1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form. In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 // memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 // fpowi
27 // Future integer operation idioms to recognize:
28 // ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set. It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/GlobalValue.h"
72 #include "llvm/IR/GlobalVariable.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/IR/ValueHandle.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/InstructionCost.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Transforms/Scalar.h"
95 #include "llvm/Transforms/Utils/BuildLibCalls.h"
96 #include "llvm/Transforms/Utils/Local.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstdint>
102 #include <utility>
103 #include <vector>
104
105 using namespace llvm;
106
107 #define DEBUG_TYPE "loop-idiom"
108
109 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
110 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
111 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
112 STATISTIC(
113 NumShiftUntilBitTest,
114 "Number of uncountable loops recognized as 'shift until bitttest' idiom");
115 STATISTIC(NumShiftUntilZero,
116 "Number of uncountable loops recognized as 'shift until zero' idiom");
117
118 bool DisableLIRP::All;
119 static cl::opt<bool, true>
120 DisableLIRPAll("disable-" DEBUG_TYPE "-all",
121 cl::desc("Options to disable Loop Idiom Recognize Pass."),
122 cl::location(DisableLIRP::All), cl::init(false),
123 cl::ReallyHidden);
124
125 bool DisableLIRP::Memset;
126 static cl::opt<bool, true>
127 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
128 cl::desc("Proceed with loop idiom recognize pass, but do "
129 "not convert loop(s) to memset."),
130 cl::location(DisableLIRP::Memset), cl::init(false),
131 cl::ReallyHidden);
132
133 bool DisableLIRP::Memcpy;
134 static cl::opt<bool, true>
135 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
136 cl::desc("Proceed with loop idiom recognize pass, but do "
137 "not convert loop(s) to memcpy."),
138 cl::location(DisableLIRP::Memcpy), cl::init(false),
139 cl::ReallyHidden);
140
141 static cl::opt<bool> UseLIRCodeSizeHeurs(
142 "use-lir-code-size-heurs",
143 cl::desc("Use loop idiom recognition code size heuristics when compiling"
144 "with -Os/-Oz"),
145 cl::init(true), cl::Hidden);
146
147 namespace {
148
149 class LoopIdiomRecognize {
150 Loop *CurLoop = nullptr;
151 AliasAnalysis *AA;
152 DominatorTree *DT;
153 LoopInfo *LI;
154 ScalarEvolution *SE;
155 TargetLibraryInfo *TLI;
156 const TargetTransformInfo *TTI;
157 const DataLayout *DL;
158 OptimizationRemarkEmitter &ORE;
159 bool ApplyCodeSizeHeuristics;
160 std::unique_ptr<MemorySSAUpdater> MSSAU;
161
162 public:
LoopIdiomRecognize(AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,MemorySSA * MSSA,const DataLayout * DL,OptimizationRemarkEmitter & ORE)163 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
164 LoopInfo *LI, ScalarEvolution *SE,
165 TargetLibraryInfo *TLI,
166 const TargetTransformInfo *TTI, MemorySSA *MSSA,
167 const DataLayout *DL,
168 OptimizationRemarkEmitter &ORE)
169 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
170 if (MSSA)
171 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
172 }
173
174 bool runOnLoop(Loop *L);
175
176 private:
177 using StoreList = SmallVector<StoreInst *, 8>;
178 using StoreListMap = MapVector<Value *, StoreList>;
179
180 StoreListMap StoreRefsForMemset;
181 StoreListMap StoreRefsForMemsetPattern;
182 StoreList StoreRefsForMemcpy;
183 bool HasMemset;
184 bool HasMemsetPattern;
185 bool HasMemcpy;
186
187 /// Return code for isLegalStore()
188 enum LegalStoreKind {
189 None = 0,
190 Memset,
191 MemsetPattern,
192 Memcpy,
193 UnorderedAtomicMemcpy,
194 DontUse // Dummy retval never to be used. Allows catching errors in retval
195 // handling.
196 };
197
198 /// \name Countable Loop Idiom Handling
199 /// @{
200
201 bool runOnCountableLoop();
202 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
203 SmallVectorImpl<BasicBlock *> &ExitBlocks);
204
205 void collectStores(BasicBlock *BB);
206 LegalStoreKind isLegalStore(StoreInst *SI);
207 enum class ForMemset { No, Yes };
208 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
209 ForMemset For);
210
211 template <typename MemInst>
212 bool processLoopMemIntrinsic(
213 BasicBlock *BB,
214 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
215 const SCEV *BECount);
216 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
217 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
218
219 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
220 MaybeAlign StoreAlignment, Value *StoredVal,
221 Instruction *TheStore,
222 SmallPtrSetImpl<Instruction *> &Stores,
223 const SCEVAddRecExpr *Ev, const SCEV *BECount,
224 bool IsNegStride, bool IsLoopMemset = false);
225 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
226 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
227 const SCEV *StoreSize, MaybeAlign StoreAlign,
228 MaybeAlign LoadAlign, Instruction *TheStore,
229 Instruction *TheLoad,
230 const SCEVAddRecExpr *StoreEv,
231 const SCEVAddRecExpr *LoadEv,
232 const SCEV *BECount);
233 bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
234 bool IsLoopMemset = false);
235
236 /// @}
237 /// \name Noncountable Loop Idiom Handling
238 /// @{
239
240 bool runOnNoncountableLoop();
241
242 bool recognizePopcount();
243 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
244 PHINode *CntPhi, Value *Var);
245 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
246 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
247 Instruction *CntInst, PHINode *CntPhi,
248 Value *Var, Instruction *DefX,
249 const DebugLoc &DL, bool ZeroCheck,
250 bool IsCntPhiUsedOutsideLoop);
251
252 bool recognizeShiftUntilBitTest();
253 bool recognizeShiftUntilZero();
254
255 /// @}
256 };
257
258 class LoopIdiomRecognizeLegacyPass : public LoopPass {
259 public:
260 static char ID;
261
LoopIdiomRecognizeLegacyPass()262 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
263 initializeLoopIdiomRecognizeLegacyPassPass(
264 *PassRegistry::getPassRegistry());
265 }
266
runOnLoop(Loop * L,LPPassManager & LPM)267 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
268 if (DisableLIRP::All)
269 return false;
270
271 if (skipLoop(L))
272 return false;
273
274 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
275 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
276 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
277 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
278 TargetLibraryInfo *TLI =
279 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
280 *L->getHeader()->getParent());
281 const TargetTransformInfo *TTI =
282 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
283 *L->getHeader()->getParent());
284 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
285 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
286 MemorySSA *MSSA = nullptr;
287 if (MSSAAnalysis)
288 MSSA = &MSSAAnalysis->getMSSA();
289
290 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
291 // pass. Function analyses need to be preserved across loop transformations
292 // but ORE cannot be preserved (see comment before the pass definition).
293 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
294
295 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
296 return LIR.runOnLoop(L);
297 }
298
299 /// This transformation requires natural loop information & requires that
300 /// loop preheaders be inserted into the CFG.
getAnalysisUsage(AnalysisUsage & AU) const301 void getAnalysisUsage(AnalysisUsage &AU) const override {
302 AU.addRequired<TargetLibraryInfoWrapperPass>();
303 AU.addRequired<TargetTransformInfoWrapperPass>();
304 AU.addPreserved<MemorySSAWrapperPass>();
305 getLoopAnalysisUsage(AU);
306 }
307 };
308
309 } // end anonymous namespace
310
311 char LoopIdiomRecognizeLegacyPass::ID = 0;
312
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)313 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
314 LoopStandardAnalysisResults &AR,
315 LPMUpdater &) {
316 if (DisableLIRP::All)
317 return PreservedAnalyses::all();
318
319 const auto *DL = &L.getHeader()->getModule()->getDataLayout();
320
321 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
322 // pass. Function analyses need to be preserved across loop transformations
323 // but ORE cannot be preserved (see comment before the pass definition).
324 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
325
326 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
327 AR.MSSA, DL, ORE);
328 if (!LIR.runOnLoop(&L))
329 return PreservedAnalyses::all();
330
331 auto PA = getLoopPassPreservedAnalyses();
332 if (AR.MSSA)
333 PA.preserve<MemorySSAAnalysis>();
334 return PA;
335 }
336
337 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
338 "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)339 INITIALIZE_PASS_DEPENDENCY(LoopPass)
340 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
342 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
343 "Recognize loop idioms", false, false)
344
345 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
346
deleteDeadInstruction(Instruction * I)347 static void deleteDeadInstruction(Instruction *I) {
348 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
349 I->eraseFromParent();
350 }
351
352 //===----------------------------------------------------------------------===//
353 //
354 // Implementation of LoopIdiomRecognize
355 //
356 //===----------------------------------------------------------------------===//
357
runOnLoop(Loop * L)358 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
359 CurLoop = L;
360 // If the loop could not be converted to canonical form, it must have an
361 // indirectbr in it, just give up.
362 if (!L->getLoopPreheader())
363 return false;
364
365 // Disable loop idiom recognition if the function's name is a common idiom.
366 StringRef Name = L->getHeader()->getParent()->getName();
367 if (Name == "memset" || Name == "memcpy")
368 return false;
369
370 // Determine if code size heuristics need to be applied.
371 ApplyCodeSizeHeuristics =
372 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
373
374 HasMemset = TLI->has(LibFunc_memset);
375 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
376 HasMemcpy = TLI->has(LibFunc_memcpy);
377
378 if (HasMemset || HasMemsetPattern || HasMemcpy)
379 if (SE->hasLoopInvariantBackedgeTakenCount(L))
380 return runOnCountableLoop();
381
382 return runOnNoncountableLoop();
383 }
384
runOnCountableLoop()385 bool LoopIdiomRecognize::runOnCountableLoop() {
386 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
387 assert(!isa<SCEVCouldNotCompute>(BECount) &&
388 "runOnCountableLoop() called on a loop without a predictable"
389 "backedge-taken count");
390
391 // If this loop executes exactly one time, then it should be peeled, not
392 // optimized by this pass.
393 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
394 if (BECst->getAPInt() == 0)
395 return false;
396
397 SmallVector<BasicBlock *, 8> ExitBlocks;
398 CurLoop->getUniqueExitBlocks(ExitBlocks);
399
400 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
401 << CurLoop->getHeader()->getParent()->getName()
402 << "] Countable Loop %" << CurLoop->getHeader()->getName()
403 << "\n");
404
405 // The following transforms hoist stores/memsets into the loop pre-header.
406 // Give up if the loop has instructions that may throw.
407 SimpleLoopSafetyInfo SafetyInfo;
408 SafetyInfo.computeLoopSafetyInfo(CurLoop);
409 if (SafetyInfo.anyBlockMayThrow())
410 return false;
411
412 bool MadeChange = false;
413
414 // Scan all the blocks in the loop that are not in subloops.
415 for (auto *BB : CurLoop->getBlocks()) {
416 // Ignore blocks in subloops.
417 if (LI->getLoopFor(BB) != CurLoop)
418 continue;
419
420 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
421 }
422 return MadeChange;
423 }
424
getStoreStride(const SCEVAddRecExpr * StoreEv)425 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
426 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
427 return ConstStride->getAPInt();
428 }
429
430 /// getMemSetPatternValue - If a strided store of the specified value is safe to
431 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
432 /// be passed in. Otherwise, return null.
433 ///
434 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
435 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)436 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
437 // FIXME: This could check for UndefValue because it can be merged into any
438 // other valid pattern.
