• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2009 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "p2p/client/basic_port_allocator.h"
12 
13 #include <memory>
14 #include <ostream>  // no-presubmit-check TODO(webrtc:8982)
15 
16 #include "absl/algorithm/container.h"
17 #include "absl/strings/string_view.h"
18 #include "p2p/base/basic_packet_socket_factory.h"
19 #include "p2p/base/p2p_constants.h"
20 #include "p2p/base/stun_port.h"
21 #include "p2p/base/stun_request.h"
22 #include "p2p/base/stun_server.h"
23 #include "p2p/base/test_stun_server.h"
24 #include "p2p/base/test_turn_server.h"
25 #include "rtc_base/fake_clock.h"
26 #include "rtc_base/fake_mdns_responder.h"
27 #include "rtc_base/fake_network.h"
28 #include "rtc_base/firewall_socket_server.h"
29 #include "rtc_base/gunit.h"
30 #include "rtc_base/ip_address.h"
31 #include "rtc_base/logging.h"
32 #include "rtc_base/nat_server.h"
33 #include "rtc_base/nat_socket_factory.h"
34 #include "rtc_base/nat_types.h"
35 #include "rtc_base/net_helper.h"
36 #include "rtc_base/net_helpers.h"
37 #include "rtc_base/network.h"
38 #include "rtc_base/network_constants.h"
39 #include "rtc_base/network_monitor.h"
40 #include "rtc_base/socket.h"
41 #include "rtc_base/socket_address.h"
42 #include "rtc_base/socket_address_pair.h"
43 #include "rtc_base/thread.h"
44 #include "rtc_base/virtual_socket_server.h"
45 #include "system_wrappers/include/metrics.h"
46 #include "test/gmock.h"
47 #include "test/gtest.h"
48 #include "test/scoped_key_value_config.h"
49 
50 using rtc::IPAddress;
51 using rtc::SocketAddress;
52 using ::testing::Contains;
53 using ::testing::Not;
54 
55 #define MAYBE_SKIP_IPV4                        \
56   if (!rtc::HasIPv4Enabled()) {                \
57     RTC_LOG(LS_INFO) << "No IPv4... skipping"; \
58     return;                                    \
59   }
60 
61 static const SocketAddress kAnyAddr("0.0.0.0", 0);
62 static const SocketAddress kClientAddr("11.11.11.11", 0);
63 static const SocketAddress kClientAddr2("22.22.22.22", 0);
64 static const SocketAddress kLoopbackAddr("127.0.0.1", 0);
65 static const SocketAddress kPrivateAddr("192.168.1.11", 0);
66 static const SocketAddress kPrivateAddr2("192.168.1.12", 0);
67 static const SocketAddress kClientIPv6Addr("2401:fa00:4:1000:be30:5bff:fee5:c3",
68                                            0);
69 static const SocketAddress kClientIPv6Addr2(
70     "2401:fa00:4:2000:be30:5bff:fee5:c3",
71     0);
72 static const SocketAddress kClientIPv6Addr3(
73     "2401:fa00:4:3000:be30:5bff:fee5:c3",
74     0);
75 static const SocketAddress kClientIPv6Addr4(
76     "2401:fa00:4:4000:be30:5bff:fee5:c3",
77     0);
78 static const SocketAddress kClientIPv6Addr5(
79     "2401:fa00:4:5000:be30:5bff:fee5:c3",
80     0);
81 static const SocketAddress kNatUdpAddr("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
82 static const SocketAddress kNatTcpAddr("77.77.77.77", rtc::NAT_SERVER_TCP_PORT);
83 static const SocketAddress kRemoteClientAddr("22.22.22.22", 0);
84 static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
85 static const SocketAddress kTurnUdpIntAddr("99.99.99.4", 3478);
86 static const SocketAddress kTurnUdpIntIPv6Addr(
87     "2402:fb00:4:1000:be30:5bff:fee5:c3",
88     3479);
89 static const SocketAddress kTurnTcpIntAddr("99.99.99.5", 3478);
90 static const SocketAddress kTurnTcpIntIPv6Addr(
91     "2402:fb00:4:2000:be30:5bff:fee5:c3",
92     3479);
93 static const SocketAddress kTurnUdpExtAddr("99.99.99.6", 0);
94 
95 // Minimum and maximum port for port range tests.
96 static const int kMinPort = 10000;
97 static const int kMaxPort = 10099;
98 
99 // Based on ICE_UFRAG_LENGTH
100 static const char kIceUfrag0[] = "UF00";
101 // Based on ICE_PWD_LENGTH
102 static const char kIcePwd0[] = "TESTICEPWD00000000000000";
103 
104 static const char kContentName[] = "test content";
105 
106 static const int kDefaultAllocationTimeout = 3000;
107 static const char kTurnUsername[] = "test";
108 static const char kTurnPassword[] = "test";
109 
110 // STUN timeout (with all retries) is cricket::STUN_TOTAL_TIMEOUT.
111 // Add some margin of error for slow bots.
112 static const int kStunTimeoutMs = cricket::STUN_TOTAL_TIMEOUT;
113 
114 constexpr uint64_t kTiebreakerDefault = 44444;
115 
116 namespace {
117 
CheckStunKeepaliveIntervalOfAllReadyPorts(const cricket::PortAllocatorSession * allocator_session,int expected)118 void CheckStunKeepaliveIntervalOfAllReadyPorts(
119     const cricket::PortAllocatorSession* allocator_session,
120     int expected) {
121   auto ready_ports = allocator_session->ReadyPorts();
122   for (const auto* port : ready_ports) {
123     if (port->Type() == cricket::STUN_PORT_TYPE ||
124         (port->Type() == cricket::LOCAL_PORT_TYPE &&
125          port->GetProtocol() == cricket::PROTO_UDP)) {
126       EXPECT_EQ(
127           static_cast<const cricket::UDPPort*>(port)->stun_keepalive_delay(),
128           expected);
129     }
130   }
131 }
132 
133 }  // namespace
134 
135 namespace cricket {
136 
137 // Helper for dumping candidates
operator <<(std::ostream & os,const std::vector<Candidate> & candidates)138 std::ostream& operator<<(std::ostream& os,
139                          const std::vector<Candidate>& candidates) {
140   os << '[';
141   bool first = true;
142   for (const Candidate& c : candidates) {
143     if (!first) {
144       os << ", ";
145     }
146     os << c.ToString();
147     first = false;
148   }
149   os << ']';
150   return os;
151 }
152 
153 class BasicPortAllocatorTestBase : public ::testing::Test,
154                                    public sigslot::has_slots<> {
155  public:
BasicPortAllocatorTestBase()156   BasicPortAllocatorTestBase()
157       : vss_(new rtc::VirtualSocketServer()),
158         fss_(new rtc::FirewallSocketServer(vss_.get())),
159         thread_(fss_.get()),
160         // Note that the NAT is not used by default. ResetWithStunServerAndNat
161         // must be called.
162         nat_factory_(vss_.get(), kNatUdpAddr, kNatTcpAddr),
163         nat_socket_factory_(new rtc::BasicPacketSocketFactory(&nat_factory_)),
164         stun_server_(TestStunServer::Create(fss_.get(), kStunAddr)),
165         turn_server_(rtc::Thread::Current(),
166                      fss_.get(),
167                      kTurnUdpIntAddr,
168                      kTurnUdpExtAddr),
169         candidate_allocation_done_(false) {
170     ServerAddresses stun_servers;
171     stun_servers.insert(kStunAddr);
172 
173     allocator_ = std::make_unique<BasicPortAllocator>(
174         &network_manager_,
175         std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get()),
176         stun_servers, &field_trials_);
177     allocator_->Initialize();
178     allocator_->set_step_delay(kMinimumStepDelay);
179     allocator_->SetIceTiebreaker(kTiebreakerDefault);
180     webrtc::metrics::Reset();
181   }
182 
AddInterface(const SocketAddress & addr)183   void AddInterface(const SocketAddress& addr) {
184     network_manager_.AddInterface(addr);
185   }
AddInterface(const SocketAddress & addr,absl::string_view if_name)186   void AddInterface(const SocketAddress& addr, absl::string_view if_name) {
187     network_manager_.AddInterface(addr, if_name);
188   }
AddInterface(const SocketAddress & addr,absl::string_view if_name,rtc::AdapterType type)189   void AddInterface(const SocketAddress& addr,
190                     absl::string_view if_name,
191                     rtc::AdapterType type) {
192     network_manager_.AddInterface(addr, if_name, type);
193   }
194   // The default source address is the public address that STUN server will
195   // observe when the endpoint is sitting on the public internet and the local
196   // port is bound to the "any" address. Intended for simulating the situation
197   // that client binds the "any" address, and that's also the address returned
198   // by getsockname/GetLocalAddress, so that the client can learn the actual
199   // local address only from the STUN response.
AddInterfaceAsDefaultSourceAddresss(const SocketAddress & addr)200   void AddInterfaceAsDefaultSourceAddresss(const SocketAddress& addr) {
201     AddInterface(addr);
202     // When a binding comes from the any address, the `addr` will be used as the
203     // srflx address.
204     vss_->SetDefaultSourceAddress(addr.ipaddr());
205   }
RemoveInterface(const SocketAddress & addr)206   void RemoveInterface(const SocketAddress& addr) {
207     network_manager_.RemoveInterface(addr);
208   }
SetPortRange(int min_port,int max_port)209   bool SetPortRange(int min_port, int max_port) {
210     return allocator_->SetPortRange(min_port, max_port);
211   }
212   // Endpoint is on the public network. No STUN or TURN.
ResetWithNoServersOrNat()213   void ResetWithNoServersOrNat() {
214     allocator_.reset(new BasicPortAllocator(
215         &network_manager_,
216         std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
217     allocator_->Initialize();
218     allocator_->SetIceTiebreaker(kTiebreakerDefault);
219     allocator_->set_step_delay(kMinimumStepDelay);
220   }
221   // Endpoint is behind a NAT, with STUN specified.
ResetWithStunServerAndNat(const rtc::SocketAddress & stun_server)222   void ResetWithStunServerAndNat(const rtc::SocketAddress& stun_server) {
223     ResetWithStunServer(stun_server, true);
224   }
225   // Endpoint is on the public network, with STUN specified.
ResetWithStunServerNoNat(const rtc::SocketAddress & stun_server)226   void ResetWithStunServerNoNat(const rtc::SocketAddress& stun_server) {
227     ResetWithStunServer(stun_server, false);
228   }
229   // Endpoint is on the public network, with TURN specified.
ResetWithTurnServersNoNat(const rtc::SocketAddress & udp_turn,const rtc::SocketAddress & tcp_turn)230   void ResetWithTurnServersNoNat(const rtc::SocketAddress& udp_turn,
231                                  const rtc::SocketAddress& tcp_turn) {
232     ResetWithNoServersOrNat();
233     AddTurnServers(udp_turn, tcp_turn);
234   }
235 
CreateTurnServers(const rtc::SocketAddress & udp_turn,const rtc::SocketAddress & tcp_turn)236   RelayServerConfig CreateTurnServers(const rtc::SocketAddress& udp_turn,
237                                       const rtc::SocketAddress& tcp_turn) {
238     RelayServerConfig turn_server;
239     RelayCredentials credentials(kTurnUsername, kTurnPassword);
240     turn_server.credentials = credentials;
241 
242     if (!udp_turn.IsNil()) {
243       turn_server.ports.push_back(ProtocolAddress(udp_turn, PROTO_UDP));
244     }
245     if (!tcp_turn.IsNil()) {
246       turn_server.ports.push_back(ProtocolAddress(tcp_turn, PROTO_TCP));
247     }
248     return turn_server;
249   }
250 
AddTurnServers(const rtc::SocketAddress & udp_turn,const rtc::SocketAddress & tcp_turn)251   void AddTurnServers(const rtc::SocketAddress& udp_turn,
252                       const rtc::SocketAddress& tcp_turn) {
253     RelayServerConfig turn_server = CreateTurnServers(udp_turn, tcp_turn);
254     allocator_->AddTurnServerForTesting(turn_server);
255   }
256 
CreateSession(int component)257   bool CreateSession(int component) {
258     session_ = CreateSession("session", component);
259     if (!session_) {
260       return false;
261     }
262     return true;
263   }
264 
CreateSession(int component,absl::string_view content_name)265   bool CreateSession(int component, absl::string_view content_name) {
266     session_ = CreateSession("session", content_name, component);
267     if (!session_) {
268       return false;
269     }
270     return true;
271   }
272 
CreateSession(absl::string_view sid,int component)273   std::unique_ptr<PortAllocatorSession> CreateSession(absl::string_view sid,
274                                                       int component) {
275     return CreateSession(sid, kContentName, component);
276   }
277 
CreateSession(absl::string_view sid,absl::string_view content_name,int component)278   std::unique_ptr<PortAllocatorSession> CreateSession(
279       absl::string_view sid,
280       absl::string_view content_name,
281       int component) {
282     return CreateSession(sid, content_name, component, kIceUfrag0, kIcePwd0);
283   }
284 
CreateSession(absl::string_view sid,absl::string_view content_name,int component,absl::string_view ice_ufrag,absl::string_view ice_pwd)285   std::unique_ptr<PortAllocatorSession> CreateSession(
286       absl::string_view sid,
287       absl::string_view content_name,
288       int component,
289       absl::string_view ice_ufrag,
290       absl::string_view ice_pwd) {
291     std::unique_ptr<PortAllocatorSession> session =
292         allocator_->CreateSession(content_name, component, ice_ufrag, ice_pwd);
293     session->SignalPortReady.connect(this,
294                                      &BasicPortAllocatorTestBase::OnPortReady);
295     session->SignalPortsPruned.connect(
296         this, &BasicPortAllocatorTestBase::OnPortsPruned);
297     session->SignalCandidatesReady.connect(
298         this, &BasicPortAllocatorTestBase::OnCandidatesReady);
299     session->SignalCandidatesRemoved.connect(
300         this, &BasicPortAllocatorTestBase::OnCandidatesRemoved);
301     session->SignalCandidatesAllocationDone.connect(
302         this, &BasicPortAllocatorTestBase::OnCandidatesAllocationDone);
303     session->set_ice_tiebreaker(kTiebreakerDefault);
304     return session;
305   }
306 
307   // Return true if the addresses are the same, or the port is 0 in `pattern`
308   // (acting as a wildcard) and the IPs are the same.
309   // Even with a wildcard port, the port of the address should be nonzero if
310   // the IP is nonzero.
AddressMatch(const SocketAddress & address,const SocketAddress & pattern)311   static bool AddressMatch(const SocketAddress& address,
312                            const SocketAddress& pattern) {
313     return address.ipaddr() == pattern.ipaddr() &&
314            ((pattern.port() == 0 &&
315              (address.port() != 0 || IPIsAny(address.ipaddr()))) ||
316             (pattern.port() != 0 && address.port() == pattern.port()));
317   }
318 
319   // Returns the number of ports that have matching type, protocol and
320   // address.
