1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
11 //
12 // float a[32][32]; // global variable
13 //
14 // for (int i = 0; i < 2; ++i) {
15 // for (int j = 0; j < 2; ++j) {
16 // ...
17 // ... = a[x + i][y + j];
18 // ...
19 // }
20 // }
21 //
22 // will probably be unrolled to:
23 //
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
28 //
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
36 //
37 // mov.u32 %r1, %x;
38 // mov.u32 %r2, %y;
39 // mul.wide.u32 %rl2, %r1, 128;
40 // mov.u64 %rl3, a;
41 // add.s64 %rl4, %rl3, %rl2;
42 // mul.wide.u32 %rl5, %r2, 4;
43 // add.s64 %rl6, %rl4, %rl5;
44 // ld.global.f32 %f1, [%rl6];
45 //
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
49 //
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
54 //
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
57 //
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1 * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
63 //
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68 //
69 // mov.u32 %r1, %tid.x;
70 // mov.u32 %r2, %tid.y;
71 // mul.wide.u32 %rl2, %r1, 128;
72 // mov.u64 %rl3, a;
73 // add.s64 %rl4, %rl3, %rl2;
74 // mul.wide.u32 %rl5, %r2, 4;
75 // add.s64 %rl6, %rl4, %rl5;
76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32 %f2, [%rl6+4]; // much better
78 // ld.global.f32 %f3, [%rl6+128]; // much better
79 // ld.global.f32 %f4, [%rl6+132]; // much better
80 //
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 // CSE, LICM and CGP.
88 //
89 // E.g. The following GEPs have multiple indices:
90 // BB1:
91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 // load %p
93 // ...
94 // BB2:
95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 // load %p2
97 // ...
98 //
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 // BB1:
104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
106 // %3 = add i64 %1, %2 ; CSE opportunity
107 // %4 = mul i64 %j1, length_of_struct
108 // %5 = add i64 %3, %4
109 // %6 = add i64 %3, struct_field_3 ; Constant offset
110 // %p = inttoptr i64 %6 to i32*
111 // load %p
112 // ...
113 // BB2:
114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
116 // %9 = add i64 %7, %8 ; CSE opportunity
117 // %10 = mul i64 %j2, length_of_struct
118 // %11 = add i64 %9, %10
119 // %12 = add i64 %11, struct_field_2 ; Constant offset
120 // %p = inttoptr i64 %12 to i32*
121 // load %p2
122 // ...
123 //
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 // BB1:
127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
130 // %4 = mul i64 %j1, length_of_struct
131 // %5 = getelementptr i8* %3, i64 %4
132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
133 // %p = bitcast i8* %6 to i32*
134 // load %p
135 // ...
136 // BB2:
137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
140 // %10 = mul i64 %j2, length_of_struct
141 // %11 = getelementptr i8* %9, i64 %10
142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
143 // %p2 = bitcast i8* %12 to i32*
144 // load %p2
145 // ...
146 //
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
155 //
156 //===----------------------------------------------------------------------===//
157
158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
159 #include "llvm/ADT/APInt.h"
160 #include "llvm/ADT/DenseMap.h"
161 #include "llvm/ADT/DepthFirstIterator.h"
162 #include "llvm/ADT/SmallVector.h"
163 #include "llvm/Analysis/LoopInfo.h"
164 #include "llvm/Analysis/MemoryBuiltins.h"
165 #include "llvm/Analysis/ScalarEvolution.h"
166 #include "llvm/Analysis/TargetLibraryInfo.h"
167 #include "llvm/Analysis/TargetTransformInfo.h"
168 #include "llvm/Analysis/ValueTracking.h"
169 #include "llvm/IR/BasicBlock.h"
170 #include "llvm/IR/Constant.h"
171 #include "llvm/IR/Constants.h"
172 #include "llvm/IR/DataLayout.h"
173 #include "llvm/IR/DerivedTypes.h"
174 #include "llvm/IR/Dominators.h"
175 #include "llvm/IR/Function.h"
176 #include "llvm/IR/GetElementPtrTypeIterator.h"
177 #include "llvm/IR/IRBuilder.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PassManager.h"
182 #include "llvm/IR/PatternMatch.h"
183 #include "llvm/IR/Type.h"
184 #include "llvm/IR/User.h"
185 #include "llvm/IR/Value.h"
186 #include "llvm/InitializePasses.h"
187 #include "llvm/Pass.h"
188 #include "llvm/Support/Casting.h"
189 #include "llvm/Support/CommandLine.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/raw_ostream.h"
192 #include "llvm/Transforms/Scalar.h"
193 #include "llvm/Transforms/Utils/Local.h"
194 #include <cassert>
195 #include <cstdint>
196 #include <string>
197
198 using namespace llvm;
199 using namespace llvm::PatternMatch;
200
201 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
202 "disable-separate-const-offset-from-gep", cl::init(false),
203 cl::desc("Do not separate the constant offset from a GEP instruction"),
204 cl::Hidden);
205
206 // Setting this flag may emit false positives when the input module already
207 // contains dead instructions. Therefore, we set it only in unit tests that are
208 // free of dead code.
209 static cl::opt<bool>
210 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
211 cl::desc("Verify this pass produces no dead code"),
212 cl::Hidden);
213
214 namespace {
215
216 /// A helper class for separating a constant offset from a GEP index.
217 ///
218 /// In real programs, a GEP index may be more complicated than a simple addition
219 /// of something and a constant integer which can be trivially splitted. For
220 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
221 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
222 ///
223 /// Therefore, this class looks into the expression that computes a given GEP
224 /// index, and tries to find a constant integer that can be hoisted to the
225 /// outermost level of the expression as an addition. Not every constant in an
226 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
227 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
228 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
229 class ConstantOffsetExtractor {
230 public:
231 /// Extracts a constant offset from the given GEP index. It returns the
232 /// new index representing the remainder (equal to the original index minus
233 /// the constant offset), or nullptr if we cannot extract a constant offset.