439
440 // If the value isn't a constant, we can't promote it to being in a constant
441 // array. We could theoretically do a store to an alloca or something, but
442 // that doesn't seem worthwhile.
443 Constant *C = dyn_cast<Constant>(V);
444 if (!C || isa<ConstantExpr>(C))
445 return nullptr;
446
447 // Only handle simple values that are a power of two bytes in size.
448 uint64_t Size = DL->getTypeSizeInBits(V->getType());
449 if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
450 return nullptr;
451
452 // Don't care enough about darwin/ppc to implement this.
453 if (DL->isBigEndian())
454 return nullptr;
455
456 // Convert to size in bytes.
457 Size /= 8;
458
459 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
460 // if the top and bottom are the same (e.g. for vectors and large integers).
461 if (Size > 16)
462 return nullptr;
463
464 // If the constant is exactly 16 bytes, just use it.
465 if (Size == 16)
466 return C;
467
468 // Otherwise, we'll use an array of the constants.
469 unsigned ArraySize = 16 / Size;
470 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
471 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
472 }
473
474 LoopIdiomRecognize::LegalStoreKind
isLegalStore(StoreInst * SI)475 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
476 // Don't touch volatile stores.
477 if (SI->isVolatile())
478 return LegalStoreKind::None;
479 // We only want simple or unordered-atomic stores.
480 if (!SI->isUnordered())
481 return LegalStoreKind::None;
482
483 // Avoid merging nontemporal stores.
484 if (SI->getMetadata(LLVMContext::MD_nontemporal))
485 return LegalStoreKind::None;
486
487 Value *StoredVal = SI->getValueOperand();
488 Value *StorePtr = SI->getPointerOperand();
489
490 // Don't convert stores of non-integral pointer types to memsets (which stores
491 // integers).
492 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
493 return LegalStoreKind::None;
494
495 // Reject stores that are so large that they overflow an unsigned.
496 // When storing out scalable vectors we bail out for now, since the code
497 // below currently only works for constant strides.
498 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
499 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
500 (SizeInBits.getFixedValue() >> 32) != 0)
501 return LegalStoreKind::None;
502
503 // See if the pointer expression is an AddRec like {base,+,1} on the current
504 // loop, which indicates a strided store. If we have something else, it's a
505 // random store we can't handle.
506 const SCEVAddRecExpr *StoreEv =
507 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
508 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
509 return LegalStoreKind::None;
510
511 // Check to see if we have a constant stride.
512 if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
513 return LegalStoreKind::None;
514
515 // See if the store can be turned into a memset.
516
517 // If the stored value is a byte-wise value (like i32 -1), then it may be
518 // turned into a memset of i8 -1, assuming that all the consecutive bytes
519 // are stored. A store of i32 0x01020304 can never be turned into a memset,
520 // but it can be turned into memset_pattern if the target supports it.
521 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
522
523 // Note: memset and memset_pattern on unordered-atomic is yet not supported
524 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
525
526 // If we're allowed to form a memset, and the stored value would be
527 // acceptable for memset, use it.
528 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
529 // Verify that the stored value is loop invariant. If not, we can't
530 // promote the memset.
531 CurLoop->isLoopInvariant(SplatValue)) {
532 // It looks like we can use SplatValue.
533 return LegalStoreKind::Memset;
534 }
535 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
536 // Don't create memset_pattern16s with address spaces.
537 StorePtr->getType()->getPointerAddressSpace() == 0 &&
538 getMemSetPatternValue(StoredVal, DL)) {
539 // It looks like we can use PatternValue!
540 return LegalStoreKind::MemsetPattern;
541 }
542
543 // Otherwise, see if the store can be turned into a memcpy.
544 if (HasMemcpy && !DisableLIRP::Memcpy) {
545 // Check to see if the stride matches the size of the store. If so, then we
546 // know that every byte is touched in the loop.
547 APInt Stride = getStoreStride(StoreEv);
548 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
549 if (StoreSize != Stride && StoreSize != -Stride)
550 return LegalStoreKind::None;
551
552 // The store must be feeding a non-volatile load.
553 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
554
555 // Only allow non-volatile loads
556 if (!LI || LI->isVolatile())
557 return LegalStoreKind::None;
558 // Only allow simple or unordered-atomic loads
559 if (!LI->isUnordered())
560 return LegalStoreKind::None;
561
562 // See if the pointer expression is an AddRec like {base,+,1} on the current
563 // loop, which indicates a strided load. If we have something else, it's a
564 // random load we can't handle.
565 const SCEVAddRecExpr *LoadEv =
566 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
567 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
568 return LegalStoreKind::None;
569
570 // The store and load must share the same stride.
571 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
572 return LegalStoreKind::None;
573
574 // Success. This store can be converted into a memcpy.
575 UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
576 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
577 : LegalStoreKind::Memcpy;
578 }
579 // This store can't be transformed into a memset/memcpy.
580 return LegalStoreKind::None;
581 }
582
collectStores(BasicBlock * BB)583 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
584 StoreRefsForMemset.clear();
585 StoreRefsForMemsetPattern.clear();
586 StoreRefsForMemcpy.clear();
587 for (Instruction &I : *BB) {
588 StoreInst *SI = dyn_cast<StoreInst>(&I);
589 if (!SI)
590 continue;
591
592 // Make sure this is a strided store with a constant stride.
593 switch (isLegalStore(SI)) {
594 case LegalStoreKind::None:
595 // Nothing to do
596 break;
597 case LegalStoreKind::Memset: {
598 // Find the base pointer.
599 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
600 StoreRefsForMemset[Ptr].push_back(SI);
601 } break;
602 case LegalStoreKind::MemsetPattern: {
603 // Find the base pointer.
604 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
605 StoreRefsForMemsetPattern[Ptr].push_back(SI);
606 } break;
607 case LegalStoreKind::Memcpy:
608 case LegalStoreKind::UnorderedAtomicMemcpy:
609 StoreRefsForMemcpy.push_back(SI);
610 break;
611 default:
612 assert(false && "unhandled return value");
613 break;
614 }
615 }
616 }
617
618 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
619 /// with the specified backedge count. This block is known to be in the current
620 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)621 bool LoopIdiomRecognize::runOnLoopBlock(
622 BasicBlock *BB, const SCEV *BECount,
623 SmallVectorImpl<BasicBlock *> &ExitBlocks) {
624 // We can only promote stores in this block if they are unconditionally
625 // executed in the loop. For a block to be unconditionally executed, it has
626 // to dominate all the exit blocks of the loop. Verify this now.
627 for (BasicBlock *ExitBlock : ExitBlocks)
628 if (!DT->dominates(BB, ExitBlock))
629 return false;
630
631 bool MadeChange = false;
632 // Look for store instructions, which may be optimized to memset/memcpy.
633 collectStores(BB);
634
635 // Look for a single store or sets of stores with a common base, which can be
636 // optimized into a memset (memset_pattern). The latter most commonly happens
637 // with structs and handunrolled loops.
638 for (auto &SL : StoreRefsForMemset)
639 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
640
641 for (auto &SL : StoreRefsForMemsetPattern)
642 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
643
644 // Optimize the store into a memcpy, if it feeds an similarly strided load.
645 for (auto &SI : StoreRefsForMemcpy)
646 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
647
648 MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
649 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
650 MadeChange |= processLoopMemIntrinsic<MemSetInst>(
651 BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
652
653 return MadeChange;
654 }
655
656 /// See if this store(s) can be promoted to a memset.
processLoopStores(SmallVectorImpl<StoreInst * > & SL,const SCEV * BECount,ForMemset For)657 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
658 const SCEV *BECount, ForMemset For) {
659 // Try to find consecutive stores that can be transformed into memsets.
660 SetVector<StoreInst *> Heads, Tails;
661 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
662
663 // Do a quadratic search on all of the given stores and find
664 // all of the pairs of stores that follow each other.
665 SmallVector<unsigned, 16> IndexQueue;
666 for (unsigned i = 0, e = SL.size(); i < e; ++i) {
667 assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
668
669 Value *FirstStoredVal = SL[i]->getValueOperand();
670 Value *FirstStorePtr = SL[i]->getPointerOperand();
671 const SCEVAddRecExpr *FirstStoreEv =
672 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
673 APInt FirstStride = getStoreStride(FirstStoreEv);
674 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
675
676 // See if we can optimize just this store in isolation.
677 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
678 Heads.insert(SL[i]);
679 continue;
680 }
681
682 Value *FirstSplatValue = nullptr;
683 Constant *FirstPatternValue = nullptr;
684
685 if (For == ForMemset::Yes)
686 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
687 else
688 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
689
690 assert((FirstSplatValue || FirstPatternValue) &&
691 "Expected either splat value or pattern value.");
692
693 IndexQueue.clear();
694 // If a store has multiple consecutive store candidates, search Stores
695 // array according to the sequence: from i+1 to e, then from i-1 to 0.
696 // This is because usually pairing with immediate succeeding or preceding
697 // candidate create the best chance to find memset opportunity.
698 unsigned j = 0;
699 for (j = i + 1; j < e; ++j)
700 IndexQueue.push_back(j);
701 for (j = i; j > 0; --j)
702 IndexQueue.push_back(j - 1);
703
704 for (auto &k : IndexQueue) {
705 assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
706 Value *SecondStorePtr = SL[k]->getPointerOperand();
707 const SCEVAddRecExpr *SecondStoreEv =
708 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
709 APInt SecondStride = getStoreStride(SecondStoreEv);
710
711 if (FirstStride != SecondStride)
712 continue;
713
714 Value *SecondStoredVal = SL[k]->getValueOperand();
715 Value *SecondSplatValue = nullptr;
716 Constant *SecondPatternValue = nullptr;
717
718 if (For == ForMemset::Yes)
719 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
720 else
721 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
722
723 assert((SecondSplatValue || SecondPatternValue) &&
724 "Expected either splat value or pattern value.");
725
726 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
727 if (For == ForMemset::Yes) {
728 if (isa<UndefValue>(FirstSplatValue))
729 FirstSplatValue = SecondSplatValue;
730 if (FirstSplatValue != SecondSplatValue)
731 continue;
732 } else {
733 if (isa<UndefValue>(FirstPatternValue))
734 FirstPatternValue = SecondPatternValue;
735 if (FirstPatternValue != SecondPatternValue)
736 continue;
737 }
738 Tails.insert(SL[k]);
739 Heads.insert(SL[i]);
740 ConsecutiveChain[SL[i]] = SL[k];
741 break;
742 }
743 }
744 }
745
746 // We may run into multiple chains that merge into a single chain. We mark the
747 // stores that we transformed so that we don't visit the same store twice.
748 SmallPtrSet<Value *, 16> TransformedStores;
749 bool Changed = false;
750
751 // For stores that start but don't end a link in the chain:
752 for (StoreInst *I : Heads) {
753 if (Tails.count(I))
754 continue;
755
756 // We found a store instr that starts a chain. Now follow the chain and try
757 // to transform it.
758 SmallPtrSet<Instruction *, 8> AdjacentStores;
759 StoreInst *HeadStore = I;
760 unsigned StoreSize = 0;
761
762 // Collect the chain into a list.
763 while (Tails.count(I) || Heads.count(I)) {
764 if (TransformedStores.count(I))
765 break;
766 AdjacentStores.insert(I);
767
768 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
769 // Move to the next value in the chain.
