1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/base/internal/sysinfo.h"
16
17 #include "absl/base/attributes.h"
18
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <fcntl.h>
23 #include <pthread.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #endif
28
29 #ifdef __linux__
30 #include <sys/syscall.h>
31 #endif
32
33 #if defined(__APPLE__) || defined(__FreeBSD__)
34 #include <sys/sysctl.h>
35 #endif
36
37 #if defined(__myriad2__)
38 #include <rtems.h>
39 #endif
40
41 #include <string.h>
42
43 #include <cassert>
44 #include <cstdint>
45 #include <cstdio>
46 #include <cstdlib>
47 #include <ctime>
48 #include <limits>
49 #include <thread> // NOLINT(build/c++11)
50 #include <utility>
51 #include <vector>
52
53 #include "absl/base/call_once.h"
54 #include "absl/base/config.h"
55 #include "absl/base/internal/raw_logging.h"
56 #include "absl/base/internal/spinlock.h"
57 #include "absl/base/internal/unscaledcycleclock.h"
58 #include "absl/base/thread_annotations.h"
59
60 namespace absl {
61 ABSL_NAMESPACE_BEGIN
62 namespace base_internal {
63
64 namespace {
65
66 #if defined(_WIN32)
67
68 // Returns number of bits set in `bitMask`
Win32CountSetBits(ULONG_PTR bitMask)69 DWORD Win32CountSetBits(ULONG_PTR bitMask) {
70 for (DWORD bitSetCount = 0; ; ++bitSetCount) {
71 if (bitMask == 0) return bitSetCount;
72 bitMask &= bitMask - 1;
73 }
74 }
75
76 // Returns the number of logical CPUs using GetLogicalProcessorInformation(), or
77 // 0 if the number of processors is not available or can not be computed.
78 // https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation
Win32NumCPUs()79 int Win32NumCPUs() {
80 #pragma comment(lib, "kernel32.lib")
81 using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
82
83 DWORD info_size = sizeof(Info);
84 Info* info(static_cast<Info*>(malloc(info_size)));
85 if (info == nullptr) return 0;
86
87 bool success = GetLogicalProcessorInformation(info, &info_size);
88 if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
89 free(info);
90 info = static_cast<Info*>(malloc(info_size));
91 if (info == nullptr) return 0;
92 success = GetLogicalProcessorInformation(info, &info_size);
93 }
94
95 DWORD logicalProcessorCount = 0;
96 if (success) {
97 Info* ptr = info;
98 DWORD byteOffset = 0;
99 while (byteOffset + sizeof(Info) <= info_size) {
100 switch (ptr->Relationship) {
101 case RelationProcessorCore:
102 logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);
103 break;
104
105 case RelationNumaNode:
106 case RelationCache:
107 case RelationProcessorPackage:
108 // Ignore other entries
109 break;
110
111 default:
112 // Ignore unknown entries
113 break;
114 }
115 byteOffset += sizeof(Info);
116 ptr++;
117 }
118 }
119 free(info);
120 return static_cast<int>(logicalProcessorCount);
121 }
122
123 #endif
124
125 } // namespace
126
GetNumCPUs()127 static int GetNumCPUs() {
128 #if defined(__myriad2__)
129 return 1;
130 #elif defined(_WIN32)
131 const int hardware_concurrency = Win32NumCPUs();
132 return hardware_concurrency ? hardware_concurrency : 1;
133 #elif defined(_AIX)
134 return sysconf(_SC_NPROCESSORS_ONLN);
135 #else
136 // Other possibilities:
137 // - Read /sys/devices/system/cpu/online and use cpumask_parse()
138 // - sysconf(_SC_NPROCESSORS_ONLN)
139 return std::thread::hardware_concurrency();
140 #endif
141 }
142
143 #if defined(_WIN32)
144
GetNominalCPUFrequency()145 static double GetNominalCPUFrequency() {
146 #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
147 !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
148 // UWP apps don't have access to the registry and currently don't provide an
149 // API informing about CPU nominal frequency.
150 return 1.0;
151 #else
152 #pragma comment(lib, "advapi32.lib") // For Reg* functions.