234 /// \p Idx The given GEP index
235 /// \p GEP The given GEP
236 /// \p UserChainTail Outputs the tail of UserChain so that we can
237 /// garbage-collect unused instructions in UserChain.
238 static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
239 User *&UserChainTail, const DominatorTree *DT);
240
241 /// Looks for a constant offset from the given GEP index without extracting
242 /// it. It returns the numeric value of the extracted constant offset (0 if
243 /// failed). The meaning of the arguments are the same as Extract.
244 static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
245 const DominatorTree *DT);
246
247 private:
ConstantOffsetExtractor(Instruction * InsertionPt,const DominatorTree * DT)248 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
249 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
250 }
251
252 /// Searches the expression that computes V for a non-zero constant C s.t.
253 /// V can be reassociated into the form V' + C. If the searching is
254 /// successful, returns C and update UserChain as a def-use chain from C to V;
255 /// otherwise, UserChain is empty.
256 ///
257 /// \p V The given expression
258 /// \p SignExtended Whether V will be sign-extended in the computation of the
259 /// GEP index
260 /// \p ZeroExtended Whether V will be zero-extended in the computation of the
261 /// GEP index
262 /// \p NonNegative Whether V is guaranteed to be non-negative. For example,
263 /// an index of an inbounds GEP is guaranteed to be
264 /// non-negative. Levaraging this, we can better split
265 /// inbounds GEPs.
266 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
267
268 /// A helper function to look into both operands of a binary operator.
269 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
270 bool ZeroExtended);
271
272 /// After finding the constant offset C from the GEP index I, we build a new
273 /// index I' s.t. I' + C = I. This function builds and returns the new
274 /// index I' according to UserChain produced by function "find".
275 ///
276 /// The building conceptually takes two steps:
277 /// 1) iteratively distribute s/zext towards the leaves of the expression tree
278 /// that computes I
279 /// 2) reassociate the expression tree to the form I' + C.
280 ///
281 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
282 /// sext to a, b and 5 so that we have
283 /// sext(a) + (sext(b) + 5).
284 /// Then, we reassociate it to
285 /// (sext(a) + sext(b)) + 5.
286 /// Given this form, we know I' is sext(a) + sext(b).
287 Value *rebuildWithoutConstOffset();
288
289 /// After the first step of rebuilding the GEP index without the constant
290 /// offset, distribute s/zext to the operands of all operators in UserChain.
291 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
292 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
293 ///
294 /// The function also updates UserChain to point to new subexpressions after
295 /// distributing s/zext. e.g., the old UserChain of the above example is
296 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
297 /// and the new UserChain is
298 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
299 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
300 ///
301 /// \p ChainIndex The index to UserChain. ChainIndex is initially
302 /// UserChain.size() - 1, and is decremented during
303 /// the recursion.
304 Value *distributeExtsAndCloneChain(unsigned ChainIndex);
305
306 /// Reassociates the GEP index to the form I' + C and returns I'.
307 Value *removeConstOffset(unsigned ChainIndex);
308
309 /// A helper function to apply ExtInsts, a list of s/zext, to value V.
310 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
311 /// returns "sext i32 (zext i16 V to i32) to i64".
312 Value *applyExts(Value *V);
313
314 /// A helper function that returns whether we can trace into the operands
315 /// of binary operator BO for a constant offset.
316 ///
317 /// \p SignExtended Whether BO is surrounded by sext
318 /// \p ZeroExtended Whether BO is surrounded by zext
319 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
320 /// array index.
321 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
322 bool NonNegative);
323
324 /// The path from the constant offset to the old GEP index. e.g., if the GEP
325 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
326 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
327 /// UserChain[2] will be the entire expression "a * b + (c + 5)".
328 ///
329 /// This path helps to rebuild the new GEP index.
330 SmallVector<User *, 8> UserChain;
331
332 /// A data structure used in rebuildWithoutConstOffset. Contains all
333 /// sext/zext instructions along UserChain.
334 SmallVector<CastInst *, 16> ExtInsts;
335
336 /// Insertion position of cloned instructions.
337 Instruction *IP;
338
339 const DataLayout &DL;
340 const DominatorTree *DT;
341 };
342
343 /// A pass that tries to split every GEP in the function into a variadic
344 /// base and a constant offset. It is a FunctionPass because searching for the
345 /// constant offset may inspect other basic blocks.
346 class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass {
347 public:
348 static char ID;
349
SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP=false)350 SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false)
351 : FunctionPass(ID), LowerGEP(LowerGEP) {
352 initializeSeparateConstOffsetFromGEPLegacyPassPass(
353 *PassRegistry::getPassRegistry());
354 }
355
getAnalysisUsage(AnalysisUsage & AU) const356 void getAnalysisUsage(AnalysisUsage &AU) const override {
357 AU.addRequired<DominatorTreeWrapperPass>();
358 AU.addRequired<ScalarEvolutionWrapperPass>();
359 AU.addRequired<TargetTransformInfoWrapperPass>();
360 AU.addRequired<LoopInfoWrapperPass>();
361 AU.setPreservesCFG();
362 AU.addRequired<TargetLibraryInfoWrapperPass>();
363 }
364
365 bool runOnFunction(Function &F) override;
366
367 private:
368 bool LowerGEP;
369 };
370
371 /// A pass that tries to split every GEP in the function into a variadic
372 /// base and a constant offset. It is a FunctionPass because searching for the
373 /// constant offset may inspect other basic blocks.