770 I = ConsecutiveChain[I];
771 }
772
773 Value *StoredVal = HeadStore->getValueOperand();
774 Value *StorePtr = HeadStore->getPointerOperand();
775 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
776 APInt Stride = getStoreStride(StoreEv);
777
778 // Check to see if the stride matches the size of the stores. If so, then
779 // we know that every byte is touched in the loop.
780 if (StoreSize != Stride && StoreSize != -Stride)
781 continue;
782
783 bool IsNegStride = StoreSize == -Stride;
784
785 Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
786 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
787 if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
788 MaybeAlign(HeadStore->getAlign()), StoredVal,
789 HeadStore, AdjacentStores, StoreEv, BECount,
790 IsNegStride)) {
791 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
792 Changed = true;
793 }
794 }
795
796 return Changed;
797 }
798
799 /// processLoopMemIntrinsic - Template function for calling different processor
800 /// functions based on mem intrinsic type.
801 template <typename MemInst>
processLoopMemIntrinsic(BasicBlock * BB,bool (LoopIdiomRecognize::* Processor)(MemInst *,const SCEV *),const SCEV * BECount)802 bool LoopIdiomRecognize::processLoopMemIntrinsic(
803 BasicBlock *BB,
804 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
805 const SCEV *BECount) {
806 bool MadeChange = false;
807 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
808 Instruction *Inst = &*I++;
809 // Look for memory instructions, which may be optimized to a larger one.
810 if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
811 WeakTrackingVH InstPtr(&*I);
812 if (!(this->*Processor)(MI, BECount))
813 continue;
814 MadeChange = true;
815
816 // If processing the instruction invalidated our iterator, start over from
817 // the top of the block.
818 if (!InstPtr)
819 I = BB->begin();
820 }
821 }
822 return MadeChange;
823 }
824
825 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
processLoopMemCpy(MemCpyInst * MCI,const SCEV * BECount)826 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
827 const SCEV *BECount) {
828 // We can only handle non-volatile memcpys with a constant size.
829 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
830 return false;
831
832 // If we're not allowed to hack on memcpy, we fail.
833 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
834 return false;
835
836 Value *Dest = MCI->getDest();
837 Value *Source = MCI->getSource();
838 if (!Dest || !Source)
839 return false;
840
841 // See if the load and store pointer expressions are AddRec like {base,+,1} on
842 // the current loop, which indicates a strided load and store. If we have
843 // something else, it's a random load or store we can't handle.
844 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
845 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
846 return false;
847 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
848 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
849 return false;
850
851 // Reject memcpys that are so large that they overflow an unsigned.
852 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
853 if ((SizeInBytes >> 32) != 0)
854 return false;
855
856 // Check if the stride matches the size of the memcpy. If so, then we know
857 // that every byte is touched in the loop.
858 const SCEVConstant *ConstStoreStride =
859 dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
860 const SCEVConstant *ConstLoadStride =
861 dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
862 if (!ConstStoreStride || !ConstLoadStride)
863 return false;
864
865 APInt StoreStrideValue = ConstStoreStride->getAPInt();
866 APInt LoadStrideValue = ConstLoadStride->getAPInt();
867 // Huge stride value - give up
868 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
869 return false;
870
871 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
872 ORE.emit([&]() {
873 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
874 << ore::NV("Inst", "memcpy") << " in "
875 << ore::NV("Function", MCI->getFunction())
876 << " function will not be hoisted: "
877 << ore::NV("Reason", "memcpy size is not equal to stride");
878 });
879 return false;
880 }
881
882 int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
883 int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
884 // Check if the load stride matches the store stride.
885 if (StoreStrideInt != LoadStrideInt)
886 return false;
887
888 return processLoopStoreOfLoopLoad(
889 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
890 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
891 BECount);
892 }
893
894 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)895 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
896 const SCEV *BECount) {
897 // We can only handle non-volatile memsets.
898 if (MSI->isVolatile())
899 return false;
900
901 // If we're not allowed to hack on memset, we fail.
902 if (!HasMemset || DisableLIRP::Memset)
903 return false;
904
905 Value *Pointer = MSI->getDest();
906
907 // See if the pointer expression is an AddRec like {base,+,1} on the current
908 // loop, which indicates a strided store. If we have something else, it's a
909 // random store we can't handle.
910 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
911 if (!Ev || Ev->getLoop() != CurLoop)
912 return false;
913 if (!Ev->isAffine()) {
914 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
915 return false;
916 }
917
918 const SCEV *PointerStrideSCEV = Ev->getOperand(1);
919 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
920 if (!PointerStrideSCEV || !MemsetSizeSCEV)
921 return false;
922
923 bool IsNegStride = false;
924 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
925
926 if (IsConstantSize) {
927 // Memset size is constant.
928 // Check if the pointer stride matches the memset size. If so, then
929 // we know that every byte is touched in the loop.
930 LLVM_DEBUG(dbgs() << " memset size is constant\n");
931 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
932 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
933 if (!ConstStride)
934 return false;
935
936 APInt Stride = ConstStride->getAPInt();
937 if (SizeInBytes != Stride && SizeInBytes != -Stride)
938 return false;
939
940 IsNegStride = SizeInBytes == -Stride;
941 } else {
942 // Memset size is non-constant.
943 // Check if the pointer stride matches the memset size.
944 // To be conservative, the pass would not promote pointers that aren't in
945 // address space zero. Also, the pass only handles memset length and stride
946 // that are invariant for the top level loop.
947 LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
948 if (Pointer->getType()->getPointerAddressSpace() != 0) {
949 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
950 << "abort\n");
951 return false;
952 }
953 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
954 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
955 << "abort\n");
956 return false;
957 }
958
959 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
960 IsNegStride = PointerStrideSCEV->isNonConstantNegative();
961 const SCEV *PositiveStrideSCEV =
962 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
963 : PointerStrideSCEV;
964 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
965 << " PositiveStrideSCEV: " << *PositiveStrideSCEV
966 << "\n");
967
968 if (PositiveStrideSCEV != MemsetSizeSCEV) {
969 // If an expression is covered by the loop guard, compare again and
970 // proceed with optimization if equal.
971 const SCEV *FoldedPositiveStride =
972 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
973 const SCEV *FoldedMemsetSize =
974 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
975
976 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
977 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
978 << " FoldedPositiveStride: " << *FoldedPositiveStride
979 << "\n");
980
981 if (FoldedPositiveStride != FoldedMemsetSize) {
982 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
983 return false;
984 }
985 }
986 }
987
988 // Verify that the memset value is loop invariant. If not, we can't promote
989 // the memset.
990 Value *SplatValue = MSI->getValue();
991 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
992 return false;
993
994 SmallPtrSet<Instruction *, 1> MSIs;
995 MSIs.insert(MSI);
996 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
997 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
998 BECount, IsNegStride, /*IsLoopMemset=*/true);
999 }
1000
1001 /// mayLoopAccessLocation - Return true if the specified loop might access the
1002 /// specified pointer location, which is a loop-strided access. The 'Access'
1003 /// argument specifies what the verboten forms of access are (read or write).
1004 static bool
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,const SCEV * StoreSizeSCEV,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & IgnoredInsts)1005 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1006 const SCEV *BECount, const SCEV *StoreSizeSCEV,
1007 AliasAnalysis &AA,
1008 SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
1009 // Get the location that may be stored across the loop. Since the access is
1010 // strided positively through memory, we say that the modified location starts
1011 // at the pointer and has infinite size.
1012 LocationSize AccessSize = LocationSize::afterPointer();
1013
1014 // If the loop iterates a fixed number of times, we can refine the access size
1015 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
1016 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
1017 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1018 if (BECst && ConstSize)
1019 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1020 ConstSize->getValue()->getZExtValue());
1021
1022 // TODO: For this to be really effective, we have to dive into the pointer
1023 // operand in the store. Store to &A[i] of 100 will always return may alias
1024 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1025 // which will then no-alias a store to &A[100].
1026 MemoryLocation StoreLoc(Ptr, AccessSize);
1027
1028 for (BasicBlock *B : L->blocks())
1029 for (Instruction &I : *B)
1030 if (!IgnoredInsts.contains(&I) &&
1031 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
1032 return true;
1033 return false;
1034 }
1035
1036 // If we have a negative stride, Start refers to the end of the memory location
1037 // we're trying to memset. Therefore, we need to recompute the base pointer,
1038 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,ScalarEvolution * SE)1039 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
1040 Type *IntPtr, const SCEV *StoreSizeSCEV,
1041 ScalarEvolution *SE) {
1042 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1043 if (!StoreSizeSCEV->isOne()) {
1044 // index = back edge count * store size
1045 Index = SE->getMulExpr(Index,
1046 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1047 SCEV::FlagNUW);
1048 }
1049 // base pointer = start - index * store size
1050 return SE->getMinusSCEV(Start, Index);
1051 }
1052
1053 /// Compute trip count from the backedge taken count.
getTripCount(const SCEV * BECount,Type * IntPtr,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1054 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
1055 Loop *CurLoop, const DataLayout *DL,
1056 ScalarEvolution *SE) {
1057 const SCEV *TripCountS = nullptr;
1058 // The # stored bytes is (BECount+1). Expand the trip count out to
1059 // pointer size if it isn't already.
1060 //
1061 // If we're going to need to zero extend the BE count, check if we can add
1062 // one to it prior to zero extending without overflow. Provided this is safe,
1063 // it allows better simplification of the +1.
1064 if (DL->getTypeSizeInBits(BECount->getType()) <
1065 DL->getTypeSizeInBits(IntPtr) &&
1066 SE->isLoopEntryGuardedByCond(
1067 CurLoop, ICmpInst::ICMP_NE, BECount,
1068 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1069 TripCountS = SE->getZeroExtendExpr(
1070 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1071 IntPtr);
1072 } else {
1073 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1074 SE->getOne(IntPtr), SCEV::FlagNUW);
1075 }
1076
1077 return TripCountS;
1078 }
1079
1080 /// Compute the number of bytes as a SCEV from the backedge taken count.
1081 ///
1082 /// This also maps the SCEV into the provided type and tries to handle the
1083 /// computation in a way that will fold cleanly.
getNumBytes(const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1084 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
1085 const SCEV *StoreSizeSCEV, Loop *CurLoop,
1086 const DataLayout *DL, ScalarEvolution *SE) {
1087 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
1088
1089 return SE->getMulExpr(TripCountSCEV,
1090 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1091 SCEV::FlagNUW);
1092 }
1093
1094 /// processLoopStridedStore - We see a strided store of some value. If we can
1095 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlignment,Value * StoredVal,Instruction * TheStore,SmallPtrSetImpl<Instruction * > & Stores,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool IsNegStride,bool IsLoopMemset)1096 bool LoopIdiomRecognize::processLoopStridedStore(
1097 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1098 Value *StoredVal, Instruction *TheStore,
1099 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1100 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1101 Module *M = TheStore->getModule();
1102 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1103 Constant *PatternValue = nullptr;
1104
1105 if (!SplatValue)
1106 PatternValue = getMemSetPatternValue(StoredVal, DL);
1107
1108 assert((SplatValue || PatternValue) &&
1109 "Expected either splat value or pattern value.");
1110
1111 // The trip count of the loop and the base pointer of the addrec SCEV is
1112 // guaranteed to be loop invariant, which means that it should dominate the
1113 // header. This allows us to insert code for it in the preheader.