153 HKEY key;
154 // Use the Reg* functions rather than the SH functions because shlwapi.dll
155 // pulls in gdi32.dll which makes process destruction much more costly.
156 if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
157 "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
158 KEY_READ, &key) == ERROR_SUCCESS) {
159 DWORD type = 0;
160 DWORD data = 0;
161 DWORD data_size = sizeof(data);
162 auto result = RegQueryValueExA(key, "~MHz", 0, &type,
163 reinterpret_cast<LPBYTE>(&data), &data_size);
164 RegCloseKey(key);
165 if (result == ERROR_SUCCESS && type == REG_DWORD &&
166 data_size == sizeof(data)) {
167 return data * 1e6; // Value is MHz.
168 }
169 }
170 return 1.0;
171 #endif // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
172 }
173
174 #elif defined(CTL_HW) && defined(HW_CPU_FREQ)
175
GetNominalCPUFrequency()176 static double GetNominalCPUFrequency() {
177 unsigned freq;
178 size_t size = sizeof(freq);
179 int mib[2] = {CTL_HW, HW_CPU_FREQ};
180 if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
181 return static_cast<double>(freq);
182 }
183 return 1.0;
184 }
185
186 #else
187
188 // Helper function for reading a long from a file. Returns true if successful
189 // and the memory location pointed to by value is set to the value read.
ReadLongFromFile(const char * file,long * value)190 static bool ReadLongFromFile(const char *file, long *value) {
191 bool ret = false;
192 int fd = open(file, O_RDONLY);
193 if (fd != -1) {
194 char line[1024];
195 char *err;
196 memset(line, '\0', sizeof(line));
197 int len = read(fd, line, sizeof(line) - 1);
198 if (len <= 0) {
199 ret = false;
200 } else {
201 const long temp_value = strtol(line, &err, 10);
202 if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
203 *value = temp_value;
204 ret = true;
205 }
206 }
207 close(fd);
208 }
209 return ret;
210 }
211
212 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
213
214 // Reads a monotonic time source and returns a value in
215 // nanoseconds. The returned value uses an arbitrary epoch, not the
216 // Unix epoch.
ReadMonotonicClockNanos()217 static int64_t ReadMonotonicClockNanos() {
218 struct timespec t;
219 #ifdef CLOCK_MONOTONIC_RAW
220 int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
221 #else
222 int rc = clock_gettime(CLOCK_MONOTONIC, &t);
223 #endif
224 if (rc != 0) {
225 perror("clock_gettime() failed");
226 abort();
227 }
228 return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
229 }
230
231 class UnscaledCycleClockWrapperForInitializeFrequency {
232 public:
Now()233 static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
234 };
235
236 struct TimeTscPair {
237 int64_t time; // From ReadMonotonicClockNanos().
238 int64_t tsc; // From UnscaledCycleClock::Now().
239 };
240
241 // Returns a pair of values (monotonic kernel time, TSC ticks) that
242 // approximately correspond to each other. This is accomplished by
243 // doing several reads and picking the reading with the lowest
244 // latency. This approach is used to minimize the probability that
245 // our thread was preempted between clock reads.
GetTimeTscPair()246 static TimeTscPair GetTimeTscPair() {
247 int64_t best_latency = std::numeric_limits<int64_t>::max();
248 TimeTscPair best;
249 for (int i = 0; i < 10; ++i) {
250 int64_t t0 = ReadMonotonicClockNanos();
251 int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
252 int64_t t1 = ReadMonotonicClockNanos();
253 int64_t latency = t1 - t0;
254 if (latency < best_latency) {
255 best_latency = latency;
256 best.time = t0;
257 best.tsc = tsc;
258 }
259 }
260 return best;
261 }
262
263 // Measures and returns the TSC frequency by taking a pair of
264 // measurements approximately `sleep_nanoseconds` apart.
MeasureTscFrequencyWithSleep(int sleep_nanoseconds)265 static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
266 auto t0 = GetTimeTscPair();
267 struct timespec ts;
268 ts.tv_sec = 0;
269 ts.tv_nsec = sleep_nanoseconds;
270 while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
271 auto t1 = GetTimeTscPair();
272 double elapsed_ticks = t1.tsc - t0.tsc;
273 double elapsed_time = (t1.time - t0.time) * 1e-9;
274 return elapsed_ticks / elapsed_time;
275 }
276
277 // Measures and returns the TSC frequency by calling
278 // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
279 // frequency measurement stabilizes.
