1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
10 //
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
15 //
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopVersioning.h"
59 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <forward_list>
64 #include <tuple>
65 #include <utility>
66
67 using namespace llvm;
68
69 #define LLE_OPTION "loop-load-elim"
70 #define DEBUG_TYPE LLE_OPTION
71
72 static cl::opt<unsigned> CheckPerElim(
73 "runtime-check-per-loop-load-elim", cl::Hidden,
74 cl::desc("Max number of memchecks allowed per eliminated load on average"),
75 cl::init(1));
76
77 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
78 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
79 cl::desc("The maximum number of SCEV checks allowed for Loop "
80 "Load Elimination"));
81
82 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
83
84 namespace {
85
86 /// Represent a store-to-forwarding candidate.
87 struct StoreToLoadForwardingCandidate {
88 LoadInst *Load;
89 StoreInst *Store;
90
StoreToLoadForwardingCandidate__anonf91e54840111::StoreToLoadForwardingCandidate91 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
92 : Load(Load), Store(Store) {}
93
94 /// Return true if the dependence from the store to the load has a
95 /// distance of one. E.g. A[i+1] = A[i]
isDependenceDistanceOfOne__anonf91e54840111::StoreToLoadForwardingCandidate96 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
97 Loop *L) const {
98 Value *LoadPtr = Load->getPointerOperand();
99 Value *StorePtr = Store->getPointerOperand();
100 Type *LoadType = getLoadStoreType(Load);
101 auto &DL = Load->getParent()->getModule()->getDataLayout();
102
103 assert(LoadPtr->getType()->getPointerAddressSpace() ==
104 StorePtr->getType()->getPointerAddressSpace() &&
105 DL.getTypeSizeInBits(LoadType) ==
106 DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
107 "Should be a known dependence");
108
109 // Currently we only support accesses with unit stride. FIXME: we should be
110 // able to handle non unit stirde as well as long as the stride is equal to
111 // the dependence distance.
112 if (getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0) != 1 ||
113 getPtrStride(PSE, LoadType, StorePtr, L).value_or(0) != 1)
114 return false;
115
116 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
117
118 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
119 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
120
121 // We don't need to check non-wrapping here because forward/backward
122 // dependence wouldn't be valid if these weren't monotonic accesses.
123 auto *Dist = cast<SCEVConstant>(
124 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
125 const APInt &Val = Dist->getAPInt();
126 return Val == TypeByteSize;
127 }
128
getLoadPtr__anonf91e54840111::StoreToLoadForwardingCandidate129 Value *getLoadPtr() const { return Load->getPointerOperand(); }
130
131 #ifndef NDEBUG
operator <<(raw_ostream & OS,const StoreToLoadForwardingCandidate & Cand)132 friend raw_ostream &operator<<(raw_ostream &OS,
133 const StoreToLoadForwardingCandidate &Cand) {
134 OS << *Cand.Store << " -->\n";
135 OS.indent(2) << *Cand.Load << "\n";
136 return OS;
137 }
138 #endif
139 };
140
141 } // end anonymous namespace
142
143 /// Check if the store dominates all latches, so as long as there is no
144 /// intervening store this value will be loaded in the next iteration.
doesStoreDominatesAllLatches(BasicBlock * StoreBlock,Loop * L,DominatorTree * DT)145 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
146 DominatorTree *DT) {
147 SmallVector<BasicBlock *, 8> Latches;
148 L->getLoopLatches(Latches);
149 return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
150 return DT->dominates(StoreBlock, Latch);
151 });
152 }
153
154 /// Return true if the load is not executed on all paths in the loop.
isLoadConditional(LoadInst * Load,Loop * L)155 static bool isLoadConditional(LoadInst *Load, Loop *L) {
156 return Load->getParent() != L->getHeader();
157 }
158
159 namespace {
160
161 /// The per-loop class that does most of the work.
162 class LoadEliminationForLoop {
163 public:
LoadEliminationForLoop(Loop * L,LoopInfo * LI,const LoopAccessInfo & LAI,DominatorTree * DT,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI)164 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
165 DominatorTree *DT, BlockFrequencyInfo *BFI,
166 ProfileSummaryInfo* PSI)
167 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
168
169 /// Look through the loop-carried and loop-independent dependences in
170 /// this loop and find store->load dependences.
171 ///
172 /// Note that no candidate is returned if LAA has failed to analyze the loop
173 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
174 std::forward_list<StoreToLoadForwardingCandidate>
findStoreToLoadDependences(const LoopAccessInfo & LAI)175 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
176 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
177
178 const auto *Deps = LAI.getDepChecker().getDependences();
179 if (!Deps)
180 return Candidates;
181
182 // Find store->load dependences (consequently true dep). Both lexically
183 // forward and backward dependences qualify. Disqualify loads that have
184 // other unknown dependences.
