1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopCacheAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopNestAnalysis.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Scalar/LoopPassManager.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "loop-interchange"
57
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
59
60 static cl::opt<int> LoopInterchangeCostThreshold(
61 "loop-interchange-threshold", cl::init(0), cl::Hidden,
62 cl::desc("Interchange if you gain more than this number"));
63
64 namespace {
65
66 using LoopVector = SmallVector<Loop *, 8>;
67
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
70
71 } // end anonymous namespace
72
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
75
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
78
79 #ifdef DUMP_DEP_MATRICIES
printDepMatrix(CharMatrix & DepMatrix)80 static void printDepMatrix(CharMatrix &DepMatrix) {
81 for (auto &Row : DepMatrix) {
82 for (auto D : Row)
83 LLVM_DEBUG(dbgs() << D << " ");
84 LLVM_DEBUG(dbgs() << "\n");
85 }
86 }
87 #endif
88
populateDependencyMatrix(CharMatrix & DepMatrix,unsigned Level,Loop * L,DependenceInfo * DI,ScalarEvolution * SE)89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90 Loop *L, DependenceInfo *DI,
91 ScalarEvolution *SE) {
92 using ValueVector = SmallVector<Value *, 16>;
93
94 ValueVector MemInstr;
95
96 // For each block.
97 for (BasicBlock *BB : L->blocks()) {
98 // Scan the BB and collect legal loads and stores.
99 for (Instruction &I : *BB) {
100 if (!isa<Instruction>(I))
101 return false;
102 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
103 if (!Ld->isSimple())
104 return false;
105 MemInstr.push_back(&I);
106 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
107 if (!St->isSimple())
108 return false;
109 MemInstr.push_back(&I);
110 }
111 }
112 }
113
114 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
115 << " Loads and Stores to analyze\n");
116
117 ValueVector::iterator I, IE, J, JE;
118
119 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
120 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
121 std::vector<char> Dep;
122 Instruction *Src = cast<Instruction>(*I);
123 Instruction *Dst = cast<Instruction>(*J);
124 // Ignore Input dependencies.
125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
126 continue;
127 // Track Output, Flow, and Anti dependencies.
128 if (auto D = DI->depends(Src, Dst, true)) {
129 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
130 // If the direction vector is negative, normalize it to
131 // make it non-negative.
132 if (D->normalize(SE))
133 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n");
134 LLVM_DEBUG(StringRef DepType =
135 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
136 dbgs() << "Found " << DepType
137 << " dependency between Src and Dst\n"
138 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
139 unsigned Levels = D->getLevels();
140 char Direction;
141 for (unsigned II = 1; II <= Levels; ++II) {
142 if (D->isScalar(II)) {
143 Direction = 'S';
144 Dep.push_back(Direction);
145 } else {
146 unsigned Dir = D->getDirection(II);
147 if (Dir == Dependence::DVEntry::LT ||
148 Dir == Dependence::DVEntry::LE)
149 Direction = '<';
150 else if (Dir == Dependence::DVEntry::GT ||
151 Dir == Dependence::DVEntry::GE)
152 Direction = '>';
153 else if (Dir == Dependence::DVEntry::EQ)
154 Direction = '=';
155 else
156 Direction = '*';
157 Dep.push_back(Direction);
158 }
159 }
160 while (Dep.size() != Level) {
161 Dep.push_back('I');
162 }
163
164 DepMatrix.push_back(Dep);
165 if (DepMatrix.size() > MaxMemInstrCount) {
166 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
167 << " dependencies inside loop\n");
168 return false;
169 }
170 }
171 }
172 }
173
174 return true;
175 }
176
177 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
178 // matrix by exchanging the two columns.
interChangeDependencies(CharMatrix & DepMatrix,unsigned FromIndx,unsigned ToIndx)179 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
180 unsigned ToIndx) {
181 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
182 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
183 }
184
185 // After interchanging, check if the direction vector is valid.
186 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
187 // if the direction matrix, after the same permutation is applied to its
188 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
isLexicographicallyPositive(std::vector<char> & DV)189 static bool isLexicographicallyPositive(std::vector<char> &DV) {
190 for (unsigned Level = 0; Level < DV.size(); ++Level) {
191 unsigned char Direction = DV[Level];
192 if (Direction == '<')
193 return true;
194 if (Direction == '>' || Direction == '*')
195 return false;
196 }
197 return true;
198 }
199
200 // Checks if it is legal to interchange 2 loops.
isLegalToInterChangeLoops(CharMatrix & DepMatrix,unsigned InnerLoopId,unsigned OuterLoopId)201 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
202 unsigned InnerLoopId,
203 unsigned OuterLoopId) {
204 unsigned NumRows = DepMatrix.size();
205 std::vector<char> Cur;
206 // For each row check if it is valid to interchange.
207 for (unsigned Row = 0; Row < NumRows; ++Row) {
208 // Create temporary DepVector check its lexicographical order
209 // before and after swapping OuterLoop vs InnerLoop
210 Cur = DepMatrix[Row];
211 if (!isLexicographicallyPositive(Cur))
212 return false;
213 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]);
214 if (!isLexicographicallyPositive(Cur))
215 return false;
216 }
217 return true;
218 }
219
populateWorklist(Loop & L,LoopVector & LoopList)220 static void populateWorklist(Loop &L, LoopVector &LoopList) {
221 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
222 << L.getHeader()->getParent()->getName() << " Loop: %"
223 << L.getHeader()->getName() << '\n');
224 assert(LoopList.empty() && "LoopList should initially be empty!");
225 Loop *CurrentLoop = &L;
226 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
227 while (!Vec->empty()) {
228 // The current loop has multiple subloops in it hence it is not tightly
229 // nested.
230 // Discard all loops above it added into Worklist.
231 if (Vec->size() != 1) {
232 LoopList = {};
233 return;
234 }
235
236 LoopList.push_back(CurrentLoop);
237 CurrentLoop = Vec->front();
238 Vec = &CurrentLoop->getSubLoops();
239 }
240 LoopList.push_back(CurrentLoop);
241 }
242
243 namespace {
244
245 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
246 class LoopInterchangeLegality {
247 public:
LoopInterchangeLegality(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)248 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
249 OptimizationRemarkEmitter *ORE)
250 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
251
252 /// Check if the loops can be interchanged.
253 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
254 CharMatrix &DepMatrix);
255
256 /// Discover induction PHIs in the header of \p L. Induction
257 /// PHIs are added to \p Inductions.
258 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
259
260 /// Check if the loop structure is understood. We do not handle triangular
261 /// loops for now.
262 bool isLoopStructureUnderstood();
263
264 bool currentLimitations();
265
getOuterInnerReductions() const266 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
267 return OuterInnerReductions;
268 }
269
getInnerLoopInductions() const270 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
271 return InnerLoopInductions;
272 }
273
274 private:
275 bool tightlyNested(Loop *Outer, Loop *Inner);
276 bool containsUnsafeInstructions(BasicBlock *BB);
277
278 /// Discover induction and reduction PHIs in the header of \p L. Induction
279 /// PHIs are added to \p Inductions, reductions are added to
280 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
281 /// to be passed as \p InnerLoop.