CountPorts(const std::vector<PortInterface * > & ports,absl::string_view type,ProtocolType protocol,const SocketAddress & client_addr)321   static int CountPorts(const std::vector<PortInterface*>& ports,
322                         absl::string_view type,
323                         ProtocolType protocol,
324                         const SocketAddress& client_addr) {
325     return absl::c_count_if(
326         ports, [type, protocol, client_addr](PortInterface* port) {
327           return port->Type() == type && port->GetProtocol() == protocol &&
328                  port->Network()->GetBestIP() == client_addr.ipaddr();
329         });
330   }
331 
CountCandidates(const std::vector<Candidate> & candidates,absl::string_view type,absl::string_view proto,const SocketAddress & addr)332   static int CountCandidates(const std::vector<Candidate>& candidates,
333                              absl::string_view type,
334                              absl::string_view proto,
335                              const SocketAddress& addr) {
336     return absl::c_count_if(
337         candidates, [type, proto, addr](const Candidate& c) {
338           return c.type() == type && c.protocol() == proto &&
339                  AddressMatch(c.address(), addr);
340         });
341   }
342 
343   // Find a candidate and return it.
FindCandidate(const std::vector<Candidate> & candidates,absl::string_view type,absl::string_view proto,const SocketAddress & addr,Candidate * found)344   static bool FindCandidate(const std::vector<Candidate>& candidates,
345                             absl::string_view type,
346                             absl::string_view proto,
347                             const SocketAddress& addr,
348                             Candidate* found) {
349     auto it =
350         absl::c_find_if(candidates, [type, proto, addr](const Candidate& c) {
351           return c.type() == type && c.protocol() == proto &&
352                  AddressMatch(c.address(), addr);
353         });
354     if (it != candidates.end() && found) {
355       *found = *it;
356     }
357     return it != candidates.end();
358   }
359 
360   // Convenience method to call FindCandidate with no return.
HasCandidate(const std::vector<Candidate> & candidates,absl::string_view type,absl::string_view proto,const SocketAddress & addr)361   static bool HasCandidate(const std::vector<Candidate>& candidates,
362                            absl::string_view type,
363                            absl::string_view proto,
364                            const SocketAddress& addr) {
365     return FindCandidate(candidates, type, proto, addr, nullptr);
366   }
367 
368   // Version of HasCandidate that also takes a related address.
HasCandidateWithRelatedAddr(const std::vector<Candidate> & candidates,absl::string_view type,absl::string_view proto,const SocketAddress & addr,const SocketAddress & related_addr)369   static bool HasCandidateWithRelatedAddr(
370       const std::vector<Candidate>& candidates,
371       absl::string_view type,
372       absl::string_view proto,
373       const SocketAddress& addr,
374       const SocketAddress& related_addr) {
375     return absl::c_any_of(
376         candidates, [type, proto, addr, related_addr](const Candidate& c) {
377           return c.type() == type && c.protocol() == proto &&
378                  AddressMatch(c.address(), addr) &&
379                  AddressMatch(c.related_address(), related_addr);
380         });
381   }
382 
CheckPort(const rtc::SocketAddress & addr,int min_port,int max_port)383   static bool CheckPort(const rtc::SocketAddress& addr,
384                         int min_port,
385                         int max_port) {
386     return (addr.port() >= min_port && addr.port() <= max_port);
387   }
388 
HasNetwork(const std::vector<const rtc::Network * > & networks,const rtc::Network & to_be_found)389   static bool HasNetwork(const std::vector<const rtc::Network*>& networks,
390                          const rtc::Network& to_be_found) {
391     auto it =
392         absl::c_find_if(networks, [to_be_found](const rtc::Network* network) {
393           return network->description() == to_be_found.description() &&
394                  network->name() == to_be_found.name() &&
395                  network->prefix() == to_be_found.prefix();
396         });
397     return it != networks.end();
398   }
399 
OnCandidatesAllocationDone(PortAllocatorSession * session)400   void OnCandidatesAllocationDone(PortAllocatorSession* session) {
401     // We should only get this callback once, except in the mux test where
402     // we have multiple port allocation sessions.
403     if (session == session_.get()) {
404       ASSERT_FALSE(candidate_allocation_done_);
405       candidate_allocation_done_ = true;
406     }
407     EXPECT_TRUE(session->CandidatesAllocationDone());
408   }
409 
410   // Check if all ports allocated have send-buffer size `expected`. If
411   // `expected` == -1, check if GetOptions returns SOCKET_ERROR.
CheckSendBufferSizesOfAllPorts(int expected)412   void CheckSendBufferSizesOfAllPorts(int expected) {
413     std::vector<PortInterface*>::iterator it;
414     for (it = ports_.begin(); it < ports_.end(); ++it) {
415       int send_buffer_size;
416       if (expected == -1) {
417         EXPECT_EQ(SOCKET_ERROR,
418                   (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
419       } else {
420         EXPECT_EQ(0,
421                   (*it)->GetOption(rtc::Socket::OPT_SNDBUF, &send_buffer_size));
422         ASSERT_EQ(expected, send_buffer_size);
423       }
424     }
425   }
426 
virtual_socket_server()427   rtc::VirtualSocketServer* virtual_socket_server() { return vss_.get(); }
428 
429  protected:
allocator()430   BasicPortAllocator& allocator() { return *allocator_; }
431 
OnPortReady(PortAllocatorSession * ses,PortInterface * port)432   void OnPortReady(PortAllocatorSession* ses, PortInterface* port) {
433     RTC_LOG(LS_INFO) << "OnPortReady: " << port->ToString();
434     ports_.push_back(port);
435     // Make sure the new port is added to ReadyPorts.
436     auto ready_ports = ses->ReadyPorts();
437     EXPECT_THAT(ready_ports, Contains(port));
438   }
OnPortsPruned(PortAllocatorSession * ses,const std::vector<PortInterface * > & pruned_ports)439   void OnPortsPruned(PortAllocatorSession* ses,
440                      const std::vector<PortInterface*>& pruned_ports) {
441     RTC_LOG(LS_INFO) << "Number of ports pruned: " << pruned_ports.size();
442     auto ready_ports = ses->ReadyPorts();
443     auto new_end = ports_.end();
444     for (PortInterface* port : pruned_ports) {
445       new_end = std::remove(ports_.begin(), new_end, port);
446       // Make sure the pruned port is not in ReadyPorts.
447       EXPECT_THAT(ready_ports, Not(Contains(port)));
448     }
449     ports_.erase(new_end, ports_.end());
450   }
451 
OnCandidatesReady(PortAllocatorSession * ses,const std::vector<Candidate> & candidates)452   void OnCandidatesReady(PortAllocatorSession* ses,
453                          const std::vector<Candidate>& candidates) {
454     for (const Candidate& candidate : candidates) {
455       RTC_LOG(LS_INFO) << "OnCandidatesReady: " << candidate.ToString();
456       // Sanity check that the ICE component is set.
457       EXPECT_EQ(ICE_CANDIDATE_COMPONENT_RTP, candidate.component());
458       candidates_.push_back(candidate);
459     }
460     // Make sure the new candidates are added to Candidates.
461     auto ses_candidates = ses->ReadyCandidates();
462     for (const Candidate& candidate : candidates) {
463       EXPECT_THAT(ses_candidates, Contains(candidate));
464     }
465   }
466 
OnCandidatesRemoved(PortAllocatorSession * session,const std::vector<Candidate> & removed_candidates)467   void OnCandidatesRemoved(PortAllocatorSession* session,
468                            const std::vector<Candidate>& removed_candidates) {
469     auto new_end = std::remove_if(
470         candidates_.begin(), candidates_.end(),
471         [removed_candidates](Candidate& candidate) {
472           for (const Candidate& removed_candidate : removed_candidates) {
473             if (candidate.MatchesForRemoval(removed_candidate)) {
474               return true;
475             }
476           }
477           return false;
478         });
479     candidates_.erase(new_end, candidates_.end());
480   }
481 
HasRelayAddress(const ProtocolAddress & proto_addr)482   bool HasRelayAddress(const ProtocolAddress& proto_addr) {
483     for (size_t i = 0; i < allocator_->turn_servers().size(); ++i) {
484       RelayServerConfig server_config = allocator_->turn_servers()[i];
485       PortList::const_iterator relay_port;
486       for (relay_port = server_config.ports.begin();
487            relay_port != server_config.ports.end(); ++relay_port) {
488         if (proto_addr.address == relay_port->address &&
489             proto_addr.proto == relay_port->proto)
490           return true;
491       }
492     }
493     return false;
494   }
495 
ResetWithStunServer(const rtc::SocketAddress & stun_server,bool with_nat)496   void ResetWithStunServer(const rtc::SocketAddress& stun_server,
497                            bool with_nat) {
498     if (with_nat) {
499       nat_server_.reset(new rtc::NATServer(
500           rtc::NAT_OPEN_CONE, vss_.get(), kNatUdpAddr, kNatTcpAddr, vss_.get(),
501           rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
502     } else {
503       nat_socket_factory_ =
504           std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get());
505     }
506 
507     ServerAddresses stun_servers;
508     if (!stun_server.IsNil()) {
509       stun_servers.insert(stun_server);
510     }
511     allocator_.reset(new BasicPortAllocator(&network_manager_,
512                                             nat_socket_factory_.get(),
513                                             stun_servers, &field_trials_));
514     allocator_->Initialize();
515     allocator_->set_step_delay(kMinimumStepDelay);
516   }
517 
518   std::unique_ptr<rtc::VirtualSocketServer> vss_;
519   std::unique_ptr<rtc::FirewallSocketServer> fss_;
520   rtc::AutoSocketServerThread thread_;
521   std::unique_ptr<rtc::NATServer> nat_server_;
522   rtc::NATSocketFactory nat_factory_;
523   std::unique_ptr<rtc::BasicPacketSocketFactory> nat_socket_factory_;
524   std::unique_ptr<TestStunServer> stun_server_;
525   TestTurnServer turn_server_;
526   rtc::FakeNetworkManager network_manager_;
527   std::unique_ptr<BasicPortAllocator> allocator_;
528   std::unique_ptr<PortAllocatorSession> session_;
529   std::vector<PortInterface*> ports_;
530   std::vector<Candidate> candidates_;
531   bool candidate_allocation_done_;
532   webrtc::test::ScopedKeyValueConfig field_trials_;
533 };
534 
535 class BasicPortAllocatorTestWithRealClock : public BasicPortAllocatorTestBase {
536 };
537 
538 class FakeClockBase {
539  public:
540   rtc::ScopedFakeClock fake_clock;
541 };
542 
543 class BasicPortAllocatorTest : public FakeClockBase,
544                                public BasicPortAllocatorTestBase {
545  public:
546   // This function starts the port/address gathering and check the existence of
547   // candidates as specified. When `expect_stun_candidate` is true,
548   // `stun_candidate_addr` carries the expected reflective address, which is
549   // also the related address for TURN candidate if it is expected. Otherwise,
550   // it should be ignore.
CheckDisableAdapterEnumeration(uint32_t total_ports,const rtc::IPAddress & host_candidate_addr,const rtc::IPAddress & stun_candidate_addr,const rtc::IPAddress & relay_candidate_udp_transport_addr,const rtc::IPAddress & relay_candidate_tcp_transport_addr)551   void CheckDisableAdapterEnumeration(
552       uint32_t total_ports,
553       const rtc::IPAddress& host_candidate_addr,
554       const rtc::IPAddress& stun_candidate_addr,
555       const rtc::IPAddress& relay_candidate_udp_transport_addr,
556       const rtc::IPAddress& relay_candidate_tcp_transport_addr) {
557     network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
558                                                  rtc::IPAddress());
559     if (!session_) {
560       ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
561     }
562     session_->set_flags(session_->flags() |
563                         PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION |
564                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
565     allocator().set_allow_tcp_listen(false);
566     session_->StartGettingPorts();
567     EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
568                                kDefaultAllocationTimeout, fake_clock);
569 
570     uint32_t total_candidates = 0;
571     if (!host_candidate_addr.IsNil()) {
572       EXPECT_TRUE(HasCandidate(candidates_, "local", "udp",
573                                rtc::SocketAddress(kPrivateAddr.ipaddr(), 0)));
574       ++total_candidates;
575     }
576     if (!stun_candidate_addr.IsNil()) {
577       rtc::SocketAddress related_address(host_candidate_addr, 0);
578       if (host_candidate_addr.IsNil()) {
579         related_address.SetIP(rtc::GetAnyIP(stun_candidate_addr.family()));
580       }
581       EXPECT_TRUE(HasCandidateWithRelatedAddr(
582           candidates_, "stun", "udp",
583           rtc::SocketAddress(stun_candidate_addr, 0), related_address));
584       ++total_candidates;
585     }
586     if (!relay_candidate_udp_transport_addr.IsNil()) {
587       EXPECT_TRUE(HasCandidateWithRelatedAddr(
588           candidates_, "relay", "udp",
589           rtc::SocketAddress(relay_candidate_udp_transport_addr, 0),
590           rtc::SocketAddress(stun_candidate_addr, 0)));
591       ++total_candidates;
592     }
593     if (!relay_candidate_tcp_transport_addr.IsNil()) {
594       EXPECT_TRUE(HasCandidateWithRelatedAddr(
595           candidates_, "relay", "udp",
596           rtc::SocketAddress(relay_candidate_tcp_transport_addr, 0),
597           rtc::SocketAddress(stun_candidate_addr, 0)));
598       ++total_candidates;
599     }
600 
601     EXPECT_EQ(total_candidates, candidates_.size());
602     EXPECT_EQ(total_ports, ports_.size());
603   }
604 
TestIPv6TurnPortPrunesIPv4TurnPort()605   void TestIPv6TurnPortPrunesIPv4TurnPort() {
606     turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
607     // Add two IP addresses on the same interface.
608     AddInterface(kClientAddr, "net1");
609     AddInterface(kClientIPv6Addr, "net1");
610     allocator_.reset(new BasicPortAllocator(
611         &network_manager_,
612         std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
613     allocator_->Initialize();
614     allocator_->SetConfiguration(allocator_->stun_servers(),
615                                  allocator_->turn_servers(), 0,
616                                  webrtc::PRUNE_BASED_ON_PRIORITY);
617     AddTurnServers(kTurnUdpIntIPv6Addr, rtc::SocketAddress());
618     AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
619 
620     allocator_->set_step_delay(kMinimumStepDelay);
621     allocator_->set_flags(
622         allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
623         PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP);
624 
625     ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
626     session_->StartGettingPorts();
627     EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
628                                kDefaultAllocationTimeout, fake_clock);
629     // Three ports (one IPv4 STUN, one IPv6 STUN and one TURN) will be ready.