185
186 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
187
188 for (const auto &Dep : *Deps) {
189 Instruction *Source = Dep.getSource(LAI);
190 Instruction *Destination = Dep.getDestination(LAI);
191
192 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
193 if (isa<LoadInst>(Source))
194 LoadsWithUnknownDepedence.insert(Source);
195 if (isa<LoadInst>(Destination))
196 LoadsWithUnknownDepedence.insert(Destination);
197 continue;
198 }
199
200 if (Dep.isBackward())
201 // Note that the designations source and destination follow the program
202 // order, i.e. source is always first. (The direction is given by the
203 // DepType.)
204 std::swap(Source, Destination);
205 else
206 assert(Dep.isForward() && "Needs to be a forward dependence");
207
208 auto *Store = dyn_cast<StoreInst>(Source);
209 if (!Store)
210 continue;
211 auto *Load = dyn_cast<LoadInst>(Destination);
212 if (!Load)
213 continue;
214
215 // Only propagate if the stored values are bit/pointer castable.
216 if (!CastInst::isBitOrNoopPointerCastable(
217 getLoadStoreType(Store), getLoadStoreType(Load),
218 Store->getParent()->getModule()->getDataLayout()))
219 continue;
220
221 Candidates.emplace_front(Load, Store);
222 }
223
224 if (!LoadsWithUnknownDepedence.empty())
225 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
226 return LoadsWithUnknownDepedence.count(C.Load);
227 });
228
229 return Candidates;
230 }
231
232 /// Return the index of the instruction according to program order.
getInstrIndex(Instruction * Inst)233 unsigned getInstrIndex(Instruction *Inst) {
234 auto I = InstOrder.find(Inst);
235 assert(I != InstOrder.end() && "No index for instruction");
236 return I->second;
237 }
238
239 /// If a load has multiple candidates associated (i.e. different
240 /// stores), it means that it could be forwarding from multiple stores
241 /// depending on control flow. Remove these candidates.
242 ///
243 /// Here, we rely on LAA to include the relevant loop-independent dependences.
244 /// LAA is known to omit these in the very simple case when the read and the
245 /// write within an alias set always takes place using the *same* pointer.
246 ///
247 /// However, we know that this is not the case here, i.e. we can rely on LAA
248 /// to provide us with loop-independent dependences for the cases we're
249 /// interested. Consider the case for example where a loop-independent
250 /// dependece S1->S2 invalidates the forwarding S3->S2.
251 ///
252 /// A[i] = ... (S1)
253 /// ... = A[i] (S2)
254 /// A[i+1] = ... (S3)
255 ///
256 /// LAA will perform dependence analysis here because there are two
257 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
removeDependencesFromMultipleStores(std::forward_list<StoreToLoadForwardingCandidate> & Candidates)258 void removeDependencesFromMultipleStores(
259 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
260 // If Store is nullptr it means that we have multiple stores forwarding to
261 // this store.
262 using LoadToSingleCandT =
263 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
264 LoadToSingleCandT LoadToSingleCand;
265
266 for (const auto &Cand : Candidates) {
267 bool NewElt;
268 LoadToSingleCandT::iterator Iter;
269
270 std::tie(Iter, NewElt) =
271 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
272 if (!NewElt) {
273 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
274 // Already multiple stores forward to this load.
275 if (OtherCand == nullptr)
276 continue;
277
278 // Handle the very basic case when the two stores are in the same block
279 // so deciding which one forwards is easy. The later one forwards as
280 // long as they both have a dependence distance of one to the load.
281 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
282 Cand.isDependenceDistanceOfOne(PSE, L) &&
283 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
284 // They are in the same block, the later one will forward to the load.
285 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
286 OtherCand = &Cand;
287 } else
288 OtherCand = nullptr;
289 }
290 }
291
292 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
293 if (LoadToSingleCand[Cand.Load] != &Cand) {
294 LLVM_DEBUG(
295 dbgs() << "Removing from candidates: \n"
296 << Cand
297 << " The load may have multiple stores forwarding to "
298 << "it\n");
299 return true;
300 }
301 return false;
302 });
303 }
304
305 /// Given two pointers operations by their RuntimePointerChecking
306 /// indices, return true if they require an alias check.