MeasureTscFrequency()280 static double MeasureTscFrequency() {
281 double last_measurement = -1.0;
282 int sleep_nanoseconds = 1000000; // 1 millisecond.
283 for (int i = 0; i < 8; ++i) {
284 double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
285 if (measurement * 0.99 < last_measurement &&
286 last_measurement < measurement * 1.01) {
287 // Use the current measurement if it is within 1% of the
288 // previous measurement.
289 return measurement;
290 }
291 last_measurement = measurement;
292 sleep_nanoseconds *= 2;
293 }
294 return last_measurement;
295 }
296
297 #endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
298
GetNominalCPUFrequency()299 static double GetNominalCPUFrequency() {
300 long freq = 0;
301
302 // Google's production kernel has a patch to export the TSC
303 // frequency through sysfs. If the kernel is exporting the TSC
304 // frequency use that. There are issues where cpuinfo_max_freq
305 // cannot be relied on because the BIOS may be exporting an invalid
306 // p-state (on x86) or p-states may be used to put the processor in
307 // a new mode (turbo mode). Essentially, those frequencies cannot
308 // always be relied upon. The same reasons apply to /proc/cpuinfo as
309 // well.
310 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
311 return freq * 1e3; // Value is kHz.
312 }
313
314 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
315 // On these platforms, the TSC frequency is the nominal CPU
316 // frequency. But without having the kernel export it directly
317 // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
318 // other way to reliably get the TSC frequency, so we have to
319 // measure it ourselves. Some CPUs abuse cpuinfo_max_freq by
320 // exporting "fake" frequencies for implementing new features. For
321 // example, Intel's turbo mode is enabled by exposing a p-state
322 // value with a higher frequency than that of the real TSC
323 // rate. Because of this, we prefer to measure the TSC rate
324 // ourselves on i386 and x86-64.
325 return MeasureTscFrequency();
326 #else
327
328 // If CPU scaling is in effect, we want to use the *maximum*
329 // frequency, not whatever CPU speed some random processor happens
330 // to be using now.
331 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
332 &freq)) {
333 return freq * 1e3; // Value is kHz.
334 }
335
336 return 1.0;
337 #endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
338 }
339
340 #endif
341
342 ABSL_CONST_INIT static once_flag init_num_cpus_once;
343 ABSL_CONST_INIT static int num_cpus = 0;
344
345 // NumCPUs() may be called before main() and before malloc is properly
346 // initialized, therefore this must not allocate memory.
NumCPUs()347 int NumCPUs() {
348 base_internal::LowLevelCallOnce(
349 &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
350 return num_cpus;
351 }
352
353 // A default frequency of 0.0 might be dangerous if it is used in division.
354 ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
355 ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
356
357 // NominalCPUFrequency() may be called before main() and before malloc is
358 // properly initialized, therefore this must not allocate memory.
NominalCPUFrequency()359 double NominalCPUFrequency() {
360 base_internal::LowLevelCallOnce(
361 &init_nominal_cpu_frequency_once,
362 []() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
363 return nominal_cpu_frequency;
364 }
365
366 #if defined(_WIN32)
367
GetTID()368 pid_t GetTID() {
369 return pid_t{GetCurrentThreadId()};
370 }
371
372 #elif defined(__linux__)
373
374 #ifndef SYS_gettid
375 #define SYS_gettid __NR_gettid
376 #endif
377
GetTID()378 pid_t GetTID() {
379 return syscall(SYS_gettid);
380 }
381
382 #elif defined(__akaros__)
383
GetTID()384 pid_t GetTID() {
385 // Akaros has a concept of "vcore context", which is the state the program
386 // is forced into when we need to make a user-level scheduling decision, or
387 // run a signal handler. This is analogous to the interrupt context that a
388 // CPU might enter if it encounters some kind of exception.
389 //
390 // There is no current thread context in vcore context, but we need to give
391 // a reasonable answer if asked for a thread ID (e.g., in a signal handler).
