1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file transforms calls of the current function (self recursion) followed
10 // by a return instruction with a branch to the entry of the function, creating
11 // a loop. This pass also implements the following extensions to the basic
12 // algorithm:
13 //
14 // 1. Trivial instructions between the call and return do not prevent the
15 // transformation from taking place, though currently the analysis cannot
16 // support moving any really useful instructions (only dead ones).
17 // 2. This pass transforms functions that are prevented from being tail
18 // recursive by an associative and commutative expression to use an
19 // accumulator variable, thus compiling the typical naive factorial or
20 // 'fib' implementation into efficient code.
21 // 3. TRE is performed if the function returns void, if the return
22 // returns the result returned by the call, or if the function returns a
23 // run-time constant on all exits from the function. It is possible, though
24 // unlikely, that the return returns something else (like constant 0), and
25 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
26 // the function return the exact same value.
27 // 4. If it can prove that callees do not access their caller stack frame,
28 // they are marked as eligible for tail call elimination (by the code
29 // generator).
30 //
31 // There are several improvements that could be made:
32 //
33 // 1. If the function has any alloca instructions, these instructions will be
34 // moved out of the entry block of the function, causing them to be
35 // evaluated each time through the tail recursion. Safely keeping allocas
36 // in the entry block requires analysis to proves that the tail-called
37 // function does not read or write the stack object.
38 // 2. Tail recursion is only performed if the call immediately precedes the
39 // return instruction. It's possible that there could be a jump between
40 // the call and the return.
41 // 3. There can be intervening operations between the call and the return that
42 // prevent the TRE from occurring. For example, there could be GEP's and
43 // stores to memory that will not be read or written by the call. This
44 // requires some substantial analysis (such as with DSA) to prove safe to
45 // move ahead of the call, but doing so could allow many more TREs to be
46 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
47 // 4. The algorithm we use to detect if callees access their caller stack
48 // frames is very primitive.
49 //
50 //===----------------------------------------------------------------------===//
51
52 #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/DomTreeUpdater.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/InstructionSimplify.h"
59 #include "llvm/Analysis/Loads.h"
60 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
61 #include "llvm/Analysis/PostDominators.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstIterator.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/IntrinsicInst.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 using namespace llvm;
83
84 #define DEBUG_TYPE "tailcallelim"
85
86 STATISTIC(NumEliminated, "Number of tail calls removed");
87 STATISTIC(NumRetDuped, "Number of return duplicated");
88 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
89
90 /// Scan the specified function for alloca instructions.
91 /// If it contains any dynamic allocas, returns false.
canTRE(Function & F)92 static bool canTRE(Function &F) {
93 // TODO: We don't do TRE if dynamic allocas are used.
94 // Dynamic allocas allocate stack space which should be
95 // deallocated before new iteration started. That is
96 // currently not implemented.
97 return llvm::all_of(instructions(F), [](Instruction &I) {
98 auto *AI = dyn_cast<AllocaInst>(&I);
99 return !AI || AI->isStaticAlloca();
100 });
101 }
102
103 namespace {
104 struct AllocaDerivedValueTracker {
105 // Start at a root value and walk its use-def chain to mark calls that use the
106 // value or a derived value in AllocaUsers, and places where it may escape in
107 // EscapePoints.
walk__anon94163c0e0211::AllocaDerivedValueTracker108 void walk(Value *Root) {
109 SmallVector<Use *, 32> Worklist;
110 SmallPtrSet<Use *, 32> Visited;
111
112 auto AddUsesToWorklist = [&](Value *V) {
113 for (auto &U : V->uses()) {
114 if (!Visited.insert(&U).second)
115 continue;
116 Worklist.push_back(&U);
117 }
118 };
119
120 AddUsesToWorklist(Root);
121
122 while (!Worklist.empty()) {
123 Use *U = Worklist.pop_back_val();
124 Instruction *I = cast<Instruction>(U->getUser());
125
126 switch (I->getOpcode()) {
127 case Instruction::Call:
128 case Instruction::Invoke: {
129 auto &CB = cast<CallBase>(*I);
130 // If the alloca-derived argument is passed byval it is not an escape
131 // point, or a use of an alloca. Calling with byval copies the contents
132 // of the alloca into argument registers or stack slots, which exist
133 // beyond the lifetime of the current frame.
