1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DebugInfoMetadata.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include <cassert>
55 #include <cstddef>
56 #include <utility>
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "adce"
61
62 STATISTIC(NumRemoved, "Number of instructions removed");
63 STATISTIC(NumBranchesRemoved, "Number of branch instructions removed");
64
65 // This is a temporary option until we change the interface to this pass based
66 // on optimization level.
67 static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow",
68 cl::init(true), cl::Hidden);
69
70 // This option enables removing of may-be-infinite loops which have no other
71 // effect.
72 static cl::opt<bool> RemoveLoops("adce-remove-loops", cl::init(false),
73 cl::Hidden);
74
75 namespace {
76
77 /// Information about Instructions
78 struct InstInfoType {
79 /// True if the associated instruction is live.
80 bool Live = false;
81
82 /// Quick access to information for block containing associated Instruction.
83 struct BlockInfoType *Block = nullptr;
84 };
85
86 /// Information about basic blocks relevant to dead code elimination.
87 struct BlockInfoType {
88 /// True when this block contains a live instructions.
89 bool Live = false;
90
91 /// True when this block ends in an unconditional branch.
92 bool UnconditionalBranch = false;
93
94 /// True when this block is known to have live PHI nodes.
95 bool HasLivePhiNodes = false;
96
97 /// Control dependence sources need to be live for this block.
98 bool CFLive = false;
99
100 /// Quick access to the LiveInfo for the terminator,
101 /// holds the value &InstInfo[Terminator]
102 InstInfoType *TerminatorLiveInfo = nullptr;
103
104 /// Corresponding BasicBlock.
105 BasicBlock *BB = nullptr;
106
107 /// Cache of BB->getTerminator().
108 Instruction *Terminator = nullptr;
109
110 /// Post-order numbering of reverse control flow graph.
111 unsigned PostOrder;
112
terminatorIsLive__anon7db28dbe0111::BlockInfoType113 bool terminatorIsLive() const { return TerminatorLiveInfo->Live; }
114 };
115
116 class AggressiveDeadCodeElimination {
117 Function &F;
118
119 // ADCE does not use DominatorTree per se, but it updates it to preserve the
120 // analysis.
121 DominatorTree *DT;
122 PostDominatorTree &PDT;
123
124 /// Mapping of blocks to associated information, an element in BlockInfoVec.
125 /// Use MapVector to get deterministic iteration order.
126 MapVector<BasicBlock *, BlockInfoType> BlockInfo;
isLive(BasicBlock * BB)127 bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; }
128
129 /// Mapping of instructions to associated information.
130 DenseMap<Instruction *, InstInfoType> InstInfo;
isLive(Instruction * I)131 bool isLive(Instruction *I) { return InstInfo[I].Live; }
132
133 /// Instructions known to be live where we need to mark
134 /// reaching definitions as live.
135 SmallVector<Instruction *, 128> Worklist;
136
137 /// Debug info scopes around a live instruction.
138 SmallPtrSet<const Metadata *, 32> AliveScopes;
139
140 /// Set of blocks with not known to have live terminators.
141 SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators;
142
143 /// The set of blocks which we have determined whose control
144 /// dependence sources must be live and which have not had
145 /// those dependences analyzed.
146 SmallPtrSet<BasicBlock *, 16> NewLiveBlocks;
147
148 /// Set up auxiliary data structures for Instructions and BasicBlocks and
149 /// initialize the Worklist to the set of must-be-live Instruscions.
150 void initialize();
151
152 /// Return true for operations which are always treated as live.
153 bool isAlwaysLive(Instruction &I);
154
155 /// Return true for instrumentation instructions for value profiling.
156 bool isInstrumentsConstant(Instruction &I);
157
158 /// Propagate liveness to reaching definitions.
159 void markLiveInstructions();
160
161 /// Mark an instruction as live.
162 void markLive(Instruction *I);
163
164 /// Mark a block as live.
165 void markLive(BlockInfoType &BB);
markLive(BasicBlock * BB)166 void markLive(BasicBlock *BB) { markLive(BlockInfo[BB]); }
167
168 /// Mark terminators of control predecessors of a PHI node live.
169 void markPhiLive(PHINode *PN);
170
171 /// Record the Debug Scopes which surround live debug information.