630     EXPECT_EQ(3U, session_->ReadyPorts().size());
631     EXPECT_EQ(3U, ports_.size());
632     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
633     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
634     EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
635     EXPECT_EQ(0, CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
636 
637     // Now that we remove candidates when a TURN port is pruned, there will be
638     // exactly 3 candidates in both `candidates_` and `ready_candidates`.
639     EXPECT_EQ(3U, candidates_.size());
640     const std::vector<Candidate>& ready_candidates =
641         session_->ReadyCandidates();
642     EXPECT_EQ(3U, ready_candidates.size());
643     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
644     EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
645                              rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
646   }
647 
TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PortPrunePolicy prune_policy,bool tcp_pruned)648   void TestTurnPortPrunesWithUdpAndTcpPorts(
649       webrtc::PortPrunePolicy prune_policy,
650       bool tcp_pruned) {
651     turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
652     AddInterface(kClientAddr);
653     allocator_.reset(new BasicPortAllocator(
654         &network_manager_,
655         std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
656     allocator_->Initialize();
657     allocator_->SetConfiguration(allocator_->stun_servers(),
658                                  allocator_->turn_servers(), 0, prune_policy);
659     AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
660     allocator_->set_step_delay(kMinimumStepDelay);
661     allocator_->set_flags(allocator().flags() |
662                           PORTALLOCATOR_ENABLE_SHARED_SOCKET |
663                           PORTALLOCATOR_DISABLE_TCP);
664 
665     ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
666     session_->StartGettingPorts();
667     EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
668                                kDefaultAllocationTimeout, fake_clock);
669     // Only 2 ports (one STUN and one TURN) are actually being used.
670     EXPECT_EQ(2U, session_->ReadyPorts().size());
671     // We have verified that each port, when it is added to `ports_`, it is
672     // found in `ready_ports`, and when it is pruned, it is not found in
673     // `ready_ports`, so we only need to verify the content in one of them.
674     EXPECT_EQ(2U, ports_.size());
675     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
676     int num_udp_ports = tcp_pruned ? 1 : 0;
677     EXPECT_EQ(num_udp_ports,
678               CountPorts(ports_, "relay", PROTO_UDP, kClientAddr));
679     EXPECT_EQ(1 - num_udp_ports,
680               CountPorts(ports_, "relay", PROTO_TCP, kClientAddr));
681 
682     // Now that we remove candidates when a TURN port is pruned, `candidates_`
683     // should only contains two candidates regardless whether the TCP TURN port
684     // is created before or after the UDP turn port.
685     EXPECT_EQ(2U, candidates_.size());
686     // There will only be 2 candidates in `ready_candidates` because it only
687     // includes the candidates in the ready ports.
688     const std::vector<Candidate>& ready_candidates =
689         session_->ReadyCandidates();
690     EXPECT_EQ(2U, ready_candidates.size());
691     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
692 
693     // The external candidate is always udp.
694     EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
695                              rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
696   }
697 
TestEachInterfaceHasItsOwnTurnPorts()698   void TestEachInterfaceHasItsOwnTurnPorts() {
699     turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
700     turn_server_.AddInternalSocket(kTurnUdpIntIPv6Addr, PROTO_UDP);
701     turn_server_.AddInternalSocket(kTurnTcpIntIPv6Addr, PROTO_TCP);
702     // Add two interfaces both having IPv4 and IPv6 addresses.
703     AddInterface(kClientAddr, "net1", rtc::ADAPTER_TYPE_WIFI);
704     AddInterface(kClientIPv6Addr, "net1", rtc::ADAPTER_TYPE_WIFI);
705     AddInterface(kClientAddr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
706     AddInterface(kClientIPv6Addr2, "net2", rtc::ADAPTER_TYPE_CELLULAR);
707     allocator_.reset(new BasicPortAllocator(
708         &network_manager_,
709         std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
710     allocator_->Initialize();
711     allocator_->SetConfiguration(allocator_->stun_servers(),
712                                  allocator_->turn_servers(), 0,
713                                  webrtc::PRUNE_BASED_ON_PRIORITY);
714     // Have both UDP/TCP and IPv4/IPv6 TURN ports.
715     AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
716     AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
717 
718     allocator_->set_step_delay(kMinimumStepDelay);
719     allocator_->set_flags(
720         allocator().flags() | PORTALLOCATOR_ENABLE_SHARED_SOCKET |
721         PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
722     ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
723     session_->StartGettingPorts();
724     EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
725                                kDefaultAllocationTimeout, fake_clock);
726     // 10 ports (4 STUN and 1 TURN ports on each interface) will be ready to
727     // use.
728     EXPECT_EQ(10U, session_->ReadyPorts().size());
729     EXPECT_EQ(10U, ports_.size());
730     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr));
731     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientAddr2));
732     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr));
733     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_UDP, kClientIPv6Addr2));
734     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr));
735     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientAddr2));
736     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr));
737     EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kClientIPv6Addr2));
738     EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr));
739     EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kClientIPv6Addr2));
740 
741     // Now that we remove candidates when TURN ports are pruned, there will be
742     // exactly 10 candidates in `candidates_`.
743     EXPECT_EQ(10U, candidates_.size());
744     const std::vector<Candidate>& ready_candidates =
745         session_->ReadyCandidates();
746     EXPECT_EQ(10U, ready_candidates.size());
747     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr));
748     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "udp", kClientAddr2));
749     EXPECT_TRUE(
750         HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr));
751     EXPECT_TRUE(
752         HasCandidate(ready_candidates, "local", "udp", kClientIPv6Addr2));
753     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr));
754     EXPECT_TRUE(HasCandidate(ready_candidates, "local", "tcp", kClientAddr2));
755     EXPECT_TRUE(
756         HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr));
757     EXPECT_TRUE(
758         HasCandidate(ready_candidates, "local", "tcp", kClientIPv6Addr2));
759     EXPECT_TRUE(HasCandidate(ready_candidates, "relay", "udp",
760                              rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
761   }
762 };
763 
764 // Tests that we can init the port allocator and create a session.
TEST_F(BasicPortAllocatorTest,TestBasic)765 TEST_F(BasicPortAllocatorTest, TestBasic) {
766   EXPECT_EQ(&network_manager_, allocator().network_manager());
767   EXPECT_EQ(kStunAddr, *allocator().stun_servers().begin());
768   ASSERT_EQ(0u, allocator().turn_servers().size());
769 
770   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
771   EXPECT_FALSE(session_->CandidatesAllocationDone());
772 }
773 
774 // Tests that our network filtering works properly.
TEST_F(BasicPortAllocatorTest,TestIgnoreOnlyLoopbackNetworkByDefault)775 TEST_F(BasicPortAllocatorTest, TestIgnoreOnlyLoopbackNetworkByDefault) {
776   AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
777                rtc::ADAPTER_TYPE_ETHERNET);
778   AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
779                rtc::ADAPTER_TYPE_WIFI);
780   AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
781                rtc::ADAPTER_TYPE_CELLULAR);
782   AddInterface(SocketAddress(IPAddress(0x12345603U), 0), "test_vpn0",
783                rtc::ADAPTER_TYPE_VPN);
784   AddInterface(SocketAddress(IPAddress(0x12345604U), 0), "test_lo",
785                rtc::ADAPTER_TYPE_LOOPBACK);
786   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
787   session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
788                       PORTALLOCATOR_DISABLE_TCP);
789   session_->StartGettingPorts();
790   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
791                              kDefaultAllocationTimeout, fake_clock);
792   EXPECT_EQ(4U, candidates_.size());
793   for (const Candidate& candidate : candidates_) {
794     EXPECT_LT(candidate.address().ip(), 0x12345604U);
795   }
796 }
797 
TEST_F(BasicPortAllocatorTest,TestIgnoreNetworksAccordingToIgnoreMask)798 TEST_F(BasicPortAllocatorTest, TestIgnoreNetworksAccordingToIgnoreMask) {
799   AddInterface(SocketAddress(IPAddress(0x12345600U), 0), "test_eth0",
800                rtc::ADAPTER_TYPE_ETHERNET);
801   AddInterface(SocketAddress(IPAddress(0x12345601U), 0), "test_wlan0",
802                rtc::ADAPTER_TYPE_WIFI);
803   AddInterface(SocketAddress(IPAddress(0x12345602U), 0), "test_cell0",
804                rtc::ADAPTER_TYPE_CELLULAR);
805   allocator_->SetNetworkIgnoreMask(rtc::ADAPTER_TYPE_ETHERNET |
806                                    rtc::ADAPTER_TYPE_LOOPBACK |
807                                    rtc::ADAPTER_TYPE_WIFI);
808   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
809   session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
810                       PORTALLOCATOR_DISABLE_TCP);
811   session_->StartGettingPorts();
812   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
813                              kDefaultAllocationTimeout, fake_clock);
814   EXPECT_EQ(1U, candidates_.size());
815   EXPECT_EQ(0x12345602U, candidates_[0].address().ip());
816 }
817 
818 // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
819 // both Wi-Fi and cell interfaces are available, only Wi-Fi is used.
TEST_F(BasicPortAllocatorTest,WifiUsedInsteadOfCellWhenCostlyNetworksDisabled)820 TEST_F(BasicPortAllocatorTest,
821        WifiUsedInsteadOfCellWhenCostlyNetworksDisabled) {
822   SocketAddress wifi(IPAddress(0x12345600U), 0);
823   SocketAddress cell(IPAddress(0x12345601U), 0);
824   AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
825   AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
826   // Disable all but UDP candidates to make the test simpler.
827   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
828                         cricket::PORTALLOCATOR_DISABLE_RELAY |
829                         cricket::PORTALLOCATOR_DISABLE_TCP |
830                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
831   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
832   session_->StartGettingPorts();
833   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
834                              kDefaultAllocationTimeout, fake_clock);
835   // Should only get one Wi-Fi candidate.
836   EXPECT_EQ(1U, candidates_.size());
837   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
838 }
839 
840 // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
841 // both "unknown" and cell interfaces are available, only the unknown are used.
842 // The unknown interface may be something that ultimately uses Wi-Fi, so we do
843 // this to be on the safe side.
TEST_F(BasicPortAllocatorTest,UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled)844 TEST_F(BasicPortAllocatorTest,
845        UnknownInterfaceUsedInsteadOfCellWhenCostlyNetworksDisabled) {
846   SocketAddress cell(IPAddress(0x12345601U), 0);
847   SocketAddress unknown1(IPAddress(0x12345602U), 0);
848   SocketAddress unknown2(IPAddress(0x12345603U), 0);
849   AddInterface(cell, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
850   AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
851   AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
852   // Disable all but UDP candidates to make the test simpler.
853   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
854                         cricket::PORTALLOCATOR_DISABLE_RELAY |
855                         cricket::PORTALLOCATOR_DISABLE_TCP |
856                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
857   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
858   session_->StartGettingPorts();
859   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
860                              kDefaultAllocationTimeout, fake_clock);
861   // Should only get two candidates, none of which is cell.
862   EXPECT_EQ(2U, candidates_.size());
863   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown1));
864   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", unknown2));
865 }
866 
867 // Test that when the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set and
868 // there are a mix of Wi-Fi, "unknown" and cell interfaces, only the Wi-Fi
869 // interface is used.
TEST_F(BasicPortAllocatorTest,WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled)870 TEST_F(BasicPortAllocatorTest,
871        WifiUsedInsteadOfUnknownOrCellWhenCostlyNetworksDisabled) {
872   SocketAddress wifi(IPAddress(0x12345600U), 0);
873   SocketAddress cellular(IPAddress(0x12345601U), 0);
874   SocketAddress unknown1(IPAddress(0x12345602U), 0);
875   SocketAddress unknown2(IPAddress(0x12345603U), 0);
876   AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
877   AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
878   AddInterface(unknown1, "test_unknown0", rtc::ADAPTER_TYPE_UNKNOWN);
879   AddInterface(unknown2, "test_unknown1", rtc::ADAPTER_TYPE_UNKNOWN);
880   // Disable all but UDP candidates to make the test simpler.
881   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
882                         cricket::PORTALLOCATOR_DISABLE_RELAY |
883                         cricket::PORTALLOCATOR_DISABLE_TCP |
884                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
885   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
886   session_->StartGettingPorts();
887   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
888                              kDefaultAllocationTimeout, fake_clock);
889   // Should only get one Wi-Fi candidate.
890   EXPECT_EQ(1U, candidates_.size());
891   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
892 }
893 
894 // Test that if the PORTALLOCATOR_DISABLE_COSTLY_NETWORKS flag is set, but the
895 // only interface available is cellular, it ends up used anyway. A costly
896 // connection is always better than no connection.
TEST_F(BasicPortAllocatorTest,CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces)897 TEST_F(BasicPortAllocatorTest,
898        CellUsedWhenCostlyNetworksDisabledButThereAreNoOtherInterfaces) {
899   SocketAddress cellular(IPAddress(0x12345601U), 0);
900   AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
901   // Disable all but UDP candidates to make the test simpler.
902   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
903                         cricket::PORTALLOCATOR_DISABLE_RELAY |
904                         cricket::PORTALLOCATOR_DISABLE_TCP |
905                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
906   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
907   session_->StartGettingPorts();
908   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
909                              kDefaultAllocationTimeout, fake_clock);
910   // Make sure we got the cell candidate.
911   EXPECT_EQ(1U, candidates_.size());
912   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
913 }
914 
915 // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
916 // a WiFi network with link-local IP address and a cellular network, then the
917 // cellular candidate will still be gathered.
TEST_F(BasicPortAllocatorTest,CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal)918 TEST_F(BasicPortAllocatorTest,
919        CellNotRemovedWhenCostlyNetworksDisabledAndWifiIsLinkLocal) {
920   SocketAddress wifi_link_local("169.254.0.1", 0);
921   SocketAddress cellular(IPAddress(0x12345601U), 0);
922   AddInterface(wifi_link_local, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
923   AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
924 
925   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
926                         cricket::PORTALLOCATOR_DISABLE_RELAY |
927                         cricket::PORTALLOCATOR_DISABLE_TCP |
928                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
929   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
930   session_->StartGettingPorts();
931   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
932                              kDefaultAllocationTimeout, fake_clock);
933   // Make sure we got both wifi and cell candidates.
934   EXPECT_EQ(2U, candidates_.size());
935   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
936   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", cellular));
937 }
938 
939 // Test that if both PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is set, and there is
940 // a WiFi network with link-local IP address, a WiFi network with a normal IP
941 // address and a cellular network, then the cellular candidate will not be
942 // gathered.