134 if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
135 continue;
136 bool IsNocapture =
137 CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
138 callUsesLocalStack(CB, IsNocapture);
139 if (IsNocapture) {
140 // If the alloca-derived argument is passed in as nocapture, then it
141 // can't propagate to the call's return. That would be capturing.
142 continue;
143 }
144 break;
145 }
146 case Instruction::Load: {
147 // The result of a load is not alloca-derived (unless an alloca has
148 // otherwise escaped, but this is a local analysis).
149 continue;
150 }
151 case Instruction::Store: {
152 if (U->getOperandNo() == 0)
153 EscapePoints.insert(I);
154 continue; // Stores have no users to analyze.
155 }
156 case Instruction::BitCast:
157 case Instruction::GetElementPtr:
158 case Instruction::PHI:
159 case Instruction::Select:
160 case Instruction::AddrSpaceCast:
161 break;
162 default:
163 EscapePoints.insert(I);
164 break;
165 }
166
167 AddUsesToWorklist(I);
168 }
169 }
170
callUsesLocalStack__anon94163c0e0211::AllocaDerivedValueTracker171 void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
172 // Add it to the list of alloca users.
173 AllocaUsers.insert(&CB);
174
175 // If it's nocapture then it can't capture this alloca.
176 if (IsNocapture)
177 return;
178
179 // If it can write to memory, it can leak the alloca value.
180 if (!CB.onlyReadsMemory())
181 EscapePoints.insert(&CB);
182 }
183
184 SmallPtrSet<Instruction *, 32> AllocaUsers;
185 SmallPtrSet<Instruction *, 32> EscapePoints;
186 };
187 }
188
markTails(Function & F,OptimizationRemarkEmitter * ORE)189 static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
190 if (F.callsFunctionThatReturnsTwice())
191 return false;
192
193 // The local stack holds all alloca instructions and all byval arguments.
194 AllocaDerivedValueTracker Tracker;
195 for (Argument &Arg : F.args()) {
196 if (Arg.hasByValAttr())
197 Tracker.walk(&Arg);
198 }
199 for (auto &BB : F) {
200 for (auto &I : BB)
201 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
202 Tracker.walk(AI);
203 }
204
205 bool Modified = false;
206
207 // Track whether a block is reachable after an alloca has escaped. Blocks that
208 // contain the escaping instruction will be marked as being visited without an
209 // escaped alloca, since that is how the block began.
210 enum VisitType {
211 UNVISITED,
212 UNESCAPED,
213 ESCAPED
214 };
215 DenseMap<BasicBlock *, VisitType> Visited;
216
217 // We propagate the fact that an alloca has escaped from block to successor.
218 // Visit the blocks that are propagating the escapedness first. To do this, we
219 // maintain two worklists.
220 SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
221
222 // We may enter a block and visit it thinking that no alloca has escaped yet,
223 // then see an escape point and go back around a loop edge and come back to
224 // the same block twice. Because of this, we defer setting tail on calls when
225 // we first encounter them in a block. Every entry in this list does not
226 // statically use an alloca via use-def chain analysis, but may find an alloca
227 // through other means if the block turns out to be reachable after an escape
228 // point.
229 SmallVector<CallInst *, 32> DeferredTails;
230
231 BasicBlock *BB = &F.getEntryBlock();
232 VisitType Escaped = UNESCAPED;
233 do {
234 for (auto &I : *BB) {
235 if (Tracker.EscapePoints.count(&I))
236 Escaped = ESCAPED;
237
238 CallInst *CI = dyn_cast<CallInst>(&I);
239 // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
240 // considered accessing memory and will be marked as a tail call if we
241 // don't bail out here.
