1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass. The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform. This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
14 //
15 // %cmp0 = 7 u< Length
16 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 // call @unknown_side_effects()
18 // %cmp1 = 9 u< Length
19 // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 // ...
21 //
22 // =>
23 //
24 // %cmp0 = 9 u< Length
25 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 // call @unknown_side_effects()
27 // ...
28 //
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward. It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
34 //
35 // NB! This pass is a work in progress. It hasn't been tuned to be "production
36 // ready" yet. It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
38 //
39 //===----------------------------------------------------------------------===//
40
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/GuardUtils.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/PostDominators.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/ConstantRange.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/KnownBits.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/GuardUtils.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 #include <functional>
65
66 using namespace llvm;
67
68 #define DEBUG_TYPE "guard-widening"
69
70 STATISTIC(GuardsEliminated, "Number of eliminated guards");
71 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
72
73 static cl::opt<bool>
74 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
75 cl::desc("Whether or not we should widen guards "
76 "expressed as branches by widenable conditions"),
77 cl::init(true));
78
79 namespace {
80
81 // Get the condition of \p I. It can either be a guard or a conditional branch.
getCondition(Instruction * I)82 static Value *getCondition(Instruction *I) {
83 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
84 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
85 "Bad guard intrinsic?");
86 return GI->getArgOperand(0);
87 }
88 Value *Cond, *WC;
89 BasicBlock *IfTrueBB, *IfFalseBB;
90 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
91 return Cond;
92
93 return cast<BranchInst>(I)->getCondition();
94 }
95
96 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
97 // conditional branch.
setCondition(Instruction * I,Value * NewCond)98 static void setCondition(Instruction *I, Value *NewCond) {
99 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
100 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
101 "Bad guard intrinsic?");
102 GI->setArgOperand(0, NewCond);
103 return;
104 }
105 cast<BranchInst>(I)->setCondition(NewCond);
106 }
107
108 // Eliminates the guard instruction properly.
eliminateGuard(Instruction * GuardInst,MemorySSAUpdater * MSSAU)109 static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
110 GuardInst->eraseFromParent();
111 if (MSSAU)
112 MSSAU->removeMemoryAccess(GuardInst);
113 ++GuardsEliminated;
114 }
115
116 class GuardWideningImpl {
117 DominatorTree &DT;
118 PostDominatorTree *PDT;
119 LoopInfo &LI;
120 AssumptionCache &AC;
121 MemorySSAUpdater *MSSAU;
122
123 /// Together, these describe the region of interest. This might be all of
124 /// the blocks within a function, or only a given loop's blocks and preheader.
125 DomTreeNode *Root;
126 std::function<bool(BasicBlock*)> BlockFilter;
127
128 /// The set of guards and conditional branches whose conditions have been
129 /// widened into dominating guards.
130 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
131
132 /// The set of guards which have been widened to include conditions to other
133 /// guards.
134 DenseSet<Instruction *> WidenedGuards;
135
136 /// Try to eliminate instruction \p Instr by widening it into an earlier
137 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
138 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
139 /// maps BasicBlocks to the set of guards seen in that block.
140 bool eliminateInstrViaWidening(
141 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
142 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
143 GuardsPerBlock, bool InvertCondition = false);
144
145 /// Used to keep track of which widening potential is more effective.
146 enum WideningScore {
147 /// Don't widen.
148 WS_IllegalOrNegative,
149
150 /// Widening is performance neutral as far as the cycles spent in check
151 /// conditions goes (but can still help, e.g., code layout, having less
152 /// deopt state).
153 WS_Neutral,
154
155 /// Widening is profitable.
156 WS_Positive,
157
158 /// Widening is very profitable. Not significantly different from \c
159 /// WS_Positive, except by the order.
160 WS_VeryPositive
161 };
162
163 static StringRef scoreTypeToString(WideningScore WS);
164
165 /// Compute the score for widening the condition in \p DominatedInstr
166 /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
167 /// inverted condition of the dominating guard.