TEST_F(BasicPortAllocatorTest,CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent)943 TEST_F(BasicPortAllocatorTest,
944        CellRemovedWhenCostlyNetworksDisabledAndBothWifisPresent) {
945   SocketAddress wifi(IPAddress(0x12345600U), 0);
946   SocketAddress wifi_link_local("169.254.0.1", 0);
947   SocketAddress cellular(IPAddress(0x12345601U), 0);
948   AddInterface(wifi, "test_wlan0", rtc::ADAPTER_TYPE_WIFI);
949   AddInterface(wifi_link_local, "test_wlan1", rtc::ADAPTER_TYPE_WIFI);
950   AddInterface(cellular, "test_cell0", rtc::ADAPTER_TYPE_CELLULAR);
951 
952   allocator().set_flags(cricket::PORTALLOCATOR_DISABLE_STUN |
953                         cricket::PORTALLOCATOR_DISABLE_RELAY |
954                         cricket::PORTALLOCATOR_DISABLE_TCP |
955                         cricket::PORTALLOCATOR_DISABLE_COSTLY_NETWORKS);
956   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
957   session_->StartGettingPorts();
958   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
959                              kDefaultAllocationTimeout, fake_clock);
960   // Make sure we got only wifi candidates.
961   EXPECT_EQ(2U, candidates_.size());
962   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi));
963   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", wifi_link_local));
964 }
965 
966 // Test that the adapter types of the Ethernet and the VPN can be correctly
967 // identified so that the Ethernet has a lower network cost than the VPN, and
968 // the Ethernet is not filtered out if PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is
969 // set.
TEST_F(BasicPortAllocatorTest,EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent)970 TEST_F(BasicPortAllocatorTest,
971        EthernetIsNotFilteredOutWhenCostlyNetworksDisabledAndVpnPresent) {
972   AddInterface(kClientAddr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
973   AddInterface(kClientAddr2, "tap0", rtc::ADAPTER_TYPE_VPN);
974   allocator().set_flags(PORTALLOCATOR_DISABLE_COSTLY_NETWORKS |
975                         PORTALLOCATOR_DISABLE_RELAY |
976                         PORTALLOCATOR_DISABLE_TCP);
977   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
978   session_->StartGettingPorts();
979   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
980                              kDefaultAllocationTimeout, fake_clock);
981   // The VPN tap0 network should be filtered out as a costly network, and we
982   // should have a UDP port and a STUN port from the Ethernet eth0.
983   ASSERT_EQ(2U, ports_.size());
984   EXPECT_EQ(ports_[0]->Network()->name(), "eth0");
985   EXPECT_EQ(ports_[1]->Network()->name(), "eth0");
986 }
987 
988 // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
989 // to gather candidates.
TEST_F(BasicPortAllocatorTest,MaxIpv6NetworksLimitEnforced)990 TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitEnforced) {
991   // Add three IPv6 network interfaces, but tell the allocator to only use two.
992   allocator().set_max_ipv6_networks(2);
993   AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
994   AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
995   AddInterface(kClientIPv6Addr3, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
996 
997   // To simplify the test, only gather UDP host candidates.
998   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
999                         PORTALLOCATOR_DISABLE_STUN |
1000                         PORTALLOCATOR_DISABLE_RELAY);
1001 
1002   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
1003   session_->StartGettingPorts();
1004   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1005                              kDefaultAllocationTimeout, fake_clock);
1006   EXPECT_EQ(2U, candidates_.size());
1007   // Ensure the expected two interfaces (eth0 and eth1) were used.
1008   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
1009   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
1010 }
1011 
1012 // Ensure that allocator.max_ipv6_networks() doesn't prevent IPv4 networks from
1013 // being used.
TEST_F(BasicPortAllocatorTest,MaxIpv6NetworksLimitDoesNotImpactIpv4Networks)1014 TEST_F(BasicPortAllocatorTest, MaxIpv6NetworksLimitDoesNotImpactIpv4Networks) {
1015   // Set the "max IPv6" limit to 1, adding two IPv6 and two IPv4 networks.
1016   allocator().set_max_ipv6_networks(1);
1017   AddInterface(kClientIPv6Addr, "eth0", rtc::ADAPTER_TYPE_ETHERNET);
1018   AddInterface(kClientIPv6Addr2, "eth1", rtc::ADAPTER_TYPE_ETHERNET);
1019   AddInterface(kClientAddr, "eth2", rtc::ADAPTER_TYPE_ETHERNET);
1020   AddInterface(kClientAddr2, "eth3", rtc::ADAPTER_TYPE_ETHERNET);
1021 
1022   // To simplify the test, only gather UDP host candidates.
1023   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
1024                         PORTALLOCATOR_DISABLE_STUN |
1025                         PORTALLOCATOR_DISABLE_RELAY);
1026 
1027   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
1028   session_->StartGettingPorts();
1029   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1030                              kDefaultAllocationTimeout, fake_clock);
1031   EXPECT_EQ(3U, candidates_.size());
1032   // Ensure that only one IPv6 interface was used, but both IPv4 interfaces
1033   // were used.
1034   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
1035   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1036   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr2));
1037 }
1038 
1039 // Test that we could use loopback interface as host candidate.
TEST_F(BasicPortAllocatorTest,TestLoopbackNetworkInterface)1040 TEST_F(BasicPortAllocatorTest, TestLoopbackNetworkInterface) {
1041   AddInterface(kLoopbackAddr, "test_loopback", rtc::ADAPTER_TYPE_LOOPBACK);
1042   allocator_->SetNetworkIgnoreMask(0);
1043   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1044   session_->set_flags(PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY |
1045                       PORTALLOCATOR_DISABLE_TCP);
1046   session_->StartGettingPorts();
1047   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1048                              kDefaultAllocationTimeout, fake_clock);
1049   EXPECT_EQ(1U, candidates_.size());
1050 }
1051 
1052 // Tests that we can get all the desired addresses successfully.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsWithMinimumStepDelay)1053 TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithMinimumStepDelay) {
1054   AddInterface(kClientAddr);
1055   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1056   session_->StartGettingPorts();
1057   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1058                              kDefaultAllocationTimeout, fake_clock);
1059   EXPECT_EQ(3U, candidates_.size());
1060   EXPECT_EQ(3U, ports_.size());
1061   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1062   EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
1063   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1064 }
1065 
1066 // Test that when the same network interface is brought down and up, the
1067 // port allocator session will restart a new allocation sequence if
1068 // it is not stopped.
TEST_F(BasicPortAllocatorTest,TestSameNetworkDownAndUpWhenSessionNotStopped)1069 TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionNotStopped) {
1070   std::string if_name("test_net0");
1071   AddInterface(kClientAddr, if_name);
1072   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1073   session_->StartGettingPorts();
1074   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1075                              kDefaultAllocationTimeout, fake_clock);
1076   EXPECT_EQ(3U, candidates_.size());
1077   EXPECT_EQ(3U, ports_.size());
1078   candidate_allocation_done_ = false;
1079   candidates_.clear();
1080   ports_.clear();
1081 
1082   // Disable socket creation to simulate the network interface being down. When
1083   // no network interfaces are available, BasicPortAllocator will fall back to
1084   // binding to the "ANY" address, so we need to make sure that fails too.
1085   fss_->set_tcp_sockets_enabled(false);
1086   fss_->set_udp_sockets_enabled(false);
1087   RemoveInterface(kClientAddr);
1088   SIMULATED_WAIT(false, 1000, fake_clock);
1089   EXPECT_EQ(0U, candidates_.size());
1090   ports_.clear();
1091   candidate_allocation_done_ = false;
1092 
1093   // When the same interfaces are added again, new candidates/ports should be
1094   // generated.
1095   fss_->set_tcp_sockets_enabled(true);
1096   fss_->set_udp_sockets_enabled(true);
1097   AddInterface(kClientAddr, if_name);
1098   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1099                              kDefaultAllocationTimeout, fake_clock);
1100   EXPECT_EQ(3U, candidates_.size());
1101   EXPECT_EQ(3U, ports_.size());
1102 }
1103 
1104 // Test that when the same network interface is brought down and up, the
1105 // port allocator session will not restart a new allocation sequence if
1106 // it is stopped.
TEST_F(BasicPortAllocatorTest,TestSameNetworkDownAndUpWhenSessionStopped)1107 TEST_F(BasicPortAllocatorTest, TestSameNetworkDownAndUpWhenSessionStopped) {
1108   std::string if_name("test_net0");
1109   AddInterface(kClientAddr, if_name);
1110   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1111   session_->StartGettingPorts();
1112   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1113                              kDefaultAllocationTimeout, fake_clock);
1114   EXPECT_EQ(3U, candidates_.size());
1115   EXPECT_EQ(3U, ports_.size());
1116   session_->StopGettingPorts();
1117   candidates_.clear();
1118   ports_.clear();
1119 
1120   RemoveInterface(kClientAddr);
1121   // Wait one (simulated) second and then verify no new candidates have
1122   // appeared.
1123   SIMULATED_WAIT(false, 1000, fake_clock);
1124   EXPECT_EQ(0U, candidates_.size());
1125   EXPECT_EQ(0U, ports_.size());
1126 
1127   // When the same interfaces are added again, new candidates/ports should not
1128   // be generated because the session has stopped.
1129   AddInterface(kClientAddr, if_name);
1130   SIMULATED_WAIT(false, 1000, fake_clock);
1131   EXPECT_EQ(0U, candidates_.size());
1132   EXPECT_EQ(0U, ports_.size());
1133 }
1134 
1135 // Similar to the above tests, but tests a situation when sockets can't be
1136 // bound to a network interface, then after a network change event can be.
1137 // Related bug: https://bugs.chromium.org/p/webrtc/issues/detail?id=8256
TEST_F(BasicPortAllocatorTest,CandidatesRegatheredAfterBindingFails)1138 TEST_F(BasicPortAllocatorTest, CandidatesRegatheredAfterBindingFails) {
1139   // Only test local ports to simplify test.
1140   ResetWithNoServersOrNat();
1141   // Provide a situation where the interface appears to be available, but
1142   // binding the sockets fails. See bug for description of when this can
1143   // happen.
1144   std::string if_name("test_net0");
1145   AddInterface(kClientAddr, if_name);
1146   fss_->set_tcp_sockets_enabled(false);
1147   fss_->set_udp_sockets_enabled(false);
1148   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1149   session_->StartGettingPorts();
1150   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1151                              kDefaultAllocationTimeout, fake_clock);
1152   // Make sure we actually prevented candidates from being gathered (other than
1153   // a single TCP active candidate, since that doesn't require creating a
1154   // socket).
1155   ASSERT_EQ(1U, candidates_.size());
1156   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1157   candidate_allocation_done_ = false;
1158 
1159   // Now simulate the interface coming up, with the newfound ability to bind
1160   // sockets.
1161   fss_->set_tcp_sockets_enabled(true);
1162   fss_->set_udp_sockets_enabled(true);
1163   AddInterface(kClientAddr, if_name);
1164   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1165                              kDefaultAllocationTimeout, fake_clock);
1166   // Should get UDP and TCP candidate.
1167   ASSERT_EQ(2U, candidates_.size());
1168   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1169   // TODO(deadbeef): This is actually the same active TCP candidate as before.
1170   // We should extend this test to also verify that a server candidate is
1171   // gathered.
1172   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1173 }
1174 
1175 // Verify candidates with default step delay of 1sec.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsWithOneSecondStepDelay)1176 TEST_F(BasicPortAllocatorTest, TestGetAllPortsWithOneSecondStepDelay) {
1177   AddInterface(kClientAddr);
1178   allocator_->set_step_delay(kDefaultStepDelay);
1179   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1180   session_->StartGettingPorts();
1181   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
1182   EXPECT_EQ(2U, ports_.size());
1183   ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 2000, fake_clock);
1184   EXPECT_EQ(3U, ports_.size());
1185 
1186   ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), 1500, fake_clock);
1187   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1188   EXPECT_EQ(3U, ports_.size());
1189   EXPECT_TRUE(candidate_allocation_done_);
1190   // If we Stop gathering now, we shouldn't get a second "done" callback.
1191   session_->StopGettingPorts();
1192 }
1193 
TEST_F(BasicPortAllocatorTest,TestSetupVideoRtpPortsWithNormalSendBuffers)1194 TEST_F(BasicPortAllocatorTest, TestSetupVideoRtpPortsWithNormalSendBuffers) {
1195   AddInterface(kClientAddr);
1196   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP, CN_VIDEO));
1197   session_->StartGettingPorts();
1198   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1199                              kDefaultAllocationTimeout, fake_clock);
1200   EXPECT_EQ(3U, candidates_.size());
1201   // If we Stop gathering now, we shouldn't get a second "done" callback.
1202   session_->StopGettingPorts();
1203 
1204   // All ports should have unset send-buffer sizes.
1205   CheckSendBufferSizesOfAllPorts(-1);
1206 }
1207 
1208 // Tests that we can get callback after StopGetAllPorts when called in the
1209 // middle of gathering.
TEST_F(BasicPortAllocatorTest,TestStopGetAllPorts)1210 TEST_F(BasicPortAllocatorTest, TestStopGetAllPorts) {
1211   AddInterface(kClientAddr);
1212   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1213   session_->StartGettingPorts();
1214   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
1215                            fake_clock);
1216   EXPECT_EQ(2U, ports_.size());
1217   session_->StopGettingPorts();
1218   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1219                              kDefaultAllocationTimeout, fake_clock);
1220 }
1221 
1222 // Test that we restrict client ports appropriately when a port range is set.
1223 // We check the candidates for udp/stun/tcp ports, and the from address
1224 // for relay ports.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsPortRange)1225 TEST_F(BasicPortAllocatorTest, TestGetAllPortsPortRange) {
1226   AddInterface(kClientAddr);
1227   // Check that an invalid port range fails.
1228   EXPECT_FALSE(SetPortRange(kMaxPort, kMinPort));
1229   // Check that a null port range succeeds.
1230   EXPECT_TRUE(SetPortRange(0, 0));
1231   // Check that a valid port range succeeds.
1232   EXPECT_TRUE(SetPortRange(kMinPort, kMaxPort));
1233   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1234   session_->StartGettingPorts();
1235   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1236                              kDefaultAllocationTimeout, fake_clock);
1237   EXPECT_EQ(3U, candidates_.size());
1238   EXPECT_EQ(3U, ports_.size());
1239 
1240   int num_nonrelay_candidates = 0;
1241   for (const Candidate& candidate : candidates_) {
1242     // Check the port number for the UDP/STUN/TCP port objects.
1243     if (candidate.type() != RELAY_PORT_TYPE) {
1244       EXPECT_TRUE(CheckPort(candidate.address(), kMinPort, kMaxPort));
1245       ++num_nonrelay_candidates;
1246     }
1247   }
1248   EXPECT_EQ(3, num_nonrelay_candidates);
1249 }
1250 
1251 // Test that if we have no network adapters, we bind to the ANY address and
1252 // still get non-host candidates.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsNoAdapters)1253 TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoAdapters) {
1254   // Default config uses GTURN and no NAT, so replace that with the
1255   // desired setup (NAT, STUN server, TURN server, UDP/TCP).