1114 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1115 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1116 IRBuilder<> Builder(Preheader->getTerminator());
1117 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1118 SCEVExpanderCleaner ExpCleaner(Expander);
1119
1120 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1121 Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1122
1123 bool Changed = false;
1124 const SCEV *Start = Ev->getStart();
1125 // Handle negative strided loops.
1126 if (IsNegStride)
1127 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1128
1129 // TODO: ideally we should still be able to generate memset if SCEV expander
1130 // is taught to generate the dependencies at the latest point.
1131 if (!Expander.isSafeToExpand(Start))
1132 return Changed;
1133
1134 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
1135 // this into a memset in the loop preheader now if we want. However, this
1136 // would be unsafe to do if there is anything else in the loop that may read
1137 // or write to the aliased location. Check for any overlap by generating the
1138 // base pointer and checking the region.
1139 Value *BasePtr =
1140 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1141
1142 // From here on out, conservatively report to the pass manager that we've
1143 // changed the IR, even if we later clean up these added instructions. There
1144 // may be structural differences e.g. in the order of use lists not accounted
1145 // for in just a textual dump of the IR. This is written as a variable, even
1146 // though statically all the places this dominates could be replaced with
1147 // 'true', with the hope that anyone trying to be clever / "more precise" with
1148 // the return value will read this comment, and leave them alone.
1149 Changed = true;
1150
1151 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1152 StoreSizeSCEV, *AA, Stores))
1153 return Changed;
1154
1155 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1156 return Changed;
1157
1158 // Okay, everything looks good, insert the memset.
1159
1160 const SCEV *NumBytesS =
1161 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1162
1163 // TODO: ideally we should still be able to generate memset if SCEV expander
1164 // is taught to generate the dependencies at the latest point.
1165 if (!Expander.isSafeToExpand(NumBytesS))
1166 return Changed;
1167
1168 Value *NumBytes =
1169 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1170
1171 CallInst *NewCall;
1172 if (SplatValue) {
1173 AAMDNodes AATags = TheStore->getAAMetadata();
1174 for (Instruction *Store : Stores)
1175 AATags = AATags.merge(Store->getAAMetadata());
1176 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1177 AATags = AATags.extendTo(CI->getZExtValue());
1178 else
1179 AATags = AATags.extendTo(-1);
1180
1181 NewCall = Builder.CreateMemSet(
1182 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1183 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1184 } else if (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) {
1185 // Everything is emitted in default address space
1186 Type *Int8PtrTy = DestInt8PtrTy;
1187
1188 StringRef FuncName = "memset_pattern16";
1189 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1190 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1191 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1192
1193 // Otherwise we should form a memset_pattern16. PatternValue is known to be
1194 // an constant array of 16-bytes. Plop the value into a mergable global.
1195 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1196 GlobalValue::PrivateLinkage,
1197 PatternValue, ".memset_pattern");
1198 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1199 GV->setAlignment(Align(16));
1200 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1201 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1202 } else
1203 return Changed;
1204
1205 NewCall->setDebugLoc(TheStore->getDebugLoc());
1206
1207 if (MSSAU) {
1208 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1209 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1210 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1211 }
1212
1213 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1214 << " from store to: " << *Ev << " at: " << *TheStore
1215 << "\n");
1216
1217 ORE.emit([&]() {
1218 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1219 NewCall->getDebugLoc(), Preheader);
1220 R << "Transformed loop-strided store in "
1221 << ore::NV("Function", TheStore->getFunction())
1222 << " function into a call to "
1223 << ore::NV("NewFunction", NewCall->getCalledFunction())
1224 << "() intrinsic";
1225 if (!Stores.empty())
1226 R << ore::setExtraArgs();
1227 for (auto *I : Stores) {
1228 R << ore::NV("FromBlock", I->getParent()->getName())
1229 << ore::NV("ToBlock", Preheader->getName());
1230 }
1231 return R;
1232 });
1233
1234 // Okay, the memset has been formed. Zap the original store and anything that
1235 // feeds into it.
1236 for (auto *I : Stores) {
1237 if (MSSAU)
1238 MSSAU->removeMemoryAccess(I, true);
1239 deleteDeadInstruction(I);
1240 }
1241 if (MSSAU && VerifyMemorySSA)
1242 MSSAU->getMemorySSA()->verifyMemorySSA();
1243 ++NumMemSet;
1244 ExpCleaner.markResultUsed();
1245 return true;
1246 }
1247
1248 /// If the stored value is a strided load in the same loop with the same stride
1249 /// this may be transformable into a memcpy. This kicks in for stuff like
1250 /// for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,const SCEV * BECount)1251 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1252 const SCEV *BECount) {
1253 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1254
1255 Value *StorePtr = SI->getPointerOperand();
1256 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1257 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1258
1259 // The store must be feeding a non-volatile load.
1260 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1261 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1262
1263 // See if the pointer expression is an AddRec like {base,+,1} on the current
1264 // loop, which indicates a strided load. If we have something else, it's a
1265 // random load we can't handle.
1266 Value *LoadPtr = LI->getPointerOperand();
1267 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1268
1269 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1270 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1271 SI->getAlign(), LI->getAlign(), SI, LI,
1272 StoreEv, LoadEv, BECount);
1273 }
1274
1275 namespace {
1276 class MemmoveVerifier {
1277 public:
MemmoveVerifier(const Value & LoadBasePtr,const Value & StoreBasePtr,const DataLayout & DL)1278 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1279 const DataLayout &DL)
1280 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1281 LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1282 BP2(llvm::GetPointerBaseWithConstantOffset(
1283 StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1284 IsSameObject(BP1 == BP2) {}
1285
loadAndStoreMayFormMemmove(unsigned StoreSize,bool IsNegStride,const Instruction & TheLoad,bool IsMemCpy) const1286 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1287 const Instruction &TheLoad,
1288 bool IsMemCpy) const {
1289 if (IsMemCpy) {
1290 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1291 // for negative stride.
1292 if ((!IsNegStride && LoadOff <= StoreOff) ||
1293 (IsNegStride && LoadOff >= StoreOff))
1294 return false;
1295 } else {
1296 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1297 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1298 int64_t LoadSize =
1299 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1300 if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1301 return false;
1302 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1303 (IsNegStride && LoadOff + LoadSize > StoreOff))
1304 return false;
1305 }
1306 return true;
1307 }
1308
1309 private:
1310 const DataLayout &DL;
1311 int64_t LoadOff = 0;
1312 int64_t StoreOff = 0;
1313 const Value *BP1;
1314 const Value *BP2;
1315
1316 public:
1317 const bool IsSameObject;
1318 };
1319 } // namespace
1320
processLoopStoreOfLoopLoad(Value * DestPtr,Value * SourcePtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlign,MaybeAlign LoadAlign,Instruction * TheStore,Instruction * TheLoad,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1321 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1322 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1323 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1324 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1325 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1326
1327 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1328 // conservatively bail here, since otherwise we may have to transform
1329 // llvm.memcpy.inline into llvm.memcpy which is illegal.
1330 if (isa<MemCpyInlineInst>(TheStore))
1331 return false;
1332
1333 // The trip count of the loop and the base pointer of the addrec SCEV is
1334 // guaranteed to be loop invariant, which means that it should dominate the
1335 // header. This allows us to insert code for it in the preheader.
1336 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1337 IRBuilder<> Builder(Preheader->getTerminator());
1338 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1339
1340 SCEVExpanderCleaner ExpCleaner(Expander);
1341
1342 bool Changed = false;
1343 const SCEV *StrStart = StoreEv->getStart();
1344 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1345 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1346
1347 APInt Stride = getStoreStride(StoreEv);
1348 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1349
1350 // TODO: Deal with non-constant size; Currently expect constant store size
1351 assert(ConstStoreSize && "store size is expected to be a constant");
1352
1353 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1354 bool IsNegStride = StoreSize == -Stride;
1355
1356 // Handle negative strided loops.
1357 if (IsNegStride)
1358 StrStart =
1359 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1360
1361 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1362 // this into a memcpy in the loop preheader now if we want. However, this
1363 // would be unsafe to do if there is anything else in the loop that may read
1364 // or write the memory region we're storing to. This includes the load that
1365 // feeds the stores. Check for an alias by generating the base address and
1366 // checking everything.
1367 Value *StoreBasePtr = Expander.expandCodeFor(
1368 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1369
1370 // From here on out, conservatively report to the pass manager that we've
1371 // changed the IR, even if we later clean up these added instructions. There
1372 // may be structural differences e.g. in the order of use lists not accounted
1373 // for in just a textual dump of the IR. This is written as a variable, even
1374 // though statically all the places this dominates could be replaced with
1375 // 'true', with the hope that anyone trying to be clever / "more precise" with
1376 // the return value will read this comment, and leave them alone.
1377 Changed = true;
1378
1379 SmallPtrSet<Instruction *, 2> IgnoredInsts;
1380 IgnoredInsts.insert(TheStore);
1381
1382 bool IsMemCpy = isa<MemCpyInst>(TheStore);
1383 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1384
1385 bool LoopAccessStore =
1386 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1387 StoreSizeSCEV, *AA, IgnoredInsts);
1388 if (LoopAccessStore) {
1389 // For memmove case it's not enough to guarantee that loop doesn't access
1390 // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1391 // the only user of TheLoad.
1392 if (!TheLoad->hasOneUse())
1393 return Changed;
1394 IgnoredInsts.insert(TheLoad);
1395 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1396 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1397 ORE.emit([&]() {
1398 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1399 TheStore)
1400 << ore::NV("Inst", InstRemark) << " in "
1401 << ore::NV("Function", TheStore->getFunction())
1402 << " function will not be hoisted: "
1403 << ore::NV("Reason", "The loop may access store location");
1404 });
1405 return Changed;
1406 }
1407 IgnoredInsts.erase(TheLoad);
1408 }
1409
1410 const SCEV *LdStart = LoadEv->getStart();
1411 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1412
1413 // Handle negative strided loops.
1414 if (IsNegStride)
1415 LdStart =
1416 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1417
1418 // For a memcpy, we have to make sure that the input array is not being
1419 // mutated by the loop.
1420 Value *LoadBasePtr = Expander.expandCodeFor(
1421 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1422
1423 // If the store is a memcpy instruction, we must check if it will write to
1424 // the load memory locations. So remove it from the ignored stores.
1425 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1426 if (IsMemCpy && !Verifier.IsSameObject)
1427 IgnoredInsts.erase(TheStore);
1428 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1429 StoreSizeSCEV, *AA, IgnoredInsts)) {
1430 ORE.emit([&]() {
1431 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1432 << ore::NV("Inst", InstRemark) << " in "
1433 << ore::NV("Function", TheStore->getFunction())
1434 << " function will not be hoisted: "
1435 << ore::NV("Reason", "The loop may access load location");
1436 });
1437 return Changed;
1438 }
1439
1440 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1441 if (UseMemMove)
1442 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1443 IsMemCpy))
1444 return Changed;
1445
1446 if (avoidLIRForMultiBlockLoop())
1447 return Changed;
1448
1449 // Okay, everything is safe, we can transform this!
1450
1451 const SCEV *NumBytesS =
1452 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1453
1454 Value *NumBytes =
1455 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1456
1457 AAMDNodes AATags = TheLoad->getAAMetadata();
1458 AAMDNodes StoreAATags = TheStore->getAAMetadata();
1459 AATags = AATags.merge(StoreAATags);
1460 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1461 AATags = AATags.extendTo(CI->getZExtValue());
1462 else
1463 AATags = AATags.extendTo(-1);
1464
1465 CallInst *NewCall = nullptr;
1466 // Check whether to generate an unordered atomic memcpy:
1467 // If the load or store are atomic, then they must necessarily be unordered
1468 // by previous checks.