282 bool findInductionAndReductions(Loop *L,
283 SmallVector<PHINode *, 8> &Inductions,
284 Loop *InnerLoop);
285
286 Loop *OuterLoop;
287 Loop *InnerLoop;
288
289 ScalarEvolution *SE;
290
291 /// Interface to emit optimization remarks.
292 OptimizationRemarkEmitter *ORE;
293
294 /// Set of reduction PHIs taking part of a reduction across the inner and
295 /// outer loop.
296 SmallPtrSet<PHINode *, 4> OuterInnerReductions;
297
298 /// Set of inner loop induction PHIs
299 SmallVector<PHINode *, 8> InnerLoopInductions;
300 };
301
302 /// LoopInterchangeProfitability checks if it is profitable to interchange the
303 /// loop.
304 class LoopInterchangeProfitability {
305 public:
LoopInterchangeProfitability(Loop * Outer,Loop * Inner,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)306 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
307 OptimizationRemarkEmitter *ORE)
308 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
309
310 /// Check if the loop interchange is profitable.
311 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
312 unsigned InnerLoopId, unsigned OuterLoopId,
313 CharMatrix &DepMatrix,
314 const DenseMap<const Loop *, unsigned> &CostMap,
315 std::unique_ptr<CacheCost> &CC);
316
317 private:
318 int getInstrOrderCost();
319 std::optional<bool> isProfitablePerLoopCacheAnalysis(
320 const DenseMap<const Loop *, unsigned> &CostMap,
321 std::unique_ptr<CacheCost> &CC);
322 std::optional<bool> isProfitablePerInstrOrderCost();
323 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId,
324 unsigned OuterLoopId,
325 CharMatrix &DepMatrix);
326 Loop *OuterLoop;
327 Loop *InnerLoop;
328
329 /// Scev analysis.
330 ScalarEvolution *SE;
331
332 /// Interface to emit optimization remarks.
333 OptimizationRemarkEmitter *ORE;
334 };
335
336 /// LoopInterchangeTransform interchanges the loop.
337 class LoopInterchangeTransform {
338 public:
LoopInterchangeTransform(Loop * Outer,Loop * Inner,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const LoopInterchangeLegality & LIL)339 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
340 LoopInfo *LI, DominatorTree *DT,
341 const LoopInterchangeLegality &LIL)
342 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
343
344 /// Interchange OuterLoop and InnerLoop.
345 bool transform();
346 void restructureLoops(Loop *NewInner, Loop *NewOuter,
347 BasicBlock *OrigInnerPreHeader,
348 BasicBlock *OrigOuterPreHeader);
349 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
350
351 private:
352 bool adjustLoopLinks();
353 bool adjustLoopBranches();
354
355 Loop *OuterLoop;
356 Loop *InnerLoop;
357
358 /// Scev analysis.
359 ScalarEvolution *SE;
360
361 LoopInfo *LI;
362 DominatorTree *DT;
363
364 const LoopInterchangeLegality &LIL;
365 };
366
367 struct LoopInterchange {
368 ScalarEvolution *SE = nullptr;
369 LoopInfo *LI = nullptr;
370 DependenceInfo *DI = nullptr;
371 DominatorTree *DT = nullptr;
372 std::unique_ptr<CacheCost> CC = nullptr;
373
374 /// Interface to emit optimization remarks.
375 OptimizationRemarkEmitter *ORE;
376
LoopInterchange__anon4832b4d30211::LoopInterchange377 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
378 DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
379 OptimizationRemarkEmitter *ORE)
380 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
381
run__anon4832b4d30211::LoopInterchange382 bool run(Loop *L) {
383 if (L->getParentLoop())
384 return false;
385 SmallVector<Loop *, 8> LoopList;
386 populateWorklist(*L, LoopList);
387 return processLoopList(LoopList);
388 }
389
run__anon4832b4d30211::LoopInterchange390 bool run(LoopNest &LN) {
391 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
392 for (unsigned I = 1; I < LoopList.size(); ++I)
393 if (LoopList[I]->getParentLoop() != LoopList[I - 1])
394 return false;
395 return processLoopList(LoopList);
396 }
397
isComputableLoopNest__anon4832b4d30211::LoopInterchange398 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
399 for (Loop *L : LoopList) {
400 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
401 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
402 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
403 return false;
404 }
405 if (L->getNumBackEdges() != 1) {
406 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
407 return false;
408 }
409 if (!L->getExitingBlock()) {
410 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
411 return false;
412 }
413 }
414 return true;
415 }
416
selectLoopForInterchange__anon4832b4d30211::LoopInterchange417 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
418 // TODO: Add a better heuristic to select the loop to be interchanged based
419 // on the dependence matrix. Currently we select the innermost loop.
420 return LoopList.size() - 1;
421 }
422
processLoopList__anon4832b4d30211::LoopInterchange423 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
424 bool Changed = false;
425 unsigned LoopNestDepth = LoopList.size();
426 if (LoopNestDepth < 2) {
427 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
428 return false;
429 }
430 if (LoopNestDepth > MaxLoopNestDepth) {
431 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
432 << MaxLoopNestDepth << "\n");
433 return false;
434 }
435 if (!isComputableLoopNest(LoopList)) {
436 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
437 return false;
438 }
439
440 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
441 << "\n");
442
443 CharMatrix DependencyMatrix;
444 Loop *OuterMostLoop = *(LoopList.begin());
445 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
446 OuterMostLoop, DI, SE)) {
447 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
448 return false;
449 }
450 #ifdef DUMP_DEP_MATRICIES
451 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
452 printDepMatrix(DependencyMatrix);
453 #endif
454
455 // Get the Outermost loop exit.
456 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
457 if (!LoopNestExit) {
458 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
459 return false;
460 }
461
462 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
463 // Obtain the loop vector returned from loop cache analysis beforehand,
464 // and put each <Loop, index> pair into a map for constant time query
465 // later. Indices in loop vector reprsent the optimal order of the
466 // corresponding loop, e.g., given a loopnest with depth N, index 0
467 // indicates the loop should be placed as the outermost loop and index N
468 // indicates the loop should be placed as the innermost loop.
469 //
470 // For the old pass manager CacheCost would be null.
471 DenseMap<const Loop *, unsigned> CostMap;
472 if (CC != nullptr) {
473 const auto &LoopCosts = CC->getLoopCosts();
474 for (unsigned i = 0; i < LoopCosts.size(); i++) {
475 CostMap[LoopCosts[i].first] = i;
476 }
477 }
478 // We try to achieve the globally optimal memory access for the loopnest,
479 // and do interchange based on a bubble-sort fasion. We start from
480 // the innermost loop, move it outwards to the best possible position
481 // and repeat this process.
482 for (unsigned j = SelecLoopId; j > 0; j--) {
483 bool ChangedPerIter = false;
484 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
485 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
486 DependencyMatrix, CostMap);
487 if (!Interchanged)
488 continue;
489 // Loops interchanged, update LoopList accordingly.
490 std::swap(LoopList[i - 1], LoopList[i]);
491 // Update the DependencyMatrix
492 interChangeDependencies(DependencyMatrix, i, i - 1);
493 #ifdef DUMP_DEP_MATRICIES
494 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
495 printDepMatrix(DependencyMatrix);
496 #endif
497 ChangedPerIter |= Interchanged;
498 Changed |= Interchanged;
499 }
500 // Early abort if there was no interchange during an entire round of
501 // moving loops outwards.