1256   ResetWithStunServerAndNat(kStunAddr);
1257   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
1258   AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
1259   AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
1260   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1261   session_->StartGettingPorts();
1262   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1263                              kDefaultAllocationTimeout, fake_clock);
1264   EXPECT_EQ(4U, ports_.size());
1265   EXPECT_EQ(1, CountPorts(ports_, "stun", PROTO_UDP, kAnyAddr));
1266   EXPECT_EQ(1, CountPorts(ports_, "local", PROTO_TCP, kAnyAddr));
1267   // Two TURN ports, using UDP/TCP for the first hop to the TURN server.
1268   EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_UDP, kAnyAddr));
1269   EXPECT_EQ(1, CountPorts(ports_, "relay", PROTO_TCP, kAnyAddr));
1270   // The "any" address port should be in the signaled ready ports, but the host
1271   // candidate for it is useless and shouldn't be signaled. So we only have
1272   // STUN/TURN candidates.
1273   EXPECT_EQ(3U, candidates_.size());
1274   EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
1275                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
1276   // Again, two TURN candidates, using UDP/TCP for the first hop to the TURN
1277   // server.
1278   EXPECT_EQ(2,
1279             CountCandidates(candidates_, "relay", "udp",
1280                             rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1281 }
1282 
1283 // Test that when enumeration is disabled, we should not have any ports when
1284 // candidate_filter() is set to CF_RELAY and no relay is specified.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationWithoutNatRelayTransportOnly)1285 TEST_F(BasicPortAllocatorTest,
1286        TestDisableAdapterEnumerationWithoutNatRelayTransportOnly) {
1287   ResetWithStunServerNoNat(kStunAddr);
1288   allocator().SetCandidateFilter(CF_RELAY);
1289   // Expect to see no ports and no candidates.
1290   CheckDisableAdapterEnumeration(0U, rtc::IPAddress(), rtc::IPAddress(),
1291                                  rtc::IPAddress(), rtc::IPAddress());
1292 }
1293 
1294 // Test that even with multiple interfaces, the result should still be a single
1295 // default private, one STUN and one TURN candidate since we bind to any address
1296 // (i.e. all 0s).
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationBehindNatMultipleInterfaces)1297 TEST_F(BasicPortAllocatorTest,
1298        TestDisableAdapterEnumerationBehindNatMultipleInterfaces) {
1299   AddInterface(kPrivateAddr);
1300   AddInterface(kPrivateAddr2);
1301   ResetWithStunServerAndNat(kStunAddr);
1302   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
1303 
1304   // Enable IPv6 here. Since the network_manager doesn't have IPv6 default
1305   // address set and we have no IPv6 STUN server, there should be no IPv6
1306   // candidates.
1307   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1308   session_->set_flags(PORTALLOCATOR_ENABLE_IPV6);
1309 
1310   // Expect to see 3 ports for IPv4: HOST/STUN, TURN/UDP and TCP ports, 2 ports
1311   // for IPv6: HOST, and TCP. Only IPv4 candidates: a default private, STUN and
1312   // TURN/UDP candidates.
1313   CheckDisableAdapterEnumeration(5U, kPrivateAddr.ipaddr(),
1314                                  kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
1315                                  rtc::IPAddress());
1316 }
1317 
1318 // Test that we should get a default private, STUN, TURN/UDP and TURN/TCP
1319 // candidates when both TURN/UDP and TURN/TCP servers are specified.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationBehindNatWithTcp)1320 TEST_F(BasicPortAllocatorTest, TestDisableAdapterEnumerationBehindNatWithTcp) {
1321   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
1322   AddInterface(kPrivateAddr);
1323   ResetWithStunServerAndNat(kStunAddr);
1324   AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
1325   // Expect to see 4 ports - STUN, TURN/UDP, TURN/TCP and TCP port. A default
1326   // private, STUN, TURN/UDP, and TURN/TCP candidates.
1327   CheckDisableAdapterEnumeration(4U, kPrivateAddr.ipaddr(),
1328                                  kNatUdpAddr.ipaddr(), kTurnUdpExtAddr.ipaddr(),
1329                                  kTurnUdpExtAddr.ipaddr());
1330 }
1331 
1332 // Test that when adapter enumeration is disabled, for endpoints without
1333 // STUN/TURN specified, a default private candidate is still generated.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationWithoutNatOrServers)1334 TEST_F(BasicPortAllocatorTest,
1335        TestDisableAdapterEnumerationWithoutNatOrServers) {
1336   ResetWithNoServersOrNat();
1337   // Expect to see 2 ports: STUN and TCP ports, one default private candidate.
1338   CheckDisableAdapterEnumeration(2U, kPrivateAddr.ipaddr(), rtc::IPAddress(),
1339                                  rtc::IPAddress(), rtc::IPAddress());
1340 }
1341 
1342 // Test that when adapter enumeration is disabled, with
1343 // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
1344 // a NAT, there is no local candidate.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled)1345 TEST_F(BasicPortAllocatorTest,
1346        TestDisableAdapterEnumerationWithoutNatLocalhostCandidateDisabled) {
1347   ResetWithStunServerNoNat(kStunAddr);
1348   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1349   session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
1350   // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
1351   // candidate.
1352   CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), rtc::IPAddress(),
1353                                  rtc::IPAddress(), rtc::IPAddress());
1354 }
1355 
1356 // Test that when adapter enumeration is disabled, with
1357 // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints not behind
1358 // a NAT, there is no local candidate. However, this specified default route
1359 // (kClientAddr) which was discovered when sending STUN requests, will become
1360 // the srflx addresses.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute)1361 TEST_F(BasicPortAllocatorTest,
1362        TestDisableAdapterEnumerationWithoutNatLocalhostCandDisabledDiffRoute) {
1363   ResetWithStunServerNoNat(kStunAddr);
1364   AddInterfaceAsDefaultSourceAddresss(kClientAddr);
1365   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1366   session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
1367   // Expect to see 2 ports: STUN and TCP ports, localhost candidate and STUN
1368   // candidate.
1369   CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kClientAddr.ipaddr(),
1370                                  rtc::IPAddress(), rtc::IPAddress());
1371 }
1372 
1373 // Test that when adapter enumeration is disabled, with
1374 // PORTALLOCATOR_DISABLE_LOCALHOST_CANDIDATE specified, for endpoints behind a
1375 // NAT, there is only one STUN candidate.
TEST_F(BasicPortAllocatorTest,TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled)1376 TEST_F(BasicPortAllocatorTest,
1377        TestDisableAdapterEnumerationWithNatLocalhostCandidateDisabled) {
1378   ResetWithStunServerAndNat(kStunAddr);
1379   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1380   session_->set_flags(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
1381   // Expect to see 2 ports: STUN and TCP ports, and single STUN candidate.
1382   CheckDisableAdapterEnumeration(2U, rtc::IPAddress(), kNatUdpAddr.ipaddr(),
1383                                  rtc::IPAddress(), rtc::IPAddress());
1384 }
1385 
1386 // Test that we disable relay over UDP, and only TCP is used when connecting to
1387 // the relay server.
TEST_F(BasicPortAllocatorTest,TestDisableUdpTurn)1388 TEST_F(BasicPortAllocatorTest, TestDisableUdpTurn) {
1389   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
1390   AddInterface(kClientAddr);
1391   ResetWithStunServerAndNat(kStunAddr);
1392   AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
1393   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1394   session_->set_flags(PORTALLOCATOR_DISABLE_UDP_RELAY |
1395                       PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
1396                       PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1397 
1398   session_->StartGettingPorts();
1399   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1400                              kDefaultAllocationTimeout, fake_clock);
1401 
1402   // Expect to see 2 ports and 2 candidates - TURN/TCP and TCP ports, TCP and
1403   // TURN/TCP candidates.
1404   EXPECT_EQ(2U, ports_.size());
1405   EXPECT_EQ(2U, candidates_.size());
1406   Candidate turn_candidate;
1407   EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp", kTurnUdpExtAddr,
1408                             &turn_candidate));
1409   // The TURN candidate should use TCP to contact the TURN server.
1410   EXPECT_EQ(TCP_PROTOCOL_NAME, turn_candidate.relay_protocol());
1411   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1412 }
1413 
1414 // Test that we can get OnCandidatesAllocationDone callback when all the ports
1415 // are disabled.
TEST_F(BasicPortAllocatorTest,TestDisableAllPorts)1416 TEST_F(BasicPortAllocatorTest, TestDisableAllPorts) {
1417   AddInterface(kClientAddr);
1418   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1419   session_->set_flags(PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_STUN |
1420                       PORTALLOCATOR_DISABLE_RELAY | PORTALLOCATOR_DISABLE_TCP);
1421   session_->StartGettingPorts();
1422   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
1423   EXPECT_EQ(0U, candidates_.size());
1424 }
1425 
1426 // Test that we don't crash or malfunction if we can't create UDP sockets.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsNoUdpSockets)1427 TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSockets) {
1428   AddInterface(kClientAddr);
1429   fss_->set_udp_sockets_enabled(false);
1430   ASSERT_TRUE(CreateSession(1));
1431   session_->StartGettingPorts();
1432   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1433                              kDefaultAllocationTimeout, fake_clock);
1434   EXPECT_EQ(1U, candidates_.size());
1435   EXPECT_EQ(1U, ports_.size());
1436   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1437 }
1438 
1439 // Test that we don't crash or malfunction if we can't create UDP sockets or
1440 // listen on TCP sockets. We still give out a local TCP address, since
1441 // apparently this is needed for the remote side to accept our connection.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsNoUdpSocketsNoTcpListen)1442 TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpSocketsNoTcpListen) {
1443   AddInterface(kClientAddr);
1444   fss_->set_udp_sockets_enabled(false);
1445   fss_->set_tcp_listen_enabled(false);
1446   ASSERT_TRUE(CreateSession(1));
1447   session_->StartGettingPorts();
1448   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1449                              kDefaultAllocationTimeout, fake_clock);
1450   EXPECT_EQ(1U, candidates_.size());
1451   EXPECT_EQ(1U, ports_.size());
1452   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1453 }
1454 
1455 // Test that we don't crash or malfunction if we can't create any sockets.
1456 // TODO(deadbeef): Find a way to exit early here.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsNoSockets)1457 TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoSockets) {
1458   AddInterface(kClientAddr);
1459   fss_->set_tcp_sockets_enabled(false);
1460   fss_->set_udp_sockets_enabled(false);
1461   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1462   session_->StartGettingPorts();
1463   SIMULATED_WAIT(candidates_.size() > 0, 2000, fake_clock);
1464   // TODO(deadbeef): Check candidate_allocation_done signal.
1465   // In case of Relay, ports creation will succeed but sockets will fail.
1466   // There is no error reporting from RelayEntry to handle this failure.
1467 }
1468 
1469 // Testing STUN timeout.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsNoUdpAllowed)1470 TEST_F(BasicPortAllocatorTest, TestGetAllPortsNoUdpAllowed) {
1471   fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
1472   AddInterface(kClientAddr);
1473   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1474   session_->StartGettingPorts();
1475   EXPECT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
1476                            fake_clock);
1477   EXPECT_EQ(2U, ports_.size());
1478   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1479   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1480   // We wait at least for a full STUN timeout, which
1481   // cricket::STUN_TOTAL_TIMEOUT seconds.
1482   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1483                              cricket::STUN_TOTAL_TIMEOUT, fake_clock);
1484   // No additional (STUN) candidates.
1485   EXPECT_EQ(2U, candidates_.size());
1486 }
1487 
TEST_F(BasicPortAllocatorTest,TestCandidatePriorityOfMultipleInterfaces)1488 TEST_F(BasicPortAllocatorTest, TestCandidatePriorityOfMultipleInterfaces) {
1489   AddInterface(kClientAddr);
1490   AddInterface(kClientAddr2);
1491   // Allocating only host UDP ports. This is done purely for testing
1492   // convenience.
1493   allocator().set_flags(PORTALLOCATOR_DISABLE_TCP | PORTALLOCATOR_DISABLE_STUN |
1494                         PORTALLOCATOR_DISABLE_RELAY);
1495   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1496   session_->StartGettingPorts();
1497   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1498                              kDefaultAllocationTimeout, fake_clock);
1499   ASSERT_EQ(2U, candidates_.size());
1500   EXPECT_EQ(2U, ports_.size());
1501   // Candidates priorities should be different.
1502   EXPECT_NE(candidates_[0].priority(), candidates_[1].priority());
1503 }
1504 
1505 // Test to verify ICE restart process.
TEST_F(BasicPortAllocatorTest,TestGetAllPortsRestarts)1506 TEST_F(BasicPortAllocatorTest, TestGetAllPortsRestarts) {
1507   AddInterface(kClientAddr);
1508   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1509   session_->StartGettingPorts();
1510   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1511                              kDefaultAllocationTimeout, fake_clock);
1512   EXPECT_EQ(3U, candidates_.size());
1513   EXPECT_EQ(3U, ports_.size());
1514   // TODO(deadbeef): Extend this to verify ICE restart.
1515 }
1516 
1517 // Test that the allocator session uses the candidate filter it's created with,
1518 // rather than the filter of its parent allocator.
1519 // The filter of the allocator should only affect the next gathering phase,
1520 // according to JSEP, which means the *next* allocator session returned.
TEST_F(BasicPortAllocatorTest,TestSessionUsesOwnCandidateFilter)1521 TEST_F(BasicPortAllocatorTest, TestSessionUsesOwnCandidateFilter) {
1522   AddInterface(kClientAddr);
1523   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1524   // Set candidate filter *after* creating the session. Should have no effect.
1525   allocator().SetCandidateFilter(CF_RELAY);
1526   session_->StartGettingPorts();
1527   // 7 candidates and 4 ports is what we would normally get (see the
1528   // TestGetAllPorts* tests).
1529   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1530                              kDefaultAllocationTimeout, fake_clock);
1531   EXPECT_EQ(3U, candidates_.size());
1532   EXPECT_EQ(3U, ports_.size());
1533 }
1534 
1535 // Test ICE candidate filter mechanism with options Relay/Host/Reflexive.
1536 // This test also verifies that when the allocator is only allowed to use
1537 // relay (i.e. IceTransportsType is relay), the raddr is an empty
1538 // address with the correct family. This is to prevent any local
1539 // reflective address leakage in the sdp line.
TEST_F(BasicPortAllocatorTest,TestCandidateFilterWithRelayOnly)1540 TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithRelayOnly) {
1541   AddInterface(kClientAddr);
1542   // GTURN is not configured here.