168 WideningScore computeWideningScore(Instruction *DominatedInstr,
169 Instruction *DominatingGuard,
170 bool InvertCond);
171
172 /// Helper to check if \p V can be hoisted to \p InsertPos.
isAvailableAt(const Value * V,const Instruction * InsertPos) const173 bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
174 SmallPtrSet<const Instruction *, 8> Visited;
175 return isAvailableAt(V, InsertPos, Visited);
176 }
177
178 bool isAvailableAt(const Value *V, const Instruction *InsertPos,
179 SmallPtrSetImpl<const Instruction *> &Visited) const;
180
181 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
182 /// isAvailableAt returned true.
183 void makeAvailableAt(Value *V, Instruction *InsertPos) const;
184
185 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
186 /// to generate an expression computing the logical AND of \p Cond0 and (\p
187 /// Cond1 XOR \p InvertCondition).
188 /// Return true if the expression computing the AND is only as
189 /// expensive as computing one of the two. If \p InsertPt is true then
190 /// actually generate the resulting expression, make it available at \p
191 /// InsertPt and return it in \p Result (else no change to the IR is made).
192 bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
193 Value *&Result, bool InvertCondition);
194
195 /// Represents a range check of the form \c Base + \c Offset u< \c Length,
196 /// with the constraint that \c Length is not negative. \c CheckInst is the
197 /// pre-existing instruction in the IR that computes the result of this range
198 /// check.
199 class RangeCheck {
200 const Value *Base;
201 const ConstantInt *Offset;
202 const Value *Length;
203 ICmpInst *CheckInst;
204
205 public:
RangeCheck(const Value * Base,const ConstantInt * Offset,const Value * Length,ICmpInst * CheckInst)206 explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
207 const Value *Length, ICmpInst *CheckInst)
208 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
209
setBase(const Value * NewBase)210 void setBase(const Value *NewBase) { Base = NewBase; }
setOffset(const ConstantInt * NewOffset)211 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
212
getBase() const213 const Value *getBase() const { return Base; }
getOffset() const214 const ConstantInt *getOffset() const { return Offset; }
getOffsetValue() const215 const APInt &getOffsetValue() const { return getOffset()->getValue(); }
getLength() const216 const Value *getLength() const { return Length; };
getCheckInst() const217 ICmpInst *getCheckInst() const { return CheckInst; }
218
print(raw_ostream & OS,bool PrintTypes=false)219 void print(raw_ostream &OS, bool PrintTypes = false) {
220 OS << "Base: ";
221 Base->printAsOperand(OS, PrintTypes);
222 OS << " Offset: ";
223 Offset->printAsOperand(OS, PrintTypes);
224 OS << " Length: ";
225 Length->printAsOperand(OS, PrintTypes);
226 }
227
dump()228 LLVM_DUMP_METHOD void dump() {
229 print(dbgs());
230 dbgs() << "\n";
231 }
232 };
233
234 /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
235 /// append them to \p Checks. Returns true on success, may clobber \c Checks
236 /// on failure.
parseRangeChecks(Value * CheckCond,SmallVectorImpl<RangeCheck> & Checks)237 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
238 SmallPtrSet<const Value *, 8> Visited;
239 return parseRangeChecks(CheckCond, Checks, Visited);
240 }
241
242 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
243 SmallPtrSetImpl<const Value *> &Visited);
244
245 /// Combine the checks in \p Checks into a smaller set of checks and append
246 /// them into \p CombinedChecks. Return true on success (i.e. all of checks
247 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
248 /// and \p CombinedChecks on success and on failure.
249 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
250 SmallVectorImpl<RangeCheck> &CombinedChecks) const;
251
252 /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
253 /// computing only one of the two expressions?
isWideningCondProfitable(Value * Cond0,Value * Cond1,bool InvertCond)254 bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
255 Value *ResultUnused;
256 return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
257 InvertCond);
258 }
259
260 /// If \p InvertCondition is false, Widen \p ToWiden to fail if
261 /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
262 /// true (in addition to whatever it is already checking).
widenGuard(Instruction * ToWiden,Value * NewCondition,bool InvertCondition)263 void widenGuard(Instruction *ToWiden, Value *NewCondition,
264 bool InvertCondition) {
265 Value *Result;
266
267 widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
268 InvertCondition);
269 if (isGuardAsWidenableBranch(ToWiden)) {
270 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
271 return;
272 }
273 setCondition(ToWiden, Result);
274 }
275
276 public:
GuardWideningImpl(DominatorTree & DT,PostDominatorTree * PDT,LoopInfo & LI,AssumptionCache & AC,MemorySSAUpdater * MSSAU,DomTreeNode * Root,std::function<bool (BasicBlock *)> BlockFilter)277 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
278 LoopInfo &LI, AssumptionCache &AC,
279 MemorySSAUpdater *MSSAU, DomTreeNode *Root,
280 std::function<bool(BasicBlock *)> BlockFilter)
281 : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
282 BlockFilter(BlockFilter) {}
283
284 /// The entry point for this pass.