242 if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
243 isa<PseudoProbeInst>(&I))
244 continue;
245
246 // Special-case operand bundles "clang.arc.attachedcall", "ptrauth", and
247 // "kcfi".
248 bool IsNoTail = CI->isNoTailCall() ||
249 CI->hasOperandBundlesOtherThan(
250 {LLVMContext::OB_clang_arc_attachedcall,
251 LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi});
252
253 if (!IsNoTail && CI->doesNotAccessMemory()) {
254 // A call to a readnone function whose arguments are all things computed
255 // outside this function can be marked tail. Even if you stored the
256 // alloca address into a global, a readnone function can't load the
257 // global anyhow.
258 //
259 // Note that this runs whether we know an alloca has escaped or not. If
260 // it has, then we can't trust Tracker.AllocaUsers to be accurate.
261 bool SafeToTail = true;
262 for (auto &Arg : CI->args()) {
263 if (isa<Constant>(Arg.getUser()))
264 continue;
265 if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
266 if (!A->hasByValAttr())
267 continue;
268 SafeToTail = false;
269 break;
270 }
271 if (SafeToTail) {
272 using namespace ore;
273 ORE->emit([&]() {
274 return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
275 << "marked as tail call candidate (readnone)";
276 });
277 CI->setTailCall();
278 Modified = true;
279 continue;
280 }
281 }
282
283 if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
284 DeferredTails.push_back(CI);
285 }
286
287 for (auto *SuccBB : successors(BB)) {
288 auto &State = Visited[SuccBB];
289 if (State < Escaped) {
290 State = Escaped;
291 if (State == ESCAPED)
292 WorklistEscaped.push_back(SuccBB);
293 else
294 WorklistUnescaped.push_back(SuccBB);
295 }
296 }
297
298 if (!WorklistEscaped.empty()) {
299 BB = WorklistEscaped.pop_back_val();
300 Escaped = ESCAPED;
301 } else {
302 BB = nullptr;
303 while (!WorklistUnescaped.empty()) {
304 auto *NextBB = WorklistUnescaped.pop_back_val();
305 if (Visited[NextBB] == UNESCAPED) {
306 BB = NextBB;
307 Escaped = UNESCAPED;
308 break;
309 }
310 }
311 }
312 } while (BB);
313
314 for (CallInst *CI : DeferredTails) {
315 if (Visited[CI->getParent()] != ESCAPED) {
316 // If the escape point was part way through the block, calls after the
317 // escape point wouldn't have been put into DeferredTails.
318 LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
319 CI->setTailCall();
320 Modified = true;
321 }
322 }
323
324 return Modified;
325 }
326
327 /// Return true if it is safe to move the specified
328 /// instruction from after the call to before the call, assuming that all
329 /// instructions between the call and this instruction are movable.
330 ///
canMoveAboveCall(Instruction * I,CallInst * CI,AliasAnalysis * AA)331 static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
332 if (isa<DbgInfoIntrinsic>(I))
333 return true;
334
335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
336 if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
337 llvm::findAllocaForValue(II->getArgOperand(1)))
338 return true;
339
340 // FIXME: We can move load/store/call/free instructions above the call if the
341 // call does not mod/ref the memory location being processed.
342 if (I->mayHaveSideEffects()) // This also handles volatile loads.
343 return false;
344
345 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
346 // Loads may always be moved above calls without side effects.
347 if (CI->mayHaveSideEffects()) {
348 // Non-volatile loads may be moved above a call with side effects if it
349 // does not write to memory and the load provably won't trap.
350 // Writes to memory only matter if they may alias the pointer
351 // being loaded from.
352 const DataLayout &DL = L->getModule()->getDataLayout();
353 if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
354 !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
355 L->getAlign(), DL, L))
356 return false;
357 }
358 }
359
360 // Otherwise, if this is a side-effect free instruction, check to make sure
361 // that it does not use the return value of the call. If it doesn't use the
362 // return value of the call, it must only use things that are defined before
363 // the call, or movable instructions between the call and the instruction
364 // itself.