1543   ResetWithTurnServersNoNat(kTurnUdpIntAddr, rtc::SocketAddress());
1544   allocator().SetCandidateFilter(CF_RELAY);
1545   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1546   session_->StartGettingPorts();
1547   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1548                              kDefaultAllocationTimeout, fake_clock);
1549   EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
1550                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1551 
1552   EXPECT_EQ(1U, candidates_.size());
1553   EXPECT_EQ(1U, ports_.size());  // Only Relay port will be in ready state.
1554   EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidates_[0].type());
1555   EXPECT_EQ(
1556       candidates_[0].related_address(),
1557       rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
1558 }
1559 
TEST_F(BasicPortAllocatorTest,TestCandidateFilterWithHostOnly)1560 TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithHostOnly) {
1561   AddInterface(kClientAddr);
1562   allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1563   allocator().SetCandidateFilter(CF_HOST);
1564   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1565   session_->StartGettingPorts();
1566   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1567                              kDefaultAllocationTimeout, fake_clock);
1568   EXPECT_EQ(2U, candidates_.size());  // Host UDP/TCP candidates only.
1569   EXPECT_EQ(2U, ports_.size());       // UDP/TCP ports only.
1570   for (const Candidate& candidate : candidates_) {
1571     EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
1572   }
1573 }
1574 
1575 // Host is behind the NAT.
TEST_F(BasicPortAllocatorTest,TestCandidateFilterWithReflexiveOnly)1576 TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnly) {
1577   AddInterface(kPrivateAddr);
1578   ResetWithStunServerAndNat(kStunAddr);
1579 
1580   allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1581   allocator().SetCandidateFilter(CF_REFLEXIVE);
1582   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1583   session_->StartGettingPorts();
1584   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1585                              kDefaultAllocationTimeout, fake_clock);
1586   // Host is behind NAT, no private address will be exposed. Hence only UDP
1587   // port with STUN candidate will be sent outside.
1588   EXPECT_EQ(1U, candidates_.size());  // Only STUN candidate.
1589   EXPECT_EQ(1U, ports_.size());       // Only UDP port will be in ready state.
1590   EXPECT_EQ(std::string(STUN_PORT_TYPE), candidates_[0].type());
1591   EXPECT_EQ(
1592       candidates_[0].related_address(),
1593       rtc::EmptySocketAddressWithFamily(candidates_[0].address().family()));
1594 }
1595 
1596 // Host is not behind the NAT.
TEST_F(BasicPortAllocatorTest,TestCandidateFilterWithReflexiveOnlyAndNoNAT)1597 TEST_F(BasicPortAllocatorTest, TestCandidateFilterWithReflexiveOnlyAndNoNAT) {
1598   AddInterface(kClientAddr);
1599   allocator().set_flags(PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1600   allocator().SetCandidateFilter(CF_REFLEXIVE);
1601   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1602   session_->StartGettingPorts();
1603   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1604                              kDefaultAllocationTimeout, fake_clock);
1605   // Host has a public address, both UDP and TCP candidates will be exposed.
1606   EXPECT_EQ(2U, candidates_.size());  // Local UDP + TCP candidate.
1607   EXPECT_EQ(2U, ports_.size());  //  UDP and TCP ports will be in ready state.
1608   for (const Candidate& candidate : candidates_) {
1609     EXPECT_EQ(std::string(LOCAL_PORT_TYPE), candidate.type());
1610   }
1611 }
1612 
1613 // Test that we get the same ufrag and pwd for all candidates.
TEST_F(BasicPortAllocatorTest,TestEnableSharedUfrag)1614 TEST_F(BasicPortAllocatorTest, TestEnableSharedUfrag) {
1615   AddInterface(kClientAddr);
1616   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1617   session_->StartGettingPorts();
1618   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1619                              kDefaultAllocationTimeout, fake_clock);
1620   EXPECT_EQ(3U, candidates_.size());
1621   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1622   EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp", kClientAddr));
1623   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
1624   EXPECT_EQ(3U, ports_.size());
1625   for (const Candidate& candidate : candidates_) {
1626     EXPECT_EQ(kIceUfrag0, candidate.username());
1627     EXPECT_EQ(kIcePwd0, candidate.password());
1628   }
1629 }
1630 
1631 // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
1632 // is allocated for udp and stun. Also verify there is only one candidate
1633 // (local) if stun candidate is same as local candidate, which will be the case
1634 // in a public network like the below test.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithoutNat)1635 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNat) {
1636   AddInterface(kClientAddr);
1637   allocator_->set_flags(allocator().flags() |
1638                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1639   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1640   session_->StartGettingPorts();
1641   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), kDefaultAllocationTimeout,
1642                            fake_clock);
1643   EXPECT_EQ(2U, ports_.size());
1644   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1645   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1646                              kDefaultAllocationTimeout, fake_clock);
1647 }
1648 
1649 // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
1650 // is allocated for udp and stun. In this test we should expect both stun and
1651 // local candidates as client behind a nat.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithNat)1652 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNat) {
1653   AddInterface(kClientAddr);
1654   ResetWithStunServerAndNat(kStunAddr);
1655 
1656   allocator_->set_flags(allocator().flags() |
1657                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
1658   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1659   session_->StartGettingPorts();
1660   ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
1661                            fake_clock);
1662   ASSERT_EQ(2U, ports_.size());
1663   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1664   EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
1665                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
1666   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1667                              kDefaultAllocationTimeout, fake_clock);
1668   EXPECT_EQ(3U, candidates_.size());
1669 }
1670 
1671 // Test TURN port in shared socket mode with UDP and TCP TURN server addresses.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithoutNatUsingTurn)1672 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithoutNatUsingTurn) {
1673   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
1674   AddInterface(kClientAddr);
1675   allocator_.reset(new BasicPortAllocator(
1676       &network_manager_,
1677       std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
1678   allocator_->Initialize();
1679 
1680   AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
1681 
1682   allocator_->set_step_delay(kMinimumStepDelay);
1683   allocator_->set_flags(allocator().flags() |
1684                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1685                         PORTALLOCATOR_DISABLE_TCP);
1686 
1687   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1688   session_->StartGettingPorts();
1689 
1690   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1691                              kDefaultAllocationTimeout, fake_clock);
1692   ASSERT_EQ(3U, candidates_.size());
1693   ASSERT_EQ(3U, ports_.size());
1694   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1695   EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
1696                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1697   EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
1698                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1699 }
1700 
1701 // Test that if the turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN
1702 // port will not be used if UDP TurnPort is used, given that TCP TURN port
1703 // becomes ready first.
TEST_F(BasicPortAllocatorTest,TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst)1704 TEST_F(BasicPortAllocatorTest,
1705        TestUdpTurnPortPrunesTcpTurnPortWithTcpPortReadyFirst) {
1706   // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
1707   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
1708   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
1709 
1710   TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
1711                                        true /* tcp_pruned */);
1712 }
1713 
1714 // Test that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, TCP TURN port
1715 // will not be used if UDP TurnPort is used, given that UDP TURN port becomes
1716 // ready first.
TEST_F(BasicPortAllocatorTest,TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst)1717 TEST_F(BasicPortAllocatorTest,
1718        TestUdpTurnPortPrunesTcpTurnPortsWithUdpPortReadyFirst) {
1719   // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
1720   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
1721   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
1722 
1723   TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::PRUNE_BASED_ON_PRIORITY,
1724                                        true /* tcp_pruned */);
1725 }
1726 
1727 // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
1728 // will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst)1729 TEST_F(BasicPortAllocatorTest,
1730        TestUdpTurnPortPrunesTcpTurnPortIfUdpReadyFirst) {
1731   // UDP has shorter delay than TCP so that UDP TURN port becomes ready first.
1732   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
1733   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 200);
1734 
1735   TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
1736                                        true /* tcp_pruned */);
1737 }
1738 
1739 // Test that if turn_port_prune policy is KEEP_FIRST_READY, the first ready port
1740 // will be kept regardless of the priority.
TEST_F(BasicPortAllocatorTest,TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst)1741 TEST_F(BasicPortAllocatorTest,
1742        TestTcpTurnPortPrunesUdpTurnPortIfTcpReadyFirst) {
1743   // UDP has longer delay than TCP so that TCP TURN port becomes ready first.
1744   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
1745   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 100);
1746 
1747   TestTurnPortPrunesWithUdpAndTcpPorts(webrtc::KEEP_FIRST_READY,
1748                                        false /* tcp_pruned */);
1749 }
1750 
1751 // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
1752 // TurnPort will not be used if IPv6 TurnPort is used, given that IPv4 TURN port
1753 // becomes ready first.
TEST_F(BasicPortAllocatorTest,TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst)1754 TEST_F(BasicPortAllocatorTest,
1755        TestIPv6TurnPortPrunesIPv4TurnPortWithIPv4PortReadyFirst) {
1756   // IPv6 has longer delay than IPv4, so that IPv4 TURN port becomes ready
1757   // first.
1758   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
1759   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 200);
1760 
1761   TestIPv6TurnPortPrunesIPv4TurnPort();
1762 }
1763 
1764 // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, IPv4
1765 // TurnPort will not be used if IPv6 TurnPort is used, given that IPv6 TURN port
1766 // becomes ready first.
TEST_F(BasicPortAllocatorTest,TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst)1767 TEST_F(BasicPortAllocatorTest,
1768        TestIPv6TurnPortPrunesIPv4TurnPortWithIPv6PortReadyFirst) {
1769   // IPv6 has longer delay than IPv4, so that IPv6 TURN port becomes ready
1770   // first.
1771   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 200);
1772   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 100);
1773 
1774   TestIPv6TurnPortPrunesIPv4TurnPort();
1775 }
1776 
1777 // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
1778 // interface will has its own set of TurnPorts based on their priorities, in the
1779 // default case where no transit delay is set.
TEST_F(BasicPortAllocatorTest,TestEachInterfaceHasItsOwnTurnPortsNoDelay)1780 TEST_F(BasicPortAllocatorTest, TestEachInterfaceHasItsOwnTurnPortsNoDelay) {
1781   TestEachInterfaceHasItsOwnTurnPorts();
1782 }
1783 
1784 // Tests that if turn port prune policy is PRUNE_BASED_ON_PRIORITY, each network
1785 // interface will has its own set of TurnPorts based on their priorities, given
1786 // that IPv4/TCP TURN port becomes ready first.
TEST_F(BasicPortAllocatorTest,TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst)1787 TEST_F(BasicPortAllocatorTest,
1788        TestEachInterfaceHasItsOwnTurnPortsWithTcpIPv4ReadyFirst) {
1789   // IPv6/UDP have longer delay than IPv4/TCP, so that IPv4/TCP TURN port
1790   // becomes ready last.
1791   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntAddr, 10);
1792   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntAddr, 100);
1793   virtual_socket_server()->SetDelayOnAddress(kTurnTcpIntIPv6Addr, 20);
1794   virtual_socket_server()->SetDelayOnAddress(kTurnUdpIntIPv6Addr, 300);
1795 
1796   TestEachInterfaceHasItsOwnTurnPorts();
1797 }
1798 
1799 // Testing DNS resolve for the TURN server, this will test AllocationSequence
1800 // handling the unresolved address signal from TurnPort.
1801 // TODO(pthatcher): Make this test work with SIMULATED_WAIT. It
1802 // appears that it doesn't currently because of the DNS look up not
1803 // using the fake clock.
TEST_F(BasicPortAllocatorTestWithRealClock,TestSharedSocketWithServerAddressResolve)1804 TEST_F(BasicPortAllocatorTestWithRealClock,
1805        TestSharedSocketWithServerAddressResolve) {
1806   // This test relies on a real query for "localhost", so it won't work on an
1807   // IPv6-only machine.
1808   MAYBE_SKIP_IPV4;
1809   turn_server_.AddInternalSocket(rtc::SocketAddress("127.0.0.1", 3478),
1810                                  PROTO_UDP);
1811   AddInterface(kClientAddr);
1812   allocator_.reset(new BasicPortAllocator(
1813       &network_manager_,
1814       std::make_unique<rtc::BasicPacketSocketFactory>(fss_.get())));
1815   allocator_->Initialize();
1816   RelayServerConfig turn_server;
1817   RelayCredentials credentials(kTurnUsername, kTurnPassword);
1818   turn_server.credentials = credentials;
1819   turn_server.ports.push_back(
1820       ProtocolAddress(rtc::SocketAddress("localhost", 3478), PROTO_UDP));
1821   allocator_->AddTurnServerForTesting(turn_server);
1822 
1823   allocator_->set_step_delay(kMinimumStepDelay);
1824   allocator_->set_flags(allocator().flags() |
1825                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1826                         PORTALLOCATOR_DISABLE_TCP);
1827 
1828   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1829   session_->StartGettingPorts();
1830 
1831   EXPECT_EQ_WAIT(2U, ports_.size(), kDefaultAllocationTimeout);
1832 }
1833 
1834 // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled only one port
1835 // is allocated for udp/stun/turn. In this test we should expect all local,
1836 // stun and turn candidates.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithNatUsingTurn)1837 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurn) {
1838   AddInterface(kClientAddr);
1839   ResetWithStunServerAndNat(kStunAddr);
1840 
1841   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
1842 
1843   allocator_->set_flags(allocator().flags() |
1844                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1845                         PORTALLOCATOR_DISABLE_TCP);
1846 
1847   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1848   session_->StartGettingPorts();
1849 
1850   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1851                              kDefaultAllocationTimeout, fake_clock);
1852   EXPECT_EQ(3U, candidates_.size());
1853   ASSERT_EQ(2U, ports_.size());
1854   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1855   EXPECT_TRUE(HasCandidate(candidates_, "stun", "udp",
1856                            rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0)));
1857   EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
1858                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1859   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1860                              kDefaultAllocationTimeout, fake_clock);
1861   // Local port will be created first and then TURN port.
1862   // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
1863   // guarantees...
1864   EXPECT_EQ(2U, ports_[0]->Candidates().size());
1865   EXPECT_EQ(1U, ports_[1]->Candidates().size());
1866 }
1867 
1868 // Test that when PORTALLOCATOR_ENABLE_SHARED_SOCKET is enabled and the TURN
1869 // server is also used as the STUN server, we should get 'local', 'stun', and
1870 // 'relay' candidates.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithNatUsingTurnAsStun)1871 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAsStun) {
1872   AddInterface(kClientAddr);
1873   // Use an empty SocketAddress to add a NAT without STUN server.
1874   ResetWithStunServerAndNat(SocketAddress());
1875   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
1876 
1877   // Must set the step delay to 0 to make sure the relay allocation phase is
1878   // started before the STUN candidates are obtained, so that the STUN binding
1879   // response is processed when both StunPort and TurnPort exist to reproduce
1880   // webrtc issue 3537.