502 if (!ChangedPerIter)
503 break;
504 }
505 return Changed;
506 }
507
processLoop__anon4832b4d30211::LoopInterchange508 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
509 unsigned OuterLoopId,
510 std::vector<std::vector<char>> &DependencyMatrix,
511 const DenseMap<const Loop *, unsigned> &CostMap) {
512 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
513 << " and OuterLoopId = " << OuterLoopId << "\n");
514 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
515 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
516 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
517 return false;
518 }
519 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
520 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
521 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
522 DependencyMatrix, CostMap, CC)) {
523 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
524 return false;
525 }
526
527 ORE->emit([&]() {
528 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
529 InnerLoop->getStartLoc(),
530 InnerLoop->getHeader())
531 << "Loop interchanged with enclosing loop.";
532 });
533
534 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
535 LIT.transform();
536 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
537 LoopsInterchanged++;
538
539 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE);
540 return true;
541 }
542 };
543
544 } // end anonymous namespace
545
containsUnsafeInstructions(BasicBlock * BB)546 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
547 return any_of(*BB, [](const Instruction &I) {
548 return I.mayHaveSideEffects() || I.mayReadFromMemory();
549 });
550 }
551
tightlyNested(Loop * OuterLoop,Loop * InnerLoop)552 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
553 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
554 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
555 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
556
557 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
558
559 // A perfectly nested loop will not have any branch in between the outer and
560 // inner block i.e. outer header will branch to either inner preheader and
561 // outerloop latch.
562 BranchInst *OuterLoopHeaderBI =
563 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
564 if (!OuterLoopHeaderBI)
565 return false;
566
567 for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
568 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
569 Succ != OuterLoopLatch)
570 return false;
571
572 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
573 // We do not have any basic block in between now make sure the outer header
574 // and outer loop latch doesn't contain any unsafe instructions.
575 if (containsUnsafeInstructions(OuterLoopHeader) ||
576 containsUnsafeInstructions(OuterLoopLatch))
577 return false;
578
579 // Also make sure the inner loop preheader does not contain any unsafe
580 // instructions. Note that all instructions in the preheader will be moved to
581 // the outer loop header when interchanging.
582 if (InnerLoopPreHeader != OuterLoopHeader &&
583 containsUnsafeInstructions(InnerLoopPreHeader))
584 return false;
585
586 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
587 // Ensure the inner loop exit block flows to the outer loop latch possibly
588 // through empty blocks.
589 const BasicBlock &SuccInner =
590 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
591 if (&SuccInner != OuterLoopLatch) {
592 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
593 << " does not lead to the outer loop latch.\n";);
594 return false;
595 }
596 // The inner loop exit block does flow to the outer loop latch and not some
597 // other BBs, now make sure it contains safe instructions, since it will be
598 // moved into the (new) inner loop after interchange.
599 if (containsUnsafeInstructions(InnerLoopExit))
600 return false;
601
602 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
603 // We have a perfect loop nest.
604 return true;
605 }
606
isLoopStructureUnderstood()607 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
608 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
609 for (PHINode *InnerInduction : InnerLoopInductions) {
610 unsigned Num = InnerInduction->getNumOperands();
611 for (unsigned i = 0; i < Num; ++i) {
612 Value *Val = InnerInduction->getOperand(i);
613 if (isa<Constant>(Val))
614 continue;
615 Instruction *I = dyn_cast<Instruction>(Val);
616 if (!I)
617 return false;
618 // TODO: Handle triangular loops.
619 // e.g. for(int i=0;i<N;i++)
620 // for(int j=i;j<N;j++)
621 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
622 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
623 InnerLoopPreheader &&
624 !OuterLoop->isLoopInvariant(I)) {
625 return false;
626 }
627 }
628 }
629
630 // TODO: Handle triangular loops of another form.
631 // e.g. for(int i=0;i<N;i++)
632 // for(int j=0;j<i;j++)
633 // or,
634 // for(int i=0;i<N;i++)
635 // for(int j=0;j*i<N;j++)
636 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
637 BranchInst *InnerLoopLatchBI =
638 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
639 if (!InnerLoopLatchBI->isConditional())
640 return false;
641 if (CmpInst *InnerLoopCmp =
642 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
643 Value *Op0 = InnerLoopCmp->getOperand(0);
644 Value *Op1 = InnerLoopCmp->getOperand(1);
645
646 // LHS and RHS of the inner loop exit condition, e.g.,
647 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
648 Value *Left = nullptr;
649 Value *Right = nullptr;
650
651 // Check if V only involves inner loop induction variable.
652 // Return true if V is InnerInduction, or a cast from
653 // InnerInduction, or a binary operator that involves
654 // InnerInduction and a constant.
655 std::function<bool(Value *)> IsPathToInnerIndVar;
656 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
657 if (llvm::is_contained(InnerLoopInductions, V))
658 return true;
659 if (isa<Constant>(V))
660 return true;
661 const Instruction *I = dyn_cast<Instruction>(V);
662 if (!I)
663 return false;
664 if (isa<CastInst>(I))
665 return IsPathToInnerIndVar(I->getOperand(0));
666 if (isa<BinaryOperator>(I))
667 return IsPathToInnerIndVar(I->getOperand(0)) &&
668 IsPathToInnerIndVar(I->getOperand(1));
669 return false;
670 };
671
672 // In case of multiple inner loop indvars, it is okay if LHS and RHS
673 // are both inner indvar related variables.
674 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
675 return true;
676
677 // Otherwise we check if the cmp instruction compares an inner indvar
678 // related variable (Left) with a outer loop invariant (Right).
679 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
680 Left = Op0;
681 Right = Op1;
682 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
683 Left = Op1;
684 Right = Op0;
685 }
686
687 if (Left == nullptr)
688 return false;
689
690 const SCEV *S = SE->getSCEV(Right);
691 if (!SE->isLoopInvariant(S, OuterLoop))
692 return false;
693 }
694
695 return true;
696 }
697
698 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
699 // value.
followLCSSA(Value * SV)700 static Value *followLCSSA(Value *SV) {
701 PHINode *PHI = dyn_cast<PHINode>(SV);
702 if (!PHI)
703 return SV;
704
705 if (PHI->getNumIncomingValues() != 1)
706 return SV;
707 return followLCSSA(PHI->getIncomingValue(0));
708 }
709
710 // Check V's users to see if it is involved in a reduction in L.
findInnerReductionPhi(Loop * L,Value * V)711 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
712 // Reduction variables cannot be constants.
713 if (isa<Constant>(V))
714 return nullptr;
715
716 for (Value *User : V->users()) {
717 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
718 if (PHI->getNumIncomingValues() == 1)
719 continue;
720 RecurrenceDescriptor RD;
721 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
722 // Detect floating point reduction only when it can be reordered.
723 if (RD.getExactFPMathInst() != nullptr)
724 return nullptr;
725 return PHI;
726 }
727 return nullptr;
728 }
729 }
730
731 return nullptr;
732 }
733
findInductionAndReductions(Loop * L,SmallVector<PHINode *,8> & Inductions,Loop * InnerLoop)734 bool LoopInterchangeLegality::findInductionAndReductions(
735 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
736 if (!L->getLoopLatch() || !L->getLoopPredecessor())
737 return false;
738 for (PHINode &PHI : L->getHeader()->phis()) {
739 RecurrenceDescriptor RD;
740 InductionDescriptor ID;
741 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
742 Inductions.push_back(&PHI);
743 else {
744 // PHIs in inner loops need to be part of a reduction in the outer loop,
745 // discovered when checking the PHIs of the outer loop earlier.
