bool X86FrameLowering::spillCalleeSavedRegisters(
2687 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2688 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2689 DebugLoc DL = MBB.findDebugLoc(MI);
2690
2691 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2692 // for us, and there are no XMM CSRs on Win32.
2693 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2694 return true;
2695
2696 // Push GPRs. It increases frame size.
2697 const MachineFunction &MF = *MBB.getParent();
2698 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2699 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2700 Register Reg = I.getReg();
2701
2702 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2703 continue;
2704
2705 const MachineRegisterInfo &MRI = MF.getRegInfo();
2706 bool isLiveIn = MRI.isLiveIn(Reg);
2707 if (!isLiveIn)
2708 MBB.addLiveIn(Reg);
2709
2710 // Decide whether we can add a kill flag to the use.
2711 bool CanKill = !isLiveIn;
2712 // Check if any subregister is live-in
2713 if (CanKill) {
2714 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2715 if (MRI.isLiveIn(*AReg)) {
2716 CanKill = false;
2717 break;
2718 }
2719 }
2720 }
2721
2722 // Do not set a kill flag on values that are also marked as live-in. This
2723 // happens with the @llvm-returnaddress intrinsic and with arguments
2724 // passed in callee saved registers.
2725 // Omitting the kill flags is conservatively correct even if the live-in
2726 // is not used after all.
2727 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2728 .setMIFlag(MachineInstr::FrameSetup);
2729 }
2730
2731 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2732 // It can be done by spilling XMMs to stack frame.
2733 for (const CalleeSavedInfo &I : llvm::reverse(CSI)) {
2734 Register Reg = I.getReg();
2735 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2736 continue;
2737
2738 // If this is k-register make sure we lookup via the largest legal type.
2739 MVT VT = MVT::Other;
2740 if (X86::VK16RegClass.contains(Reg))
2741 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2742
2743 // Add the callee-saved register as live-in. It's killed at the spill.
2744 MBB.addLiveIn(Reg);
2745 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2746
2747 TII.storeRegToStackSlot(MBB, MI, Reg, true, I.getFrameIdx(), RC, TRI,
2748 Register());
2749 --MI;
2750 MI->setFlag(MachineInstr::FrameSetup);
2751 ++MI;
2752 }
2753
2754 return true;
2755 }
2756
emitCatchRetReturnValue(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineInstr * CatchRet) const2757 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2758 MachineBasicBlock::iterator MBBI,
2759 MachineInstr *CatchRet) const {
2760 // SEH shouldn't use catchret.
2761 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2762 MBB.getParent()->getFunction().getPersonalityFn())) &&
2763 "SEH should not use CATCHRET");
2764 const DebugLoc &DL = CatchRet->getDebugLoc();
2765 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2766
2767 // Fill EAX/RAX with the address of the target block.
2768 if (STI.is64Bit()) {
2769 // LEA64r CatchRetTarget(%rip), %rax
2770 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2771 .addReg(X86::RIP)
2772 .addImm(0)
2773 .addReg(0)
2774 .addMBB(CatchRetTarget)
2775 .addReg(0);
2776 } else {
2777 // MOV32ri $CatchRetTarget, %eax
2778 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2779 .addMBB(CatchRetTarget);
2780 }
2781
2782 // Record that we've taken the address of CatchRetTarget and no longer just
2783 // reference it in a terminator.
2784 CatchRetTarget->setMachineBlockAddressTaken();
2785 }
2786
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const2787 bool X86FrameLowering::restoreCalleeSavedRegisters(
2788 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2789 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2790 if (CSI.empty())
2791 return false;
2792
2793 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2794 // Don't restore CSRs in 32-bit EH funclets. Matches
2795 // spillCalleeSavedRegisters.
2796 if (STI.is32Bit())
2797 return true;
2798 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2799 // funclets. emitEpilogue transforms these to normal jumps.
2800 if (MI->getOpcode() == X86::CATCHRET) {
2801 const Function &F = MBB.getParent()->getFunction();
2802 bool IsSEH = isAsynchronousEHPersonality(
2803 classifyEHPersonality(F.getPersonalityFn()));
2804 if (IsSEH)
2805 return true;
2806 }
2807 }
2808
2809 DebugLoc DL = MBB.findDebugLoc(MI);
2810
2811 // Reload XMMs from stack frame.
2812 for (const CalleeSavedInfo &I : CSI) {
2813 Register Reg = I.getReg();
2814 if (X86::GR64RegClass.contains(Reg) ||
2815 X86::GR32RegClass.contains(Reg))
2816 continue;
2817
2818 // If this is k-register make sure we lookup via the largest legal type.
2819 MVT VT = MVT::Other;
2820 if (X86::VK16RegClass.contains(Reg))
2821 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2822
2823 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2824 TII.loadRegFromStackSlot(MBB, MI, Reg, I.getFrameIdx(), RC, TRI,
2825 Register());
2826 }
2827
2828 // POP GPRs.
2829 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2830 for (const CalleeSavedInfo &I : CSI) {
2831 Register Reg = I.getReg();
2832 if (!X86::GR64RegClass.contains(Reg) &&
2833 !X86::GR32RegClass.contains(Reg))
2834 continue;
2835
2836 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2837 .setMIFlag(MachineInstr::FrameDestroy);
2838 }
2839 return true;
2840 }
2841
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2842 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2843 BitVector &SavedRegs,
2844 RegScavenger *RS) const {
2845 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2846
2847 // Spill the BasePtr if it's used.