365 return !is_contained(I->operands(), CI);
366 }
367
canTransformAccumulatorRecursion(Instruction * I,CallInst * CI)368 static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
369 if (!I->isAssociative() || !I->isCommutative())
370 return false;
371
372 assert(I->getNumOperands() == 2 &&
373 "Associative/commutative operations should have 2 args!");
374
375 // Exactly one operand should be the result of the call instruction.
376 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
377 (I->getOperand(0) != CI && I->getOperand(1) != CI))
378 return false;
379
380 // The only user of this instruction we allow is a single return instruction.
381 if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
382 return false;
383
384 return true;
385 }
386
firstNonDbg(BasicBlock::iterator I)387 static Instruction *firstNonDbg(BasicBlock::iterator I) {
388 while (isa<DbgInfoIntrinsic>(I))
389 ++I;
390 return &*I;
391 }
392
393 namespace {
394 class TailRecursionEliminator {
395 Function &F;
396 const TargetTransformInfo *TTI;
397 AliasAnalysis *AA;
398 OptimizationRemarkEmitter *ORE;
399 DomTreeUpdater &DTU;
400
401 // The below are shared state we want to have available when eliminating any
402 // calls in the function. There values should be populated by
403 // createTailRecurseLoopHeader the first time we find a call we can eliminate.
404 BasicBlock *HeaderBB = nullptr;
405 SmallVector<PHINode *, 8> ArgumentPHIs;
406
407 // PHI node to store our return value.
408 PHINode *RetPN = nullptr;
409
410 // i1 PHI node to track if we have a valid return value stored in RetPN.
411 PHINode *RetKnownPN = nullptr;
412
413 // Vector of select instructions we insereted. These selects use RetKnownPN
414 // to either propagate RetPN or select a new return value.
415 SmallVector<SelectInst *, 8> RetSelects;
416
417 // The below are shared state needed when performing accumulator recursion.
418 // There values should be populated by insertAccumulator the first time we
419 // find an elimination that requires an accumulator.
420
421 // PHI node to store our current accumulated value.
422 PHINode *AccPN = nullptr;
423
424 // The instruction doing the accumulating.
425 Instruction *AccumulatorRecursionInstr = nullptr;
426
TailRecursionEliminator(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)427 TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
428 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
429 DomTreeUpdater &DTU)
430 : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
431
432 CallInst *findTRECandidate(BasicBlock *BB);
433
434 void createTailRecurseLoopHeader(CallInst *CI);
435
436 void insertAccumulator(Instruction *AccRecInstr);
437
438 bool eliminateCall(CallInst *CI);
439
440 void cleanupAndFinalize();
441
442 bool processBlock(BasicBlock &BB);
443
444 void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
445
446 void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
447
448 public:
449 static bool eliminate(Function &F, const TargetTransformInfo *TTI,
450 AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
451 DomTreeUpdater &DTU);
452 };
453 } // namespace
454
findTRECandidate(BasicBlock * BB)455 CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
456 Instruction *TI = BB->getTerminator();
457
458 if (&BB->front() == TI) // Make sure there is something before the terminator.
459 return nullptr;
460
461 // Scan backwards from the return, checking to see if there is a tail call in
462 // this block. If so, set CI to it.
463 CallInst *CI = nullptr;
464 BasicBlock::iterator BBI(TI);
465 while (true) {
466 CI = dyn_cast<CallInst>(BBI);
467 if (CI && CI->getCalledFunction() == &F)
468 break;
469
470 if (BBI == BB->begin())
471 return nullptr; // Didn't find a potential tail call.
472 --BBI;
473 }
474
475 assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
476 "Incompatible call site attributes(Tail,NoTail)");
477 if (!CI->isTailCall())
478 return nullptr;
479
480 // As a special case, detect code like this:
481 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
482 // and disable this xform in this case, because the code generator will
483 // lower the call to fabs into inline code.