285 bool run();
286 };
287 }
288
isSupportedGuardInstruction(const Instruction * Insn)289 static bool isSupportedGuardInstruction(const Instruction *Insn) {
290 if (isGuard(Insn))
291 return true;
292 if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
293 return true;
294 return false;
295 }
296
run()297 bool GuardWideningImpl::run() {
298 DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
299 bool Changed = false;
300 for (auto DFI = df_begin(Root), DFE = df_end(Root);
301 DFI != DFE; ++DFI) {
302 auto *BB = (*DFI)->getBlock();
303 if (!BlockFilter(BB))
304 continue;
305
306 auto &CurrentList = GuardsInBlock[BB];
307
308 for (auto &I : *BB)
309 if (isSupportedGuardInstruction(&I))
310 CurrentList.push_back(cast<Instruction>(&I));
311
312 for (auto *II : CurrentList)
313 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
314 }
315
316 assert(EliminatedGuardsAndBranches.empty() || Changed);
317 for (auto *I : EliminatedGuardsAndBranches)
318 if (!WidenedGuards.count(I)) {
319 assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
320 if (isSupportedGuardInstruction(I))
321 eliminateGuard(I, MSSAU);
322 else {
323 assert(isa<BranchInst>(I) &&
324 "Eliminated something other than guard or branch?");
325 ++CondBranchEliminated;
326 }
327 }
328
329 return Changed;
330 }
331
eliminateInstrViaWidening(Instruction * Instr,const df_iterator<DomTreeNode * > & DFSI,const DenseMap<BasicBlock *,SmallVector<Instruction *,8>> & GuardsInBlock,bool InvertCondition)332 bool GuardWideningImpl::eliminateInstrViaWidening(
333 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
334 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
335 GuardsInBlock, bool InvertCondition) {
336 // Ignore trivial true or false conditions. These instructions will be
337 // trivially eliminated by any cleanup pass. Do not erase them because other
338 // guards can possibly be widened into them.
339 if (isa<ConstantInt>(getCondition(Instr)))
340 return false;
341
342 Instruction *BestSoFar = nullptr;
343 auto BestScoreSoFar = WS_IllegalOrNegative;
344
345 // In the set of dominating guards, find the one we can merge GuardInst with
346 // for the most profit.
347 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
348 auto *CurBB = DFSI.getPath(i)->getBlock();
349 if (!BlockFilter(CurBB))
350 break;
351 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
352 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
353
354 auto I = GuardsInCurBB.begin();
355 auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
356 : GuardsInCurBB.end();
357
358 #ifndef NDEBUG
359 {
360 unsigned Index = 0;
361 for (auto &I : *CurBB) {
362 if (Index == GuardsInCurBB.size())
363 break;
364 if (GuardsInCurBB[Index] == &I)
365 Index++;
366 }
367 assert(Index == GuardsInCurBB.size() &&
368 "Guards expected to be in order!");
369 }
370 #endif
371
372 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
373
374 for (auto *Candidate : make_range(I, E)) {
375 auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
376 LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
377 << " and " << *getCondition(Candidate) << " is "
378 << scoreTypeToString(Score) << "\n");
379 if (Score > BestScoreSoFar) {
380 BestScoreSoFar = Score;
381 BestSoFar = Candidate;
382 }
383 }
384 }
385
386 if (BestScoreSoFar == WS_IllegalOrNegative) {
387 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
388 return false;
389 }
390
391 assert(BestSoFar != Instr && "Should have never visited same guard!");
392 assert(DT.dominates(BestSoFar, Instr) && "Should be!");
393
394 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
395 << " with score " << scoreTypeToString(BestScoreSoFar)
396 << "\n");
397 widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
398 auto NewGuardCondition = InvertCondition
399 ? ConstantInt::getFalse(Instr->getContext())
400 : ConstantInt::getTrue(Instr->getContext());
401 setCondition(Instr, NewGuardCondition);
402 EliminatedGuardsAndBranches.push_back(Instr);
403 WidenedGuards.insert(BestSoFar);
404 return true;
405 }
406
407 GuardWideningImpl::WideningScore
computeWideningScore(Instruction * DominatedInstr,Instruction * DominatingGuard,bool InvertCond)408 GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
409 Instruction *DominatingGuard,
410 bool InvertCond) {
411 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
412 Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
413 bool HoistingOutOfLoop = false;
414
415 if (DominatingGuardLoop != DominatedInstrLoop) {
416 // Be conservative and don't widen into a sibling loop. TODO: If the
417 // sibling is colder, we should consider allowing this.