1881   allocator_->set_step_delay(0);
1882   allocator_->set_flags(allocator().flags() |
1883                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1884                         PORTALLOCATOR_DISABLE_TCP);
1885 
1886   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1887   session_->StartGettingPorts();
1888 
1889   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1890                              kDefaultAllocationTimeout, fake_clock);
1891   EXPECT_EQ(3U, candidates_.size());
1892   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1893   Candidate stun_candidate;
1894   EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
1895                             rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
1896                             &stun_candidate));
1897   EXPECT_TRUE(HasCandidateWithRelatedAddr(
1898       candidates_, "relay", "udp",
1899       rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
1900       stun_candidate.address()));
1901 
1902   // Local port will be created first and then TURN port.
1903   // TODO(deadbeef): This isn't something the BasicPortAllocator API contract
1904   // guarantees...
1905   EXPECT_EQ(2U, ports_[0]->Candidates().size());
1906   EXPECT_EQ(1U, ports_[1]->Candidates().size());
1907 }
1908 
1909 // Test that when only a TCP TURN server is available, we do NOT use it as
1910 // a UDP STUN server, as this could leak our IP address. Thus we should only
1911 // expect two ports, a UDPPort and TurnPort.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithNatUsingTurnTcpOnly)1912 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnTcpOnly) {
1913   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
1914   AddInterface(kClientAddr);
1915   ResetWithStunServerAndNat(rtc::SocketAddress());
1916   AddTurnServers(rtc::SocketAddress(), kTurnTcpIntAddr);
1917 
1918   allocator_->set_flags(allocator().flags() |
1919                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1920                         PORTALLOCATOR_DISABLE_TCP);
1921 
1922   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1923   session_->StartGettingPorts();
1924 
1925   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1926                              kDefaultAllocationTimeout, fake_clock);
1927   EXPECT_EQ(2U, candidates_.size());
1928   ASSERT_EQ(2U, ports_.size());
1929   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1930   EXPECT_TRUE(HasCandidate(candidates_, "relay", "udp",
1931                            rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0)));
1932   EXPECT_EQ(1U, ports_[0]->Candidates().size());
1933   EXPECT_EQ(1U, ports_[1]->Candidates().size());
1934 }
1935 
1936 // Test that even when PORTALLOCATOR_ENABLE_SHARED_SOCKET is NOT enabled, the
1937 // TURN server is used as the STUN server and we get 'local', 'stun', and
1938 // 'relay' candidates.
1939 // TODO(deadbeef): Remove this test when support for non-shared socket mode
1940 // is removed.
TEST_F(BasicPortAllocatorTest,TestNonSharedSocketWithNatUsingTurnAsStun)1941 TEST_F(BasicPortAllocatorTest, TestNonSharedSocketWithNatUsingTurnAsStun) {
1942   AddInterface(kClientAddr);
1943   // Use an empty SocketAddress to add a NAT without STUN server.
1944   ResetWithStunServerAndNat(SocketAddress());
1945   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
1946 
1947   allocator_->set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_TCP);
1948 
1949   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1950   session_->StartGettingPorts();
1951 
1952   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
1953                              kDefaultAllocationTimeout, fake_clock);
1954   EXPECT_EQ(3U, candidates_.size());
1955   ASSERT_EQ(3U, ports_.size());
1956   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1957   Candidate stun_candidate;
1958   EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
1959                             rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
1960                             &stun_candidate));
1961   Candidate turn_candidate;
1962   EXPECT_TRUE(FindCandidate(candidates_, "relay", "udp",
1963                             rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
1964                             &turn_candidate));
1965   // Not using shared socket, so the STUN request's server reflexive address
1966   // should be different than the TURN request's server reflexive address.
1967   EXPECT_NE(turn_candidate.related_address(), stun_candidate.address());
1968 
1969   EXPECT_EQ(1U, ports_[0]->Candidates().size());
1970   EXPECT_EQ(1U, ports_[1]->Candidates().size());
1971   EXPECT_EQ(1U, ports_[2]->Candidates().size());
1972 }
1973 
1974 // Test that even when both a STUN and TURN server are configured, the TURN
1975 // server is used as a STUN server and we get a 'stun' candidate.
TEST_F(BasicPortAllocatorTest,TestSharedSocketWithNatUsingTurnAndStun)1976 TEST_F(BasicPortAllocatorTest, TestSharedSocketWithNatUsingTurnAndStun) {
1977   AddInterface(kClientAddr);
1978   // Configure with STUN server but destroy it, so we can ensure that it's
1979   // the TURN server actually being used as a STUN server.
1980   ResetWithStunServerAndNat(kStunAddr);
1981   stun_server_.reset();
1982   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
1983 
1984   allocator_->set_flags(allocator().flags() |
1985                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
1986                         PORTALLOCATOR_DISABLE_TCP);
1987 
1988   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
1989   session_->StartGettingPorts();
1990 
1991   ASSERT_EQ_SIMULATED_WAIT(3U, candidates_.size(), kDefaultAllocationTimeout,
1992                            fake_clock);
1993   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
1994   Candidate stun_candidate;
1995   EXPECT_TRUE(FindCandidate(candidates_, "stun", "udp",
1996                             rtc::SocketAddress(kNatUdpAddr.ipaddr(), 0),
1997                             &stun_candidate));
1998   EXPECT_TRUE(HasCandidateWithRelatedAddr(
1999       candidates_, "relay", "udp",
2000       rtc::SocketAddress(kTurnUdpExtAddr.ipaddr(), 0),
2001       stun_candidate.address()));
2002 
2003   // Don't bother waiting for STUN timeout, since we already verified
2004   // that we got a STUN candidate from the TURN server.
2005 }
2006 
2007 // This test verifies when PORTALLOCATOR_ENABLE_SHARED_SOCKET flag is enabled
2008 // and fail to generate STUN candidate, local UDP candidate is generated
2009 // properly.
TEST_F(BasicPortAllocatorTest,TestSharedSocketNoUdpAllowed)2010 TEST_F(BasicPortAllocatorTest, TestSharedSocketNoUdpAllowed) {
2011   allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
2012                         PORTALLOCATOR_DISABLE_TCP |
2013                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
2014   fss_->AddRule(false, rtc::FP_UDP, rtc::FD_ANY, kClientAddr);
2015   AddInterface(kClientAddr);
2016   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2017   session_->StartGettingPorts();
2018   ASSERT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
2019                            fake_clock);
2020   EXPECT_EQ(1U, candidates_.size());
2021   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
2022   // STUN timeout is 9.5sec. We need to wait to get candidate done signal.
2023   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, kStunTimeoutMs,
2024                              fake_clock);
2025   EXPECT_EQ(1U, candidates_.size());
2026 }
2027 
2028 // Test that when the NetworkManager doesn't have permission to enumerate
2029 // adapters, the PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION is specified
2030 // automatically.
TEST_F(BasicPortAllocatorTest,TestNetworkPermissionBlocked)2031 TEST_F(BasicPortAllocatorTest, TestNetworkPermissionBlocked) {
2032   network_manager_.set_default_local_addresses(kPrivateAddr.ipaddr(),
2033                                                rtc::IPAddress());
2034   network_manager_.set_enumeration_permission(
2035       rtc::NetworkManager::ENUMERATION_BLOCKED);
2036   allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
2037                         PORTALLOCATOR_DISABLE_TCP |
2038                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
2039   EXPECT_EQ(0U,
2040             allocator_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
2041   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2042   EXPECT_EQ(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
2043   session_->StartGettingPorts();
2044   EXPECT_EQ_SIMULATED_WAIT(1U, ports_.size(), kDefaultAllocationTimeout,
2045                            fake_clock);
2046   EXPECT_EQ(1U, candidates_.size());
2047   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kPrivateAddr));
2048   EXPECT_NE(0U, session_->flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
2049 }
2050 
2051 // This test verifies allocator can use IPv6 addresses along with IPv4.
TEST_F(BasicPortAllocatorTest,TestEnableIPv6Addresses)2052 TEST_F(BasicPortAllocatorTest, TestEnableIPv6Addresses) {
2053   allocator().set_flags(allocator().flags() | PORTALLOCATOR_DISABLE_RELAY |
2054                         PORTALLOCATOR_ENABLE_IPV6 |
2055                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
2056   AddInterface(kClientIPv6Addr);
2057   AddInterface(kClientAddr);
2058   allocator_->set_step_delay(kMinimumStepDelay);
2059   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2060   session_->StartGettingPorts();
2061   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2062                              kDefaultAllocationTimeout, fake_clock);
2063   EXPECT_EQ(4U, ports_.size());
2064   EXPECT_EQ(4U, candidates_.size());
2065   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
2066   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientAddr));
2067   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientIPv6Addr));
2068   EXPECT_TRUE(HasCandidate(candidates_, "local", "tcp", kClientAddr));
2069 }
2070 
TEST_F(BasicPortAllocatorTest,TestStopGettingPorts)2071 TEST_F(BasicPortAllocatorTest, TestStopGettingPorts) {
2072   AddInterface(kClientAddr);
2073   allocator_->set_step_delay(kDefaultStepDelay);
2074   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2075   session_->StartGettingPorts();
2076   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
2077   EXPECT_EQ(2U, ports_.size());
2078   session_->StopGettingPorts();
2079   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
2080 
2081   // After stopping getting ports, adding a new interface will not start
2082   // getting ports again.
2083   allocator_->set_step_delay(kMinimumStepDelay);
2084   candidates_.clear();
2085   ports_.clear();
2086   candidate_allocation_done_ = false;
2087   network_manager_.AddInterface(kClientAddr2);
2088   SIMULATED_WAIT(false, 1000, fake_clock);
2089   EXPECT_EQ(0U, candidates_.size());
2090   EXPECT_EQ(0U, ports_.size());
2091 }
2092 
TEST_F(BasicPortAllocatorTest,TestClearGettingPorts)2093 TEST_F(BasicPortAllocatorTest, TestClearGettingPorts) {
2094   AddInterface(kClientAddr);
2095   allocator_->set_step_delay(kDefaultStepDelay);
2096   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2097   session_->StartGettingPorts();
2098   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
2099   EXPECT_EQ(2U, ports_.size());
2100   session_->ClearGettingPorts();
2101   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_, 1000, fake_clock);
2102 
2103   // After clearing getting ports, adding a new interface will start getting
2104   // ports again.
2105   allocator_->set_step_delay(kMinimumStepDelay);
2106   candidates_.clear();
2107   ports_.clear();
2108   candidate_allocation_done_ = false;
2109   network_manager_.AddInterface(kClientAddr2);
2110   ASSERT_EQ_SIMULATED_WAIT(2U, candidates_.size(), 1000, fake_clock);
2111   EXPECT_EQ(2U, ports_.size());
2112   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2113                              kDefaultAllocationTimeout, fake_clock);
2114 }
2115 
2116 // Test that the ports and candidates are updated with new ufrag/pwd/etc. when
2117 // a pooled session is taken out of the pool.
TEST_F(BasicPortAllocatorTest,TestTransportInformationUpdated)2118 TEST_F(BasicPortAllocatorTest, TestTransportInformationUpdated) {
2119   AddInterface(kClientAddr);
2120   int pool_size = 1;
2121   allocator_->SetConfiguration(allocator_->stun_servers(),
2122                                allocator_->turn_servers(), pool_size,
2123                                webrtc::NO_PRUNE);
2124   const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
2125   ASSERT_NE(nullptr, peeked_session);
2126   EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
2127                            kDefaultAllocationTimeout, fake_clock);
2128   // Expect that when TakePooledSession is called,
2129   // UpdateTransportInformationInternal will be called and the
2130   // BasicPortAllocatorSession will update the ufrag/pwd of ports and
2131   // candidates.
2132   session_ =
2133       allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
2134   ASSERT_NE(nullptr, session_.get());
2135   auto ready_ports = session_->ReadyPorts();
2136   auto candidates = session_->ReadyCandidates();
2137   EXPECT_FALSE(ready_ports.empty());
2138   EXPECT_FALSE(candidates.empty());
2139   for (const PortInterface* port_interface : ready_ports) {
2140     const Port* port = static_cast<const Port*>(port_interface);
2141     EXPECT_EQ(kContentName, port->content_name());
2142     EXPECT_EQ(1, port->component());
2143     EXPECT_EQ(kIceUfrag0, port->username_fragment());
2144     EXPECT_EQ(kIcePwd0, port->password());
2145   }
2146   for (const Candidate& candidate : candidates) {
2147     EXPECT_EQ(1, candidate.component());
2148     EXPECT_EQ(kIceUfrag0, candidate.username());
2149     EXPECT_EQ(kIcePwd0, candidate.password());
2150   }
2151 }
2152 
2153 // Test that a new candidate filter takes effect even on already-gathered
2154 // candidates.
TEST_F(BasicPortAllocatorTest,TestSetCandidateFilterAfterCandidatesGathered)2155 TEST_F(BasicPortAllocatorTest, TestSetCandidateFilterAfterCandidatesGathered) {
2156   AddInterface(kClientAddr);
2157   int pool_size = 1;
2158   allocator_->SetConfiguration(allocator_->stun_servers(),
2159                                allocator_->turn_servers(), pool_size,
2160                                webrtc::NO_PRUNE);
2161   const PortAllocatorSession* peeked_session = allocator_->GetPooledSession();
2162   ASSERT_NE(nullptr, peeked_session);
2163   EXPECT_EQ_SIMULATED_WAIT(true, peeked_session->CandidatesAllocationDone(),
2164                            kDefaultAllocationTimeout, fake_clock);
2165   size_t initial_candidates_size = peeked_session->ReadyCandidates().size();
2166   size_t initial_ports_size = peeked_session->ReadyPorts().size();
2167   allocator_->SetCandidateFilter(CF_RELAY);
2168   // Assume that when TakePooledSession is called, the candidate filter will be
2169   // applied to the pooled session. This is tested by PortAllocatorTest.
2170   session_ =
2171       allocator_->TakePooledSession(kContentName, 1, kIceUfrag0, kIcePwd0);
2172   ASSERT_NE(nullptr, session_.get());
2173   auto candidates = session_->ReadyCandidates();
2174   auto ports = session_->ReadyPorts();
2175   // Sanity check that the number of candidates and ports decreased.
2176   EXPECT_GT(initial_candidates_size, candidates.size());
2177   EXPECT_GT(initial_ports_size, ports.size());
2178   for (const PortInterface* port : ports) {
2179     // Expect only relay ports.
2180     EXPECT_EQ(RELAY_PORT_TYPE, port->Type());
2181   }
2182   for (const Candidate& candidate : candidates) {
2183     // Expect only relay candidates now that the filter is applied.
2184     EXPECT_EQ(std::string(RELAY_PORT_TYPE), candidate.type());
2185     // Expect that the raddr is emptied due to the CF_RELAY filter.
2186     EXPECT_EQ(candidate.related_address(),
2187               rtc::EmptySocketAddressWithFamily(candidate.address().family()));
2188   }
2189 }
2190 
2191 // Test that candidates that do not match a previous candidate filter can be
2192 // surfaced if they match the new one after setting the filter value.