2848 if (TRI->hasBasePointer(MF)){
2849 Register BasePtr = TRI->getBaseRegister();
2850 if (STI.isTarget64BitILP32())
2851 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2852 SavedRegs.set(BasePtr);
2853 }
2854 }
2855
2856 static bool
HasNestArgument(const MachineFunction * MF)2857 HasNestArgument(const MachineFunction *MF) {
2858 const Function &F = MF->getFunction();
2859 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2860 I != E; I++) {
2861 if (I->hasNestAttr() && !I->use_empty())
2862 return true;
2863 }
2864 return false;
2865 }
2866
2867 /// GetScratchRegister - Get a temp register for performing work in the
2868 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2869 /// and the properties of the function either one or two registers will be
2870 /// needed. Set primary to true for the first register, false for the second.
2871 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2872 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2873 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2874
2875 // Erlang stuff.
2876 if (CallingConvention == CallingConv::HiPE) {
2877 if (Is64Bit)
2878 return Primary ? X86::R14 : X86::R13;
2879 else
2880 return Primary ? X86::EBX : X86::EDI;
2881 }
2882
2883 if (Is64Bit) {
2884 if (IsLP64)
2885 return Primary ? X86::R11 : X86::R12;
2886 else
2887 return Primary ? X86::R11D : X86::R12D;
2888 }
2889
2890 bool IsNested = HasNestArgument(&MF);
2891
2892 if (CallingConvention == CallingConv::X86_FastCall ||
2893 CallingConvention == CallingConv::Fast ||
2894 CallingConvention == CallingConv::Tail) {
2895 if (IsNested)
2896 report_fatal_error("Segmented stacks does not support fastcall with "
2897 "nested function.");
2898 return Primary ? X86::EAX : X86::ECX;
2899 }
2900 if (IsNested)
2901 return Primary ? X86::EDX : X86::EAX;
2902 return Primary ? X86::ECX : X86::EAX;
2903 }
2904
2905 // The stack limit in the TCB is set to this many bytes above the actual stack
2906 // limit.
2907 static const uint64_t kSplitStackAvailable = 256;
2908
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2909 void X86FrameLowering::adjustForSegmentedStacks(
2910 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2911 MachineFrameInfo &MFI = MF.getFrameInfo();
2912 uint64_t StackSize;
2913 unsigned TlsReg, TlsOffset;
2914 DebugLoc DL;
2915
2916 // To support shrink-wrapping we would need to insert the new blocks
2917 // at the right place and update the branches to PrologueMBB.
2918 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2919
2920 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2921 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2922 "Scratch register is live-in");
2923
2924 if (MF.getFunction().isVarArg())
2925 report_fatal_error("Segmented stacks do not support vararg functions.");
2926 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2927 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2928 !STI.isTargetDragonFly())
2929 report_fatal_error("Segmented stacks not supported on this platform.");
2930
2931 // Eventually StackSize will be calculated by a link-time pass; which will
2932 // also decide whether checking code needs to be injected into this particular
2933 // prologue.
2934 StackSize = MFI.getStackSize();
2935
2936 if (!MFI.needsSplitStackProlog())
2937 return;
2938
2939 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2940 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2941 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2942 bool IsNested = false;
2943
2944 // We need to know if the function has a nest argument only in 64 bit mode.
2945 if (Is64Bit)
2946 IsNested = HasNestArgument(&MF);
2947
2948 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2949 // allocMBB needs to be last (terminating) instruction.
2950
2951 for (const auto &LI : PrologueMBB.liveins()) {
2952 allocMBB->addLiveIn(LI);
2953 checkMBB->addLiveIn(LI);
2954 }
2955
2956 if (IsNested)
2957 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2958
2959 MF.push_front(allocMBB);
2960 MF.push_front(checkMBB);
2961
2962 // When the frame size is less than 256 we just compare the stack
2963 // boundary directly to the value of the stack pointer, per gcc.
2964 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2965
2966 // Read the limit off the current stacklet off the stack_guard location.