484 if (BB == &F.getEntryBlock() &&
485 firstNonDbg(BB->front().getIterator()) == CI &&
486 firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
487 !TTI->isLoweredToCall(CI->getCalledFunction())) {
488 // A single-block function with just a call and a return. Check that
489 // the arguments match.
490 auto I = CI->arg_begin(), E = CI->arg_end();
491 Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
492 for (; I != E && FI != FE; ++I, ++FI)
493 if (*I != &*FI) break;
494 if (I == E && FI == FE)
495 return nullptr;
496 }
497
498 return CI;
499 }
500
createTailRecurseLoopHeader(CallInst * CI)501 void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
502 HeaderBB = &F.getEntryBlock();
503 BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
504 NewEntry->takeName(HeaderBB);
505 HeaderBB->setName("tailrecurse");
506 BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
507 BI->setDebugLoc(CI->getDebugLoc());
508
509 // Move all fixed sized allocas from HeaderBB to NewEntry.
510 for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
511 NEBI = NewEntry->begin();
512 OEBI != E;)
513 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
514 if (isa<ConstantInt>(AI->getArraySize()))
515 AI->moveBefore(&*NEBI);
516
517 // Now that we have created a new block, which jumps to the entry
518 // block, insert a PHI node for each argument of the function.
519 // For now, we initialize each PHI to only have the real arguments
520 // which are passed in.
521 Instruction *InsertPos = &HeaderBB->front();
522 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
523 PHINode *PN =
524 PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
525 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
526 PN->addIncoming(&*I, NewEntry);
527 ArgumentPHIs.push_back(PN);
528 }
529
530 // If the function doen't return void, create the RetPN and RetKnownPN PHI
531 // nodes to track our return value. We initialize RetPN with poison and
532 // RetKnownPN with false since we can't know our return value at function
533 // entry.
534 Type *RetType = F.getReturnType();
535 if (!RetType->isVoidTy()) {
536 Type *BoolType = Type::getInt1Ty(F.getContext());
537 RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
538 RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
539
540 RetPN->addIncoming(PoisonValue::get(RetType), NewEntry);
541 RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
542 }
543
544 // The entry block was changed from HeaderBB to NewEntry.
545 // The forward DominatorTree needs to be recalculated when the EntryBB is
546 // changed. In this corner-case we recalculate the entire tree.
547 DTU.recalculate(*NewEntry->getParent());
548 }
549
insertAccumulator(Instruction * AccRecInstr)550 void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
551 assert(!AccPN && "Trying to insert multiple accumulators");
552
553 AccumulatorRecursionInstr = AccRecInstr;
554
555 // Start by inserting a new PHI node for the accumulator.
556 pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
557 AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
558 "accumulator.tr", &HeaderBB->front());
559
560 // Loop over all of the predecessors of the tail recursion block. For the
561 // real entry into the function we seed the PHI with the identity constant for
562 // the accumulation operation. For any other existing branches to this block
563 // (due to other tail recursions eliminated) the accumulator is not modified.
564 // Because we haven't added the branch in the current block to HeaderBB yet,
565 // it will not show up as a predecessor.
566 for (pred_iterator PI = PB; PI != PE; ++PI) {
567 BasicBlock *P = *PI;
568 if (P == &F.getEntryBlock()) {
569 Constant *Identity = ConstantExpr::getBinOpIdentity(
570 AccRecInstr->getOpcode(), AccRecInstr->getType());
571 AccPN->addIncoming(Identity, P);
572 } else {
573 AccPN->addIncoming(AccPN, P);
574 }
575 }
576
577 ++NumAccumAdded;
578 }
579
580 // Creates a copy of contents of ByValue operand of the specified
581 // call instruction into the newly created temporarily variable.
copyByValueOperandIntoLocalTemp(CallInst * CI,int OpndIdx)582 void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
583 int OpndIdx) {
584 Type *AggTy = CI->getParamByValType(OpndIdx);
585 assert(AggTy);
586 const DataLayout &DL = F.getParent()->getDataLayout();
587
588 // Get alignment of byVal operand.