172 void collectLiveScopes(const DILocalScope &LS);
173 void collectLiveScopes(const DILocation &DL);
174
175 /// Analyze dead branches to find those whose branches are the sources
176 /// of control dependences impacting a live block. Those branches are
177 /// marked live.
178 void markLiveBranchesFromControlDependences();
179
180 /// Remove instructions not marked live, return if any instruction was
181 /// removed.
182 bool removeDeadInstructions();
183
184 /// Identify connected sections of the control flow graph which have
185 /// dead terminators and rewrite the control flow graph to remove them.
186 bool updateDeadRegions();
187
188 /// Set the BlockInfo::PostOrder field based on a post-order
189 /// numbering of the reverse control flow graph.
190 void computeReversePostOrder();
191
192 /// Make the terminator of this block an unconditional branch to \p Target.
193 void makeUnconditional(BasicBlock *BB, BasicBlock *Target);
194
195 public:
AggressiveDeadCodeElimination(Function & F,DominatorTree * DT,PostDominatorTree & PDT)196 AggressiveDeadCodeElimination(Function &F, DominatorTree *DT,
197 PostDominatorTree &PDT)
198 : F(F), DT(DT), PDT(PDT) {}
199
200 bool performDeadCodeElimination();
201 };
202
203 } // end anonymous namespace
204
performDeadCodeElimination()205 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
206 initialize();
207 markLiveInstructions();
208 return removeDeadInstructions();
209 }
210
isUnconditionalBranch(Instruction * Term)211 static bool isUnconditionalBranch(Instruction *Term) {
212 auto *BR = dyn_cast<BranchInst>(Term);
213 return BR && BR->isUnconditional();
214 }
215
initialize()216 void AggressiveDeadCodeElimination::initialize() {
217 auto NumBlocks = F.size();
218
219 // We will have an entry in the map for each block so we grow the
220 // structure to twice that size to keep the load factor low in the hash table.
221 BlockInfo.reserve(NumBlocks);
222 size_t NumInsts = 0;
223
224 // Iterate over blocks and initialize BlockInfoVec entries, count
225 // instructions to size the InstInfo hash table.
226 for (auto &BB : F) {
227 NumInsts += BB.size();
228 auto &Info = BlockInfo[&BB];
229 Info.BB = &BB;
230 Info.Terminator = BB.getTerminator();
231 Info.UnconditionalBranch = isUnconditionalBranch(Info.Terminator);
232 }
233
234 // Initialize instruction map and set pointers to block info.
235 InstInfo.reserve(NumInsts);
236 for (auto &BBInfo : BlockInfo)
237 for (Instruction &I : *BBInfo.second.BB)
238 InstInfo[&I].Block = &BBInfo.second;
239
240 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
241 // add any more elements to either after this point.
242 for (auto &BBInfo : BlockInfo)
243 BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator];
244
245 // Collect the set of "root" instructions that are known live.
246 for (Instruction &I : instructions(F))
247 if (isAlwaysLive(I))
248 markLive(&I);
249
250 if (!RemoveControlFlowFlag)
251 return;
252
253 if (!RemoveLoops) {
254 // This stores state for the depth-first iterator. In addition
255 // to recording which nodes have been visited we also record whether
256 // a node is currently on the "stack" of active ancestors of the current
257 // node.
258 using StatusMap = DenseMap<BasicBlock *, bool>;
259
260 class DFState : public StatusMap {
261 public:
262 std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) {
263 return StatusMap::insert(std::make_pair(BB, true));
264 }
265
266 // Invoked after we have visited all children of a node.
267 void completed(BasicBlock *BB) { (*this)[BB] = false; }
268
269 // Return true if \p BB is currently on the active stack
270 // of ancestors.
271 bool onStack(BasicBlock *BB) {
272 auto Iter = find(BB);
273 return Iter != end() && Iter->second;
274 }
275 } State;
276
277 State.reserve(F.size());
278 // Iterate over blocks in depth-first pre-order and
279 // treat all edges to a block already seen as loop back edges
280 // and mark the branch live it if there is a back edge.
281 for (auto *BB: depth_first_ext(&F.getEntryBlock(), State)) {
282 Instruction *Term = BB->getTerminator();
283 if (isLive(Term))
284 continue;
285
286 for (auto *Succ : successors(BB))
287 if (State.onStack(Succ)) {
288 // back edge....