746 if (!InnerLoop) {
747 if (!OuterInnerReductions.count(&PHI)) {
748 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
749 "across the outer loop.\n");
750 return false;
751 }
752 } else {
753 assert(PHI.getNumIncomingValues() == 2 &&
754 "Phis in loop header should have exactly 2 incoming values");
755 // Check if we have a PHI node in the outer loop that has a reduction
756 // result from the inner loop as an incoming value.
757 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
758 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
759 if (!InnerRedPhi ||
760 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
761 LLVM_DEBUG(
762 dbgs()
763 << "Failed to recognize PHI as an induction or reduction.\n");
764 return false;
765 }
766 OuterInnerReductions.insert(&PHI);
767 OuterInnerReductions.insert(InnerRedPhi);
768 }
769 }
770 }
771 return true;
772 }
773
774 // This function indicates the current limitations in the transform as a result
775 // of which we do not proceed.
currentLimitations()776 bool LoopInterchangeLegality::currentLimitations() {
777 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
778
779 // transform currently expects the loop latches to also be the exiting
780 // blocks.
781 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
782 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
783 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
784 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
785 LLVM_DEBUG(
786 dbgs() << "Loops where the latch is not the exiting block are not"
787 << " supported currently.\n");
788 ORE->emit([&]() {
789 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
790 OuterLoop->getStartLoc(),
791 OuterLoop->getHeader())
792 << "Loops where the latch is not the exiting block cannot be"
793 " interchange currently.";
794 });
795 return true;
796 }
797
798 SmallVector<PHINode *, 8> Inductions;
799 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
800 LLVM_DEBUG(
801 dbgs() << "Only outer loops with induction or reduction PHI nodes "
802 << "are supported currently.\n");
803 ORE->emit([&]() {
804 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
805 OuterLoop->getStartLoc(),
806 OuterLoop->getHeader())
807 << "Only outer loops with induction or reduction PHI nodes can be"
808 " interchanged currently.";
809 });
810 return true;
811 }
812
813 Inductions.clear();
814 // For multi-level loop nests, make sure that all phi nodes for inner loops
815 // at all levels can be recognized as a induction or reduction phi. Bail out
816 // if a phi node at a certain nesting level cannot be properly recognized.
817 Loop *CurLevelLoop = OuterLoop;
818 while (!CurLevelLoop->getSubLoops().empty()) {
819 // We already made sure that the loop nest is tightly nested.
820 CurLevelLoop = CurLevelLoop->getSubLoops().front();
821 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) {
822 LLVM_DEBUG(
823 dbgs() << "Only inner loops with induction or reduction PHI nodes "
824 << "are supported currently.\n");
825 ORE->emit([&]() {
826 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
827 CurLevelLoop->getStartLoc(),
828 CurLevelLoop->getHeader())
829 << "Only inner loops with induction or reduction PHI nodes can be"
830 " interchange currently.";
831 });
832 return true;
833 }
834 }
835
836 // TODO: Triangular loops are not handled for now.
837 if (!isLoopStructureUnderstood()) {
838 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
839 ORE->emit([&]() {
840 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
841 InnerLoop->getStartLoc(),
842 InnerLoop->getHeader())
843 << "Inner loop structure not understood currently.";
844 });
845 return true;
846 }
847
848 return false;
849 }
850
findInductions(Loop * L,SmallVectorImpl<PHINode * > & Inductions)851 bool LoopInterchangeLegality::findInductions(
852 Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
853 for (PHINode &PHI : L->getHeader()->phis()) {
854 InductionDescriptor ID;
855 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
856 Inductions.push_back(&PHI);
857 }
858 return !Inductions.empty();
859 }
860
861 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
862 // users are either reduction PHIs or PHIs outside the outer loop (which means
863 // the we are only interested in the final value after the loop).
864 static bool
areInnerLoopExitPHIsSupported(Loop * InnerL,Loop * OuterL,SmallPtrSetImpl<PHINode * > & Reductions)865 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
866 SmallPtrSetImpl<PHINode *> &Reductions) {
867 BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
868 for (PHINode &PHI : InnerExit->phis()) {
869 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
870 if (PHI.getNumIncomingValues() > 1)
871 return false;
872 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
873 PHINode *PN = dyn_cast<PHINode>(U);
874 return !PN ||
875 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
876 })) {
877 return false;
878 }
879 }
880 return true;
881 }
882
883 // We currently support LCSSA PHI nodes in the outer loop exit, if their
884 // incoming values do not come from the outer loop latch or if the
885 // outer loop latch has a single predecessor. In that case, the value will
886 // be available if both the inner and outer loop conditions are true, which
887 // will still be true after interchanging. If we have multiple predecessor,
888 // that may not be the case, e.g. because the outer loop latch may be executed
889 // if the inner loop is not executed.
areOuterLoopExitPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)890 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
891 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
892 for (PHINode &PHI : LoopNestExit->phis()) {
893 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
894 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
895 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
896 continue;
897
898 // The incoming value is defined in the outer loop latch. Currently we
899 // only support that in case the outer loop latch has a single predecessor.
900 // This guarantees that the outer loop latch is executed if and only if
901 // the inner loop is executed (because tightlyNested() guarantees that the
902 // outer loop header only branches to the inner loop or the outer loop
903 // latch).
904 // FIXME: We could weaken this logic and allow multiple predecessors,
905 // if the values are produced outside the loop latch. We would need
906 // additional logic to update the PHI nodes in the exit block as
907 // well.
908 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
909 return false;
910 }
911 }
912 return true;
913 }
914
915 // In case of multi-level nested loops, it may occur that lcssa phis exist in
916 // the latch of InnerLoop, i.e., when defs of the incoming values are further
917 // inside the loopnest. Sometimes those incoming values are not available
918 // after interchange, since the original inner latch will become the new outer
919 // latch which may have predecessor paths that do not include those incoming
920 // values.
921 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
922 // multi-level loop nests.
areInnerLoopLatchPHIsSupported(Loop * OuterLoop,Loop * InnerLoop)923 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
924 if (InnerLoop->getSubLoops().empty())
925 return true;
926 // If the original outer latch has only one predecessor, then values defined
927 // further inside the looploop, e.g., in the innermost loop, will be available
928 // at the new outer latch after interchange.
929 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
930 return true;
931
932 // The outer latch has more than one predecessors, i.e., the inner
933 // exit and the inner header.
934 // PHI nodes in the inner latch are lcssa phis where the incoming values
935 // are defined further inside the loopnest. Check if those phis are used
936 // in the original inner latch. If that is the case then bail out since
937 // those incoming values may not be available at the new outer latch.
