• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #define EIGEN_USE_THREADS
17 
18 #include "tensorflow/core/common_runtime/constant_folding.h"
19 #include "tensorflow/core/common_runtime/graph_constructor.h"
20 #include "tensorflow/core/common_runtime/threadpool_device.h"
21 #include "tensorflow/core/graph/node_builder.h"
22 #include "tensorflow/core/graph/subgraph.h"
23 #include "tensorflow/core/kernels/quantization_utils.h"
24 #include "tensorflow/core/platform/init_main.h"
25 #include "tensorflow/core/public/session.h"
26 #include "tensorflow/tools/graph_transforms/transform_utils.h"
27 
28 namespace tensorflow {
29 namespace graph_transforms {
30 
31 // Converts any large float constants into eight-bit equivalents, with a
32 // Dequantize op so that subsequent nodes can still access the results in a
33 // float form.
QuantizeWeights(const GraphDef & input_graph_def,const TransformFuncContext & context,GraphDef * output_graph_def)34 Status QuantizeWeights(const GraphDef& input_graph_def,
35                        const TransformFuncContext& context,
36                        GraphDef* output_graph_def) {
37   int32_t minimum_size;
38   TF_RETURN_IF_ERROR(
39       context.GetOneInt32Parameter("minimum_size", 1024, &minimum_size));
40   TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes(
41       input_graph_def, {"Const"},
42       [minimum_size](const NodeMatch& match,
43                      const std::set<string>& input_nodes,
44                      const std::set<string>& output_nodes,
45                      std::vector<NodeDef>* new_nodes) {
46         const NodeDef& old_const_node = match.node;
47         if (!old_const_node.attr().count("dtype")) {
48           return errors::InvalidArgument("No 'dtype' attribute for Const node ",
49                                          old_const_node.name());
50         }
51         if (!old_const_node.attr().count("value")) {
52           return errors::InvalidArgument("No 'value' attribute for Const node ",
53                                          old_const_node.name());
54         }
55         const DataType old_dtype = old_const_node.attr().at("dtype").type();
56         Tensor old_tensor;
57         if (!old_tensor.FromProto(old_const_node.attr().at("value").tensor())) {
58           return errors::InvalidArgument("Decoding Tensor failed for node",
59                                          old_const_node.name());
60         }
61         const size_t num_elements = old_tensor.NumElements();
62         // If this isn't a float constant, or it's too small, then reuse the
63         // same node with no changes.
64         if ((old_dtype != DT_FLOAT) || (num_elements < minimum_size)) {
65           new_nodes->push_back(old_const_node);
66           return OkStatus();
67         }
68         const float* old_values = old_tensor.flat<float>().data();
69         float min = std::numeric_limits<float>::max();
70         float max = std::numeric_limits<float>::min();
71         for (int i = 0; i < num_elements; ++i) {
72           const float value = old_values[i];
73           min = std::min(min, value);
74           max = std::max(max, value);
75         }
76         // Make sure the quantization range includes 0.0f. Not all quantized
77         // Ops behave properly if 0.0f is not in the range.
78         min = std::min(min, 0.0f);
79         max = std::max(0.0f, max);
80         // min_value == max_value is a tricky case. It can occur for general
81         // tensors, and of course for scalars. The quantized ops cannot deal
82         // with this case, so we set max_value to something else.
83         // It's a tricky question what is the numerically best solution to
84         // deal with this degeneracy.
85         // TODO(petewarden): Better use a tolerance than a hard comparison?
86         if (min == max) {
87           if (std::abs(min) < 0.000001f) {
88             max = min + 1.0f;
89           } else if (min > 0) {
90             max = 2.0f * min;
91           } else {
92             max = min / 2.0f;
93           }
94         }
95         Tensor quantized_tensor(DT_QUINT8, old_tensor.shape());
96         FloatTensorToQuantizedInPlace<quint8>(old_tensor, min, max,
97                                               &quantized_tensor);
98 
99         NodeDef quantized_const_node;
100         quantized_const_node.set_op("Const");
101         quantized_const_node.set_name(old_const_node.name() +
102                                       "_quantized_const");
103         SetNodeAttr("dtype", DT_QUINT8, &quantized_const_node);
104         SetNodeTensorAttr<float>("value", quantized_tensor,
105                                  &quantized_const_node);
106         new_nodes->push_back(quantized_const_node);
107 
108         NodeDef min_node;
109         min_node.set_op("Const");
110         min_node.set_name(old_const_node.name() + "_quantized_min");
111         SetNodeAttr("dtype", DT_FLOAT, &min_node);
112         Tensor min_tensor(DT_FLOAT, {});
113         min_tensor.scalar<float>()() = min;
114         SetNodeTensorAttr<float>("value", min_tensor, &min_node);
115         new_nodes->push_back(min_node);
116 
117         NodeDef max_node;
118         max_node.set_op("Const");
119         max_node.set_name(old_const_node.name() + "_quantized_max");
120         SetNodeAttr("dtype", DT_FLOAT, &max_node);
121         Tensor max_tensor(DT_FLOAT, {});
122         max_tensor.scalar<float>()() = max;
123         SetNodeTensorAttr<float>("value", max_tensor, &max_node);
124         new_nodes->push_back(max_node);
125 
126         NodeDef dequantize_node;
127         dequantize_node.set_op("Dequantize");
128         dequantize_node.set_name(old_const_node.name());
129         SetNodeAttr("T", DT_QUINT8, &dequantize_node);
130         SetNodeAttr("mode", "MIN_FIRST", &dequantize_node);
131         AddNodeInput(quantized_const_node.name(), &dequantize_node);
132         AddNodeInput(min_node.name(), &dequantize_node);
133         AddNodeInput(max_node.name(), &dequantize_node);
134         new_nodes->push_back(dequantize_node);
135 
136         return OkStatus();
137       },
138       {}, output_graph_def));
139 
140   return OkStatus();
141 }
142 
143 REGISTER_GRAPH_TRANSFORM("quantize_weights", QuantizeWeights);
144 
145 }  // namespace graph_transforms
146 }  // namespace tensorflow
147