2967 if (Is64Bit) {
2968 if (STI.isTargetLinux()) {
2969 TlsReg = X86::FS;
2970 TlsOffset = IsLP64 ? 0x70 : 0x40;
2971 } else if (STI.isTargetDarwin()) {
2972 TlsReg = X86::GS;
2973 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2974 } else if (STI.isTargetWin64()) {
2975 TlsReg = X86::GS;
2976 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2977 } else if (STI.isTargetFreeBSD()) {
2978 TlsReg = X86::FS;
2979 TlsOffset = 0x18;
2980 } else if (STI.isTargetDragonFly()) {
2981 TlsReg = X86::FS;
2982 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2983 } else {
2984 report_fatal_error("Segmented stacks not supported on this platform.");
2985 }
2986
2987 if (CompareStackPointer)
2988 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2989 else
2990 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2991 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2992
2993 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2994 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2995 } else {
2996 if (STI.isTargetLinux()) {
2997 TlsReg = X86::GS;
2998 TlsOffset = 0x30;
2999 } else if (STI.isTargetDarwin()) {
3000 TlsReg = X86::GS;
3001 TlsOffset = 0x48 + 90*4;
3002 } else if (STI.isTargetWin32()) {
3003 TlsReg = X86::FS;
3004 TlsOffset = 0x14; // pvArbitrary, reserved for application use
3005 } else if (STI.isTargetDragonFly()) {
3006 TlsReg = X86::FS;
3007 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
3008 } else if (STI.isTargetFreeBSD()) {
3009 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
3010 } else {
3011 report_fatal_error("Segmented stacks not supported on this platform.");
3012 }
3013
3014 if (CompareStackPointer)
3015 ScratchReg = X86::ESP;
3016 else
3017 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
3018 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
3019
3020 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
3021 STI.isTargetDragonFly()) {
3022 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
3023 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
3024 } else if (STI.isTargetDarwin()) {
3025
3026 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
3027 unsigned ScratchReg2;
3028 bool SaveScratch2;
3029 if (CompareStackPointer) {
3030 // The primary scratch register is available for holding the TLS offset.
3031 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3032 SaveScratch2 = false;
3033 } else {
3034 // Need to use a second register to hold the TLS offset
3035 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
3036
3037 // Unfortunately, with fastcc the second scratch register may hold an
3038 // argument.
3039 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
3040 }
3041
3042 // If Scratch2 is live-in then it needs to be saved.
3043 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
3044 "Scratch register is live-in and not saved");
3045
3046 if (SaveScratch2)
3047 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
3048 .addReg(ScratchReg2, RegState::Kill);
3049
3050 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
3051 .addImm(TlsOffset);
3052 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
3053 .addReg(ScratchReg)
3054 .addReg(ScratchReg2).addImm(1).addReg(0)
3055 .addImm(0)
3056 .addReg(TlsReg);
3057
3058 if (SaveScratch2)
3059 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
3060 }
3061 }
3062
3063 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
3064 // It jumps to normal execution of the function body.
3065 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
3066
3067 // On 32 bit we first push the arguments size and then the frame size. On 64
3068 // bit, we pass the stack frame size in r10 and the argument size in r11.
3069 if (Is64Bit) {
3070 // Functions with nested arguments use R10, so it needs to be saved across
3071 // the call to _morestack
3072
3073 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
3074 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
3075 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
3076 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
3077
3078 if (IsNested)
3079 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
3080
3081 BuildMI(allocMBB, DL, TII.get(getMOVriOpcode(IsLP64, StackSize)), Reg10)
3082 .addImm(StackSize);
3083 BuildMI(allocMBB, DL,
3084 TII.get(getMOVriOpcode(IsLP64, X86FI->getArgumentStackSize())),
3085 Reg11)
3086 .addImm(X86FI->getArgumentStackSize());
3087 } else {
3088 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3089 .addImm(X86FI->getArgumentStackSize());
3090 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
3091 .addImm(StackSize);
3092 }
3093
3094 // __morestack is in libgcc
3095 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
3096 // Under the large code model, we cannot assume that __morestack lives
3097 // within 2^31 bytes of the call site, so we cannot use pc-relative
3098 // addressing. We cannot perform the call via a temporary register,
3099 // as the rax register may be used to store the static chain, and all
3100 // other suitable registers may be either callee-save or used for
3101 // parameter passing. We cannot use the stack at this point either
3102 // because __morestack manipulates the stack directly.
3103 //
3104 // To avoid these issues, perform an indirect call via a read-only memory
3105 // location containing the address.
3106 //
3107 // This solution is not perfect, as it assumes that the .rodata section
3108 // is laid out within 2^31 bytes of each function body, but this seems
3109 // to be sufficient for JIT.
3110 // FIXME: Add retpoline support and remove the error here..
3111 if (STI.useIndirectThunkCalls())
3112 report_fatal_error("Emitting morestack calls on 64-bit with the large "
3113 "code model and thunks not yet implemented.");
3114 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
3115 .addReg(X86::RIP)
3116 .addImm(0)
3117 .addReg(0)
3118 .addExternalSymbol("__morestack_addr")
3119 .addReg(0);
3120 } else {
3121 if (Is64Bit)
3122 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
3123 .addExternalSymbol("__morestack");
3124 else
3125 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
3126 .addExternalSymbol("__morestack");
3127 }
3128
3129 if (IsNested)
3130 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
3131 else
3132 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
3133
3134 allocMBB->addSuccessor(&PrologueMBB);
3135
3136 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
3137 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
3138
3139 #ifdef EXPENSIVE_CHECKS
3140 MF.verify();
3141 #endif
3142 }
3143
3144 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
3145 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
3146 /// to fields it needs, through a named metadata node "hipe.literals" containing
3147 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)3148 static unsigned getHiPELiteral(
3149 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
3150 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
3151 MDNode *Node = HiPELiteralsMD->getOperand(i);
3152 if (Node->getNumOperands() != 2) continue;
3153 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
3154 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
3155 if (!NodeName || !NodeVal) continue;
3156 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
3157 if (ValConst && NodeName->getString() == LiteralName) {
3158 return ValConst->getZExtValue();
3159 }
3160 }
3161
3162 report_fatal_error("HiPE literal " + LiteralName
3163 + " required but not provided");
3164 }
3165
3166 // Return true if there are no non-ehpad successors to MBB and there are no
3167 // non-meta instructions between MBBI and MBB.end().
blockEndIsUnreachable(const MachineBasicBlock & MBB,MachineBasicBlock::const_iterator MBBI)3168 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
3169 MachineBasicBlock::const_iterator MBBI) {
3170 return llvm::all_of(
3171 MBB.successors(),
3172 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
3173 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
3174 return MI.isMetaInstruction();
3175 });
3176 }
3177
3178 /// Erlang programs may need a special prologue to handle the stack size they
3179 /// might need at runtime. That is because Erlang/OTP does not implement a C
3180 /// stack but uses a custom implementation of hybrid stack/heap architecture.