938 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
939 for (PHINode &PHI : InnerLoopLatch->phis()) {
940 for (auto *U : PHI.users()) {
941 Instruction *UI = cast<Instruction>(U);
942 if (InnerLoopLatch == UI->getParent())
943 return false;
944 }
945 }
946 return true;
947 }
948
canInterchangeLoops(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)949 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
950 unsigned OuterLoopId,
951 CharMatrix &DepMatrix) {
952 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
953 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
954 << " and OuterLoopId = " << OuterLoopId
955 << " due to dependence\n");
956 ORE->emit([&]() {
957 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
958 InnerLoop->getStartLoc(),
959 InnerLoop->getHeader())
960 << "Cannot interchange loops due to dependences.";
961 });
962 return false;
963 }
964 // Check if outer and inner loop contain legal instructions only.
965 for (auto *BB : OuterLoop->blocks())
966 for (Instruction &I : BB->instructionsWithoutDebug())
967 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
968 // readnone functions do not prevent interchanging.
969 if (CI->onlyWritesMemory())
970 continue;
971 LLVM_DEBUG(
972 dbgs() << "Loops with call instructions cannot be interchanged "
973 << "safely.");
974 ORE->emit([&]() {
975 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
976 CI->getDebugLoc(),
977 CI->getParent())
978 << "Cannot interchange loops due to call instruction.";
979 });
980
981 return false;
982 }
983
984 if (!findInductions(InnerLoop, InnerLoopInductions)) {
985 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
986 return false;
987 }
988
989 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
990 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
991 ORE->emit([&]() {
992 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
993 InnerLoop->getStartLoc(),
994 InnerLoop->getHeader())
995 << "Cannot interchange loops because unsupported PHI nodes found "
996 "in inner loop latch.";
997 });
998 return false;
999 }
1000
1001 // TODO: The loops could not be interchanged due to current limitations in the
1002 // transform module.
1003 if (currentLimitations()) {
1004 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1005 return false;
1006 }
1007
1008 // Check if the loops are tightly nested.
1009 if (!tightlyNested(OuterLoop, InnerLoop)) {
1010 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1011 ORE->emit([&]() {
1012 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1013 InnerLoop->getStartLoc(),
1014 InnerLoop->getHeader())
1015 << "Cannot interchange loops because they are not tightly "
1016 "nested.";
1017 });
1018 return false;
1019 }
1020
1021 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1022 OuterInnerReductions)) {
1023 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1024 ORE->emit([&]() {
1025 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1026 InnerLoop->getStartLoc(),
1027 InnerLoop->getHeader())
1028 << "Found unsupported PHI node in loop exit.";
1029 });
1030 return false;
1031 }
1032
1033 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1034 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1035 ORE->emit([&]() {
1036 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1037 OuterLoop->getStartLoc(),
1038 OuterLoop->getHeader())
1039 << "Found unsupported PHI node in loop exit.";
1040 });
1041 return false;
1042 }
1043
1044 return true;
1045 }
1046
getInstrOrderCost()1047 int LoopInterchangeProfitability::getInstrOrderCost() {
1048 unsigned GoodOrder, BadOrder;
1049 BadOrder = GoodOrder = 0;
1050 for (BasicBlock *BB : InnerLoop->blocks()) {
1051 for (Instruction &Ins : *BB) {
1052 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1053 unsigned NumOp = GEP->getNumOperands();
1054 bool FoundInnerInduction = false;
1055 bool FoundOuterInduction = false;
1056 for (unsigned i = 0; i < NumOp; ++i) {
1057 // Skip operands that are not SCEV-able.
1058 if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1059 continue;
1060
1061 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1063 if (!AR)
1064 continue;
1065
1066 // If we find the inner induction after an outer induction e.g.
1067 // for(int i=0;i<N;i++)
1068 // for(int j=0;j<N;j++)
1069 // A[i][j] = A[i-1][j-1]+k;
1070 // then it is a good order.
1071 if (AR->getLoop() == InnerLoop) {
1072 // We found an InnerLoop induction after OuterLoop induction. It is
1073 // a good order.
1074 FoundInnerInduction = true;
1075 if (FoundOuterInduction) {
1076 GoodOrder++;
1077 break;
1078 }
1079 }
1080 // If we find the outer induction after an inner induction e.g.
1081 // for(int i=0;i<N;i++)
1082 // for(int j=0;j<N;j++)
1083 // A[j][i] = A[j-1][i-1]+k;
1084 // then it is a bad order.
1085 if (AR->getLoop() == OuterLoop) {
1086 // We found an OuterLoop induction after InnerLoop induction. It is
1087 // a bad order.
1088 FoundOuterInduction = true;
1089 if (FoundInnerInduction) {
1090 BadOrder++;
1091 break;
1092 }
1093 }
1094 }
1095 }
1096 }
1097 }
1098 return GoodOrder - BadOrder;
1099 }
1100
1101 std::optional<bool>
isProfitablePerLoopCacheAnalysis(const DenseMap<const Loop *,unsigned> & CostMap,std::unique_ptr<CacheCost> & CC)1102 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis(
1103 const DenseMap<const Loop *, unsigned> &CostMap,
1104 std::unique_ptr<CacheCost> &CC) {
1105 // This is the new cost model returned from loop cache analysis.
1106 // A smaller index means the loop should be placed an outer loop, and vice
1107 // versa.
1108 if (CostMap.find(InnerLoop) != CostMap.end() &&
1109 CostMap.find(OuterLoop) != CostMap.end()) {
1110 unsigned InnerIndex = 0, OuterIndex = 0;
1111 InnerIndex = CostMap.find(InnerLoop)->second;
1112 OuterIndex = CostMap.find(OuterLoop)->second;
1113 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1114 << ", OuterIndex = " << OuterIndex << "\n");
1115 if (InnerIndex < OuterIndex)
1116 return std::optional<bool>(true);
1117 assert(InnerIndex != OuterIndex && "CostMap should assign unique "
1118 "numbers to each loop");
1119 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop))
1120 return std::nullopt;
1121 return std::optional<bool>(false);
1122 }
1123 return std::nullopt;
1124 }
1125
1126 std::optional<bool>
isProfitablePerInstrOrderCost()1127 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() {
1128 // Legacy cost model: this is rough cost estimation algorithm. It counts the
1129 // good and bad order of induction variables in the instruction and allows
1130 // reordering if number of bad orders is more than good.
1131 int Cost = getInstrOrderCost();
1132 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1133 if (Cost < 0 && Cost < LoopInterchangeCostThreshold)
1134 return std::optional<bool>(true);
1135
1136 return std::nullopt;
1137 }
1138
isProfitableForVectorization(unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix)1139 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization(
1140 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) {
1141 for (auto &Row : DepMatrix) {
1142 // If the inner loop is loop independent or doesn't carry any dependency
1143 // it is not profitable to move this to outer position, since we are
1144 // likely able to do inner loop vectorization already.
1145 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=')
1146 return std::optional<bool>(false);
1147
1148 // If the outer loop is not loop independent it is not profitable to move
1149 // this to inner position, since doing so would not enable inner loop
1150 // parallelism.
1151 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=')
1152 return std::optional<bool>(false);
1153 }
1154 // If inner loop has dependence and outer loop is loop independent then it
1155 // is/ profitable to interchange to enable inner loop parallelism.
1156 // If there are no dependences, interchanging will not improve anything.