589 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
590
591 // Create alloca for temporarily byval operands.
592 // Put alloca into the entry block.
593 Value *NewAlloca = new AllocaInst(
594 AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
595 CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
596
597 IRBuilder<> Builder(CI);
598 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
599
600 // Copy data from byvalue operand into the temporarily variable.
601 Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
602 CI->getArgOperand(OpndIdx),
603 /*SrcAlign*/ Alignment, Size);
604 CI->setArgOperand(OpndIdx, NewAlloca);
605 }
606
607 // Creates a copy from temporarily variable(keeping value of ByVal argument)
608 // into the corresponding function argument location.
copyLocalTempOfByValueOperandIntoArguments(CallInst * CI,int OpndIdx)609 void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
610 CallInst *CI, int OpndIdx) {
611 Type *AggTy = CI->getParamByValType(OpndIdx);
612 assert(AggTy);
613 const DataLayout &DL = F.getParent()->getDataLayout();
614
615 // Get alignment of byVal operand.
616 Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
617
618 IRBuilder<> Builder(CI);
619 Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
620
621 // Copy data from the temporarily variable into corresponding
622 // function argument location.
623 Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
624 CI->getArgOperand(OpndIdx),
625 /*SrcAlign*/ Alignment, Size);
626 }
627
eliminateCall(CallInst * CI)628 bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
629 ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
630
631 // Ok, we found a potential tail call. We can currently only transform the
632 // tail call if all of the instructions between the call and the return are
633 // movable to above the call itself, leaving the call next to the return.
634 // Check that this is the case now.
635 Instruction *AccRecInstr = nullptr;
636 BasicBlock::iterator BBI(CI);
637 for (++BBI; &*BBI != Ret; ++BBI) {
638 if (canMoveAboveCall(&*BBI, CI, AA))
639 continue;
640
641 // If we can't move the instruction above the call, it might be because it
642 // is an associative and commutative operation that could be transformed
643 // using accumulator recursion elimination. Check to see if this is the
644 // case, and if so, remember which instruction accumulates for later.
645 if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
646 return false; // We cannot eliminate the tail recursion!
647
648 // Yes, this is accumulator recursion. Remember which instruction
649 // accumulates.
650 AccRecInstr = &*BBI;
651 }
652
653 BasicBlock *BB = Ret->getParent();
654
655 using namespace ore;
656 ORE->emit([&]() {
657 return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
658 << "transforming tail recursion into loop";
659 });
660
661 // OK! We can transform this tail call. If this is the first one found,
662 // create the new entry block, allowing us to branch back to the old entry.
663 if (!HeaderBB)
664 createTailRecurseLoopHeader(CI);
665
666 // Copy values of ByVal operands into local temporarily variables.
667 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
668 if (CI->isByValArgument(I))
669 copyByValueOperandIntoLocalTemp(CI, I);
670 }
671
672 // Ok, now that we know we have a pseudo-entry block WITH all of the
673 // required PHI nodes, add entries into the PHI node for the actual
674 // parameters passed into the tail-recursive call.
675 for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
676 if (CI->isByValArgument(I)) {
677 copyLocalTempOfByValueOperandIntoArguments(CI, I);
678 ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
679 } else
680 ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
681 }
682
683 if (AccRecInstr) {
684 insertAccumulator(AccRecInstr);
685
686 // Rewrite the accumulator recursion instruction so that it does not use
687 // the result of the call anymore, instead, use the PHI node we just
688 // inserted.
689 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
690 }
691
692 // Update our return value tracking
693 if (RetPN) {
694 if (Ret->getReturnValue() == CI || AccRecInstr) {
695 // Defer selecting a return value
696 RetPN->addIncoming(RetPN, BB);
697 RetKnownPN->addIncoming(RetKnownPN, BB);
698 } else {
699 // We found a return value we want to use, insert a select instruction to
700 // select it if we don't already know what our return value will be and
701 // store the result in our return value PHI node.