1469 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1470 if (UseMemMove)
1471 NewCall = Builder.CreateMemMove(
1472 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1473 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1474 else
1475 NewCall =
1476 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1477 NumBytes, /*isVolatile=*/false, AATags.TBAA,
1478 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1479 } else {
1480 // For now don't support unordered atomic memmove.
1481 if (UseMemMove)
1482 return Changed;
1483 // We cannot allow unaligned ops for unordered load/store, so reject
1484 // anything where the alignment isn't at least the element size.
1485 assert((StoreAlign && LoadAlign) &&
1486 "Expect unordered load/store to have align.");
1487 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1488 return Changed;
1489
1490 // If the element.atomic memcpy is not lowered into explicit
1491 // loads/stores later, then it will be lowered into an element-size
1492 // specific lib call. If the lib call doesn't exist for our store size, then
1493 // we shouldn't generate the memcpy.
1494 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1495 return Changed;
1496
1497 // Create the call.
1498 // Note that unordered atomic loads/stores are *required* by the spec to
1499 // have an alignment but non-atomic loads/stores may not.
1500 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1501 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1502 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1503 }
1504 NewCall->setDebugLoc(TheStore->getDebugLoc());
1505
1506 if (MSSAU) {
1507 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1508 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1509 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1510 }
1511
1512 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
1513 << " from load ptr=" << *LoadEv << " at: " << *TheLoad
1514 << "\n"
1515 << " from store ptr=" << *StoreEv << " at: " << *TheStore
1516 << "\n");
1517
1518 ORE.emit([&]() {
1519 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1520 NewCall->getDebugLoc(), Preheader)
1521 << "Formed a call to "
1522 << ore::NV("NewFunction", NewCall->getCalledFunction())
1523 << "() intrinsic from " << ore::NV("Inst", InstRemark)
1524 << " instruction in " << ore::NV("Function", TheStore->getFunction())
1525 << " function"
1526 << ore::setExtraArgs()
1527 << ore::NV("FromBlock", TheStore->getParent()->getName())
1528 << ore::NV("ToBlock", Preheader->getName());
1529 });
1530
1531 // Okay, a new call to memcpy/memmove has been formed. Zap the original store
1532 // and anything that feeds into it.
1533 if (MSSAU)
1534 MSSAU->removeMemoryAccess(TheStore, true);
1535 deleteDeadInstruction(TheStore);
1536 if (MSSAU && VerifyMemorySSA)
1537 MSSAU->getMemorySSA()->verifyMemorySSA();
1538 if (UseMemMove)
1539 ++NumMemMove;
1540 else
1541 ++NumMemCpy;
1542 ExpCleaner.markResultUsed();
1543 return true;
1544 }
1545
1546 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1547 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1548 //
avoidLIRForMultiBlockLoop(bool IsMemset,bool IsLoopMemset)1549 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1550 bool IsLoopMemset) {
1551 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1552 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1553 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
1554 << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1555 << " avoided: multi-block top-level loop\n");
1556 return true;
1557 }
1558 }
1559
1560 return false;
1561 }
1562
runOnNoncountableLoop()1563 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1564 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1565 << CurLoop->getHeader()->getParent()->getName()
1566 << "] Noncountable Loop %"
1567 << CurLoop->getHeader()->getName() << "\n");
1568
1569 return recognizePopcount() || recognizeAndInsertFFS() ||
1570 recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1571 }
1572
1573 /// Check if the given conditional branch is based on the comparison between
1574 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1575 /// true), the control yields to the loop entry. If the branch matches the
1576 /// behavior, the variable involved in the comparison is returned. This function
1577 /// will be called to see if the precondition and postcondition of the loop are
1578 /// in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry,bool JmpOnZero=false)1579 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1580 bool JmpOnZero = false) {
1581 if (!BI || !BI->isConditional())
1582 return nullptr;
1583
1584 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1585 if (!Cond)
1586 return nullptr;
1587
1588 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1589 if (!CmpZero || !CmpZero->isZero())
1590 return nullptr;
1591
1592 BasicBlock *TrueSucc = BI->getSuccessor(0);
1593 BasicBlock *FalseSucc = BI->getSuccessor(1);
1594 if (JmpOnZero)
1595 std::swap(TrueSucc, FalseSucc);
1596
1597 ICmpInst::Predicate Pred = Cond->getPredicate();
1598 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1599 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1600 return Cond->getOperand(0);
1601
1602 return nullptr;
1603 }
1604
1605 // Check if the recurrence variable `VarX` is in the right form to create
1606 // the idiom. Returns the value coerced to a PHINode if so.
getRecurrenceVar(Value * VarX,Instruction * DefX,BasicBlock * LoopEntry)1607 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1608 BasicBlock *LoopEntry) {
1609 auto *PhiX = dyn_cast<PHINode>(VarX);
1610 if (PhiX && PhiX->getParent() == LoopEntry &&
1611 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1612 return PhiX;
1613 return nullptr;
1614 }
1615
1616 /// Return true iff the idiom is detected in the loop.
1617 ///
1618 /// Additionally:
1619 /// 1) \p CntInst is set to the instruction counting the population bit.
1620 /// 2) \p CntPhi is set to the corresponding phi node.
1621 /// 3) \p Var is set to the value whose population bits are being counted.
1622 ///
1623 /// The core idiom we are trying to detect is:
1624 /// \code
1625 /// if (x0 != 0)
1626 /// goto loop-exit // the precondition of the loop
1627 /// cnt0 = init-val;
1628 /// do {
1629 /// x1 = phi (x0, x2);
1630 /// cnt1 = phi(cnt0, cnt2);
1631 ///
1632 /// cnt2 = cnt1 + 1;
1633 /// ...
1634 /// x2 = x1 & (x1 - 1);
1635 /// ...
1636 /// } while(x != 0);
1637 ///
1638 /// loop-exit:
1639 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)1640 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1641 Instruction *&CntInst, PHINode *&CntPhi,
1642 Value *&Var) {
1643 // step 1: Check to see if the look-back branch match this pattern:
1644 // "if (a!=0) goto loop-entry".
1645 BasicBlock *LoopEntry;
1646 Instruction *DefX2, *CountInst;
1647 Value *VarX1, *VarX0;
1648 PHINode *PhiX, *CountPhi;
1649
1650 DefX2 = CountInst = nullptr;
1651 VarX1 = VarX0 = nullptr;
1652 PhiX = CountPhi = nullptr;
1653 LoopEntry = *(CurLoop->block_begin());
1654
1655 // step 1: Check if the loop-back branch is in desirable form.
1656 {
1657 if (Value *T = matchCondition(
1658 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1659 DefX2 = dyn_cast<Instruction>(T);
1660 else
1661 return false;
1662 }
1663
1664 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1665 {
1666 if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1667 return false;
1668
1669 BinaryOperator *SubOneOp;
1670
1671 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1672 VarX1 = DefX2->getOperand(1);
1673 else {
1674 VarX1 = DefX2->getOperand(0);
1675 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1676 }
1677 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1678 return false;
1679
1680 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1681 if (!Dec ||
1682 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1683 (SubOneOp->getOpcode() == Instruction::Add &&
1684 Dec->isMinusOne()))) {
1685 return false;
1686 }
1687 }
1688
1689 // step 3: Check the recurrence of variable X
1690 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1691 if (!PhiX)
1692 return false;
1693
1694 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1695 {
1696 CountInst = nullptr;
1697 for (Instruction &Inst : llvm::make_range(
1698 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1699 if (Inst.getOpcode() != Instruction::Add)
1700 continue;
1701
1702 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1703 if (!Inc || !Inc->isOne())
1704 continue;
1705
1706 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1707 if (!Phi)
1708 continue;
1709
1710 // Check if the result of the instruction is live of the loop.
1711 bool LiveOutLoop = false;
1712 for (User *U : Inst.users()) {
1713 if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1714 LiveOutLoop = true;
1715 break;
1716 }
1717 }
1718
1719 if (LiveOutLoop) {
1720 CountInst = &Inst;
1721 CountPhi = Phi;
1722 break;
1723 }
1724 }
1725
1726 if (!CountInst)
1727 return false;
1728 }
1729
1730 // step 5: check if the precondition is in this form:
1731 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1732 {
1733 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1734 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1735 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1736 return false;
1737
1738 CntInst = CountInst;
1739 CntPhi = CountPhi;
1740 Var = T;
1741 }
1742
1743 return true;
1744 }
1745
1746 /// Return true if the idiom is detected in the loop.
1747 ///
1748 /// Additionally:
1749 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1750 /// or nullptr if there is no such.
1751 /// 2) \p CntPhi is set to the corresponding phi node
1752 /// or nullptr if there is no such.
1753 /// 3) \p Var is set to the value whose CTLZ could be used.
1754 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1755 ///
1756 /// The core idiom we are trying to detect is:
1757 /// \code
1758 /// if (x0 == 0)
1759 /// goto loop-exit // the precondition of the loop
1760 /// cnt0 = init-val;
1761 /// do {
1762 /// x = phi (x0, x.next); //PhiX
1763 /// cnt = phi(cnt0, cnt.next);
1764 ///
1765 /// cnt.next = cnt + 1;
1766 /// ...
1767 /// x.next = x >> 1; // DefX
1768 /// ...
1769 /// } while(x.next != 0);
1770 ///
1771 /// loop-exit:
1772 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX)1773 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1774 Intrinsic::ID &IntrinID, Value *&InitX,
1775 Instruction *&CntInst, PHINode *&CntPhi,
1776 Instruction *&DefX) {
1777 BasicBlock *LoopEntry;
1778 Value *VarX = nullptr;
1779
1780 DefX = nullptr;
1781 CntInst = nullptr;
1782 CntPhi = nullptr;
1783 LoopEntry = *(CurLoop->block_begin());
1784
1785 // step 1: Check if the loop-back branch is in desirable form.
1786 if (Value *T = matchCondition(
1787 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1788 DefX = dyn_cast<Instruction>(T);
1789 else
1790 return false;
1791
1792 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1793 if (!DefX || !DefX->isShift())
1794 return false;
1795 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1796 Intrinsic::ctlz;
1797 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1798 if (!Shft || !Shft->isOne())
1799 return false;
1800 VarX = DefX->getOperand(0);
1801
1802 // step 3: Check the recurrence of variable X
1803 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1804 if (!PhiX)
1805 return false;
1806
1807 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1808
1809 // Make sure the initial value can't be negative otherwise the ashr in the
1810 // loop might never reach zero which would make the loop infinite.
1811 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1812 return false;
1813
1814 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1815 // or cnt.next = cnt + -1.
1816 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1817 // then all uses of "cnt.next" could be optimized to the trip count
1818 // plus "cnt0". Currently it is not optimized.
1819 // This step could be used to detect POPCNT instruction:
1820 // cnt.next = cnt + (x.next & 1)
1821 for (Instruction &Inst : llvm::make_range(
1822 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1823 if (Inst.getOpcode() != Instruction::Add)
1824 continue;
1825
1826 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1827 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1828 continue;
1829
1830 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1831 if (!Phi)
1832 continue;
1833
1834 CntInst = &Inst;
1835 CntPhi = Phi;
1836 break;
1837 }
1838 if (!CntInst)
1839 return false;
1840
1841 return true;
1842 }
1843
1844 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1845 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1846 /// trip count returns true; otherwise, returns false.
recognizeAndInsertFFS()1847 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1848 // Give up if the loop has multiple blocks or multiple backedges.