1157 return std::optional<bool>(!DepMatrix.empty());
1158 }
1159
isProfitable(const Loop * InnerLoop,const Loop * OuterLoop,unsigned InnerLoopId,unsigned OuterLoopId,CharMatrix & DepMatrix,const DenseMap<const Loop *,unsigned> & CostMap,std::unique_ptr<CacheCost> & CC)1160 bool LoopInterchangeProfitability::isProfitable(
1161 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1162 unsigned OuterLoopId, CharMatrix &DepMatrix,
1163 const DenseMap<const Loop *, unsigned> &CostMap,
1164 std::unique_ptr<CacheCost> &CC) {
1165 // isProfitable() is structured to avoid endless loop interchange.
1166 // If loop cache analysis could decide the profitability then,
1167 // profitability check will stop and return the analysis result.
1168 // If cache analysis failed to analyze the loopnest (e.g.,
1169 // due to delinearization issues) then only check whether it is
1170 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to
1171 // analysis the profitability then only, isProfitableForVectorization
1172 // will decide.
1173 std::optional<bool> shouldInterchange =
1174 isProfitablePerLoopCacheAnalysis(CostMap, CC);
1175 if (!shouldInterchange.has_value()) {
1176 shouldInterchange = isProfitablePerInstrOrderCost();
1177 if (!shouldInterchange.has_value())
1178 shouldInterchange =
1179 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix);
1180 }
1181 if (!shouldInterchange.has_value()) {
1182 ORE->emit([&]() {
1183 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1184 InnerLoop->getStartLoc(),
1185 InnerLoop->getHeader())
1186 << "Insufficient information to calculate the cost of loop for "
1187 "interchange.";
1188 });
1189 return false;
1190 } else if (!shouldInterchange.value()) {
1191 ORE->emit([&]() {
1192 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1193 InnerLoop->getStartLoc(),
1194 InnerLoop->getHeader())
1195 << "Interchanging loops is not considered to improve cache "
1196 "locality nor vectorization.";
1197 });
1198 return false;
1199 }
1200 return true;
1201 }
1202
removeChildLoop(Loop * OuterLoop,Loop * InnerLoop)1203 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1204 Loop *InnerLoop) {
1205 for (Loop *L : *OuterLoop)
1206 if (L == InnerLoop) {
1207 OuterLoop->removeChildLoop(L);
1208 return;
1209 }
1210 llvm_unreachable("Couldn't find loop");
1211 }
1212
1213 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1214 /// new inner and outer loop after interchanging: NewInner is the original
1215 /// outer loop and NewOuter is the original inner loop.
1216 ///
1217 /// Before interchanging, we have the following structure
1218 /// Outer preheader
1219 // Outer header
1220 // Inner preheader
1221 // Inner header
1222 // Inner body
1223 // Inner latch
1224 // outer bbs
1225 // Outer latch
1226 //
1227 // After interchanging:
1228 // Inner preheader
1229 // Inner header
1230 // Outer preheader
1231 // Outer header
1232 // Inner body
1233 // outer bbs
1234 // Outer latch
1235 // Inner latch
restructureLoops(Loop * NewInner,Loop * NewOuter,BasicBlock * OrigInnerPreHeader,BasicBlock * OrigOuterPreHeader)1236 void LoopInterchangeTransform::restructureLoops(
1237 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1238 BasicBlock *OrigOuterPreHeader) {
1239 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1240 // The original inner loop preheader moves from the new inner loop to
1241 // the parent loop, if there is one.
1242 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1243 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1244
1245 // Switch the loop levels.
1246 if (OuterLoopParent) {
1247 // Remove the loop from its parent loop.
1248 removeChildLoop(OuterLoopParent, NewInner);
1249 removeChildLoop(NewInner, NewOuter);
1250 OuterLoopParent->addChildLoop(NewOuter);
1251 } else {
1252 removeChildLoop(NewInner, NewOuter);
1253 LI->changeTopLevelLoop(NewInner, NewOuter);
1254 }
1255 while (!NewOuter->isInnermost())
1256 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1257 NewOuter->addChildLoop(NewInner);
1258
1259 // BBs from the original inner loop.
1260 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1261
1262 // Add BBs from the original outer loop to the original inner loop (excluding
1263 // BBs already in inner loop)
1264 for (BasicBlock *BB : NewInner->blocks())
1265 if (LI->getLoopFor(BB) == NewInner)
1266 NewOuter->addBlockEntry(BB);
1267
1268 // Now remove inner loop header and latch from the new inner loop and move
1269 // other BBs (the loop body) to the new inner loop.
1270 BasicBlock *OuterHeader = NewOuter->getHeader();
1271 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1272 for (BasicBlock *BB : OrigInnerBBs) {
1273 // Nothing will change for BBs in child loops.
1274 if (LI->getLoopFor(BB) != NewOuter)
1275 continue;
1276 // Remove the new outer loop header and latch from the new inner loop.
1277 if (BB == OuterHeader || BB == OuterLatch)
1278 NewInner->removeBlockFromLoop(BB);
1279 else
1280 LI->changeLoopFor(BB, NewInner);
1281 }
1282
1283 // The preheader of the original outer loop becomes part of the new
1284 // outer loop.
1285 NewOuter->addBlockEntry(OrigOuterPreHeader);
1286 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1287
1288 // Tell SE that we move the loops around.
1289 SE->forgetLoop(NewOuter);
1290 }
1291
transform()1292 bool LoopInterchangeTransform::transform() {
1293 bool Transformed = false;
1294
1295 if (InnerLoop->getSubLoops().empty()) {
1296 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1297 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1298 auto &InductionPHIs = LIL.getInnerLoopInductions();
1299 if (InductionPHIs.empty()) {
1300 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1301 return false;
1302 }
1303
1304 SmallVector<Instruction *, 8> InnerIndexVarList;
1305 for (PHINode *CurInductionPHI : InductionPHIs) {
1306 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1307 InnerIndexVarList.push_back(
1308 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1309 else
1310 InnerIndexVarList.push_back(
1311 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1312 }
1313
1314 // Create a new latch block for the inner loop. We split at the
1315 // current latch's terminator and then move the condition and all
1316 // operands that are not either loop-invariant or the induction PHI into the
1317 // new latch block.
1318 BasicBlock *NewLatch =
1319 SplitBlock(InnerLoop->getLoopLatch(),
1320 InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1321
1322 SmallSetVector<Instruction *, 4> WorkList;
1323 unsigned i = 0;
1324 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1325 for (; i < WorkList.size(); i++) {
1326 // Duplicate instruction and move it the new latch. Update uses that
1327 // have been moved.
1328 Instruction *NewI = WorkList[i]->clone();
1329 NewI->insertBefore(NewLatch->getFirstNonPHI());
1330 assert(!NewI->mayHaveSideEffects() &&
1331 "Moving instructions with side-effects may change behavior of "
1332 "the loop nest!");
1333 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1334 Instruction *UserI = cast<Instruction>(U.getUser());
1335 if (!InnerLoop->contains(UserI->getParent()) ||
1336 UserI->getParent() == NewLatch ||
1337 llvm::is_contained(InductionPHIs, UserI))
1338 U.set(NewI);
1339 }
1340 // Add operands of moved instruction to the worklist, except if they are
1341 // outside the inner loop or are the induction PHI.
1342 for (Value *Op : WorkList[i]->operands()) {
1343 Instruction *OpI = dyn_cast<Instruction>(Op);
1344 if (!OpI ||
1345 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1346 llvm::is_contained(InductionPHIs, OpI))
1347 continue;
1348 WorkList.insert(OpI);
1349 }
1350 }
1351 };
1352
1353 // FIXME: Should we interchange when we have a constant condition?