418 if (DominatingGuardLoop &&
419 !DominatingGuardLoop->contains(DominatedInstrLoop))
420 return WS_IllegalOrNegative;
421
422 HoistingOutOfLoop = true;
423 }
424
425 if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
426 return WS_IllegalOrNegative;
427
428 // If the guard was conditional executed, it may never be reached
429 // dynamically. There are two potential downsides to hoisting it out of the
430 // conditionally executed region: 1) we may spuriously deopt without need and
431 // 2) we have the extra cost of computing the guard condition in the common
432 // case. At the moment, we really only consider the second in our heuristic
433 // here. TODO: evaluate cost model for spurious deopt
434 // NOTE: As written, this also lets us hoist right over another guard which
435 // is essentially just another spelling for control flow.
436 if (isWideningCondProfitable(getCondition(DominatedInstr),
437 getCondition(DominatingGuard), InvertCond))
438 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
439
440 if (HoistingOutOfLoop)
441 return WS_Positive;
442
443 // Returns true if we might be hoisting above explicit control flow. Note
444 // that this completely ignores implicit control flow (guards, calls which
445 // throw, etc...). That choice appears arbitrary.
446 auto MaybeHoistingOutOfIf = [&]() {
447 auto *DominatingBlock = DominatingGuard->getParent();
448 auto *DominatedBlock = DominatedInstr->getParent();
449 if (isGuardAsWidenableBranch(DominatingGuard))
450 DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
451
452 // Same Block?
453 if (DominatedBlock == DominatingBlock)
454 return false;
455 // Obvious successor (common loop header/preheader case)
456 if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
457 return false;
458 // TODO: diamond, triangle cases
459 if (!PDT) return true;
460 return !PDT->dominates(DominatedBlock, DominatingBlock);
461 };
462
463 return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
464 }
465
isAvailableAt(const Value * V,const Instruction * Loc,SmallPtrSetImpl<const Instruction * > & Visited) const466 bool GuardWideningImpl::isAvailableAt(
467 const Value *V, const Instruction *Loc,
468 SmallPtrSetImpl<const Instruction *> &Visited) const {
469 auto *Inst = dyn_cast<Instruction>(V);
470 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
471 return true;
472
473 if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
474 Inst->mayReadFromMemory())
475 return false;
476
477 Visited.insert(Inst);
478
479 // We only want to go _up_ the dominance chain when recursing.
480 assert(!isa<PHINode>(Loc) &&
481 "PHIs should return false for isSafeToSpeculativelyExecute");
482 assert(DT.isReachableFromEntry(Inst->getParent()) &&
483 "We did a DFS from the block entry!");
484 return all_of(Inst->operands(),
485 [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
486 }
487
makeAvailableAt(Value * V,Instruction * Loc) const488 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
489 auto *Inst = dyn_cast<Instruction>(V);
490 if (!Inst || DT.dominates(Inst, Loc))
491 return;
492
493 assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
494 !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
495
496 for (Value *Op : Inst->operands())
497 makeAvailableAt(Op, Loc);
498
499 Inst->moveBefore(Loc);
500 // If we moved instruction before guard we must clean poison generating flags.