374 class SeparateConstOffsetFromGEP {
375 public:
SeparateConstOffsetFromGEP(DominatorTree * DT,ScalarEvolution * SE,LoopInfo * LI,TargetLibraryInfo * TLI,function_ref<TargetTransformInfo & (Function &)> GetTTI,bool LowerGEP)376 SeparateConstOffsetFromGEP(
377 DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI,
378 TargetLibraryInfo *TLI,
379 function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP)
380 : DT(DT), SE(SE), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {}
381
382 bool run(Function &F);
383
384 private:
385 /// Tries to split the given GEP into a variadic base and a constant offset,
386 /// and returns true if the splitting succeeds.
387 bool splitGEP(GetElementPtrInst *GEP);
388
389 /// Lower a GEP with multiple indices into multiple GEPs with a single index.
390 /// Function splitGEP already split the original GEP into a variadic part and
391 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
392 /// variadic part into a set of GEPs with a single index and applies
393 /// AccumulativeByteOffset to it.
394 /// \p Variadic The variadic part of the original GEP.
395 /// \p AccumulativeByteOffset The constant offset.
396 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
397 int64_t AccumulativeByteOffset);
398
399 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
400 /// Function splitGEP already split the original GEP into a variadic part and
401 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
402 /// variadic part into a set of arithmetic operations and applies
403 /// AccumulativeByteOffset to it.
404 /// \p Variadic The variadic part of the original GEP.
405 /// \p AccumulativeByteOffset The constant offset.
406 void lowerToArithmetics(GetElementPtrInst *Variadic,
407 int64_t AccumulativeByteOffset);
408
409 /// Finds the constant offset within each index and accumulates them. If
410 /// LowerGEP is true, it finds in indices of both sequential and structure
411 /// types, otherwise it only finds in sequential indices. The output
412 /// NeedsExtraction indicates whether we successfully find a non-zero constant
413 /// offset.
414 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
415
416 /// Canonicalize array indices to pointer-size integers. This helps to
417 /// simplify the logic of splitting a GEP. For example, if a + b is a
418 /// pointer-size integer, we have
419 /// gep base, a + b = gep (gep base, a), b
420 /// However, this equality may not hold if the size of a + b is smaller than
421 /// the pointer size, because LLVM conceptually sign-extends GEP indices to
422 /// pointer size before computing the address
423 /// (http://llvm.org/docs/LangRef.html#id181).
424 ///
425 /// This canonicalization is very likely already done in clang and
426 /// instcombine. Therefore, the program will probably remain the same.
427 ///
428 /// Returns true if the module changes.
429 ///
430 /// Verified in @i32_add in split-gep.ll
431 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
432
433 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
434 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
435 /// the constant offset. After extraction, it becomes desirable to reunion the
436 /// distributed sexts. For example,
437 ///
438 /// &a[sext(i +nsw (j +nsw 5)]
439 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
440 /// => constant extraction &a[sext(i) + sext(j)] + 5
441 /// => reunion &a[sext(i +nsw j)] + 5
442 bool reuniteExts(Function &F);
443
444 /// A helper that reunites sexts in an instruction.
445 bool reuniteExts(Instruction *I);
446
447 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
448 Instruction *findClosestMatchingDominator(
449 const SCEV *Key, Instruction *Dominatee,
450 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs);
451
452 /// Verify F is free of dead code.
453 void verifyNoDeadCode(Function &F);
454
455 bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
456
457 // Swap the index operand of two GEP.
458 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
459
460 // Check if it is safe to swap operand of two GEP.
461 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
462 Loop *CurLoop);
463
464 const DataLayout *DL = nullptr;
465 DominatorTree *DT = nullptr;
466 ScalarEvolution *SE;
467 LoopInfo *LI;
468 TargetLibraryInfo *TLI;
469 // Retrieved lazily since not always used.
470 function_ref<TargetTransformInfo &(Function &)> GetTTI;
471
472 /// Whether to lower a GEP with multiple indices into arithmetic operations or
473 /// multiple GEPs with a single index.
474 bool LowerGEP;
475
476 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds;
477 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs;
478 };
479
480 } // end anonymous namespace
481
482 char SeparateConstOffsetFromGEPLegacyPass::ID = 0;
483
484 INITIALIZE_PASS_BEGIN(
485 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
486 "Split GEPs to a variadic base and a constant offset for better CSE", false,
487 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)488 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
489 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
490 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
491 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
493 INITIALIZE_PASS_END(
494 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
495 "Split GEPs to a variadic base and a constant offset for better CSE", false,
496 false)
497
498 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
499 return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP);
500 }
501
CanTraceInto(bool SignExtended,bool ZeroExtended,BinaryOperator * BO,bool NonNegative)502 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
503 bool ZeroExtended,
504 BinaryOperator *BO,
505 bool NonNegative) {
506 // We only consider ADD, SUB and OR, because a non-zero constant found in
507 // expressions composed of these operations can be easily hoisted as a
508 // constant offset by reassociation.
509 if (BO->getOpcode() != Instruction::Add &&
510 BO->getOpcode() != Instruction::Sub &&
511 BO->getOpcode() != Instruction::Or) {
512 return false;
513 }
514
515 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
516 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
517 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
518 // FIXME: this does not appear to be covered by any tests
519 // (with x86/aarch64 backends at least)
520 if (BO->getOpcode() == Instruction::Or &&
521 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
522 return false;
523
524 // In addition, tracing into BO requires that its surrounding s/zext (if
525 // any) is distributable to both operands.
526 //
527 // Suppose BO = A op B.
528 // SignExtended | ZeroExtended | Distributable?
529 // --------------+--------------+----------------------------------
530 // 0 | 0 | true because no s/zext exists
531 // 0 | 1 | zext(BO) == zext(A) op zext(B)
532 // 1 | 0 | sext(BO) == sext(A) op sext(B)
533 // 1 | 1 | zext(sext(BO)) ==
534 // | | zext(sext(A)) op zext(sext(B))
535 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
536 // If a + b >= 0 and (a >= 0 or b >= 0), then
537 // sext(a + b) = sext(a) + sext(b)
538 // even if the addition is not marked nsw.