1354 Instruction *CondI = dyn_cast<Instruction>(
1355 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1356 ->getCondition());
1357 if (CondI)
1358 WorkList.insert(CondI);
1359 MoveInstructions();
1360 for (Instruction *InnerIndexVar : InnerIndexVarList)
1361 WorkList.insert(cast<Instruction>(InnerIndexVar));
1362 MoveInstructions();
1363 }
1364
1365 // Ensure the inner loop phi nodes have a separate basic block.
1366 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1367 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) {
1368 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1369 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1370 }
1371
1372 // Instructions in the original inner loop preheader may depend on values
1373 // defined in the outer loop header. Move them there, because the original
1374 // inner loop preheader will become the entry into the interchanged loop nest.
1375 // Currently we move all instructions and rely on LICM to move invariant
1376 // instructions outside the loop nest.
1377 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1378 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1379 if (InnerLoopPreHeader != OuterLoopHeader) {
1380 SmallPtrSet<Instruction *, 4> NeedsMoving;
1381 for (Instruction &I :
1382 make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1383 std::prev(InnerLoopPreHeader->end()))))
1384 I.moveBefore(OuterLoopHeader->getTerminator());
1385 }
1386
1387 Transformed |= adjustLoopLinks();
1388 if (!Transformed) {
1389 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1390 return false;
1391 }
1392
1393 return true;
1394 }
1395
1396 /// \brief Move all instructions except the terminator from FromBB right before
1397 /// InsertBefore
moveBBContents(BasicBlock * FromBB,Instruction * InsertBefore)1398 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1399 BasicBlock *ToBB = InsertBefore->getParent();
1400
1401 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(),
1402 FromBB->getTerminator()->getIterator());
1403 }
1404
1405 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
swapBBContents(BasicBlock * BB1,BasicBlock * BB2)1406 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1407 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1408 // from BB1 afterwards.
1409 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1410 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1411 for (Instruction *I : TempInstrs)
1412 I->removeFromParent();
1413
1414 // Move instructions from BB2 to BB1.
1415 moveBBContents(BB2, BB1->getTerminator());
1416
1417 // Move instructions from TempInstrs to BB2.
1418 for (Instruction *I : TempInstrs)
1419 I->insertBefore(BB2->getTerminator());
1420 }
1421
1422 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1423 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1424 // \p OldBB is exactly once in BI's successor list.
updateSuccessor(BranchInst * BI,BasicBlock * OldBB,BasicBlock * NewBB,std::vector<DominatorTree::UpdateType> & DTUpdates,bool MustUpdateOnce=true)1425 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1426 BasicBlock *NewBB,
1427 std::vector<DominatorTree::UpdateType> &DTUpdates,
1428 bool MustUpdateOnce = true) {
1429 assert((!MustUpdateOnce ||
1430 llvm::count_if(successors(BI),
1431 [OldBB](BasicBlock *BB) {
1432 return BB == OldBB;
1433 }) == 1) && "BI must jump to OldBB exactly once.");
1434 bool Changed = false;
1435 for (Use &Op : BI->operands())
1436 if (Op == OldBB) {
1437 Op.set(NewBB);
1438 Changed = true;
1439 }
1440
1441 if (Changed) {
1442 DTUpdates.push_back(
1443 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1444 DTUpdates.push_back(
1445 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1446 }
1447 assert(Changed && "Expected a successor to be updated");
1448 }
1449
1450 // Move Lcssa PHIs to the right place.
moveLCSSAPhis(BasicBlock * InnerExit,BasicBlock * InnerHeader,BasicBlock * InnerLatch,BasicBlock * OuterHeader,BasicBlock * OuterLatch,BasicBlock * OuterExit,Loop * InnerLoop,LoopInfo * LI)1451 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1452 BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1453 BasicBlock *OuterLatch, BasicBlock *OuterExit,
1454 Loop *InnerLoop, LoopInfo *LI) {
1455
1456 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1457 // defined either in the header or latch. Those blocks will become header and
1458 // latch of the new outer loop, and the only possible users can PHI nodes
1459 // in the exit block of the loop nest or the outer loop header (reduction
1460 // PHIs, in that case, the incoming value must be defined in the inner loop
1461 // header). We can just substitute the user with the incoming value and remove
1462 // the PHI.
1463 for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1464 assert(P.getNumIncomingValues() == 1 &&
1465 "Only loops with a single exit are supported!");
1466
1467 // Incoming values are guaranteed be instructions currently.
1468 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1469 // In case of multi-level nested loops, follow LCSSA to find the incoming
1470 // value defined from the innermost loop.
1471 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1472 // Skip phis with incoming values from the inner loop body, excluding the
1473 // header and latch.
1474 if (IncIInnerMost->getParent() != InnerLatch &&
1475 IncIInnerMost->getParent() != InnerHeader)
1476 continue;
1477
1478 assert(all_of(P.users(),
1479 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1480 return (cast<PHINode>(U)->getParent() == OuterHeader &&
1481 IncI->getParent() == InnerHeader) ||
1482 cast<PHINode>(U)->getParent() == OuterExit;
1483 }) &&
1484 "Can only replace phis iff the uses are in the loop nest exit or "
1485 "the incoming value is defined in the inner header (it will "
1486 "dominate all loop blocks after interchanging)");
1487 P.replaceAllUsesWith(IncI);
1488 P.eraseFromParent();
1489 }
1490
1491 SmallVector<PHINode *, 8> LcssaInnerExit;
1492 for (PHINode &P : InnerExit->phis())
1493 LcssaInnerExit.push_back(&P);
1494
1495 SmallVector<PHINode *, 8> LcssaInnerLatch;
1496 for (PHINode &P : InnerLatch->phis())
1497 LcssaInnerLatch.push_back(&P);
1498
1499 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1500 // If a PHI node has users outside of InnerExit, it has a use outside the
1501 // interchanged loop and we have to preserve it. We move these to
1502 // InnerLatch, which will become the new exit block for the innermost
1503 // loop after interchanging.
1504 for (PHINode *P : LcssaInnerExit)
1505 P->moveBefore(InnerLatch->getFirstNonPHI());
1506
1507 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1508 // and we have to move them to the new inner latch.
1509 for (PHINode *P : LcssaInnerLatch)
1510 P->moveBefore(InnerExit->getFirstNonPHI());
1511
1512 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1513 // incoming values defined in the outer loop, we have to add a new PHI
1514 // in the inner loop latch, which became the exit block of the outer loop,
1515 // after interchanging.
1516 if (OuterExit) {
1517 for (PHINode &P : OuterExit->phis()) {
1518 if (P.getNumIncomingValues() != 1)
1519 continue;
1520 // Skip Phis with incoming values defined in the inner loop. Those should
1521 // already have been updated.
1522 auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1523 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1524 continue;
1525
1526 PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1527 NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1528 NewPhi->setIncomingBlock(0, OuterLatch);
1529 // We might have incoming edges from other BBs, i.e., the original outer
1530 // header.