3181 /// (for more information see Eric Stenman's Ph.D. thesis:
3182 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
3183 ///
3184 /// CheckStack:
3185 /// temp0 = sp - MaxStack
3186 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
3187 /// OldStart:
3188 /// ...
3189 /// IncStack:
3190 /// call inc_stack # doubles the stack space
3191 /// temp0 = sp - MaxStack
3192 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const3193 void X86FrameLowering::adjustForHiPEPrologue(
3194 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3195 MachineFrameInfo &MFI = MF.getFrameInfo();
3196 DebugLoc DL;
3197
3198 // To support shrink-wrapping we would need to insert the new blocks
3199 // at the right place and update the branches to PrologueMBB.
3200 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
3201
3202 // HiPE-specific values
3203 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
3204 ->getNamedMetadata("hipe.literals");
3205 if (!HiPELiteralsMD)
3206 report_fatal_error(
3207 "Can't generate HiPE prologue without runtime parameters");
3208 const unsigned HipeLeafWords
3209 = getHiPELiteral(HiPELiteralsMD,
3210 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
3211 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
3212 const unsigned Guaranteed = HipeLeafWords * SlotSize;
3213 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
3214 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
3215 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
3216
3217 assert(STI.isTargetLinux() &&
3218 "HiPE prologue is only supported on Linux operating systems.");
3219
3220 // Compute the largest caller's frame that is needed to fit the callees'
3221 // frames. This 'MaxStack' is computed from:
3222 //
3223 // a) the fixed frame size, which is the space needed for all spilled temps,
3224 // b) outgoing on-stack parameter areas, and
3225 // c) the minimum stack space this function needs to make available for the
3226 // functions it calls (a tunable ABI property).
3227 if (MFI.hasCalls()) {
3228 unsigned MoreStackForCalls = 0;
3229
3230 for (auto &MBB : MF) {
3231 for (auto &MI : MBB) {
3232 if (!MI.isCall())
3233 continue;
3234
3235 // Get callee operand.
3236 const MachineOperand &MO = MI.getOperand(0);
3237
3238 // Only take account of global function calls (no closures etc.).
3239 if (!MO.isGlobal())
3240 continue;
3241
3242 const Function *F = dyn_cast<Function>(MO.getGlobal());
3243 if (!F)
3244 continue;
3245
3246 // Do not update 'MaxStack' for primitive and built-in functions
3247 // (encoded with names either starting with "erlang."/"bif_" or not
3248 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
3249 // "_", such as the BIF "suspend_0") as they are executed on another
3250 // stack.
3251 if (F->getName().contains("erlang.") || F->getName().contains("bif_") ||
3252 F->getName().find_first_of("._") == StringRef::npos)
3253 continue;
3254
3255 unsigned CalleeStkArity =
3256 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
3257 if (HipeLeafWords - 1 > CalleeStkArity)
3258 MoreStackForCalls = std::max(MoreStackForCalls,
3259 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
3260 }
3261 }
3262 MaxStack += MoreStackForCalls;
3263 }
3264
3265 // If the stack frame needed is larger than the guaranteed then runtime checks
3266 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
3267 if (MaxStack > Guaranteed) {
3268 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
3269 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
3270
3271 for (const auto &LI : PrologueMBB.liveins()) {
3272 stackCheckMBB->addLiveIn(LI);
3273 incStackMBB->addLiveIn(LI);
3274 }
3275
3276 MF.push_front(incStackMBB);
3277 MF.push_front(stackCheckMBB);
3278
3279 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
3280 unsigned LEAop, CMPop, CALLop;
3281 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
3282 if (Is64Bit) {
3283 SPReg = X86::RSP;
3284 PReg = X86::RBP;
3285 LEAop = X86::LEA64r;
3286 CMPop = X86::CMP64rm;
3287 CALLop = X86::CALL64pcrel32;
3288 } else {
3289 SPReg = X86::ESP;
3290 PReg = X86::EBP;
3291 LEAop = X86::LEA32r;
3292 CMPop = X86::CMP32rm;
3293 CALLop = X86::CALLpcrel32;
3294 }
3295
3296 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
3297 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
3298 "HiPE prologue scratch register is live-in");
3299
3300 // Create new MBB for StackCheck:
3301 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
3302 SPReg, false, -MaxStack);
3303 // SPLimitOffset is in a fixed heap location (pointed by BP).