539 //
540 // Leveraging this invariant, we can trace into an sext'ed inbound GEP
541 // index if the constant offset is non-negative.
542 //
543 // Verified in @sext_add in split-gep.ll.
544 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
545 if (!ConstLHS->isNegative())
546 return true;
547 }
548 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
549 if (!ConstRHS->isNegative())
550 return true;
551 }
552 }
553
554 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
555 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
556 if (BO->getOpcode() == Instruction::Add ||
557 BO->getOpcode() == Instruction::Sub) {
558 if (SignExtended && !BO->hasNoSignedWrap())
559 return false;
560 if (ZeroExtended && !BO->hasNoUnsignedWrap())
561 return false;
562 }
563
564 return true;
565 }
566
findInEitherOperand(BinaryOperator * BO,bool SignExtended,bool ZeroExtended)567 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
568 bool SignExtended,
569 bool ZeroExtended) {
570 // Save off the current height of the chain, in case we need to restore it.
571 size_t ChainLength = UserChain.size();
572
573 // BO being non-negative does not shed light on whether its operands are
574 // non-negative. Clear the NonNegative flag here.
575 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
576 /* NonNegative */ false);
577 // If we found a constant offset in the left operand, stop and return that.
578 // This shortcut might cause us to miss opportunities of combining the
579 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
580 // However, such cases are probably already handled by -instcombine,
581 // given this pass runs after the standard optimizations.
582 if (ConstantOffset != 0) return ConstantOffset;
583
584 // Reset the chain back to where it was when we started exploring this node,
585 // since visiting the LHS didn't pan out.
586 UserChain.resize(ChainLength);
587
588 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
589 /* NonNegative */ false);
590 // If U is a sub operator, negate the constant offset found in the right
591 // operand.
592 if (BO->getOpcode() == Instruction::Sub)
593 ConstantOffset = -ConstantOffset;
594
595 // If RHS wasn't a suitable candidate either, reset the chain again.
596 if (ConstantOffset == 0)
597 UserChain.resize(ChainLength);
598
599 return ConstantOffset;
600 }
601
find(Value * V,bool SignExtended,bool ZeroExtended,bool NonNegative)602 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
603 bool ZeroExtended, bool NonNegative) {
604 // TODO(jingyue): We could trace into integer/pointer casts, such as
605 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
606 // integers because it gives good enough results for our benchmarks.
607 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
608
609 // We cannot do much with Values that are not a User, such as an Argument.
610 User *U = dyn_cast<User>(V);
611 if (U == nullptr) return APInt(BitWidth, 0);
612
613 APInt ConstantOffset(BitWidth, 0);
614 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
615 // Hooray, we found it!
616 ConstantOffset = CI->getValue();
617 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
618 // Trace into subexpressions for more hoisting opportunities.
619 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
620 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
621 } else if (isa<TruncInst>(V)) {
622 ConstantOffset =
623 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
624 .trunc(BitWidth);
625 } else if (isa<SExtInst>(V)) {
626 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
627 ZeroExtended, NonNegative).sext(BitWidth);
628 } else if (isa<ZExtInst>(V)) {
629 // As an optimization, we can clear the SignExtended flag because
630 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
631 //
632 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
633 ConstantOffset =
634 find(U->getOperand(0), /* SignExtended */ false,
635 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
636 }
637
638 // If we found a non-zero constant offset, add it to the path for
639 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
640 // help this optimization.
641 if (ConstantOffset != 0)
642 UserChain.push_back(U);
643 return ConstantOffset;
644 }
645
applyExts(Value * V)646 Value *ConstantOffsetExtractor::applyExts(Value *V) {
647 Value *Current = V;
648 // ExtInsts is built in the use-def order. Therefore, we apply them to V
649 // in the reversed order.
650 for (CastInst *I : llvm::reverse(ExtInsts)) {
651 if (Constant *C = dyn_cast<Constant>(Current)) {
652 // If Current is a constant, apply s/zext using ConstantExpr::getCast.
653 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
654 Current = ConstantExpr::getCast(I->getOpcode(), C, I->getType());
655 } else {
656 Instruction *Ext = I->clone();
657 Ext->setOperand(0, Current);
658 Ext->insertBefore(IP);
659 Current = Ext;
660 }
661 }
662 return Current;
663 }
664
rebuildWithoutConstOffset()665 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
666 distributeExtsAndCloneChain(UserChain.size() - 1);
667 // Remove all nullptrs (used to be s/zext) from UserChain.
668 unsigned NewSize = 0;
669 for (User *I : UserChain) {
670 if (I != nullptr) {
671 UserChain[NewSize] = I;
672 NewSize++;
673 }
674 }
675 UserChain.resize(NewSize);
676 return removeConstOffset(UserChain.size() - 1);
677 }
678
679 Value *
distributeExtsAndCloneChain(unsigned ChainIndex)680 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
681 User *U = UserChain[ChainIndex];
682 if (ChainIndex == 0) {
683 assert(isa<ConstantInt>(U));
684 // If U is a ConstantInt, applyExts will return a ConstantInt as well.
685 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
686 }
687
688 if (CastInst *Cast = dyn_cast<CastInst>(U)) {
689 assert(
690 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
691 "Only following instructions can be traced: sext, zext & trunc");
692 ExtInsts.push_back(Cast);
693 UserChain[ChainIndex] = nullptr;
694 return distributeExtsAndCloneChain(ChainIndex - 1);
695 }
696
697 // Function find only trace into BinaryOperator and CastInst.