1849 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1850 return false;
1851
1852 Intrinsic::ID IntrinID;
1853 Value *InitX;
1854 Instruction *DefX = nullptr;
1855 PHINode *CntPhi = nullptr;
1856 Instruction *CntInst = nullptr;
1857 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1858 // this is always 6.
1859 size_t IdiomCanonicalSize = 6;
1860
1861 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1862 CntInst, CntPhi, DefX))
1863 return false;
1864
1865 bool IsCntPhiUsedOutsideLoop = false;
1866 for (User *U : CntPhi->users())
1867 if (!CurLoop->contains(cast<Instruction>(U))) {
1868 IsCntPhiUsedOutsideLoop = true;
1869 break;
1870 }
1871 bool IsCntInstUsedOutsideLoop = false;
1872 for (User *U : CntInst->users())
1873 if (!CurLoop->contains(cast<Instruction>(U))) {
1874 IsCntInstUsedOutsideLoop = true;
1875 break;
1876 }
1877 // If both CntInst and CntPhi are used outside the loop the profitability
1878 // is questionable.
1879 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1880 return false;
1881
1882 // For some CPUs result of CTLZ(X) intrinsic is undefined
1883 // when X is 0. If we can not guarantee X != 0, we need to check this
1884 // when expand.
1885 bool ZeroCheck = false;
1886 // It is safe to assume Preheader exist as it was checked in
1887 // parent function RunOnLoop.
1888 BasicBlock *PH = CurLoop->getLoopPreheader();
1889
1890 // If we are using the count instruction outside the loop, make sure we
1891 // have a zero check as a precondition. Without the check the loop would run
1892 // one iteration for before any check of the input value. This means 0 and 1
1893 // would have identical behavior in the original loop and thus
1894 if (!IsCntPhiUsedOutsideLoop) {
1895 auto *PreCondBB = PH->getSinglePredecessor();
1896 if (!PreCondBB)
1897 return false;
1898 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1899 if (!PreCondBI)
1900 return false;
1901 if (matchCondition(PreCondBI, PH) != InitX)
1902 return false;
1903 ZeroCheck = true;
1904 }
1905
1906 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1907 // profitable if we delete the loop.
1908
1909 // the loop has only 6 instructions:
1910 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1911 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1912 // %shr = ashr %n.addr.0, 1
1913 // %tobool = icmp eq %shr, 0
1914 // %inc = add nsw %i.0, 1
1915 // br i1 %tobool
1916
1917 const Value *Args[] = {InitX,
1918 ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1919
1920 // @llvm.dbg doesn't count as they have no semantic effect.
1921 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1922 uint32_t HeaderSize =
1923 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1924
1925 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1926 InstructionCost Cost =
1927 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1928 if (HeaderSize != IdiomCanonicalSize &&
1929 Cost > TargetTransformInfo::TCC_Basic)
1930 return false;
1931
1932 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1933 DefX->getDebugLoc(), ZeroCheck,
1934 IsCntPhiUsedOutsideLoop);
1935 return true;
1936 }
1937
1938 /// Recognizes a population count idiom in a non-countable loop.
1939 ///
1940 /// If detected, transforms the relevant code to issue the popcount intrinsic
1941 /// function call, and returns true; otherwise, returns false.
recognizePopcount()1942 bool LoopIdiomRecognize::recognizePopcount() {
1943 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1944 return false;
1945
1946 // Counting population are usually conducted by few arithmetic instructions.
1947 // Such instructions can be easily "absorbed" by vacant slots in a
1948 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1949 // in a compact loop.
1950
1951 // Give up if the loop has multiple blocks or multiple backedges.
1952 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1953 return false;
1954
1955 BasicBlock *LoopBody = *(CurLoop->block_begin());
1956 if (LoopBody->size() >= 20) {
1957 // The loop is too big, bail out.
1958 return false;
1959 }
1960
1961 // It should have a preheader containing nothing but an unconditional branch.
1962 BasicBlock *PH = CurLoop->getLoopPreheader();
1963 if (!PH || &PH->front() != PH->getTerminator())
1964 return false;
1965 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1966 if (!EntryBI || EntryBI->isConditional())
1967 return false;
1968
1969 // It should have a precondition block where the generated popcount intrinsic
1970 // function can be inserted.
1971 auto *PreCondBB = PH->getSinglePredecessor();
1972 if (!PreCondBB)
1973 return false;
1974 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1975 if (!PreCondBI || PreCondBI->isUnconditional())
1976 return false;
1977
1978 Instruction *CntInst;
1979 PHINode *CntPhi;
1980 Value *Val;
1981 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1982 return false;
1983
1984 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1985 return true;
1986 }
1987
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL)1988 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1989 const DebugLoc &DL) {
1990 Value *Ops[] = {Val};
1991 Type *Tys[] = {Val->getType()};
1992
1993 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1994 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1995 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1996 CI->setDebugLoc(DL);
1997
1998 return CI;
1999 }
2000
createFFSIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL,bool ZeroCheck,Intrinsic::ID IID)2001 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2002 const DebugLoc &DL, bool ZeroCheck,
2003 Intrinsic::ID IID) {
2004 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
2005 Type *Tys[] = {Val->getType()};
2006
2007 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2008 Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
2009 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2010 CI->setDebugLoc(DL);
2011
2012 return CI;
2013 }
2014
2015 /// Transform the following loop (Using CTLZ, CTTZ is similar):
2016 /// loop:
2017 /// CntPhi = PHI [Cnt0, CntInst]
2018 /// PhiX = PHI [InitX, DefX]
2019 /// CntInst = CntPhi + 1
2020 /// DefX = PhiX >> 1
2021 /// LOOP_BODY
2022 /// Br: loop if (DefX != 0)
2023 /// Use(CntPhi) or Use(CntInst)
2024 ///
2025 /// Into:
2026 /// If CntPhi used outside the loop:
2027 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2028 /// Count = CountPrev + 1
2029 /// else
2030 /// Count = BitWidth(InitX) - CTLZ(InitX)
2031 /// loop:
2032 /// CntPhi = PHI [Cnt0, CntInst]
2033 /// PhiX = PHI [InitX, DefX]
2034 /// PhiCount = PHI [Count, Dec]
2035 /// CntInst = CntPhi + 1
2036 /// DefX = PhiX >> 1
2037 /// Dec = PhiCount - 1
2038 /// LOOP_BODY
2039 /// Br: loop if (Dec != 0)
2040 /// Use(CountPrev + Cnt0) // Use(CntPhi)
2041 /// or
2042 /// Use(Count + Cnt0) // Use(CntInst)
2043 ///
2044 /// If LOOP_BODY is empty the loop will be deleted.
2045 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
transformLoopToCountable(Intrinsic::ID IntrinID,BasicBlock * Preheader,Instruction * CntInst,PHINode * CntPhi,Value * InitX,Instruction * DefX,const DebugLoc & DL,bool ZeroCheck,bool IsCntPhiUsedOutsideLoop)2046 void LoopIdiomRecognize::transformLoopToCountable(
2047 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2048 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2049 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
2050 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2051
2052 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2053 IRBuilder<> Builder(PreheaderBr);
2054 Builder.SetCurrentDebugLocation(DL);
2055
2056 // If there are no uses of CntPhi crate:
2057 // Count = BitWidth - CTLZ(InitX);
2058 // NewCount = Count;
2059 // If there are uses of CntPhi create:
2060 // NewCount = BitWidth - CTLZ(InitX >> 1);
2061 // Count = NewCount + 1;
2062 Value *InitXNext;
2063 if (IsCntPhiUsedOutsideLoop) {
2064 if (DefX->getOpcode() == Instruction::AShr)
2065 InitXNext = Builder.CreateAShr(InitX, 1);
2066 else if (DefX->getOpcode() == Instruction::LShr)
2067 InitXNext = Builder.CreateLShr(InitX, 1);
2068 else if (DefX->getOpcode() == Instruction::Shl) // cttz
2069 InitXNext = Builder.CreateShl(InitX, 1);
2070 else
2071 llvm_unreachable("Unexpected opcode!");
2072 } else
2073 InitXNext = InitX;
2074 Value *Count =
2075 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2076 Type *CountTy = Count->getType();
2077 Count = Builder.CreateSub(
2078 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2079 Value *NewCount = Count;
2080 if (IsCntPhiUsedOutsideLoop)
2081 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2082
2083 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2084
2085 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2086 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2087 // If the counter was being incremented in the loop, add NewCount to the
2088 // counter's initial value, but only if the initial value is not zero.
2089 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2090 if (!InitConst || !InitConst->isZero())
2091 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2092 } else {
2093 // If the count was being decremented in the loop, subtract NewCount from
2094 // the counter's initial value.
2095 NewCount = Builder.CreateSub(CntInitVal, NewCount);
2096 }
2097
2098 // Step 2: Insert new IV and loop condition:
2099 // loop:
2100 // ...
2101 // PhiCount = PHI [Count, Dec]
2102 // ...
2103 // Dec = PhiCount - 1
2104 // ...
2105 // Br: loop if (Dec != 0)
2106 BasicBlock *Body = *(CurLoop->block_begin());
2107 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2108 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2109
2110 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
2111
2112 Builder.SetInsertPoint(LbCond);
2113 Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2114 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2115
2116 TcPhi->addIncoming(Count, Preheader);
2117 TcPhi->addIncoming(TcDec, Body);
2118
2119 CmpInst::Predicate Pred =
2120 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2121 LbCond->setPredicate(Pred);
2122 LbCond->setOperand(0, TcDec);
2123 LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2124
2125 // Step 3: All the references to the original counter outside
2126 // the loop are replaced with the NewCount
2127 if (IsCntPhiUsedOutsideLoop)
2128 CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2129 else
2130 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2131
2132 // step 4: Forget the "non-computable" trip-count SCEV associated with the
2133 // loop. The loop would otherwise not be deleted even if it becomes empty.
2134 SE->forgetLoop(CurLoop);
2135 }
2136
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)2137 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2138 Instruction *CntInst,
2139 PHINode *CntPhi, Value *Var) {
2140 BasicBlock *PreHead = CurLoop->getLoopPreheader();
2141 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2142 const DebugLoc &DL = CntInst->getDebugLoc();
2143
2144 // Assuming before transformation, the loop is following:
2145 // if (x) // the precondition
2146 // do { cnt++; x &= x - 1; } while(x);
2147
2148 // Step 1: Insert the ctpop instruction at the end of the precondition block
2149 IRBuilder<> Builder(PreCondBr);
2150 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2151 {
2152 PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2153 NewCount = PopCntZext =
2154 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2155
2156 if (NewCount != PopCnt)
2157 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2158
2159 // TripCnt is exactly the number of iterations the loop has
2160 TripCnt = NewCount;
2161
2162 // If the population counter's initial value is not zero, insert Add Inst.
2163 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2164 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2165 if (!InitConst || !InitConst->isZero()) {
2166 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2167 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2168 }
2169 }
2170
2171 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2172 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2173 // function would be partial dead code, and downstream passes will drag
2174 // it back from the precondition block to the preheader.