307 ///
308 /// We need a check if one is a pointer for a candidate load and the other is
309 /// a pointer for a possibly intervening store.
needsChecking(unsigned PtrIdx1,unsigned PtrIdx2,const SmallPtrSetImpl<Value * > & PtrsWrittenOnFwdingPath,const SmallPtrSetImpl<Value * > & CandLoadPtrs)310 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
311 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
312 const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
313 Value *Ptr1 =
314 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
315 Value *Ptr2 =
316 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
317 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
318 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
319 }
320
321 /// Return pointers that are possibly written to on the path from a
322 /// forwarding store to a load.
323 ///
324 /// These pointers need to be alias-checked against the forwarding candidates.
findPointersWrittenOnForwardingPath(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)325 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
326 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
327 // From FirstStore to LastLoad neither of the elimination candidate loads
328 // should overlap with any of the stores.
329 //
330 // E.g.:
331 //
332 // st1 C[i]
333 // ld1 B[i] <-------,
334 // ld0 A[i] <----, | * LastLoad
335 // ... | |
336 // st2 E[i] | |
337 // st3 B[i+1] -- | -' * FirstStore
338 // st0 A[i+1] ---'
339 // st4 D[i]
340 //
341 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
342 // ld0.
343
344 LoadInst *LastLoad =
345 std::max_element(Candidates.begin(), Candidates.end(),
346 [&](const StoreToLoadForwardingCandidate &A,
347 const StoreToLoadForwardingCandidate &B) {
348 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
349 })
350 ->Load;
351 StoreInst *FirstStore =
352 std::min_element(Candidates.begin(), Candidates.end(),
353 [&](const StoreToLoadForwardingCandidate &A,
354 const StoreToLoadForwardingCandidate &B) {
355 return getInstrIndex(A.Store) <
356 getInstrIndex(B.Store);
357 })
358 ->Store;
359
360 // We're looking for stores after the first forwarding store until the end
361 // of the loop, then from the beginning of the loop until the last
362 // forwarded-to load. Collect the pointer for the stores.
363 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
364
365 auto InsertStorePtr = [&](Instruction *I) {
366 if (auto *S = dyn_cast<StoreInst>(I))
367 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
368 };
369 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
370 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
371 MemInstrs.end(), InsertStorePtr);
372 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
373 InsertStorePtr);
374
375 return PtrsWrittenOnFwdingPath;
376 }
377
378 /// Determine the pointer alias checks to prove that there are no
379 /// intervening stores.
collectMemchecks(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)380 SmallVector<RuntimePointerCheck, 4> collectMemchecks(
381 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
382
383 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
384 findPointersWrittenOnForwardingPath(Candidates);
385
386 // Collect the pointers of the candidate loads.
387 SmallPtrSet<Value *, 4> CandLoadPtrs;
388 for (const auto &Candidate : Candidates)
389 CandLoadPtrs.insert(Candidate.getLoadPtr());
390
391 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
392 SmallVector<RuntimePointerCheck, 4> Checks;
393
394 copy_if(AllChecks, std::back_inserter(Checks),
395 [&](const RuntimePointerCheck &Check) {
396 for (auto PtrIdx1 : Check.first->Members)
397 for (auto PtrIdx2 : Check.second->Members)
398 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
399 CandLoadPtrs))
400 return true;
401 return false;
402 });
403
404 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
405 << "):\n");
406 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
407
408 return Checks;
409 }
410
411 /// Perform the transformation for a candidate.
412 void
propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate & Cand,SCEVExpander & SEE)413 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
414 SCEVExpander &SEE) {
415 // loop:
416 // %x = load %gep_i
417 // = ... %x
418 // store %y, %gep_i_plus_1
419 //
420 // =>
421 //
422 // ph:
423 // %x.initial = load %gep_0
424 // loop:
425 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
426 // %x = load %gep_i <---- now dead
427 // = ... %x.storeforward
428 // store %y, %gep_i_plus_1
429
430 Value *Ptr = Cand.Load->getPointerOperand();
431 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
432 auto *PH = L->getLoopPreheader();
433 assert(PH && "Preheader should exist!");
434 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
435 PH->getTerminator());
436 Value *Initial = new LoadInst(
437 Cand.Load->getType(), InitialPtr, "load_initial",
438 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
439
440 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
441 &L->getHeader()->front());
442 PHI->addIncoming(Initial, PH);
443
444 Type *LoadType = Initial->getType();
445 Type *StoreType = Cand.Store->getValueOperand()->getType();
446 auto &DL = Cand.Load->getParent()->getModule()->getDataLayout();
447 (void)DL;
448
449 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
450 "The type sizes should match!");
451
452 Value *StoreValue = Cand.Store->getValueOperand();
453 if (LoadType != StoreType)
454 StoreValue = CastInst::CreateBitOrPointerCast(
455 StoreValue, LoadType, "store_forward_cast", Cand.Store);
456
457 PHI->addIncoming(StoreValue, L->getLoopLatch());
458
459 Cand.Load->replaceAllUsesWith(PHI);
460 }
461
462 /// Top-level driver for each loop: find store->load forwarding
463 /// candidates, add run-time checks and perform transformation.