289 markLive(Term);
290 break;
291 }
292 }
293 }
294
295 // Mark blocks live if there is no path from the block to a
296 // return of the function.
297 // We do this by seeing which of the postdomtree root children exit the
298 // program, and for all others, mark the subtree live.
299 for (const auto &PDTChild : children<DomTreeNode *>(PDT.getRootNode())) {
300 auto *BB = PDTChild->getBlock();
301 auto &Info = BlockInfo[BB];
302 // Real function return
303 if (isa<ReturnInst>(Info.Terminator)) {
304 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName()
305 << '\n';);
306 continue;
307 }
308
309 // This child is something else, like an infinite loop.
310 for (auto *DFNode : depth_first(PDTChild))
311 markLive(BlockInfo[DFNode->getBlock()].Terminator);
312 }
313
314 // Treat the entry block as always live
315 auto *BB = &F.getEntryBlock();
316 auto &EntryInfo = BlockInfo[BB];
317 EntryInfo.Live = true;
318 if (EntryInfo.UnconditionalBranch)
319 markLive(EntryInfo.Terminator);
320
321 // Build initial collection of blocks with dead terminators
322 for (auto &BBInfo : BlockInfo)
323 if (!BBInfo.second.terminatorIsLive())
324 BlocksWithDeadTerminators.insert(BBInfo.second.BB);
325 }
326
isAlwaysLive(Instruction & I)327 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) {
328 // TODO -- use llvm::isInstructionTriviallyDead
329 if (I.isEHPad() || I.mayHaveSideEffects()) {
330 // Skip any value profile instrumentation calls if they are
331 // instrumenting constants.
332 if (isInstrumentsConstant(I))
333 return false;
334 return true;
335 }
336 if (!I.isTerminator())
337 return false;
338 if (RemoveControlFlowFlag && (isa<BranchInst>(I) || isa<SwitchInst>(I)))
339 return false;
340 return true;
341 }
342
343 // Check if this instruction is a runtime call for value profiling and
344 // if it's instrumenting a constant.
isInstrumentsConstant(Instruction & I)345 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
346 // TODO -- move this test into llvm::isInstructionTriviallyDead
347 if (CallInst *CI = dyn_cast<CallInst>(&I))
348 if (Function *Callee = CI->getCalledFunction())
349 if (Callee->getName().equals(getInstrProfValueProfFuncName()))
350 if (isa<Constant>(CI->getArgOperand(0)))
351 return true;
352 return false;
353 }
354
markLiveInstructions()355 void AggressiveDeadCodeElimination::markLiveInstructions() {
356 // Propagate liveness backwards to operands.
357 do {
358 // Worklist holds newly discovered live instructions
359 // where we need to mark the inputs as live.
360 while (!Worklist.empty()) {
361 Instruction *LiveInst = Worklist.pop_back_val();
362 LLVM_DEBUG(dbgs() << "work live: "; LiveInst->dump(););
363
364 for (Use &OI : LiveInst->operands())
365 if (Instruction *Inst = dyn_cast<Instruction>(OI))
366 markLive(Inst);
367
368 if (auto *PN = dyn_cast<PHINode>(LiveInst))
369 markPhiLive(PN);
370 }
371
372 // After data flow liveness has been identified, examine which branch
373 // decisions are required to determine live instructions are executed.
374 markLiveBranchesFromControlDependences();
375
376 } while (!Worklist.empty());
377 }
378
markLive(Instruction * I)379 void AggressiveDeadCodeElimination::markLive(Instruction *I) {
380 auto &Info = InstInfo[I];
381 if (Info.Live)
382 return;
383
384 LLVM_DEBUG(dbgs() << "mark live: "; I->dump());
385 Info.Live = true;
386 Worklist.push_back(I);
387
388 // Collect the live debug info scopes attached to this instruction.
389 if (const DILocation *DL = I->getDebugLoc())
390 collectLiveScopes(*DL);
391
392 // Mark the containing block live
393 auto &BBInfo = *Info.Block;
394 if (BBInfo.Terminator == I) {
395 BlocksWithDeadTerminators.remove(BBInfo.BB);
396 // For live terminators, mark destination blocks
397 // live to preserve this control flow edges.