3304 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
3305 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3306 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
3307
3308 // Create new MBB for IncStack:
3309 BuildMI(incStackMBB, DL, TII.get(CALLop)).
3310 addExternalSymbol("inc_stack_0");
3311 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
3312 SPReg, false, -MaxStack);
3313 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
3314 .addReg(ScratchReg), PReg, false, SPLimitOffset);
3315 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
3316
3317 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
3318 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
3319 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
3320 incStackMBB->addSuccessor(incStackMBB, {1, 100});
3321 }
3322 #ifdef EXPENSIVE_CHECKS
3323 MF.verify();
3324 #endif
3325 }
3326
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const3327 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
3328 MachineBasicBlock::iterator MBBI,
3329 const DebugLoc &DL,
3330 int Offset) const {
3331 if (Offset <= 0)
3332 return false;
3333
3334 if (Offset % SlotSize)
3335 return false;
3336
3337 int NumPops = Offset / SlotSize;
3338 // This is only worth it if we have at most 2 pops.
3339 if (NumPops != 1 && NumPops != 2)
3340 return false;
3341
3342 // Handle only the trivial case where the adjustment directly follows
3343 // a call. This is the most common one, anyway.
3344 if (MBBI == MBB.begin())
3345 return false;
3346 MachineBasicBlock::iterator Prev = std::prev(MBBI);
3347 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
3348 return false;
3349
3350 unsigned Regs[2];
3351 unsigned FoundRegs = 0;
3352
3353 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3354 const MachineOperand &RegMask = Prev->getOperand(1);
3355
3356 auto &RegClass =
3357 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
3358 // Try to find up to NumPops free registers.
3359 for (auto Candidate : RegClass) {
3360 // Poor man's liveness:
3361 // Since we're immediately after a call, any register that is clobbered
3362 // by the call and not defined by it can be considered dead.
3363 if (!RegMask.clobbersPhysReg(Candidate))
3364 continue;
3365
3366 // Don't clobber reserved registers
3367 if (MRI.isReserved(Candidate))
3368 continue;
3369
3370 bool IsDef = false;
3371 for (const MachineOperand &MO : Prev->implicit_operands()) {
3372 if (MO.isReg() && MO.isDef() &&
3373 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
3374 IsDef = true;
3375 break;
3376 }
3377 }
3378
3379 if (IsDef)
3380 continue;
3381
3382 Regs[FoundRegs++] = Candidate;
3383 if (FoundRegs == (unsigned)NumPops)
3384 break;
3385 }
3386
3387 if (FoundRegs == 0)
3388 return false;
3389
3390 // If we found only one free register, but need two, reuse the same one twice.
3391 while (FoundRegs < (unsigned)NumPops)
3392 Regs[FoundRegs++] = Regs[0];
3393
3394 for (int i = 0; i < NumPops; ++i)
3395 BuildMI(MBB, MBBI, DL,
3396 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
3397
3398 return true;
3399 }
3400
3401 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const3402 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
3403 MachineBasicBlock::iterator I) const {
3404 bool reserveCallFrame = hasReservedCallFrame(MF);
3405 unsigned Opcode = I->getOpcode();
3406 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
3407 DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased.
3408 uint64_t Amount = TII.getFrameSize(*I);
3409 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
3410 I = MBB.erase(I);
3411 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
3412
3413 // Try to avoid emitting dead SP adjustments if the block end is unreachable,
3414 // typically because the function is marked noreturn (abort, throw,
3415 // assert_fail, etc).
3416 if (isDestroy && blockEndIsUnreachable(MBB, I))
3417 return I;
3418
3419 if (!reserveCallFrame) {
3420 // If the stack pointer can be changed after prologue, turn the
3421 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
3422 // adjcallstackdown instruction into 'add ESP, <amt>'
3423
3424 // We need to keep the stack aligned properly. To do this, we round the
3425 // amount of space needed for the outgoing arguments up to the next
3426 // alignment boundary.
3427 Amount = alignTo(Amount, getStackAlign());
3428
3429 const Function &F = MF.getFunction();
3430 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
3431 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
3432
3433 // If we have any exception handlers in this function, and we adjust
3434 // the SP before calls, we may need to indicate this to the unwinder
3435 // using GNU_ARGS_SIZE. Note that this may be necessary even when
3436 // Amount == 0, because the preceding function may have set a non-0
3437 // GNU_ARGS_SIZE.
3438 // TODO: We don't need to reset this between subsequent functions,
3439 // if it didn't change.
3440 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
3441
3442 if (HasDwarfEHHandlers && !isDestroy &&
3443 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
3444 BuildCFI(MBB, InsertPos, DL,
3445 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
3446
3447 if (Amount == 0)
3448 return I;
3449
3450 // Factor out the amount that gets handled inside the sequence
3451 // (Pushes of argument for frame setup, callee pops for frame destroy)
3452 Amount -= InternalAmt;
3453
3454 // TODO: This is needed only if we require precise CFA.
3455 // If this is a callee-pop calling convention, emit a CFA adjust for
3456 // the amount the callee popped.
3457 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
3458 BuildCFI(MBB, InsertPos, DL,
3459 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
3460
3461 // Add Amount to SP to destroy a frame, or subtract to setup.
3462 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
3463
3464 if (StackAdjustment) {
3465 // Merge with any previous or following adjustment instruction. Note: the
3466 // instructions merged with here do not have CFI, so their stack
3467 // adjustments do not feed into CfaAdjustment.