processLoop()464 bool processLoop() {
465 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
466 << "\" checking " << *L << "\n");
467
468 // Look for store-to-load forwarding cases across the
469 // backedge. E.g.:
470 //
471 // loop:
472 // %x = load %gep_i
473 // = ... %x
474 // store %y, %gep_i_plus_1
475 //
476 // =>
477 //
478 // ph:
479 // %x.initial = load %gep_0
480 // loop:
481 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
482 // %x = load %gep_i <---- now dead
483 // = ... %x.storeforward
484 // store %y, %gep_i_plus_1
485
486 // First start with store->load dependences.
487 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
488 if (StoreToLoadDependences.empty())
489 return false;
490
491 // Generate an index for each load and store according to the original
492 // program order. This will be used later.
493 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
494
495 // To keep things simple for now, remove those where the load is potentially
496 // fed by multiple stores.
497 removeDependencesFromMultipleStores(StoreToLoadDependences);
498 if (StoreToLoadDependences.empty())
499 return false;
500
501 // Filter the candidates further.
502 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
503 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
504 LLVM_DEBUG(dbgs() << "Candidate " << Cand);
505
506 // Make sure that the stored values is available everywhere in the loop in
507 // the next iteration.
508 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
509 continue;
510
511 // If the load is conditional we can't hoist its 0-iteration instance to
512 // the preheader because that would make it unconditional. Thus we would
513 // access a memory location that the original loop did not access.
514 if (isLoadConditional(Cand.Load, L))
515 continue;
516
517 // Check whether the SCEV difference is the same as the induction step,
518 // thus we load the value in the next iteration.
519 if (!Cand.isDependenceDistanceOfOne(PSE, L))
520 continue;
521
522 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
523 "Loading from something other than indvar?");
524 assert(
525 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
526 "Storing to something other than indvar?");
527
528 Candidates.push_back(Cand);
529 LLVM_DEBUG(
530 dbgs()
531 << Candidates.size()
532 << ". Valid store-to-load forwarding across the loop backedge\n");
533 }
534 if (Candidates.empty())
535 return false;
536
537 // Check intervening may-alias stores. These need runtime checks for alias
538 // disambiguation.
539 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
540
541 // Too many checks are likely to outweigh the benefits of forwarding.
542 if (Checks.size() > Candidates.size() * CheckPerElim) {
543 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
544 return false;
545 }
546
547 if (LAI.getPSE().getPredicate().getComplexity() >
548 LoadElimSCEVCheckThreshold) {
549 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
550 return false;
551 }
552
553 if (!L->isLoopSimplifyForm()) {
554 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
555 return false;
556 }
557
558 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
559 if (LAI.hasConvergentOp()) {
560 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
561 "convergent calls\n");
562 return false;
563 }
564
565 auto *HeaderBB = L->getHeader();
566 auto *F = HeaderBB->getParent();
567 bool OptForSize = F->hasOptSize() ||
568 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
569 PGSOQueryType::IRPass);
570 if (OptForSize) {
571 LLVM_DEBUG(
572 dbgs() << "Versioning is needed but not allowed when optimizing "
573 "for size.\n");
574 return false;
575 }
576
577 // Point of no-return, start the transformation. First, version the loop
578 // if necessary.
579
580 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
581 LV.versionLoop();
582
583 // After versioning, some of the candidates' pointers could stop being
584 // SCEVAddRecs. We need to filter them out.
585 auto NoLongerGoodCandidate = [this](
586 const StoreToLoadForwardingCandidate &Cand) {
587 return !isa<SCEVAddRecExpr>(
588 PSE.getSCEV(Cand.Load->getPointerOperand())) ||
589 !isa<SCEVAddRecExpr>(
590 PSE.getSCEV(Cand.Store->getPointerOperand()));
591 };
592 llvm::erase_if(Candidates, NoLongerGoodCandidate);
593 }
594
595 // Next, propagate the value stored by the store to the users of the load.
596 // Also for the first iteration, generate the initial value of the load.
597 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
598 "storeforward");
599 for (const auto &Cand : Candidates)
600 propagateStoredValueToLoadUsers(Cand, SEE);
601 NumLoopLoadEliminted += Candidates.size();
602
603 return true;
604 }
605
606 private:
607 Loop *L;
608
609 /// Maps the load/store instructions to their index according to
610 /// program order.