398 if (!BBInfo.UnconditionalBranch)
399 for (auto *BB : successors(I->getParent()))
400 markLive(BB);
401 }
402 markLive(BBInfo);
403 }
404
markLive(BlockInfoType & BBInfo)405 void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) {
406 if (BBInfo.Live)
407 return;
408 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n');
409 BBInfo.Live = true;
410 if (!BBInfo.CFLive) {
411 BBInfo.CFLive = true;
412 NewLiveBlocks.insert(BBInfo.BB);
413 }
414
415 // Mark unconditional branches at the end of live
416 // blocks as live since there is no work to do for them later
417 if (BBInfo.UnconditionalBranch)
418 markLive(BBInfo.Terminator);
419 }
420
collectLiveScopes(const DILocalScope & LS)421 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) {
422 if (!AliveScopes.insert(&LS).second)
423 return;
424
425 if (isa<DISubprogram>(LS))
426 return;
427
428 // Tail-recurse through the scope chain.
429 collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
430 }
431
collectLiveScopes(const DILocation & DL)432 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
433 // Even though DILocations are not scopes, shove them into AliveScopes so we
434 // don't revisit them.
435 if (!AliveScopes.insert(&DL).second)
436 return;
437
438 // Collect live scopes from the scope chain.
439 collectLiveScopes(*DL.getScope());
440
441 // Tail-recurse through the inlined-at chain.
442 if (const DILocation *IA = DL.getInlinedAt())
443 collectLiveScopes(*IA);
444 }
445
markPhiLive(PHINode * PN)446 void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) {
447 auto &Info = BlockInfo[PN->getParent()];
448 // Only need to check this once per block.
449 if (Info.HasLivePhiNodes)
450 return;
451 Info.HasLivePhiNodes = true;
452
453 // If a predecessor block is not live, mark it as control-flow live
454 // which will trigger marking live branches upon which
455 // that block is control dependent.
456 for (auto *PredBB : predecessors(Info.BB)) {
457 auto &Info = BlockInfo[PredBB];
458 if (!Info.CFLive) {
459 Info.CFLive = true;
460 NewLiveBlocks.insert(PredBB);
461 }
462 }
463 }
464
markLiveBranchesFromControlDependences()465 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
466 if (BlocksWithDeadTerminators.empty())
467 return;
468
469 LLVM_DEBUG({
470 dbgs() << "new live blocks:\n";
471 for (auto *BB : NewLiveBlocks)
472 dbgs() << "\t" << BB->getName() << '\n';
473 dbgs() << "dead terminator blocks:\n";
474 for (auto *BB : BlocksWithDeadTerminators)
475 dbgs() << "\t" << BB->getName() << '\n';
476 });
477
478 // The dominance frontier of a live block X in the reverse
479 // control graph is the set of blocks upon which X is control
480 // dependent. The following sequence computes the set of blocks
481 // which currently have dead terminators that are control
482 // dependence sources of a block which is in NewLiveBlocks.
483
484 const SmallPtrSet<BasicBlock *, 16> BWDT{
485 BlocksWithDeadTerminators.begin(),
486 BlocksWithDeadTerminators.end()
487 };
488 SmallVector<BasicBlock *, 32> IDFBlocks;
489 ReverseIDFCalculator IDFs(PDT);
490 IDFs.setDefiningBlocks(NewLiveBlocks);
491 IDFs.setLiveInBlocks(BWDT);
492 IDFs.calculate(IDFBlocks);
493 NewLiveBlocks.clear();
494
495 // Dead terminators which control live blocks are now marked live.
496 for (auto *BB : IDFBlocks) {
497 LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n');
498 markLive(BB->getTerminator());
499 }
500 }
501
502 //===----------------------------------------------------------------------===//
503 //
504 // Routines to update the CFG and SSA information before removing dead code.
505 //
506 //===----------------------------------------------------------------------===//
removeDeadInstructions()507 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
508 // Updates control and dataflow around dead blocks
509 bool RegionsUpdated = updateDeadRegions();
510
511 LLVM_DEBUG({
512 for (Instruction &I : instructions(F)) {
513 // Check if the instruction is alive.
514 if (isLive(&I))
515 continue;
516
517 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
518 // Check if the scope of this variable location is alive.