3468 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
3469 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
3470
3471 if (StackAdjustment) {
3472 if (!(F.hasMinSize() &&
3473 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
3474 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
3475 /*InEpilogue=*/false);
3476 }
3477 }
3478
3479 if (DwarfCFI && !hasFP(MF)) {
3480 // If we don't have FP, but need to generate unwind information,
3481 // we need to set the correct CFA offset after the stack adjustment.
3482 // How much we adjust the CFA offset depends on whether we're emitting
3483 // CFI only for EH purposes or for debugging. EH only requires the CFA
3484 // offset to be correct at each call site, while for debugging we want
3485 // it to be more precise.
3486
3487 int64_t CfaAdjustment = -StackAdjustment;
3488 // TODO: When not using precise CFA, we also need to adjust for the
3489 // InternalAmt here.
3490 if (CfaAdjustment) {
3491 BuildCFI(MBB, InsertPos, DL,
3492 MCCFIInstruction::createAdjustCfaOffset(nullptr,
3493 CfaAdjustment));
3494 }
3495 }
3496
3497 return I;
3498 }
3499
3500 if (InternalAmt) {
3501 MachineBasicBlock::iterator CI = I;
3502 MachineBasicBlock::iterator B = MBB.begin();
3503 while (CI != B && !std::prev(CI)->isCall())
3504 --CI;
3505 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
3506 }
3507
3508 return I;
3509 }
3510
canUseAsPrologue(const MachineBasicBlock & MBB) const3511 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
3512 assert(MBB.getParent() && "Block is not attached to a function!");
3513 const MachineFunction &MF = *MBB.getParent();
3514 if (!MBB.isLiveIn(X86::EFLAGS))
3515 return true;
3516
3517 // If stack probes have to loop inline or call, that will clobber EFLAGS.
3518 // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock.
3519 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
3520 const X86TargetLowering &TLI = *STI.getTargetLowering();
3521 if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF))
3522 return false;
3523
3524 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3525 return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext();
3526 }
3527
canUseAsEpilogue(const MachineBasicBlock & MBB) const3528 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
3529 assert(MBB.getParent() && "Block is not attached to a function!");
3530
3531 // Win64 has strict requirements in terms of epilogue and we are
3532 // not taking a chance at messing with them.
3533 // I.e., unless this block is already an exit block, we can't use
3534 // it as an epilogue.
3535 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
3536 return false;
3537
3538 // Swift async context epilogue has a BTR instruction that clobbers parts of
3539 // EFLAGS.
3540 const MachineFunction &MF = *MBB.getParent();
3541 if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext())
3542 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3543
3544 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
3545 return true;
3546
3547 // If we cannot use LEA to adjust SP, we may need to use ADD, which
3548 // clobbers the EFLAGS. Check that we do not need to preserve it,
3549 // otherwise, conservatively assume this is not
3550 // safe to insert the epilogue here.
3551 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
3552 }
3553
enableShrinkWrapping(const MachineFunction & MF) const3554 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
3555 // If we may need to emit frameless compact unwind information, give
3556 // up as this is currently broken: PR25614.
3557 bool CompactUnwind =
3558 MF.getMMI().getContext().getObjectFileInfo()->getCompactUnwindSection() !=
3559 nullptr;
3560 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF) ||
3561 !CompactUnwind) &&
3562 // The lowering of segmented stack and HiPE only support entry
3563 // blocks as prologue blocks: PR26107. This limitation may be
3564 // lifted if we fix:
3565 // - adjustForSegmentedStacks
3566 // - adjustForHiPEPrologue
3567 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
3568 !MF.shouldSplitStack();
3569 }
3570
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const3571 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
3572 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3573 const DebugLoc &DL, bool RestoreSP) const {
3574 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
3575 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
3576 assert(STI.is32Bit() && !Uses64BitFramePtr &&
3577 "restoring EBP/ESI on non-32-bit target");
3578
3579 MachineFunction &MF = *MBB.getParent();
3580 Register FramePtr = TRI->getFrameRegister(MF);
3581 Register BasePtr = TRI->getBaseRegister();
3582 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
3583 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3584 MachineFrameInfo &MFI = MF.getFrameInfo();
3585
3586 // FIXME: Don't set FrameSetup flag in catchret case.