702 SelectInst *SI = SelectInst::Create(
703 RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
704 RetSelects.push_back(SI);
705
706 RetPN->addIncoming(SI, BB);
707 RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
708 }
709
710 if (AccPN)
711 AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
712 }
713
714 // Now that all of the PHI nodes are in place, remove the call and
715 // ret instructions, replacing them with an unconditional branch.
716 BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
717 NewBI->setDebugLoc(CI->getDebugLoc());
718
719 Ret->eraseFromParent(); // Remove return.
720 CI->eraseFromParent(); // Remove call.
721 DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
722 ++NumEliminated;
723 return true;
724 }
725
cleanupAndFinalize()726 void TailRecursionEliminator::cleanupAndFinalize() {
727 // If we eliminated any tail recursions, it's possible that we inserted some
728 // silly PHI nodes which just merge an initial value (the incoming operand)
729 // with themselves. Check to see if we did and clean up our mess if so. This
730 // occurs when a function passes an argument straight through to its tail
731 // call.
732 for (PHINode *PN : ArgumentPHIs) {
733 // If the PHI Node is a dynamic constant, replace it with the value it is.
734 if (Value *PNV = simplifyInstruction(PN, F.getParent()->getDataLayout())) {
735 PN->replaceAllUsesWith(PNV);
736 PN->eraseFromParent();
737 }
738 }
739
740 if (RetPN) {
741 if (RetSelects.empty()) {
742 // If we didn't insert any select instructions, then we know we didn't
743 // store a return value and we can remove the PHI nodes we inserted.
744 RetPN->dropAllReferences();
745 RetPN->eraseFromParent();
746
747 RetKnownPN->dropAllReferences();
748 RetKnownPN->eraseFromParent();
749
750 if (AccPN) {
751 // We need to insert a copy of our accumulator instruction before any
752 // return in the function, and return its result instead.
753 Instruction *AccRecInstr = AccumulatorRecursionInstr;
754 for (BasicBlock &BB : F) {
755 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
756 if (!RI)
757 continue;
758
759 Instruction *AccRecInstrNew = AccRecInstr->clone();
760 AccRecInstrNew->setName("accumulator.ret.tr");
761 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
762 RI->getOperand(0));
763 AccRecInstrNew->insertBefore(RI);
764 RI->setOperand(0, AccRecInstrNew);
765 }
766 }
767 } else {
768 // We need to insert a select instruction before any return left in the
769 // function to select our stored return value if we have one.
770 for (BasicBlock &BB : F) {
771 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
772 if (!RI)
773 continue;
774
775 SelectInst *SI = SelectInst::Create(
776 RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
777 RetSelects.push_back(SI);
778 RI->setOperand(0, SI);
779 }
780
781 if (AccPN) {
782 // We need to insert a copy of our accumulator instruction before any
783 // of the selects we inserted, and select its result instead.
784 Instruction *AccRecInstr = AccumulatorRecursionInstr;
785 for (SelectInst *SI : RetSelects) {
786 Instruction *AccRecInstrNew = AccRecInstr->clone();
787 AccRecInstrNew->setName("accumulator.ret.tr");
788 AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
789 SI->getFalseValue());
790 AccRecInstrNew->insertBefore(SI);
791 SI->setFalseValue(AccRecInstrNew);
792 }
793 }
794 }
795 }
796 }
797
processBlock(BasicBlock & BB)798 bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
799 Instruction *TI = BB.getTerminator();
800
801 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
802 if (BI->isConditional())
803 return false;
804
805 BasicBlock *Succ = BI->getSuccessor(0);
806 ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
807
808 if (!Ret)
809 return false;
810
811 CallInst *CI = findTRECandidate(&BB);
812
813 if (!CI)
814 return false;
815
816 LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
817 << "INTO UNCOND BRANCH PRED: " << BB);
818 FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
819 ++NumRetDuped;
820
821 // If all predecessors of Succ have been eliminated by
822 // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
823 // because the ret instruction in there is still using a value which
824 // eliminateCall will attempt to remove. This block can only contain
825 // instructions that can't have uses, therefore it is safe to remove.