698 BinaryOperator *BO = cast<BinaryOperator>(U);
699 // OpNo = which operand of BO is UserChain[ChainIndex - 1]
700 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
701 Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
702 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
703
704 BinaryOperator *NewBO = nullptr;
705 if (OpNo == 0) {
706 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
707 BO->getName(), IP);
708 } else {
709 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
710 BO->getName(), IP);
711 }
712 return UserChain[ChainIndex] = NewBO;
713 }
714
removeConstOffset(unsigned ChainIndex)715 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
716 if (ChainIndex == 0) {
717 assert(isa<ConstantInt>(UserChain[ChainIndex]));
718 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
719 }
720
721 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
722 assert((BO->use_empty() || BO->hasOneUse()) &&
723 "distributeExtsAndCloneChain clones each BinaryOperator in "
724 "UserChain, so no one should be used more than "
725 "once");
726
727 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
728 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
729 Value *NextInChain = removeConstOffset(ChainIndex - 1);
730 Value *TheOther = BO->getOperand(1 - OpNo);
731
732 // If NextInChain is 0 and not the LHS of a sub, we can simplify the
733 // sub-expression to be just TheOther.
734 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
735 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
736 return TheOther;
737 }
738
739 BinaryOperator::BinaryOps NewOp = BO->getOpcode();
740 if (BO->getOpcode() == Instruction::Or) {
741 // Rebuild "or" as "add", because "or" may be invalid for the new
742 // expression.
743 //
744 // For instance, given
745 // a | (b + 5) where a and b + 5 have no common bits,
746 // we can extract 5 as the constant offset.
747 //
748 // However, reusing the "or" in the new index would give us
749 // (a | b) + 5
750 // which does not equal a | (b + 5).
751 //
752 // Replacing the "or" with "add" is fine, because
753 // a | (b + 5) = a + (b + 5) = (a + b) + 5
754 NewOp = Instruction::Add;
755 }
756
757 BinaryOperator *NewBO;
758 if (OpNo == 0) {
759 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
760 } else {
761 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
762 }
763 NewBO->takeName(BO);
764 return NewBO;
765 }
766
Extract(Value * Idx,GetElementPtrInst * GEP,User * & UserChainTail,const DominatorTree * DT)767 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
768 User *&UserChainTail,
769 const DominatorTree *DT) {
770 ConstantOffsetExtractor Extractor(GEP, DT);
771 // Find a non-zero constant offset first.
772 APInt ConstantOffset =
773 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
774 GEP->isInBounds());
775 if (ConstantOffset == 0) {
776 UserChainTail = nullptr;
777 return nullptr;
778 }
779 // Separates the constant offset from the GEP index.
780 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
781 UserChainTail = Extractor.UserChain.back();
782 return IdxWithoutConstOffset;
783 }
784
Find(Value * Idx,GetElementPtrInst * GEP,const DominatorTree * DT)785 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
786 const DominatorTree *DT) {
787 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
788 return ConstantOffsetExtractor(GEP, DT)
789 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
790 GEP->isInBounds())
791 .getSExtValue();
792 }
793
canonicalizeArrayIndicesToPointerSize(GetElementPtrInst * GEP)794 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
795 GetElementPtrInst *GEP) {
796 bool Changed = false;
797 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
798 gep_type_iterator GTI = gep_type_begin(*GEP);
799 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
800 I != E; ++I, ++GTI) {
801 // Skip struct member indices which must be i32.
802 if (GTI.isSequential()) {
803 if ((*I)->getType() != IntPtrTy) {
804 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
805 Changed = true;
806 }
807 }
808 }
809 return Changed;
810 }
811
812 int64_t
accumulateByteOffset(GetElementPtrInst * GEP,bool & NeedsExtraction)813 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
814 bool &NeedsExtraction) {
815 NeedsExtraction = false;
816 int64_t AccumulativeByteOffset = 0;
817 gep_type_iterator GTI = gep_type_begin(*GEP);
818 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
819 if (GTI.isSequential()) {
820 // Constant offsets of scalable types are not really constant.
821 if (isa<ScalableVectorType>(GTI.getIndexedType()))
822 continue;
823
824 // Tries to extract a constant offset from this GEP index.
825 int64_t ConstantOffset =
826 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
827 if (ConstantOffset != 0) {
828 NeedsExtraction = true;
829 // A GEP may have multiple indices. We accumulate the extracted
830 // constant offset to a byte offset, and later offset the remainder of
831 // the original GEP with this byte offset.
832 AccumulativeByteOffset +=
833 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
834 }
835 } else if (LowerGEP) {
836 StructType *StTy = GTI.getStructType();
837 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
838 // Skip field 0 as the offset is always 0.
839 if (Field != 0) {
840 NeedsExtraction = true;
841 AccumulativeByteOffset +=
842 DL->getStructLayout(StTy)->getElementOffset(Field);
843 }
844 }
845 }
846 return AccumulativeByteOffset;
847 }
848
lowerToSingleIndexGEPs(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)849 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
850 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
851 IRBuilder<> Builder(Variadic);
852 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
853
854 Type *I8PtrTy =
855 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
856 Value *ResultPtr = Variadic->getOperand(0);
857 Loop *L = LI->getLoopFor(Variadic->getParent());
858 // Check if the base is not loop invariant or used more than once.
859 bool isSwapCandidate =
860 L && L->isLoopInvariant(ResultPtr) &&
861 !hasMoreThanOneUseInLoop(ResultPtr, L);
862 Value *FirstResult = nullptr;
863
864 if (ResultPtr->getType() != I8PtrTy)
865 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
866
867 gep_type_iterator GTI = gep_type_begin(*Variadic);
868 // Create an ugly GEP for each sequential index. We don't create GEPs for
869 // structure indices, as they are accumulated in the constant offset index.