3587
3588 int FI = FuncInfo.EHRegNodeFrameIndex;
3589 int EHRegSize = MFI.getObjectSize(FI);
3590
3591 if (RestoreSP) {
3592 // MOV32rm -EHRegSize(%ebp), %esp
3593 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
3594 X86::EBP, true, -EHRegSize)
3595 .setMIFlag(MachineInstr::FrameSetup);
3596 }
3597
3598 Register UsedReg;
3599 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg).getFixed();
3600 int EndOffset = -EHRegOffset - EHRegSize;
3601 FuncInfo.EHRegNodeEndOffset = EndOffset;
3602
3603 if (UsedReg == FramePtr) {
3604 // ADD $offset, %ebp
3605 unsigned ADDri = getADDriOpcode(false, EndOffset);
3606 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
3607 .addReg(FramePtr)
3608 .addImm(EndOffset)
3609 .setMIFlag(MachineInstr::FrameSetup)
3610 ->getOperand(3)
3611 .setIsDead();
3612 assert(EndOffset >= 0 &&
3613 "end of registration object above normal EBP position!");
3614 } else if (UsedReg == BasePtr) {
3615 // LEA offset(%ebp), %esi
3616 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
3617 FramePtr, false, EndOffset)
3618 .setMIFlag(MachineInstr::FrameSetup);
3619 // MOV32rm SavedEBPOffset(%esi), %ebp
3620 assert(X86FI->getHasSEHFramePtrSave());
3621 int Offset =
3622 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg)
3623 .getFixed();
3624 assert(UsedReg == BasePtr);
3625 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
3626 UsedReg, true, Offset)
3627 .setMIFlag(MachineInstr::FrameSetup);
3628 } else {
3629 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3630 }
3631 return MBBI;
3632 }
3633
getInitialCFAOffset(const MachineFunction & MF) const3634 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3635 return TRI->getSlotSize();
3636 }
3637
3638 Register
getInitialCFARegister(const MachineFunction & MF) const3639 X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const {
3640 return TRI->getDwarfRegNum(StackPtr, true);
3641 }
3642
3643 namespace {
3644 // Struct used by orderFrameObjects to help sort the stack objects.
3645 struct X86FrameSortingObject {
3646 bool IsValid = false; // true if we care about this Object.
3647 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3648 unsigned ObjectSize = 0; // Size of Object in bytes.
3649 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
3650 unsigned ObjectNumUses = 0; // Object static number of uses.
3651 };
3652
3653 // The comparison function we use for std::sort to order our local
3654 // stack symbols. The current algorithm is to use an estimated
3655 // "density". This takes into consideration the size and number of
3656 // uses each object has in order to roughly minimize code size.
3657 // So, for example, an object of size 16B that is referenced 5 times
3658 // will get higher priority than 4 4B objects referenced 1 time each.
3659 // It's not perfect and we may be able to squeeze a few more bytes out of
3660 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3661 // fringe end can have special consideration, given their size is less
3662 // important, etc.), but the algorithmic complexity grows too much to be
3663 // worth the extra gains we get. This gets us pretty close.
3664 // The final order leaves us with objects with highest priority going
3665 // at the end of our list.
3666 struct X86FrameSortingComparator {
operator ()__anona20f65f10411::X86FrameSortingComparator3667 inline bool operator()(const X86FrameSortingObject &A,
3668 const X86FrameSortingObject &B) const {
3669 uint64_t DensityAScaled, DensityBScaled;
3670
3671 // For consistency in our comparison, all invalid objects are placed
3672 // at the end. This also allows us to stop walking when we hit the
3673 // first invalid item after it's all sorted.
3674 if (!A.IsValid)
3675 return false;
3676 if (!B.IsValid)
3677 return true;
3678
3679 // The density is calculated by doing :
3680 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3681 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3682 // Since this approach may cause inconsistencies in
3683 // the floating point <, >, == comparisons, depending on the floating
3684 // point model with which the compiler was built, we're going
3685 // to scale both sides by multiplying with
3686 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3687 // the division and, with it, the need for any floating point
3688 // arithmetic.
3689 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3690 static_cast<uint64_t>(B.ObjectSize);
3691 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3692 static_cast<uint64_t>(A.ObjectSize);
3693
3694 // If the two densities are equal, prioritize highest alignment
3695 // objects. This allows for similar alignment objects
3696 // to be packed together (given the same density).
3697 // There's room for improvement here, also, since we can pack
3698 // similar alignment (different density) objects next to each
3699 // other to save padding. This will also require further
3700 // complexity/iterations, and the overall gain isn't worth it,
3701 // in general. Something to keep in mind, though.
3702 if (DensityAScaled == DensityBScaled)
3703 return A.ObjectAlignment < B.ObjectAlignment;
3704
3705 return DensityAScaled < DensityBScaled;
3706 }
3707 };
3708 } // namespace
3709
3710 // Order the symbols in the local stack.
3711 // We want to place the local stack objects in some sort of sensible order.
3712 // The heuristic we use is to try and pack them according to static number
3713 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3714 void X86FrameLowering::orderFrameObjects(
3715 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3716 const MachineFrameInfo &MFI = MF.getFrameInfo();
3717
3718 // Don't waste time if there's nothing to do.
3719 if (ObjectsToAllocate.empty())
3720 return;
3721
3722 // Create an array of all MFI objects. We won't need all of these
3723 // objects, but we're going to create a full array of them to make
3724 // it easier to index into when we're counting "uses" down below.
3725 // We want to be able to easily/cheaply access an object by simply
3726 // indexing into it, instead of having to search for it every time.
3727 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3728
3729 // Walk the objects we care about and mark them as such in our working
3730 // struct.
3731 for (auto &Obj : ObjectsToAllocate) {
3732 SortingObjects[Obj].IsValid = true;
3733 SortingObjects[Obj].ObjectIndex = Obj;
3734 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(Obj);
3735 // Set the size.
3736 int ObjectSize = MFI.getObjectSize(Obj);
3737 if (ObjectSize == 0)
3738 // Variable size. Just use 4.
3739 SortingObjects[Obj].ObjectSize = 4;
3740 else
3741 SortingObjects[Obj].ObjectSize = ObjectSize;
3742 }
3743
3744 // Count the number of uses for each object.