501 Inst->dropPoisonGeneratingFlags();
502 }
503
widenCondCommon(Value * Cond0,Value * Cond1,Instruction * InsertPt,Value * & Result,bool InvertCondition)504 bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
505 Instruction *InsertPt, Value *&Result,
506 bool InvertCondition) {
507 using namespace llvm::PatternMatch;
508
509 {
510 // L >u C0 && L >u C1 -> L >u max(C0, C1)
511 ConstantInt *RHS0, *RHS1;
512 Value *LHS;
513 ICmpInst::Predicate Pred0, Pred1;
514 if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
515 match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
516 if (InvertCondition)
517 Pred1 = ICmpInst::getInversePredicate(Pred1);
518
519 ConstantRange CR0 =
520 ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
521 ConstantRange CR1 =
522 ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
523
524 // Given what we're doing here and the semantics of guards, it would
525 // be correct to use a subset intersection, but that may be too
526 // aggressive in cases we care about.
527 if (std::optional<ConstantRange> Intersect =
528 CR0.exactIntersectWith(CR1)) {
529 APInt NewRHSAP;
530 CmpInst::Predicate Pred;
531 if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
532 if (InsertPt) {
533 ConstantInt *NewRHS =
534 ConstantInt::get(Cond0->getContext(), NewRHSAP);
535 Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
536 }
537 return true;
538 }
539 }
540 }
541 }
542
543 {
544 SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
545 // TODO: Support InvertCondition case?
546 if (!InvertCondition &&
547 parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
548 combineRangeChecks(Checks, CombinedChecks)) {
549 if (InsertPt) {
550 Result = nullptr;
551 for (auto &RC : CombinedChecks) {
552 makeAvailableAt(RC.getCheckInst(), InsertPt);
553 if (Result)
554 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
555 InsertPt);
556 else
557 Result = RC.getCheckInst();
558 }
559 assert(Result && "Failed to find result value");
560 Result->setName("wide.chk");
561 }
562 return true;
563 }
564 }
565
566 // Base case -- just logical-and the two conditions together.
567
568 if (InsertPt) {
569 makeAvailableAt(Cond0, InsertPt);
570 makeAvailableAt(Cond1, InsertPt);
571 if (InvertCondition)
572 Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
573 Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
574 }
575
576 // We were not able to compute Cond0 AND Cond1 for the price of one.
577 return false;
578 }
579
parseRangeChecks(Value * CheckCond,SmallVectorImpl<GuardWideningImpl::RangeCheck> & Checks,SmallPtrSetImpl<const Value * > & Visited)580 bool GuardWideningImpl::parseRangeChecks(
581 Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
582 SmallPtrSetImpl<const Value *> &Visited) {
583 if (!Visited.insert(CheckCond).second)
584 return true;
585
586 using namespace llvm::PatternMatch;
587
588 {
589 Value *AndLHS, *AndRHS;
590 if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
591 return parseRangeChecks(AndLHS, Checks) &&
592 parseRangeChecks(AndRHS, Checks);
593 }
594
595 auto *IC = dyn_cast<ICmpInst>(CheckCond);
596 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
597 (IC->getPredicate() != ICmpInst::ICMP_ULT &&
598 IC->getPredicate() != ICmpInst::ICMP_UGT))
599 return false;
600
601 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
602 if (IC->getPredicate() == ICmpInst::ICMP_UGT)
603 std::swap(CmpLHS, CmpRHS);
604
605 auto &DL = IC->getModule()->getDataLayout();
606
607 GuardWideningImpl::RangeCheck Check(
608 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
609 CmpRHS, IC);
610
611 if (!isKnownNonNegative(Check.getLength(), DL))
612 return false;
613
614 // What we have in \c Check now is a correct interpretation of \p CheckCond.
615 // Try to see if we can move some constant offsets into the \c Offset field.
616
617 bool Changed;
618 auto &Ctx = CheckCond->getContext();
619
620 do {
621 Value *OpLHS;
622 ConstantInt *OpRHS;
623 Changed = false;
624
625 #ifndef NDEBUG
626 auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
627 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
628 "Unreachable instruction?");
629 #endif
630
631 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
632 Check.setBase(OpLHS);
633 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
634 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
635 Changed = true;
636 } else if (match(Check.getBase(),
637 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
638 KnownBits Known = computeKnownBits(OpLHS, DL);
639 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
640 Check.setBase(OpLHS);
641 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
642 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
643 Changed = true;
644 }
645 }
646 } while (Changed);
647
648 Checks.push_back(Check);
649 return true;
650 }
651
combineRangeChecks(SmallVectorImpl<GuardWideningImpl::RangeCheck> & Checks,SmallVectorImpl<GuardWideningImpl::RangeCheck> & RangeChecksOut) const652 bool GuardWideningImpl::combineRangeChecks(
653 SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
654 SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
655 unsigned OldCount = Checks.size();
656 while (!Checks.empty()) {
657 // Pick all of the range checks with a specific base and length, and try to
658 // merge them.