870 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
871 if (GTI.isSequential()) {
872 Value *Idx = Variadic->getOperand(I);
873 // Skip zero indices.
874 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
875 if (CI->isZero())
876 continue;
877
878 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
879 DL->getTypeAllocSize(GTI.getIndexedType()));
880 // Scale the index by element size.
881 if (ElementSize != 1) {
882 if (ElementSize.isPowerOf2()) {
883 Idx = Builder.CreateShl(
884 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
885 } else {
886 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
887 }
888 }
889 // Create an ugly GEP with a single index for each index.
890 ResultPtr =
891 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
892 if (FirstResult == nullptr)
893 FirstResult = ResultPtr;
894 }
895 }
896
897 // Create a GEP with the constant offset index.
898 if (AccumulativeByteOffset != 0) {
899 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
900 ResultPtr =
901 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
902 } else
903 isSwapCandidate = false;
904
905 // If we created a GEP with constant index, and the base is loop invariant,
906 // then we swap the first one with it, so LICM can move constant GEP out
907 // later.
908 auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
909 auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
910 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
911 swapGEPOperand(FirstGEP, SecondGEP);
912
913 if (ResultPtr->getType() != Variadic->getType())
914 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
915
916 Variadic->replaceAllUsesWith(ResultPtr);
917 Variadic->eraseFromParent();
918 }
919
920 void
lowerToArithmetics(GetElementPtrInst * Variadic,int64_t AccumulativeByteOffset)921 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
922 int64_t AccumulativeByteOffset) {
923 IRBuilder<> Builder(Variadic);
924 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
925
926 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
927 gep_type_iterator GTI = gep_type_begin(*Variadic);
928 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
929 // don't create arithmetics for structure indices, as they are accumulated
930 // in the constant offset index.
931 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
932 if (GTI.isSequential()) {
933 Value *Idx = Variadic->getOperand(I);
934 // Skip zero indices.
935 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
936 if (CI->isZero())
937 continue;
938
939 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
940 DL->getTypeAllocSize(GTI.getIndexedType()));
941 // Scale the index by element size.
942 if (ElementSize != 1) {
943 if (ElementSize.isPowerOf2()) {
944 Idx = Builder.CreateShl(
945 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
946 } else {
947 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
948 }
949 }
950 // Create an ADD for each index.
951 ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
952 }
953 }
954
955 // Create an ADD for the constant offset index.
956 if (AccumulativeByteOffset != 0) {
957 ResultPtr = Builder.CreateAdd(
958 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
959 }
960
961 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
962 Variadic->replaceAllUsesWith(ResultPtr);
963 Variadic->eraseFromParent();
964 }
965
splitGEP(GetElementPtrInst * GEP)966 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
967 // Skip vector GEPs.
968 if (GEP->getType()->isVectorTy())
969 return false;
970
971 // The backend can already nicely handle the case where all indices are
972 // constant.
973 if (GEP->hasAllConstantIndices())
974 return false;
975
976 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
977
978 bool NeedsExtraction;
979 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
980
981 if (!NeedsExtraction)
982 return Changed;
983
984 TargetTransformInfo &TTI = GetTTI(*GEP->getFunction());
985
986 // If LowerGEP is disabled, before really splitting the GEP, check whether the
987 // backend supports the addressing mode we are about to produce. If no, this
988 // splitting probably won't be beneficial.
989 // If LowerGEP is enabled, even the extracted constant offset can not match
990 // the addressing mode, we can still do optimizations to other lowered parts
991 // of variable indices. Therefore, we don't check for addressing modes in that
992 // case.
993 if (!LowerGEP) {
994 unsigned AddrSpace = GEP->getPointerAddressSpace();
995 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
996 /*BaseGV=*/nullptr, AccumulativeByteOffset,
997 /*HasBaseReg=*/true, /*Scale=*/0,
998 AddrSpace)) {
999 return Changed;
1000 }
1001 }
1002
1003 // Remove the constant offset in each sequential index. The resultant GEP
1004 // computes the variadic base.
1005 // Notice that we don't remove struct field indices here. If LowerGEP is
1006 // disabled, a structure index is not accumulated and we still use the old
1007 // one. If LowerGEP is enabled, a structure index is accumulated in the
1008 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
1009 // handle the constant offset and won't need a new structure index.
1010 gep_type_iterator GTI = gep_type_begin(*GEP);
1011 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
1012 if (GTI.isSequential()) {
1013 // Constant offsets of scalable types are not really constant.
1014 if (isa<ScalableVectorType>(GTI.getIndexedType()))
1015 continue;
1016
1017 // Splits this GEP index into a variadic part and a constant offset, and
1018 // uses the variadic part as the new index.
1019 Value *OldIdx = GEP->getOperand(I);
1020 User *UserChainTail;
1021 Value *NewIdx =
1022 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
1023 if (NewIdx != nullptr) {
1024 // Switches to the index with the constant offset removed.
1025 GEP->setOperand(I, NewIdx);
1026 // After switching to the new index, we can garbage-collect UserChain
1027 // and the old index if they are not used.
1028 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
1029 RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
1030 }
1031 }
1032 }
1033
1034 // Clear the inbounds attribute because the new index may be off-bound.
1035 // e.g.,
1036 //
1037 // b = add i64 a, 5
1038 // addr = gep inbounds float, float* p, i64 b
1039 //
1040 // is transformed to:
1041 //
1042 // addr2 = gep float, float* p, i64 a ; inbounds removed
1043 // addr = gep inbounds float, float* addr2, i64 5
1044 //
1045 // If a is -4, although the old index b is in bounds, the new index a is
1046 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1047 // inbounds keyword is not present, the offsets are added to the base
1048 // address with silently-wrapping two's complement arithmetic".
1049 // Therefore, the final code will be a semantically equivalent.