392 // Thread 0 always exists, so if we are in vcore context, we return that.
393 //
394 // Otherwise, we know (since we are using pthreads) that the uthread struct
395 // current_uthread is pointing to is the first element of a
396 // struct pthread_tcb, so we extract and return the thread ID from that.
397 //
398 // TODO(dcross): Akaros anticipates moving the thread ID to the uthread
399 // structure at some point. We should modify this code to remove the cast
400 // when that happens.
401 if (in_vcore_context())
402 return 0;
403 return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
404 }
405
406 #elif defined(__myriad2__)
407
GetTID()408 pid_t GetTID() {
409 uint32_t tid;
410 rtems_task_ident(RTEMS_SELF, 0, &tid);
411 return tid;
412 }
413
414 #else
415
416 // Fallback implementation of GetTID using pthread_getspecific.
417 ABSL_CONST_INIT static once_flag tid_once;
418 ABSL_CONST_INIT static pthread_key_t tid_key;
419 ABSL_CONST_INIT static absl::base_internal::SpinLock tid_lock(
420 absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
421
422 // We set a bit per thread in this array to indicate that an ID is in
423 // use. ID 0 is unused because it is the default value returned by
424 // pthread_getspecific().
425 ABSL_CONST_INIT static std::vector<uint32_t> *tid_array
426 ABSL_GUARDED_BY(tid_lock) = nullptr;
427 static constexpr int kBitsPerWord = 32; // tid_array is uint32_t.
428
429 // Returns the TID to tid_array.
FreeTID(void * v)430 static void FreeTID(void *v) {
431 intptr_t tid = reinterpret_cast<intptr_t>(v);
432 int word = tid / kBitsPerWord;
433 uint32_t mask = ~(1u << (tid % kBitsPerWord));
434 absl::base_internal::SpinLockHolder lock(&tid_lock);
435 assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
436 (*tid_array)[word] &= mask;
437 }
438
InitGetTID()439 static void InitGetTID() {
440 if (pthread_key_create(&tid_key, FreeTID) != 0) {
441 // The logging system calls GetTID() so it can't be used here.
442 perror("pthread_key_create failed");
443 abort();
444 }
445
446 // Initialize tid_array.
447 absl::base_internal::SpinLockHolder lock(&tid_lock);
448 tid_array = new std::vector<uint32_t>(1);
449 (*tid_array)[0] = 1; // ID 0 is never-allocated.
450 }
451
452 // Return a per-thread small integer ID from pthread's thread-specific data.
GetTID()453 pid_t GetTID() {
454 absl::call_once(tid_once, InitGetTID);
455
456 intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
457 if (tid != 0) {
458 return tid;
459 }
460
461 int bit; // tid_array[word] = 1u << bit;
462 size_t word;
463 {
464 // Search for the first unused ID.
465 absl::base_internal::SpinLockHolder lock(&tid_lock);
466 // First search for a word in the array that is not all ones.
467 word = 0;
468 while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
469 ++word;
470 }
471 if (word == tid_array->size()) {
472 tid_array->push_back(0); // No space left, add kBitsPerWord more IDs.
473 }
474 // Search for a zero bit in the word.
475 bit = 0;
476 while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
477 ++bit;
478 }
479 tid = (word * kBitsPerWord) + bit;
480 (*tid_array)[word] |= 1u << bit; // Mark the TID as allocated.
481 }
482
483 if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
484 perror("pthread_setspecific failed");
485 abort();
486 }
487
488 return static_cast<pid_t>(tid);
489 }
490
491 #endif
492
493 // GetCachedTID() caches the thread ID in thread-local storage (which is a
494 // userspace construct) to avoid unnecessary system calls. Without this caching,
495 // it can take roughly 98ns, while it takes roughly 1ns with this caching.
GetCachedTID()496 pid_t GetCachedTID() {
497 #ifdef ABSL_HAVE_THREAD_LOCAL
498 static thread_local pid_t thread_id = GetTID();
499 return thread_id;
500 #else
501 return GetTID();
502 #endif // ABSL_HAVE_THREAD_LOCAL
503 }
504
505 } // namespace base_internal
506 ABSL_NAMESPACE_END
507 } // namespace absl
508