519 if (AliveScopes.count(DII->getDebugLoc()->getScope()))
520 continue;
521
522 // If intrinsic is pointing at a live SSA value, there may be an
523 // earlier optimization bug: if we know the location of the variable,
524 // why isn't the scope of the location alive?
525 for (Value *V : DII->location_ops()) {
526 if (Instruction *II = dyn_cast<Instruction>(V)) {
527 if (isLive(II)) {
528 dbgs() << "Dropping debug info for " << *DII << "\n";
529 break;
530 }
531 }
532 }
533 }
534 }
535 });
536
537 // The inverse of the live set is the dead set. These are those instructions
538 // that have no side effects and do not influence the control flow or return
539 // value of the function, and may therefore be deleted safely.
540 // NOTE: We reuse the Worklist vector here for memory efficiency.
541 for (Instruction &I : llvm::reverse(instructions(F))) {
542 // Check if the instruction is alive.
543 if (isLive(&I))
544 continue;
545
546 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
547 // Avoid removing a dbg.assign that is linked to instructions because it
548 // holds information about an existing store.
549 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII))
550 if (!at::getAssignmentInsts(DAI).empty())
551 continue;
552 // Check if the scope of this variable location is alive.
553 if (AliveScopes.count(DII->getDebugLoc()->getScope()))
554 continue;
555
556 // Fallthrough and drop the intrinsic.
557 }
558
559 // Prepare to delete.
560 Worklist.push_back(&I);
561 salvageDebugInfo(I);
562 }
563
564 for (Instruction *&I : Worklist)
565 I->dropAllReferences();
566
567 for (Instruction *&I : Worklist) {
568 ++NumRemoved;
569 I->eraseFromParent();
570 }
571
572 return !Worklist.empty() || RegionsUpdated;
573 }
574
575 // A dead region is the set of dead blocks with a common live post-dominator.
updateDeadRegions()576 bool AggressiveDeadCodeElimination::updateDeadRegions() {
577 LLVM_DEBUG({
578 dbgs() << "final dead terminator blocks: " << '\n';
579 for (auto *BB : BlocksWithDeadTerminators)
580 dbgs() << '\t' << BB->getName()
581 << (BlockInfo[BB].Live ? " LIVE\n" : "\n");
582 });
583
584 // Don't compute the post ordering unless we needed it.
585 bool HavePostOrder = false;
586 bool Changed = false;
587 SmallVector<DominatorTree::UpdateType, 10> DeletedEdges;
588
589 for (auto *BB : BlocksWithDeadTerminators) {
590 auto &Info = BlockInfo[BB];
591 if (Info.UnconditionalBranch) {
592 InstInfo[Info.Terminator].Live = true;
593 continue;
594 }
595
596 if (!HavePostOrder) {
597 computeReversePostOrder();
598 HavePostOrder = true;
599 }
600
601 // Add an unconditional branch to the successor closest to the
602 // end of the function which insures a path to the exit for each
603 // live edge.
604 BlockInfoType *PreferredSucc = nullptr;
605 for (auto *Succ : successors(BB)) {
606 auto *Info = &BlockInfo[Succ];
607 if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder)
608 PreferredSucc = Info;
609 }
610 assert((PreferredSucc && PreferredSucc->PostOrder > 0) &&
611 "Failed to find safe successor for dead branch");
612
613 // Collect removed successors to update the (Post)DominatorTrees.
614 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
615 bool First = true;
616 for (auto *Succ : successors(BB)) {
617 if (!First || Succ != PreferredSucc->BB) {
618 Succ->removePredecessor(BB);
619 RemovedSuccessors.insert(Succ);
620 } else
621 First = false;
622 }
623 makeUnconditional(BB, PreferredSucc->BB);
624
625 // Inform the dominators about the deleted CFG edges.
626 for (auto *Succ : RemovedSuccessors) {
627 // It might have happened that the same successor appeared multiple times
628 // and the CFG edge wasn't really removed.
629 if (Succ != PreferredSucc->BB) {
630 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
631 << BB->getName() << " -> " << Succ->getName()
632 << "\n");
633 DeletedEdges.push_back({DominatorTree::Delete, BB, Succ});
634 }
635 }
636
637 NumBranchesRemoved += 1;
638 Changed = true;
639 }
640
641 if (!DeletedEdges.empty())
642 DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager)
643 .applyUpdates(DeletedEdges);
644
645 return Changed;
646 }
647
648 // reverse top-sort order
computeReversePostOrder()649 void AggressiveDeadCodeElimination::computeReversePostOrder() {
650 // This provides a post-order numbering of the reverse control flow graph
651 // Note that it is incomplete in the presence of infinite loops but we don't
652 // need numbers blocks which don't reach the end of the functions since
653 // all branches in those blocks are forced live.