611 DenseMap<Instruction *, unsigned> InstOrder;
612
613 // Analyses used.
614 LoopInfo *LI;
615 const LoopAccessInfo &LAI;
616 DominatorTree *DT;
617 BlockFrequencyInfo *BFI;
618 ProfileSummaryInfo *PSI;
619 PredicatedScalarEvolution PSE;
620 };
621
622 } // end anonymous namespace
623
eliminateLoadsAcrossLoops(Function & F,LoopInfo & LI,DominatorTree & DT,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,ScalarEvolution * SE,AssumptionCache * AC,LoopAccessInfoManager & LAIs)624 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
625 DominatorTree &DT,
626 BlockFrequencyInfo *BFI,
627 ProfileSummaryInfo *PSI,
628 ScalarEvolution *SE, AssumptionCache *AC,
629 LoopAccessInfoManager &LAIs) {
630 // Build up a worklist of inner-loops to transform to avoid iterator
631 // invalidation.
632 // FIXME: This logic comes from other passes that actually change the loop
633 // nest structure. It isn't clear this is necessary (or useful) for a pass
634 // which merely optimizes the use of loads in a loop.
635 SmallVector<Loop *, 8> Worklist;
636
637 bool Changed = false;
638
639 for (Loop *TopLevelLoop : LI)
640 for (Loop *L : depth_first(TopLevelLoop)) {
641 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
642 // We only handle inner-most loops.
643 if (L->isInnermost())
644 Worklist.push_back(L);
645 }
646
647 // Now walk the identified inner loops.
648 for (Loop *L : Worklist) {
649 // Match historical behavior
650 if (!L->isRotatedForm() || !L->getExitingBlock())
651 continue;
652 // The actual work is performed by LoadEliminationForLoop.
653 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
654 Changed |= LEL.processLoop();
655 if (Changed)
656 LAIs.clear();
657 }
658 return Changed;
659 }
660
661 namespace {
662
663 /// The pass. Most of the work is delegated to the per-loop
664 /// LoadEliminationForLoop class.
665 class LoopLoadElimination : public FunctionPass {
666 public:
667 static char ID;
668
LoopLoadElimination()669 LoopLoadElimination() : FunctionPass(ID) {
670 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
671 }
672
runOnFunction(Function & F)673 bool runOnFunction(Function &F) override {
674 if (skipFunction(F))
675 return false;
676
677 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
678 auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
679 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
680 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
681 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
682 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
683 nullptr;
684 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
685
686 // Process each loop nest in the function.
687 return eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, SE, /*AC*/ nullptr,
688 LAIs);
689 }
690
getAnalysisUsage(AnalysisUsage & AU) const691 void getAnalysisUsage(AnalysisUsage &AU) const override {
692 AU.addRequiredID(LoopSimplifyID);
693 AU.addRequired<LoopInfoWrapperPass>();
694 AU.addPreserved<LoopInfoWrapperPass>();
695 AU.addRequired<LoopAccessLegacyAnalysis>();
696 AU.addRequired<ScalarEvolutionWrapperPass>();
697 AU.addRequired<DominatorTreeWrapperPass>();
698 AU.addPreserved<DominatorTreeWrapperPass>();
699 AU.addPreserved<GlobalsAAWrapperPass>();
700 AU.addRequired<ProfileSummaryInfoWrapperPass>();
701 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
702 }
703 };
704
705 } // end anonymous namespace
706
707 char LoopLoadElimination::ID;
708
709 static const char LLE_name[] = "Loop Load Elimination";
710
INITIALIZE_PASS_BEGIN(LoopLoadElimination,LLE_OPTION,LLE_name,false,false)711 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
712 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
713 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
714 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
715 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
716 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
717 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
718 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
719 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
720
721 FunctionPass *llvm::createLoopLoadEliminationPass() {
722 return new LoopLoadElimination();
723 }
724
run(Function & F,FunctionAnalysisManager & AM)725 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
726 FunctionAnalysisManager &AM) {
727 auto &LI = AM.getResult<LoopAnalysis>(F);
728 // There are no loops in the function. Return before computing other expensive
729 // analyses.
730 if (LI.empty())
731 return PreservedAnalyses::all();
732 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
733 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
734 auto &AC = AM.getResult<AssumptionAnalysis>(F);
735 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
736 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
737 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
738 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
739 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
740
741 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
742
743 if (!Changed)
744 return PreservedAnalyses::all();
745
746 PreservedAnalyses PA;
747 return PA;
748 }
749