2175 {
2176 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2177
2178 Value *Opnd0 = PopCntZext;
2179 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2180 if (PreCond->getOperand(0) != Var)
2181 std::swap(Opnd0, Opnd1);
2182
2183 ICmpInst *NewPreCond = cast<ICmpInst>(
2184 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2185 PreCondBr->setCondition(NewPreCond);
2186
2187 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2188 }
2189
2190 // Step 3: Note that the population count is exactly the trip count of the
2191 // loop in question, which enable us to convert the loop from noncountable
2192 // loop into a countable one. The benefit is twofold:
2193 //
2194 // - If the loop only counts population, the entire loop becomes dead after
2195 // the transformation. It is a lot easier to prove a countable loop dead
2196 // than to prove a noncountable one. (In some C dialects, an infinite loop
2197 // isn't dead even if it computes nothing useful. In general, DCE needs
2198 // to prove a noncountable loop finite before safely delete it.)
2199 //
2200 // - If the loop also performs something else, it remains alive.
2201 // Since it is transformed to countable form, it can be aggressively
2202 // optimized by some optimizations which are in general not applicable
2203 // to a noncountable loop.
2204 //
2205 // After this step, this loop (conceptually) would look like following:
2206 // newcnt = __builtin_ctpop(x);
2207 // t = newcnt;
2208 // if (x)
2209 // do { cnt++; x &= x-1; t--) } while (t > 0);
2210 BasicBlock *Body = *(CurLoop->block_begin());
2211 {
2212 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2213 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2214 Type *Ty = TripCnt->getType();
2215
2216 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2217
2218 Builder.SetInsertPoint(LbCond);
2219 Instruction *TcDec = cast<Instruction>(
2220 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2221 "tcdec", false, true));
2222
2223 TcPhi->addIncoming(TripCnt, PreHead);
2224 TcPhi->addIncoming(TcDec, Body);
2225
2226 CmpInst::Predicate Pred =
2227 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2228 LbCond->setPredicate(Pred);
2229 LbCond->setOperand(0, TcDec);
2230 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2231 }
2232
2233 // Step 4: All the references to the original population counter outside
2234 // the loop are replaced with the NewCount -- the value returned from
2235 // __builtin_ctpop().
2236 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2237
2238 // step 5: Forget the "non-computable" trip-count SCEV associated with the
2239 // loop. The loop would otherwise not be deleted even if it becomes empty.
2240 SE->forgetLoop(CurLoop);
2241 }
2242
2243 /// Match loop-invariant value.
2244 template <typename SubPattern_t> struct match_LoopInvariant {
2245 SubPattern_t SubPattern;
2246 const Loop *L;
2247
match_LoopInvariantmatch_LoopInvariant2248 match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2249 : SubPattern(SP), L(L) {}
2250
matchmatch_LoopInvariant2251 template <typename ITy> bool match(ITy *V) {
2252 return L->isLoopInvariant(V) && SubPattern.match(V);
2253 }
2254 };
2255
2256 /// Matches if the value is loop-invariant.
2257 template <typename Ty>
m_LoopInvariant(const Ty & M,const Loop * L)2258 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2259 return match_LoopInvariant<Ty>(M, L);
2260 }
2261
2262 /// Return true if the idiom is detected in the loop.
2263 ///
2264 /// The core idiom we are trying to detect is:
2265 /// \code
2266 /// entry:
2267 /// <...>
2268 /// %bitmask = shl i32 1, %bitpos
2269 /// br label %loop
2270 ///
2271 /// loop:
2272 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2273 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2274 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2275 /// %x.next = shl i32 %x.curr, 1
2276 /// <...>
2277 /// br i1 %x.curr.isbitunset, label %loop, label %end
2278 ///
2279 /// end:
2280 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2281 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2282 /// <...>
2283 /// \endcode
detectShiftUntilBitTestIdiom(Loop * CurLoop,Value * & BaseX,Value * & BitMask,Value * & BitPos,Value * & CurrX,Instruction * & NextX)2284 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2285 Value *&BitMask, Value *&BitPos,
2286 Value *&CurrX, Instruction *&NextX) {
2287 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2288 " Performing shift-until-bittest idiom detection.\n");
2289
2290 // Give up if the loop has multiple blocks or multiple backedges.
2291 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2292 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2293 return false;
2294 }
2295
2296 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2297 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2298 assert(LoopPreheaderBB && "There is always a loop preheader.");
2299
2300 using namespace PatternMatch;
2301
2302 // Step 1: Check if the loop backedge is in desirable form.
2303
2304 ICmpInst::Predicate Pred;
2305 Value *CmpLHS, *CmpRHS;
2306 BasicBlock *TrueBB, *FalseBB;
2307 if (!match(LoopHeaderBB->getTerminator(),
2308 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2309 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2310 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2311 return false;
2312 }
2313
2314 // Step 2: Check if the backedge's condition is in desirable form.
2315
2316 auto MatchVariableBitMask = [&]() {
2317 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2318 match(CmpLHS,
2319 m_c_And(m_Value(CurrX),
2320 m_CombineAnd(
2321 m_Value(BitMask),
2322 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2323 CurLoop))));
2324 };
2325 auto MatchConstantBitMask = [&]() {
2326 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2327 match(CmpLHS, m_And(m_Value(CurrX),
2328 m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2329 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2330 };
2331 auto MatchDecomposableConstantBitMask = [&]() {
2332 APInt Mask;
2333 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2334 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2335 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2336 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2337 };
2338
2339 if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2340 !MatchDecomposableConstantBitMask()) {
2341 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2342 return false;
2343 }
2344
2345 // Step 3: Check if the recurrence is in desirable form.
2346 auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2347 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2348 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2349 return false;
2350 }
2351
2352 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2353 NextX =
2354 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2355
2356 assert(CurLoop->isLoopInvariant(BaseX) &&
2357 "Expected BaseX to be avaliable in the preheader!");
2358
2359 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2360 // FIXME: support right-shift?
2361 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2362 return false;
2363 }
2364
2365 // Step 4: Check if the backedge's destinations are in desirable form.
2366
2367 assert(ICmpInst::isEquality(Pred) &&
2368 "Should only get equality predicates here.");
2369
2370 // cmp-br is commutative, so canonicalize to a single variant.
2371 if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2372 Pred = ICmpInst::getInversePredicate(Pred);
2373 std::swap(TrueBB, FalseBB);
2374 }
2375
2376 // We expect to exit loop when comparison yields false,
2377 // so when it yields true we should branch back to loop header.
2378 if (TrueBB != LoopHeaderBB) {
2379 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2380 return false;
2381 }
2382
2383 // Okay, idiom checks out.
2384 return true;
2385 }
2386
2387 /// Look for the following loop:
2388 /// \code
2389 /// entry:
2390 /// <...>
2391 /// %bitmask = shl i32 1, %bitpos
2392 /// br label %loop
2393 ///
2394 /// loop:
2395 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2396 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2397 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2398 /// %x.next = shl i32 %x.curr, 1
2399 /// <...>
2400 /// br i1 %x.curr.isbitunset, label %loop, label %end
2401 ///
2402 /// end:
2403 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2404 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2405 /// <...>
2406 /// \endcode
2407 ///
2408 /// And transform it into:
2409 /// \code
2410 /// entry:
2411 /// %bitmask = shl i32 1, %bitpos
2412 /// %lowbitmask = add i32 %bitmask, -1
2413 /// %mask = or i32 %lowbitmask, %bitmask
2414 /// %x.masked = and i32 %x, %mask
2415 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2416 /// i1 true)
2417 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2418 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2419 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2420 /// %tripcount = add i32 %backedgetakencount, 1
2421 /// %x.curr = shl i32 %x, %backedgetakencount
2422 /// %x.next = shl i32 %x, %tripcount
2423 /// br label %loop
2424 ///
2425 /// loop:
2426 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2427 /// %loop.iv.next = add nuw i32 %loop.iv, 1
2428 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2429 /// <...>
2430 /// br i1 %loop.ivcheck, label %end, label %loop
2431 ///
2432 /// end:
2433 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2434 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2435 /// <...>
2436 /// \endcode
recognizeShiftUntilBitTest()2437 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2438 bool MadeChange = false;
2439
2440 Value *X, *BitMask, *BitPos, *XCurr;
2441 Instruction *XNext;
2442 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2443 XNext)) {
2444 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2445 " shift-until-bittest idiom detection failed.\n");
2446 return MadeChange;
2447 }
2448 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2449
2450 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2451 // but is it profitable to transform?
2452
2453 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2454 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2455 assert(LoopPreheaderBB && "There is always a loop preheader.");
2456
2457 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2458 assert(SuccessorBB && "There is only a single successor.");
2459
2460 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2461 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2462
2463 Intrinsic::ID IntrID = Intrinsic::ctlz;
2464 Type *Ty = X->getType();
2465 unsigned Bitwidth = Ty->getScalarSizeInBits();
2466
2467 TargetTransformInfo::TargetCostKind CostKind =
2468 TargetTransformInfo::TCK_SizeAndLatency;
2469
2470 // The rewrite is considered to be unprofitable iff and only iff the
2471 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2472 // making the loop countable, even if nothing else changes.
2473 IntrinsicCostAttributes Attrs(
2474 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2475 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2476 if (Cost > TargetTransformInfo::TCC_Basic) {
2477 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2478 " Intrinsic is too costly, not beneficial\n");
2479 return MadeChange;
2480 }
2481 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2482 TargetTransformInfo::TCC_Basic) {
2483 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2484 return MadeChange;
2485 }
2486
2487 // Ok, transform appears worthwhile.
2488 MadeChange = true;
2489
2490 // Step 1: Compute the loop trip count.
2491
2492 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2493 BitPos->getName() + ".lowbitmask");
2494 Value *Mask =
2495 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2496 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2497 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2498 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2499 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2500 Value *XMaskedNumActiveBits = Builder.CreateSub(
2501 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2502 XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2503 /*HasNSW=*/Bitwidth != 2);
2504 Value *XMaskedLeadingOnePos =
2505 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2506 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2507 /*HasNSW=*/Bitwidth > 2);
2508
2509 Value *LoopBackedgeTakenCount = Builder.CreateSub(
2510 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2511 /*HasNUW=*/true, /*HasNSW=*/true);
2512 // We know loop's backedge-taken count, but what's loop's trip count?
2513 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2514 Value *LoopTripCount =
2515 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2516 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2517 /*HasNSW=*/Bitwidth != 2);
2518
2519 // Step 2: Compute the recurrence's final value without a loop.
2520
2521 // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2522 // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2523 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2524 NewX->takeName(XCurr);
2525 if (auto *I = dyn_cast<Instruction>(NewX))
2526 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2527
2528 Value *NewXNext;
2529 // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2530 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2531 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2532 // that isn't the case, we'll need to emit an alternative, safe IR.
2533 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2534 PatternMatch::match(
2535 BitPos, PatternMatch::m_SpecificInt_ICMP(
2536 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2537 Ty->getScalarSizeInBits() - 1))))
2538 NewXNext = Builder.CreateShl(X, LoopTripCount);
2539 else {
2540 // Otherwise, just additionally shift by one. It's the smallest solution,
2541 // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2542 // and select 0 instead.
2543 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2544 }
2545
2546 NewXNext->takeName(XNext);
2547 if (auto *I = dyn_cast<Instruction>(NewXNext))
2548 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2549
2550 // Step 3: Adjust the successor basic block to recieve the computed
2551 // recurrence's final value instead of the recurrence itself.