659 const Value *CurrentBase = Checks.front().getBase();
660 const Value *CurrentLength = Checks.front().getLength();
661
662 SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
663
664 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
665 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
666 };
667
668 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
669 erase_if(Checks, IsCurrentCheck);
670
671 assert(CurrentChecks.size() != 0 && "We know we have at least one!");
672
673 if (CurrentChecks.size() < 3) {
674 llvm::append_range(RangeChecksOut, CurrentChecks);
675 continue;
676 }
677
678 // CurrentChecks.size() will typically be 3 here, but so far there has been
679 // no need to hard-code that fact.
680
681 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
682 const GuardWideningImpl::RangeCheck &RHS) {
683 return LHS.getOffsetValue().slt(RHS.getOffsetValue());
684 });
685
686 // Note: std::sort should not invalidate the ChecksStart iterator.
687
688 const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
689 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
690
691 unsigned BitWidth = MaxOffset->getValue().getBitWidth();
692 if ((MaxOffset->getValue() - MinOffset->getValue())
693 .ugt(APInt::getSignedMinValue(BitWidth)))
694 return false;
695
696 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
697 const APInt &HighOffset = MaxOffset->getValue();
698 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
699 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
700 };
701
702 if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
703 return false;
704
705 // We have a series of f+1 checks as:
706 //
707 // I+k_0 u< L ... Chk_0
708 // I+k_1 u< L ... Chk_1
709 // ...
710 // I+k_f u< L ... Chk_f
711 //
712 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
713 // k_f-k_0 u< INT_MIN+k_f ... Precond_1
714 // k_f != k_0 ... Precond_2
715 //
716 // Claim:
717 // Chk_0 AND Chk_f implies all the other checks
718 //
719 // Informal proof sketch:
720 //
721 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
722 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
723 // thus I+k_f is the greatest unsigned value in that range.
724 //
725 // This combined with Ckh_(f+1) shows that everything in that range is u< L.
726 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
727 // lie in [I+k_0,I+k_f], this proving our claim.
728 //
729 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
730 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
731 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
732 // range by definition, and the latter case is impossible:
733 //
734 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
735 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
736 //
737 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
738 // with 'x' above) to be at least >u INT_MIN.
739
740 RangeChecksOut.emplace_back(CurrentChecks.front());
741 RangeChecksOut.emplace_back(CurrentChecks.back());
742 }
743
744 assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
745 return RangeChecksOut.size() != OldCount;
746 }
747
748 #ifndef NDEBUG
scoreTypeToString(WideningScore WS)749 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
750 switch (WS) {
751 case WS_IllegalOrNegative:
752 return "IllegalOrNegative";
753 case WS_Neutral:
754 return "Neutral";
755 case WS_Positive:
756 return "Positive";
757 case WS_VeryPositive:
758 return "VeryPositive";
759 }
760
761 llvm_unreachable("Fully covered switch above!");
762 }
763 #endif
764
run(Function & F,FunctionAnalysisManager & AM)765 PreservedAnalyses GuardWideningPass::run(Function &F,
766 FunctionAnalysisManager &AM) {
767 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
768 auto &LI = AM.getResult<LoopAnalysis>(F);
769 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
770 auto &AC = AM.getResult<AssumptionAnalysis>(F);
771 auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
772 std::unique_ptr<MemorySSAUpdater> MSSAU;
773 if (MSSAA)
774 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
775 if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
776 DT.getRootNode(), [](BasicBlock *) { return true; })
777 .run())
778 return PreservedAnalyses::all();
779
780 PreservedAnalyses PA;
781 PA.preserveSet<CFGAnalyses>();
782 PA.preserve<MemorySSAAnalysis>();
783 return PA;
784 }
785
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)786 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
787 LoopStandardAnalysisResults &AR,
788 LPMUpdater &U) {
789 BasicBlock *RootBB = L.getLoopPredecessor();
790 if (!RootBB)
791 RootBB = L.getHeader();
792 auto BlockFilter = [&](BasicBlock *BB) {