826 if (pred_empty(Succ))
827 DTU.deleteBB(Succ);
828
829 eliminateCall(CI);
830 return true;
831 } else if (isa<ReturnInst>(TI)) {
832 CallInst *CI = findTRECandidate(&BB);
833
834 if (CI)
835 return eliminateCall(CI);
836 }
837
838 return false;
839 }
840
eliminate(Function & F,const TargetTransformInfo * TTI,AliasAnalysis * AA,OptimizationRemarkEmitter * ORE,DomTreeUpdater & DTU)841 bool TailRecursionEliminator::eliminate(Function &F,
842 const TargetTransformInfo *TTI,
843 AliasAnalysis *AA,
844 OptimizationRemarkEmitter *ORE,
845 DomTreeUpdater &DTU) {
846 if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
847 return false;
848
849 bool MadeChange = false;
850 MadeChange |= markTails(F, ORE);
851
852 // If this function is a varargs function, we won't be able to PHI the args
853 // right, so don't even try to convert it...
854 if (F.getFunctionType()->isVarArg())
855 return MadeChange;
856
857 if (!canTRE(F))
858 return MadeChange;
859
860 // Change any tail recursive calls to loops.
861 TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
862
863 for (BasicBlock &BB : F)
864 MadeChange |= TRE.processBlock(BB);
865
866 TRE.cleanupAndFinalize();
867
868 return MadeChange;
869 }
870
871 namespace {
872 struct TailCallElim : public FunctionPass {
873 static char ID; // Pass identification, replacement for typeid
TailCallElim__anon94163c0e0711::TailCallElim874 TailCallElim() : FunctionPass(ID) {
875 initializeTailCallElimPass(*PassRegistry::getPassRegistry());
876 }
877
getAnalysisUsage__anon94163c0e0711::TailCallElim878 void getAnalysisUsage(AnalysisUsage &AU) const override {
879 AU.addRequired<TargetTransformInfoWrapperPass>();
880 AU.addRequired<AAResultsWrapperPass>();
881 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
882 AU.addPreserved<GlobalsAAWrapperPass>();
883 AU.addPreserved<DominatorTreeWrapperPass>();
884 AU.addPreserved<PostDominatorTreeWrapperPass>();
885 }
886
runOnFunction__anon94163c0e0711::TailCallElim887 bool runOnFunction(Function &F) override {
888 if (skipFunction(F))
889 return false;
890
891 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
892 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
893 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
894 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
895 // There is no noticable performance difference here between Lazy and Eager
896 // UpdateStrategy based on some test results. It is feasible to switch the
897 // UpdateStrategy to Lazy if we find it profitable later.
898 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
899
900 return TailRecursionEliminator::eliminate(
901 F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
902 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
903 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
904 }
905 };
906 }
907
908 char TailCallElim::ID = 0;
909 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
910 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)911 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
912 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
913 INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
914 false, false)
915
916 // Public interface to the TailCallElimination pass
917 FunctionPass *llvm::createTailCallEliminationPass() {
918 return new TailCallElim();
919 }
920
run(Function & F,FunctionAnalysisManager & AM)921 PreservedAnalyses TailCallElimPass::run(Function &F,
922 FunctionAnalysisManager &AM) {
923
924 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
925 AliasAnalysis &AA = AM.getResult<AAManager>(F);
926 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
927 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
928 auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
929 // There is no noticable performance difference here between Lazy and Eager
930 // UpdateStrategy based on some test results. It is feasible to switch the
931 // UpdateStrategy to Lazy if we find it profitable later.
932 DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
933 bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
934
935 if (!Changed)
936 return PreservedAnalyses::all();
937 PreservedAnalyses PA;
938 PA.preserve<DominatorTreeAnalysis>();
939 PA.preserve<PostDominatorTreeAnalysis>();
940 return PA;
941 }
942