1050 //
1051 // TODO(jingyue): do some range analysis to keep as many inbounds as
1052 // possible. GEPs with inbounds are more friendly to alias analysis.
1053 bool GEPWasInBounds = GEP->isInBounds();
1054 GEP->setIsInBounds(false);
1055
1056 // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1057 if (LowerGEP) {
1058 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1059 // arithmetic operations if the target uses alias analysis in codegen.
1060 if (TTI.useAA())
1061 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1062 else
1063 lowerToArithmetics(GEP, AccumulativeByteOffset);
1064 return true;
1065 }
1066
1067 // No need to create another GEP if the accumulative byte offset is 0.
1068 if (AccumulativeByteOffset == 0)
1069 return true;
1070
1071 // Offsets the base with the accumulative byte offset.
1072 //
1073 // %gep ; the base
1074 // ... %gep ...
1075 //
1076 // => add the offset
1077 //
1078 // %gep2 ; clone of %gep
1079 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1080 // %gep ; will be removed
1081 // ... %gep ...
1082 //
1083 // => replace all uses of %gep with %new.gep and remove %gep
1084 //
1085 // %gep2 ; clone of %gep
1086 // %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1087 // ... %new.gep ...
1088 //
1089 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1090 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1091 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1092 // type of %gep.
1093 //
1094 // %gep2 ; clone of %gep
1095 // %0 = bitcast %gep2 to i8*
1096 // %uglygep = gep %0, <offset>
1097 // %new.gep = bitcast %uglygep to <type of %gep>
1098 // ... %new.gep ...
1099 Instruction *NewGEP = GEP->clone();
1100 NewGEP->insertBefore(GEP);
1101
1102 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1103 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1104 // used with unsigned integers later.
1105 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1106 DL->getTypeAllocSize(GEP->getResultElementType()));
1107 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1108 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1109 // Very likely. As long as %gep is naturally aligned, the byte offset we
1110 // extracted should be a multiple of sizeof(*%gep).
1111 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1112 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1113 ConstantInt::get(IntPtrTy, Index, true),
1114 GEP->getName(), GEP);
1115 NewGEP->copyMetadata(*GEP);
1116 // Inherit the inbounds attribute of the original GEP.
1117 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1118 } else {
1119 // Unlikely but possible. For example,
1120 // #pragma pack(1)
1121 // struct S {
1122 // int a[3];
1123 // int64 b[8];
1124 // };
1125 // #pragma pack()
1126 //
1127 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1128 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1129 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1130 // sizeof(int64).
1131 //
1132 // Emit an uglygep in this case.
1133 IRBuilder<> Builder(GEP);
1134 Type *I8PtrTy =
1135 Builder.getInt8Ty()->getPointerTo(GEP->getPointerAddressSpace());
1136
1137 NewGEP = cast<Instruction>(Builder.CreateGEP(
1138 Builder.getInt8Ty(), Builder.CreateBitCast(NewGEP, I8PtrTy),
1139 {ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true)}, "uglygep",
1140 GEPWasInBounds));
1141
1142 NewGEP->copyMetadata(*GEP);
1143 NewGEP = cast<Instruction>(Builder.CreateBitCast(NewGEP, GEP->getType()));
1144 }
1145
1146 GEP->replaceAllUsesWith(NewGEP);
1147 GEP->eraseFromParent();
1148
1149 return true;
1150 }
1151
runOnFunction(Function & F)1152 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) {
1153 if (skipFunction(F))
1154 return false;
1155 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1156 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1157 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1158 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1159 auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
1160 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1161 };
1162 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
1163 return Impl.run(F);
1164 }
1165
run(Function & F)1166 bool SeparateConstOffsetFromGEP::run(Function &F) {
1167 if (DisableSeparateConstOffsetFromGEP)
1168 return false;
1169
1170 DL = &F.getParent()->getDataLayout();
1171 bool Changed = false;
1172 for (BasicBlock &B : F) {
1173 if (!DT->isReachableFromEntry(&B))
1174 continue;
1175
1176 for (Instruction &I : llvm::make_early_inc_range(B))
1177 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I))
1178 Changed |= splitGEP(GEP);
1179 // No need to split GEP ConstantExprs because all its indices are constant
1180 // already.
1181 }
1182
1183 Changed |= reuniteExts(F);
1184
1185 if (VerifyNoDeadCode)
1186 verifyNoDeadCode(F);
1187
1188 return Changed;
1189 }
1190
findClosestMatchingDominator(const SCEV * Key,Instruction * Dominatee,DenseMap<const SCEV *,SmallVector<Instruction *,2>> & DominatingExprs)1191 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1192 const SCEV *Key, Instruction *Dominatee,
1193 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) {
1194 auto Pos = DominatingExprs.find(Key);
1195 if (Pos == DominatingExprs.end())
1196 return nullptr;
1197
1198 auto &Candidates = Pos->second;
1199 // Because we process the basic blocks in pre-order of the dominator tree, a
1200 // candidate that doesn't dominate the current instruction won't dominate any
1201 // future instruction either. Therefore, we pop it out of the stack. This
1202 // optimization makes the algorithm O(n).