654
655 // For each block without successors, extend the DFS from the block
656 // backward through the graph
657 SmallPtrSet<BasicBlock*, 16> Visited;
658 unsigned PostOrder = 0;
659 for (auto &BB : F) {
660 if (!succ_empty(&BB))
661 continue;
662 for (BasicBlock *Block : inverse_post_order_ext(&BB,Visited))
663 BlockInfo[Block].PostOrder = PostOrder++;
664 }
665 }
666
makeUnconditional(BasicBlock * BB,BasicBlock * Target)667 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB,
668 BasicBlock *Target) {
669 Instruction *PredTerm = BB->getTerminator();
670 // Collect the live debug info scopes attached to this instruction.
671 if (const DILocation *DL = PredTerm->getDebugLoc())
672 collectLiveScopes(*DL);
673
674 // Just mark live an existing unconditional branch
675 if (isUnconditionalBranch(PredTerm)) {
676 PredTerm->setSuccessor(0, Target);
677 InstInfo[PredTerm].Live = true;
678 return;
679 }
680 LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n');
681 NumBranchesRemoved += 1;
682 IRBuilder<> Builder(PredTerm);
683 auto *NewTerm = Builder.CreateBr(Target);
684 InstInfo[NewTerm].Live = true;
685 if (const DILocation *DL = PredTerm->getDebugLoc())
686 NewTerm->setDebugLoc(DL);
687
688 InstInfo.erase(PredTerm);
689 PredTerm->eraseFromParent();
690 }
691
692 //===----------------------------------------------------------------------===//
693 //
694 // Pass Manager integration code
695 //
696 //===----------------------------------------------------------------------===//
run(Function & F,FunctionAnalysisManager & FAM)697 PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) {
698 // ADCE does not need DominatorTree, but require DominatorTree here
699 // to update analysis if it is already available.
700 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
701 auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(F);
702 if (!AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination())
703 return PreservedAnalyses::all();
704
705 PreservedAnalyses PA;
706 // TODO: We could track if we have actually done CFG changes.
707 if (!RemoveControlFlowFlag)
708 PA.preserveSet<CFGAnalyses>();
709 else {
710 PA.preserve<DominatorTreeAnalysis>();
711 PA.preserve<PostDominatorTreeAnalysis>();
712 }
713 return PA;
714 }
715
716 namespace {
717
718 struct ADCELegacyPass : public FunctionPass {
719 static char ID; // Pass identification, replacement for typeid
720
ADCELegacyPass__anon7db28dbe0211::ADCELegacyPass721 ADCELegacyPass() : FunctionPass(ID) {
722 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
723 }
724
runOnFunction__anon7db28dbe0211::ADCELegacyPass725 bool runOnFunction(Function &F) override {
726 if (skipFunction(F))
727 return false;
728
729 // ADCE does not need DominatorTree, but require DominatorTree here
730 // to update analysis if it is already available.
731 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
732 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
733 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
734 return AggressiveDeadCodeElimination(F, DT, PDT)
735 .performDeadCodeElimination();
736 }
737
getAnalysisUsage__anon7db28dbe0211::ADCELegacyPass738 void getAnalysisUsage(AnalysisUsage &AU) const override {
739 AU.addRequired<PostDominatorTreeWrapperPass>();
740 if (!RemoveControlFlowFlag)
741 AU.setPreservesCFG();
742 else {
743 AU.addPreserved<DominatorTreeWrapperPass>();
744 AU.addPreserved<PostDominatorTreeWrapperPass>();
745 }
746 AU.addPreserved<GlobalsAAWrapperPass>();
747 }
748 };
749
750 } // end anonymous namespace
751
752 char ADCELegacyPass::ID = 0;
753
754 INITIALIZE_PASS_BEGIN(ADCELegacyPass, "adce",
755 "Aggressive Dead Code Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)756 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
757 INITIALIZE_PASS_END(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
758 false, false)
759
760 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }
761