793 return BB == RootBB || L.contains(BB);
794 };
795 std::unique_ptr<MemorySSAUpdater> MSSAU;
796 if (AR.MSSA)
797 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
798 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
799 MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
800 BlockFilter)
801 .run())
802 return PreservedAnalyses::all();
803
804 auto PA = getLoopPassPreservedAnalyses();
805 if (AR.MSSA)
806 PA.preserve<MemorySSAAnalysis>();
807 return PA;
808 }
809
810 namespace {
811 struct GuardWideningLegacyPass : public FunctionPass {
812 static char ID;
813
GuardWideningLegacyPass__anondc4483990911::GuardWideningLegacyPass814 GuardWideningLegacyPass() : FunctionPass(ID) {
815 initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
816 }
817
runOnFunction__anondc4483990911::GuardWideningLegacyPass818 bool runOnFunction(Function &F) override {
819 if (skipFunction(F))
820 return false;
821 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
822 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
823 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
824 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
825 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
826 std::unique_ptr<MemorySSAUpdater> MSSAU;
827 if (MSSAWP)
828 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
829 return GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
830 DT.getRootNode(),
831 [](BasicBlock *) { return true; })
832 .run();
833 }
834
getAnalysisUsage__anondc4483990911::GuardWideningLegacyPass835 void getAnalysisUsage(AnalysisUsage &AU) const override {
836 AU.setPreservesCFG();
837 AU.addRequired<DominatorTreeWrapperPass>();
838 AU.addRequired<PostDominatorTreeWrapperPass>();
839 AU.addRequired<LoopInfoWrapperPass>();
840 AU.addPreserved<MemorySSAWrapperPass>();
841 }
842 };
843
844 /// Same as above, but restricted to a single loop at a time. Can be
845 /// scheduled with other loop passes w/o breaking out of LPM
846 struct LoopGuardWideningLegacyPass : public LoopPass {
847 static char ID;
848
LoopGuardWideningLegacyPass__anondc4483990911::LoopGuardWideningLegacyPass849 LoopGuardWideningLegacyPass() : LoopPass(ID) {
850 initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
851 }
852
runOnLoop__anondc4483990911::LoopGuardWideningLegacyPass853 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
854 if (skipLoop(L))
855 return false;
856 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
857 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
858 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
859 *L->getHeader()->getParent());
860 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
861 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
862 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
863 std::unique_ptr<MemorySSAUpdater> MSSAU;
864 if (MSSAWP)
865 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
866
867 BasicBlock *RootBB = L->getLoopPredecessor();
868 if (!RootBB)
869 RootBB = L->getHeader();
870 auto BlockFilter = [&](BasicBlock *BB) {
871 return BB == RootBB || L->contains(BB);
872 };
873 return GuardWideningImpl(DT, PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
874 DT.getNode(RootBB), BlockFilter)
875 .run();
876 }
877
getAnalysisUsage__anondc4483990911::LoopGuardWideningLegacyPass878 void getAnalysisUsage(AnalysisUsage &AU) const override {
879 AU.setPreservesCFG();
880 getLoopAnalysisUsage(AU);
881 AU.addPreserved<PostDominatorTreeWrapperPass>();
882 AU.addPreserved<MemorySSAWrapperPass>();
883 }
884 };
885 }
886
887 char GuardWideningLegacyPass::ID = 0;
888 char LoopGuardWideningLegacyPass::ID = 0;
889
890 INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
891 false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)892 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
893 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
894 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
895 INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
896 false, false)
897
898 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
899 "Widen guards (within a single loop, as a loop pass)",
900 false, false)
901 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
902 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
903 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
904 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
905 "Widen guards (within a single loop, as a loop pass)",
906 false, false)
907
908 FunctionPass *llvm::createGuardWideningPass() {
909 return new GuardWideningLegacyPass();
910 }
911
createLoopGuardWideningPass()912 Pass *llvm::createLoopGuardWideningPass() {
913 return new LoopGuardWideningLegacyPass();
914 }
915