1531 for (auto *Pred : predecessors(InnerLatch)) {
1532 if (Pred == OuterLatch)
1533 continue;
1534 NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1535 }
1536 NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1537 P.setIncomingValue(0, NewPhi);
1538 }
1539 }
1540
1541 // Now adjust the incoming blocks for the LCSSA PHIs.
1542 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1543 // with the new latch.
1544 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1545 }
1546
adjustLoopBranches()1547 bool LoopInterchangeTransform::adjustLoopBranches() {
1548 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1549 std::vector<DominatorTree::UpdateType> DTUpdates;
1550
1551 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1552 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1553
1554 assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1555 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1556 InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1557 // Ensure that both preheaders do not contain PHI nodes and have single
1558 // predecessors. This allows us to move them easily. We use
1559 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1560 // preheaders do not satisfy those conditions.
1561 if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1562 !OuterLoopPreHeader->getUniquePredecessor())
1563 OuterLoopPreHeader =
1564 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1565 if (InnerLoopPreHeader == OuterLoop->getHeader())
1566 InnerLoopPreHeader =
1567 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1568
1569 // Adjust the loop preheader
1570 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1571 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1572 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1573 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1574 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1575 BasicBlock *InnerLoopLatchPredecessor =
1576 InnerLoopLatch->getUniquePredecessor();
1577 BasicBlock *InnerLoopLatchSuccessor;
1578 BasicBlock *OuterLoopLatchSuccessor;
1579
1580 BranchInst *OuterLoopLatchBI =
1581 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1582 BranchInst *InnerLoopLatchBI =
1583 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1584 BranchInst *OuterLoopHeaderBI =
1585 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1586 BranchInst *InnerLoopHeaderBI =
1587 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1588
1589 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1590 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1591 !InnerLoopHeaderBI)
1592 return false;
1593
1594 BranchInst *InnerLoopLatchPredecessorBI =
1595 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1596 BranchInst *OuterLoopPredecessorBI =
1597 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1598
1599 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1600 return false;
1601 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1602 if (!InnerLoopHeaderSuccessor)
1603 return false;
1604
1605 // Adjust Loop Preheader and headers.
1606 // The branches in the outer loop predecessor and the outer loop header can
1607 // be unconditional branches or conditional branches with duplicates. Consider
1608 // this when updating the successors.
1609 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1610 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1611 // The outer loop header might or might not branch to the outer latch.
1612 // We are guaranteed to branch to the inner loop preheader.
1613 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1614 // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1615 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1616 DTUpdates,
1617 /*MustUpdateOnce=*/false);
1618 }
1619 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1620 InnerLoopHeaderSuccessor, DTUpdates,
1621 /*MustUpdateOnce=*/false);
1622
1623 // Adjust reduction PHI's now that the incoming block has changed.
1624 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1625 OuterLoopHeader);
1626
1627 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1628 OuterLoopPreHeader, DTUpdates);
1629
1630 // -------------Adjust loop latches-----------
1631 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1632 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1633 else
1634 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1635
1636 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1637 InnerLoopLatchSuccessor, DTUpdates);
1638
1639 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1640 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1641 else
1642 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1643
1644 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1645 OuterLoopLatchSuccessor, DTUpdates);
1646 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1647 DTUpdates);
1648
1649 DT->applyUpdates(DTUpdates);
1650 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1651 OuterLoopPreHeader);
1652
1653 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1654 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1655 InnerLoop, LI);
1656 // For PHIs in the exit block of the outer loop, outer's latch has been
1657 // replaced by Inners'.
1658 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1659
1660 auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1661 // Now update the reduction PHIs in the inner and outer loop headers.
1662 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1663 for (PHINode &PHI : InnerLoopHeader->phis())
1664 if (OuterInnerReductions.contains(&PHI))
1665 InnerLoopPHIs.push_back(&PHI);
1666
1667 for (PHINode &PHI : OuterLoopHeader->phis())
1668 if (OuterInnerReductions.contains(&PHI))
1669 OuterLoopPHIs.push_back(&PHI);
1670
1671 // Now move the remaining reduction PHIs from outer to inner loop header and
1672 // vice versa. The PHI nodes must be part of a reduction across the inner and
1673 // outer loop and all the remains to do is and updating the incoming blocks.
1674 for (PHINode *PHI : OuterLoopPHIs) {
1675 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1676 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1677 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1678 }
1679 for (PHINode *PHI : InnerLoopPHIs) {
1680 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1681 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1682 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1683 }
1684
1685 // Update the incoming blocks for moved PHI nodes.
1686 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1687 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1688 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1689 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1690
1691 // Values defined in the outer loop header could be used in the inner loop
1692 // latch. In that case, we need to create LCSSA phis for them, because after
1693 // interchanging they will be defined in the new inner loop and used in the
1694 // new outer loop.
1695 IRBuilder<> Builder(OuterLoopHeader->getContext());
1696 SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1697 for (Instruction &I :
1698 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1699 MayNeedLCSSAPhis.push_back(&I);
1700 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1701
1702 return true;
1703 }
1704
adjustLoopLinks()1705 bool LoopInterchangeTransform::adjustLoopLinks() {
1706 // Adjust all branches in the inner and outer loop.
1707 bool Changed = adjustLoopBranches();
1708 if (Changed) {
1709 // We have interchanged the preheaders so we need to interchange the data in
1710 // the preheaders as well. This is because the content of the inner
1711 // preheader was previously executed inside the outer loop.
1712 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1713 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1714 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1715 }
1716 return Changed;
1717 }
1718
1719 namespace {
1720 /// Main LoopInterchange Pass.
1721 struct LoopInterchangeLegacyPass : public LoopPass {
1722 static char ID;
1723
LoopInterchangeLegacyPass__anon4832b4d31711::LoopInterchangeLegacyPass1724 LoopInterchangeLegacyPass() : LoopPass(ID) {
1725 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1726 }
1727
getAnalysisUsage__anon4832b4d31711::LoopInterchangeLegacyPass1728 void getAnalysisUsage(AnalysisUsage &AU) const override {
1729 AU.addRequired<DependenceAnalysisWrapperPass>();
1730 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1731
1732 getLoopAnalysisUsage(AU);
1733 }
1734
runOnLoop__anon4832b4d31711::LoopInterchangeLegacyPass1735 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1736 if (skipLoop(L))
1737 return false;
1738
1739 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1740 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1741 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1742 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1743 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1744 std::unique_ptr<CacheCost> CC = nullptr;
1745 return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L);
1746 }
1747 };
1748 } // namespace
1749
1750 char LoopInterchangeLegacyPass::ID = 0;
1751
1752 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1753 "Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)1754 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1755 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1756 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1757
1758 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1759 "Interchanges loops for cache reuse", false, false)
1760
1761 Pass *llvm::createLoopInterchangePass() {
1762 return new LoopInterchangeLegacyPass();
1763 }
1764
run(LoopNest & LN,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)1765 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1766 LoopAnalysisManager &AM,
1767 LoopStandardAnalysisResults &AR,
1768 LPMUpdater &U) {
1769 Function &F = *LN.getParent();
1770
1771 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1772 std::unique_ptr<CacheCost> CC =
1773 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1774 OptimizationRemarkEmitter ORE(&F);
1775 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1776 return PreservedAnalyses::all();
1777 U.markLoopNestChanged(true);
1778 return getLoopPassPreservedAnalyses();
1779 }
1780