1203 while (!Candidates.empty()) {
1204 Instruction *Candidate = Candidates.back();
1205 if (DT->dominates(Candidate, Dominatee))
1206 return Candidate;
1207 Candidates.pop_back();
1208 }
1209 return nullptr;
1210 }
1211
reuniteExts(Instruction * I)1212 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1213 if (!SE->isSCEVable(I->getType()))
1214 return false;
1215
1216 // Dom: LHS+RHS
1217 // I: sext(LHS)+sext(RHS)
1218 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1219 // TODO: handle zext
1220 Value *LHS = nullptr, *RHS = nullptr;
1221 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1222 if (LHS->getType() == RHS->getType()) {
1223 const SCEV *Key =
1224 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1225 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
1226 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1227 NewSExt->takeName(I);
1228 I->replaceAllUsesWith(NewSExt);
1229 RecursivelyDeleteTriviallyDeadInstructions(I);
1230 return true;
1231 }
1232 }
1233 } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1234 if (LHS->getType() == RHS->getType()) {
1235 const SCEV *Key =
1236 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1237 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) {
1238 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1239 NewSExt->takeName(I);
1240 I->replaceAllUsesWith(NewSExt);
1241 RecursivelyDeleteTriviallyDeadInstructions(I);
1242 return true;
1243 }
1244 }
1245 }
1246
1247 // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1248 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
1249 if (programUndefinedIfPoison(I)) {
1250 const SCEV *Key =
1251 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1252 DominatingAdds[Key].push_back(I);
1253 }
1254 } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1255 if (programUndefinedIfPoison(I)) {
1256 const SCEV *Key =
1257 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1258 DominatingSubs[Key].push_back(I);
1259 }
1260 }
1261 return false;
1262 }
1263
reuniteExts(Function & F)1264 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1265 bool Changed = false;
1266 DominatingAdds.clear();
1267 DominatingSubs.clear();
1268 for (const auto Node : depth_first(DT)) {
1269 BasicBlock *BB = Node->getBlock();
1270 for (Instruction &I : llvm::make_early_inc_range(*BB))
1271 Changed |= reuniteExts(&I);
1272 }
1273 return Changed;
1274 }
1275
verifyNoDeadCode(Function & F)1276 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1277 for (BasicBlock &B : F) {
1278 for (Instruction &I : B) {
1279 if (isInstructionTriviallyDead(&I)) {
1280 std::string ErrMessage;
1281 raw_string_ostream RSO(ErrMessage);
1282 RSO << "Dead instruction detected!\n" << I << "\n";
1283 llvm_unreachable(RSO.str().c_str());
1284 }
1285 }
1286 }
1287 }
1288
isLegalToSwapOperand(GetElementPtrInst * FirstGEP,GetElementPtrInst * SecondGEP,Loop * CurLoop)1289 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1290 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1291 if (!FirstGEP || !FirstGEP->hasOneUse())
1292 return false;
1293
1294 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1295 return false;
1296
1297 if (FirstGEP == SecondGEP)
1298 return false;
1299
1300 unsigned FirstNum = FirstGEP->getNumOperands();
1301 unsigned SecondNum = SecondGEP->getNumOperands();
1302 // Give up if the number of operands are not 2.
1303 if (FirstNum != SecondNum || FirstNum != 2)
1304 return false;
1305
1306 Value *FirstBase = FirstGEP->getOperand(0);
1307 Value *SecondBase = SecondGEP->getOperand(0);
1308 Value *FirstOffset = FirstGEP->getOperand(1);
1309 // Give up if the index of the first GEP is loop invariant.
1310 if (CurLoop->isLoopInvariant(FirstOffset))
1311 return false;
1312
1313 // Give up if base doesn't have same type.
1314 if (FirstBase->getType() != SecondBase->getType())
1315 return false;
1316
1317 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1318
1319 // Check if the second operand of first GEP has constant coefficient.
1320 // For an example, for the following code, we won't gain anything by
1321 // hoisting the second GEP out because the second GEP can be folded away.
1322 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1323 // %67 = shl i64 %scevgep.sum.ur159, 2
1324 // %uglygep160 = getelementptr i8* %65, i64 %67
1325 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1326
1327 // Skip constant shift instruction which may be generated by Splitting GEPs.
1328 if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1329 isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1330 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1331
1332 // Give up if FirstOffsetDef is an Add or Sub with constant.
1333 // Because it may not profitable at all due to constant folding.
1334 if (FirstOffsetDef)
1335 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1336 unsigned opc = BO->getOpcode();
1337 if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1338 (isa<ConstantInt>(BO->getOperand(0)) ||
1339 isa<ConstantInt>(BO->getOperand(1))))
1340 return false;
1341 }
1342 return true;
1343 }
1344
hasMoreThanOneUseInLoop(Value * V,Loop * L)1345 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1346 int UsesInLoop = 0;
1347 for (User *U : V->users()) {
1348 if (Instruction *User = dyn_cast<Instruction>(U))
1349 if (L->contains(User))
1350 if (++UsesInLoop > 1)
1351 return true;
1352 }
1353 return false;
1354 }
1355
swapGEPOperand(GetElementPtrInst * First,GetElementPtrInst * Second)1356 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1357 GetElementPtrInst *Second) {
1358 Value *Offset1 = First->getOperand(1);
1359 Value *Offset2 = Second->getOperand(1);
1360 First->setOperand(1, Offset2);
1361 Second->setOperand(1, Offset1);
1362
1363 // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1364 const DataLayout &DAL = First->getModule()->getDataLayout();
1365 APInt Offset(DAL.getIndexSizeInBits(
1366 cast<PointerType>(First->getType())->getAddressSpace()),
1367 0);
1368 Value *NewBase =
1369 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1370 uint64_t ObjectSize;
1371 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1372 Offset.ugt(ObjectSize)) {
1373 First->setIsInBounds(false);
1374 Second->setIsInBounds(false);
1375 } else
1376 First->setIsInBounds(true);
1377 }
1378
1379 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1380 SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) {
1381 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1382 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
1383 auto *LI = &AM.getResult<LoopAnalysis>(F);
1384 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1385 auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & {
1386 return AM.getResult<TargetIRAnalysis>(F);
1387 };
1388 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
1389 if (!Impl.run(F))
1390 return PreservedAnalyses::all();
1391 PreservedAnalyses PA;
1392 PA.preserveSet<CFGAnalyses>();
1393 return PA;
1394 }
1395