3745 for (auto &MBB : MF) {
3746 for (auto &MI : MBB) {
3747 if (MI.isDebugInstr())
3748 continue;
3749 for (const MachineOperand &MO : MI.operands()) {
3750 // Check to see if it's a local stack symbol.
3751 if (!MO.isFI())
3752 continue;
3753 int Index = MO.getIndex();
3754 // Check to see if it falls within our range, and is tagged
3755 // to require ordering.
3756 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3757 SortingObjects[Index].IsValid)
3758 SortingObjects[Index].ObjectNumUses++;
3759 }
3760 }
3761 }
3762
3763 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3764 // info).
3765 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3766
3767 // Now modify the original list to represent the final order that
3768 // we want. The order will depend on whether we're going to access them
3769 // from the stack pointer or the frame pointer. For SP, the list should
3770 // end up with the END containing objects that we want with smaller offsets.
3771 // For FP, it should be flipped.
3772 int i = 0;
3773 for (auto &Obj : SortingObjects) {
3774 // All invalid items are sorted at the end, so it's safe to stop.
3775 if (!Obj.IsValid)
3776 break;
3777 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3778 }
3779
3780 // Flip it if we're accessing off of the FP.
3781 if (!TRI->hasStackRealignment(MF) && hasFP(MF))
3782 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3783 }
3784
3785
getWinEHParentFrameOffset(const MachineFunction & MF) const3786 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3787 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3788 unsigned Offset = 16;
3789 // RBP is immediately pushed.
3790 Offset += SlotSize;
3791 // All callee-saved registers are then pushed.
3792 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3793 // Every funclet allocates enough stack space for the largest outgoing call.
3794 Offset += getWinEHFuncletFrameSize(MF);
3795 return Offset;
3796 }
3797
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3798 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3799 MachineFunction &MF, RegScavenger *RS) const {
3800 // Mark the function as not having WinCFI. We will set it back to true in
3801 // emitPrologue if it gets called and emits CFI.
3802 MF.setHasWinCFI(false);
3803
3804 // If we are using Windows x64 CFI, ensure that the stack is always 8 byte
3805 // aligned. The format doesn't support misaligned stack adjustments.
3806 if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI())
3807 MF.getFrameInfo().ensureMaxAlignment(Align(SlotSize));
3808
3809 // If this function isn't doing Win64-style C++ EH, we don't need to do
3810 // anything.
3811 if (STI.is64Bit() && MF.hasEHFunclets() &&
3812 classifyEHPersonality(MF.getFunction().getPersonalityFn()) ==
3813 EHPersonality::MSVC_CXX) {
3814 adjustFrameForMsvcCxxEh(MF);
3815 }
3816 }
3817
adjustFrameForMsvcCxxEh(MachineFunction & MF) const3818 void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const {
3819 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3820 // relative to RSP after the prologue. Find the offset of the last fixed
3821 // object, so that we can allocate a slot immediately following it. If there
3822 // were no fixed objects, use offset -SlotSize, which is immediately after the
3823 // return address. Fixed objects have negative frame indices.
3824 MachineFrameInfo &MFI = MF.getFrameInfo();
3825 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3826 int64_t MinFixedObjOffset = -SlotSize;
3827 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3828 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3829
3830 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3831 for (WinEHHandlerType &H : TBME.HandlerArray) {
3832 int FrameIndex = H.CatchObj.FrameIndex;
3833 if (FrameIndex != INT_MAX) {
3834 // Ensure alignment.
3835 unsigned Align = MFI.getObjectAlign(FrameIndex).value();
3836 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3837 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3838 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3839 }
3840 }
3841 }
3842
3843 // Ensure alignment.
3844 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3845 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3846 int UnwindHelpFI =
3847 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3848 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3849
3850 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3851 // other frame setup instructions.
3852 MachineBasicBlock &MBB = MF.front();
3853 auto MBBI = MBB.begin();
3854 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3855 ++MBBI;
3856
3857 DebugLoc DL = MBB.findDebugLoc(MBBI);
3858 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3859 UnwindHelpFI)
3860 .addImm(-2);
3861 }
3862
processFunctionBeforeFrameIndicesReplaced(MachineFunction & MF,RegScavenger * RS) const3863 void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3864 MachineFunction &MF, RegScavenger *RS) const {
3865 if (STI.is32Bit() && MF.hasEHFunclets())
3866 restoreWinEHStackPointersInParent(MF);
3867 }
3868
restoreWinEHStackPointersInParent(MachineFunction & MF) const3869 void X86FrameLowering::restoreWinEHStackPointersInParent(
3870 MachineFunction &MF) const {
3871 // 32-bit functions have to restore stack pointers when control is transferred
3872 // back to the parent function. These blocks are identified as eh pads that
3873 // are not funclet entries.
3874 bool IsSEH = isAsynchronousEHPersonality(
3875 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
3876 for (MachineBasicBlock &MBB : MF) {
3877 bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry();
3878 if (NeedsRestore)
3879 restoreWin32EHStackPointers(MBB, MBB.begin(), DebugLoc(),
3880 /*RestoreSP=*/IsSEH);
3881 }
3882 }
3883