2552
2553 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2554 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2555
2556 // Step 4: Rewrite the loop into a countable form, with canonical IV.
2557
2558 // The new canonical induction variable.
2559 Builder.SetInsertPoint(&LoopHeaderBB->front());
2560 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2561
2562 // The induction itself.
2563 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2564 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2565 auto *IVNext =
2566 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2567 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2568
2569 // The loop trip count check.
2570 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2571 CurLoop->getName() + ".ivcheck");
2572 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2573 LoopHeaderBB->getTerminator()->eraseFromParent();
2574
2575 // Populate the IV PHI.
2576 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2577 IV->addIncoming(IVNext, LoopHeaderBB);
2578
2579 // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2580 // loop. The loop would otherwise not be deleted even if it becomes empty.
2581
2582 SE->forgetLoop(CurLoop);
2583
2584 // Other passes will take care of actually deleting the loop if possible.
2585
2586 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2587
2588 ++NumShiftUntilBitTest;
2589 return MadeChange;
2590 }
2591
2592 /// Return true if the idiom is detected in the loop.
2593 ///
2594 /// The core idiom we are trying to detect is:
2595 /// \code
2596 /// entry:
2597 /// <...>
2598 /// %start = <...>
2599 /// %extraoffset = <...>
2600 /// <...>
2601 /// br label %for.cond
2602 ///
2603 /// loop:
2604 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2605 /// %nbits = add nsw i8 %iv, %extraoffset
2606 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2607 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2608 /// %iv.next = add i8 %iv, 1
2609 /// <...>
2610 /// br i1 %val.shifted.iszero, label %end, label %loop
2611 ///
2612 /// end:
2613 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2614 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2615 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2616 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2617 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2618 /// <...>
2619 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,ScalarEvolution * SE,Instruction * & ValShiftedIsZero,Intrinsic::ID & IntrinID,Instruction * & IV,Value * & Start,Value * & Val,const SCEV * & ExtraOffsetExpr,bool & InvertedCond)2620 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2621 Instruction *&ValShiftedIsZero,
2622 Intrinsic::ID &IntrinID, Instruction *&IV,
2623 Value *&Start, Value *&Val,
2624 const SCEV *&ExtraOffsetExpr,
2625 bool &InvertedCond) {
2626 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2627 " Performing shift-until-zero idiom detection.\n");
2628
2629 // Give up if the loop has multiple blocks or multiple backedges.
2630 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2631 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2632 return false;
2633 }
2634
2635 Instruction *ValShifted, *NBits, *IVNext;
2636 Value *ExtraOffset;
2637
2638 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2639 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2640 assert(LoopPreheaderBB && "There is always a loop preheader.");
2641
2642 using namespace PatternMatch;
2643
2644 // Step 1: Check if the loop backedge, condition is in desirable form.
2645
2646 ICmpInst::Predicate Pred;
2647 BasicBlock *TrueBB, *FalseBB;
2648 if (!match(LoopHeaderBB->getTerminator(),
2649 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2650 m_BasicBlock(FalseBB))) ||
2651 !match(ValShiftedIsZero,
2652 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2653 !ICmpInst::isEquality(Pred)) {
2654 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2655 return false;
2656 }
2657
2658 // Step 2: Check if the comparison's operand is in desirable form.
2659 // FIXME: Val could be a one-input PHI node, which we should look past.
2660 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2661 m_Instruction(NBits)))) {
2662 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2663 return false;
2664 }
2665 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2666 : Intrinsic::ctlz;
2667
2668 // Step 3: Check if the shift amount is in desirable form.
2669
2670 if (match(NBits, m_c_Add(m_Instruction(IV),
2671 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2672 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2673 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2674 else if (match(NBits,
2675 m_Sub(m_Instruction(IV),
2676 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2677 NBits->hasNoSignedWrap())
2678 ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2679 else {
2680 IV = NBits;
2681 ExtraOffsetExpr = SE->getZero(NBits->getType());
2682 }
2683
2684 // Step 4: Check if the recurrence is in desirable form.
2685 auto *IVPN = dyn_cast<PHINode>(IV);
2686 if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2687 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2688 return false;
2689 }
2690
2691 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2692 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2693
2694 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2695 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2696 return false;
2697 }
2698
2699 // Step 4: Check if the backedge's destinations are in desirable form.
2700
2701 assert(ICmpInst::isEquality(Pred) &&
2702 "Should only get equality predicates here.");
2703
2704 // cmp-br is commutative, so canonicalize to a single variant.
2705 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2706 if (InvertedCond) {
2707 Pred = ICmpInst::getInversePredicate(Pred);
2708 std::swap(TrueBB, FalseBB);
2709 }
2710
2711 // We expect to exit loop when comparison yields true,
2712 // so when it yields false we should branch back to loop header.
2713 if (FalseBB != LoopHeaderBB) {
2714 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2715 return false;
2716 }
2717
2718 // The new, countable, loop will certainly only run a known number of
2719 // iterations, It won't be infinite. But the old loop might be infinite
2720 // under certain conditions. For logical shifts, the value will become zero
2721 // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2722 // right-shift, iff the sign bit was set, the value will never become zero,
2723 // and the loop may never finish.
2724 if (ValShifted->getOpcode() == Instruction::AShr &&
2725 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2726 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2727 return false;
2728 }
2729
2730 // Okay, idiom checks out.
2731 return true;
2732 }
2733
2734 /// Look for the following loop:
2735 /// \code
2736 /// entry:
2737 /// <...>
2738 /// %start = <...>
2739 /// %extraoffset = <...>
2740 /// <...>
2741 /// br label %for.cond
2742 ///
2743 /// loop:
2744 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2745 /// %nbits = add nsw i8 %iv, %extraoffset
2746 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2747 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2748 /// %iv.next = add i8 %iv, 1
2749 /// <...>
2750 /// br i1 %val.shifted.iszero, label %end, label %loop
2751 ///
2752 /// end:
2753 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2754 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2755 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2756 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2757 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2758 /// <...>
2759 /// \endcode
2760 ///
2761 /// And transform it into:
2762 /// \code
2763 /// entry:
2764 /// <...>
2765 /// %start = <...>
2766 /// %extraoffset = <...>
2767 /// <...>
2768 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2769 /// %val.numactivebits = sub i8 8, %val.numleadingzeros
2770 /// %extraoffset.neg = sub i8 0, %extraoffset
2771 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg
2772 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2773 /// %loop.tripcount = sub i8 %iv.final, %start
2774 /// br label %loop
2775 ///
2776 /// loop:
2777 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2778 /// %loop.iv.next = add i8 %loop.iv, 1
2779 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2780 /// %iv = add i8 %loop.iv, %start
2781 /// <...>
2782 /// br i1 %loop.ivcheck, label %end, label %loop
2783 ///
2784 /// end:
2785 /// %iv.res = phi i8 [ %iv.final, %loop ] <...>
2786 /// <...>
2787 /// \endcode
recognizeShiftUntilZero()2788 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2789 bool MadeChange = false;
2790
2791 Instruction *ValShiftedIsZero;
2792 Intrinsic::ID IntrID;
2793 Instruction *IV;
2794 Value *Start, *Val;
2795 const SCEV *ExtraOffsetExpr;
2796 bool InvertedCond;
2797 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2798 Start, Val, ExtraOffsetExpr, InvertedCond)) {
2799 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2800 " shift-until-zero idiom detection failed.\n");
2801 return MadeChange;
2802 }
2803 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2804
2805 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2806 // but is it profitable to transform?
2807
2808 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2809 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2810 assert(LoopPreheaderBB && "There is always a loop preheader.");
2811
2812 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2813 assert(SuccessorBB && "There is only a single successor.");
2814
2815 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2816 Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2817
2818 Type *Ty = Val->getType();
2819 unsigned Bitwidth = Ty->getScalarSizeInBits();
2820
2821 TargetTransformInfo::TargetCostKind CostKind =
2822 TargetTransformInfo::TCK_SizeAndLatency;
2823
2824 // The rewrite is considered to be unprofitable iff and only iff the
2825 // intrinsic we'll use are not cheap. Note that we are okay with *just*
2826 // making the loop countable, even if nothing else changes.
2827 IntrinsicCostAttributes Attrs(
2828 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2829 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2830 if (Cost > TargetTransformInfo::TCC_Basic) {
2831 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2832 " Intrinsic is too costly, not beneficial\n");
2833 return MadeChange;
2834 }
2835
2836 // Ok, transform appears worthwhile.
2837 MadeChange = true;
2838
2839 bool OffsetIsZero = false;
2840 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2841 OffsetIsZero = ExtraOffsetExprC->isZero();
2842
2843 // Step 1: Compute the loop's final IV value / trip count.
2844
2845 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2846 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2847 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2848 Value *ValNumActiveBits = Builder.CreateSub(
2849 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2850 Val->getName() + ".numactivebits", /*HasNUW=*/true,
2851 /*HasNSW=*/Bitwidth != 2);
2852
2853 SCEVExpander Expander(*SE, *DL, "loop-idiom");
2854 Expander.setInsertPoint(&*Builder.GetInsertPoint());
2855 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2856
2857 Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2858 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2859 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2860 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2861 {ValNumActiveBitsOffset, Start},
2862 /*FMFSource=*/nullptr, "iv.final");
2863
2864 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2865 IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2866 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2867 // FIXME: or when the offset was `add nuw`
2868
2869 // We know loop's backedge-taken count, but what's loop's trip count?
2870 Value *LoopTripCount =
2871 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2872 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2873 /*HasNSW=*/Bitwidth != 2);
2874
2875 // Step 2: Adjust the successor basic block to recieve the original
2876 // induction variable's final value instead of the orig. IV itself.
2877
2878 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2879
2880 // Step 3: Rewrite the loop into a countable form, with canonical IV.
2881
2882 // The new canonical induction variable.
2883 Builder.SetInsertPoint(&LoopHeaderBB->front());
2884 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2885
2886 // The induction itself.
2887 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2888 auto *CIVNext =
2889 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2890 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2891
2892 // The loop trip count check.
2893 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2894 CurLoop->getName() + ".ivcheck");
2895 auto *NewIVCheck = CIVCheck;
2896 if (InvertedCond) {
2897 NewIVCheck = Builder.CreateNot(CIVCheck);
2898 NewIVCheck->takeName(ValShiftedIsZero);
2899 }
2900
2901 // The original IV, but rebased to be an offset to the CIV.
2902 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2903 /*HasNSW=*/true); // FIXME: what about NUW?
2904 IVDePHId->takeName(IV);
2905
2906 // The loop terminator.
2907 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2908 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2909 LoopHeaderBB->getTerminator()->eraseFromParent();
2910
2911 // Populate the IV PHI.
2912 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2913 CIV->addIncoming(CIVNext, LoopHeaderBB);
2914
2915 // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2916 // loop. The loop would otherwise not be deleted even if it becomes empty.
2917
2918 SE->forgetLoop(CurLoop);
2919
2920 // Step 5: Try to cleanup the loop's body somewhat.
2921 IV->replaceAllUsesWith(IVDePHId);
2922 IV->eraseFromParent();
2923
2924 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2925 ValShiftedIsZero->eraseFromParent();
2926
2927 // Other passes will take care of actually deleting the loop if possible.
2928
2929 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2930
2931 ++NumShiftUntilZero;
2932 return MadeChange;
2933 }
2934