TEST_F(BasicPortAllocatorTest,SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes)2193 TEST_F(BasicPortAllocatorTest,
2194        SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes) {
2195   // We would still surface a host candidate if the IP is public, even though it
2196   // is disabled by the candidate filter. See
2197   // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
2198   // that the srflx candidate is not equivalent to the host candidate.
2199   AddInterface(kPrivateAddr);
2200   ResetWithStunServerAndNat(kStunAddr);
2201 
2202   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
2203 
2204   allocator_->set_flags(allocator().flags() |
2205                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
2206                         PORTALLOCATOR_DISABLE_TCP);
2207 
2208   allocator_->SetCandidateFilter(CF_NONE);
2209   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2210   session_->StartGettingPorts();
2211   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2212                              kDefaultAllocationTimeout, fake_clock);
2213   EXPECT_TRUE(candidates_.empty());
2214   EXPECT_TRUE(ports_.empty());
2215 
2216   // Surface the relay candidate previously gathered but not signaled.
2217   session_->SetCandidateFilter(CF_RELAY);
2218   ASSERT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
2219                            fake_clock);
2220   EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
2221   EXPECT_EQ(1u, ports_.size());
2222 
2223   // Surface the srflx candidate previously gathered but not signaled.
2224   session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
2225   ASSERT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
2226                            fake_clock);
2227   EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
2228   EXPECT_EQ(2u, ports_.size());
2229 
2230   // Surface the srflx candidate previously gathered but not signaled.
2231   session_->SetCandidateFilter(CF_ALL);
2232   ASSERT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
2233                            fake_clock);
2234   EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
2235   EXPECT_EQ(2u, ports_.size());
2236 }
2237 
2238 // This is a similar test as
2239 // SurfaceNewCandidatesAfterSetCandidateFilterToAddCandidateTypes, and we
2240 // test the transitions for which the new filter value is not a super set of the
2241 // previous value.
TEST_F(BasicPortAllocatorTest,SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes)2242 TEST_F(
2243     BasicPortAllocatorTest,
2244     SurfaceNewCandidatesAfterSetCandidateFilterToAllowDifferentCandidateTypes) {
2245   // We would still surface a host candidate if the IP is public, even though it
2246   // is disabled by the candidate filter. See
2247   // BasicPortAllocatorSession::CheckCandidateFilter. Use the private address so
2248   // that the srflx candidate is not equivalent to the host candidate.
2249   AddInterface(kPrivateAddr);
2250   ResetWithStunServerAndNat(kStunAddr);
2251 
2252   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
2253 
2254   allocator_->set_flags(allocator().flags() |
2255                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
2256                         PORTALLOCATOR_DISABLE_TCP);
2257 
2258   allocator_->SetCandidateFilter(CF_NONE);
2259   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2260   session_->StartGettingPorts();
2261   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2262                              kDefaultAllocationTimeout, fake_clock);
2263   EXPECT_TRUE(candidates_.empty());
2264   EXPECT_TRUE(ports_.empty());
2265 
2266   // Surface the relay candidate previously gathered but not signaled.
2267   session_->SetCandidateFilter(CF_RELAY);
2268   EXPECT_EQ_SIMULATED_WAIT(1u, candidates_.size(), kDefaultAllocationTimeout,
2269                            fake_clock);
2270   EXPECT_EQ(RELAY_PORT_TYPE, candidates_.back().type());
2271   EXPECT_EQ(1u, ports_.size());
2272 
2273   // Surface the srflx candidate previously gathered but not signaled.
2274   session_->SetCandidateFilter(CF_REFLEXIVE);
2275   EXPECT_EQ_SIMULATED_WAIT(2u, candidates_.size(), kDefaultAllocationTimeout,
2276                            fake_clock);
2277   EXPECT_EQ(STUN_PORT_TYPE, candidates_.back().type());
2278   EXPECT_EQ(2u, ports_.size());
2279 
2280   // Surface the host candidate previously gathered but not signaled.
2281   session_->SetCandidateFilter(CF_HOST);
2282   EXPECT_EQ_SIMULATED_WAIT(3u, candidates_.size(), kDefaultAllocationTimeout,
2283                            fake_clock);
2284   EXPECT_EQ(LOCAL_PORT_TYPE, candidates_.back().type());
2285   // We use a shared socket and cricket::UDPPort handles the srflx candidate.
2286   EXPECT_EQ(2u, ports_.size());
2287 }
2288 
2289 // Test that after an allocation session has stopped getting ports, changing the
2290 // candidate filter to allow new types of gathered candidates does not surface
2291 // any candidate.
TEST_F(BasicPortAllocatorTest,NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped)2292 TEST_F(BasicPortAllocatorTest,
2293        NoCandidateSurfacedWhenUpdatingCandidateFilterIfSessionStopped) {
2294   AddInterface(kPrivateAddr);
2295   ResetWithStunServerAndNat(kStunAddr);
2296 
2297   AddTurnServers(kTurnUdpIntAddr, rtc::SocketAddress());
2298 
2299   allocator_->set_flags(allocator().flags() |
2300                         PORTALLOCATOR_ENABLE_SHARED_SOCKET |
2301                         PORTALLOCATOR_DISABLE_TCP);
2302 
2303   allocator_->SetCandidateFilter(CF_NONE);
2304   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2305   session_->StartGettingPorts();
2306   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2307                              kDefaultAllocationTimeout, fake_clock);
2308   auto test_invariants = [this]() {
2309     EXPECT_TRUE(candidates_.empty());
2310     EXPECT_TRUE(ports_.empty());
2311   };
2312 
2313   test_invariants();
2314 
2315   session_->StopGettingPorts();
2316 
2317   session_->SetCandidateFilter(CF_RELAY);
2318   SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
2319   test_invariants();
2320 
2321   session_->SetCandidateFilter(CF_RELAY | CF_REFLEXIVE);
2322   SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
2323   test_invariants();
2324 
2325   session_->SetCandidateFilter(CF_ALL);
2326   SIMULATED_WAIT(false, kDefaultAllocationTimeout, fake_clock);
2327   test_invariants();
2328 }
2329 
TEST_F(BasicPortAllocatorTest,SetStunKeepaliveIntervalForPorts)2330 TEST_F(BasicPortAllocatorTest, SetStunKeepaliveIntervalForPorts) {
2331   const int pool_size = 1;
2332   const int expected_stun_keepalive_interval = 123;
2333   AddInterface(kClientAddr);
2334   allocator_->SetConfiguration(
2335       allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
2336       webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
2337   auto* pooled_session = allocator_->GetPooledSession();
2338   ASSERT_NE(nullptr, pooled_session);
2339   EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
2340                            kDefaultAllocationTimeout, fake_clock);
2341   CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
2342                                             expected_stun_keepalive_interval);
2343 }
2344 
TEST_F(BasicPortAllocatorTest,ChangeStunKeepaliveIntervalForPortsAfterInitialConfig)2345 TEST_F(BasicPortAllocatorTest,
2346        ChangeStunKeepaliveIntervalForPortsAfterInitialConfig) {
2347   const int pool_size = 1;
2348   AddInterface(kClientAddr);
2349   allocator_->SetConfiguration(
2350       allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
2351       webrtc::NO_PRUNE, nullptr, 123 /* stun keepalive interval */);
2352   auto* pooled_session = allocator_->GetPooledSession();
2353   ASSERT_NE(nullptr, pooled_session);
2354   EXPECT_EQ_SIMULATED_WAIT(true, pooled_session->CandidatesAllocationDone(),
2355                            kDefaultAllocationTimeout, fake_clock);
2356   const int expected_stun_keepalive_interval = 321;
2357   allocator_->SetConfiguration(
2358       allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
2359       webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
2360   CheckStunKeepaliveIntervalOfAllReadyPorts(pooled_session,
2361                                             expected_stun_keepalive_interval);
2362 }
2363 
TEST_F(BasicPortAllocatorTest,SetStunKeepaliveIntervalForPortsWithSharedSocket)2364 TEST_F(BasicPortAllocatorTest,
2365        SetStunKeepaliveIntervalForPortsWithSharedSocket) {
2366   const int pool_size = 1;
2367   const int expected_stun_keepalive_interval = 123;
2368   AddInterface(kClientAddr);
2369   allocator_->set_flags(allocator().flags() |
2370                         PORTALLOCATOR_ENABLE_SHARED_SOCKET);
2371   allocator_->SetConfiguration(
2372       allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
2373       webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
2374   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2375   session_->StartGettingPorts();
2376   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2377                              kDefaultAllocationTimeout, fake_clock);
2378   CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
2379                                             expected_stun_keepalive_interval);
2380 }
2381 
TEST_F(BasicPortAllocatorTest,SetStunKeepaliveIntervalForPortsWithoutSharedSocket)2382 TEST_F(BasicPortAllocatorTest,
2383        SetStunKeepaliveIntervalForPortsWithoutSharedSocket) {
2384   const int pool_size = 1;
2385   const int expected_stun_keepalive_interval = 123;
2386   AddInterface(kClientAddr);
2387   allocator_->set_flags(allocator().flags() &
2388                         ~(PORTALLOCATOR_ENABLE_SHARED_SOCKET));
2389   allocator_->SetConfiguration(
2390       allocator_->stun_servers(), allocator_->turn_servers(), pool_size,
2391       webrtc::NO_PRUNE, nullptr, expected_stun_keepalive_interval);
2392   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2393   session_->StartGettingPorts();
2394   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2395                              kDefaultAllocationTimeout, fake_clock);
2396   CheckStunKeepaliveIntervalOfAllReadyPorts(session_.get(),
2397                                             expected_stun_keepalive_interval);
2398 }
2399 
TEST_F(BasicPortAllocatorTest,IceRegatheringMetricsLoggedWhenNetworkChanges)2400 TEST_F(BasicPortAllocatorTest, IceRegatheringMetricsLoggedWhenNetworkChanges) {
2401   // Only test local ports to simplify test.
2402   ResetWithNoServersOrNat();
2403   AddInterface(kClientAddr, "test_net0");
2404   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2405   session_->StartGettingPorts();
2406   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2407                              kDefaultAllocationTimeout, fake_clock);
2408   candidate_allocation_done_ = false;
2409   AddInterface(kClientAddr2, "test_net1");
2410   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2411                              kDefaultAllocationTimeout, fake_clock);
2412   EXPECT_METRIC_EQ(1,
2413                    webrtc::metrics::NumEvents(
2414                        "WebRTC.PeerConnection.IceRegatheringReason",
2415                        static_cast<int>(IceRegatheringReason::NETWORK_CHANGE)));
2416 }
2417 
2418 // Test that when an mDNS responder is present, the local address of a host
2419 // candidate is concealed by an mDNS hostname and the related address of a srflx
2420 // candidate is set to 0.0.0.0 or ::0.
TEST_F(BasicPortAllocatorTest,HostCandidateAddressIsReplacedByHostname)2421 TEST_F(BasicPortAllocatorTest, HostCandidateAddressIsReplacedByHostname) {
2422   // Default config uses GTURN and no NAT, so replace that with the
2423   // desired setup (NAT, STUN server, TURN server, UDP/TCP).
2424   ResetWithStunServerAndNat(kStunAddr);
2425   turn_server_.AddInternalSocket(kTurnTcpIntAddr, PROTO_TCP);
2426   AddTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
2427   AddTurnServers(kTurnUdpIntIPv6Addr, kTurnTcpIntIPv6Addr);
2428 
2429   ASSERT_EQ(&network_manager_, allocator().network_manager());
2430   network_manager_.set_mdns_responder(
2431       std::make_unique<webrtc::FakeMdnsResponder>(rtc::Thread::Current()));
2432   AddInterface(kClientAddr);
2433   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2434   session_->StartGettingPorts();
2435   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2436                              kDefaultAllocationTimeout, fake_clock);
2437   EXPECT_EQ(5u, candidates_.size());
2438   int num_host_udp_candidates = 0;
2439   int num_host_tcp_candidates = 0;
2440   int num_srflx_candidates = 0;
2441   int num_relay_candidates = 0;
2442   for (const auto& candidate : candidates_) {
2443     const auto& raddr = candidate.related_address();
2444 
2445     if (candidate.type() == LOCAL_PORT_TYPE) {
2446       EXPECT_FALSE(candidate.address().hostname().empty());
2447       EXPECT_TRUE(raddr.IsNil());
2448       if (candidate.protocol() == UDP_PROTOCOL_NAME) {
2449         ++num_host_udp_candidates;
2450       } else {
2451         ++num_host_tcp_candidates;
2452       }
2453     } else if (candidate.type() == STUN_PORT_TYPE) {
2454       // For a srflx candidate, the related address should be set to 0.0.0.0 or
2455       // ::0
2456       EXPECT_TRUE(IPIsAny(raddr.ipaddr()));
2457       EXPECT_EQ(raddr.port(), 0);
2458       ++num_srflx_candidates;
2459     } else if (candidate.type() == RELAY_PORT_TYPE) {
2460       EXPECT_EQ(kNatUdpAddr.ipaddr(), raddr.ipaddr());
2461       EXPECT_EQ(kNatUdpAddr.family(), raddr.family());
2462       ++num_relay_candidates;
2463     } else {
2464       // prflx candidates are not expected
2465       FAIL();
2466     }
2467   }
2468   EXPECT_EQ(1, num_host_udp_candidates);
2469   EXPECT_EQ(1, num_host_tcp_candidates);
2470   EXPECT_EQ(1, num_srflx_candidates);
2471   EXPECT_EQ(2, num_relay_candidates);
2472 }
2473 
TEST_F(BasicPortAllocatorTest,TestUseTurnServerAsStunSever)2474 TEST_F(BasicPortAllocatorTest, TestUseTurnServerAsStunSever) {
2475   ServerAddresses stun_servers;
2476   stun_servers.insert(kStunAddr);
2477   PortConfiguration port_config(stun_servers, "", "");
2478   RelayServerConfig turn_servers =
2479       CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
2480   port_config.AddRelay(turn_servers);
2481 
2482   EXPECT_EQ(2U, port_config.StunServers().size());
2483 }
2484 
TEST_F(BasicPortAllocatorTest,TestDoNotUseTurnServerAsStunSever)2485 TEST_F(BasicPortAllocatorTest, TestDoNotUseTurnServerAsStunSever) {
2486   webrtc::test::ScopedKeyValueConfig field_trials(
2487       "WebRTC-UseTurnServerAsStunServer/Disabled/");
2488   ServerAddresses stun_servers;
2489   stun_servers.insert(kStunAddr);
2490   PortConfiguration port_config(stun_servers, "" /* user_name */,
2491                                 "" /* password */, &field_trials);
2492   RelayServerConfig turn_servers =
2493       CreateTurnServers(kTurnUdpIntAddr, kTurnTcpIntAddr);
2494   port_config.AddRelay(turn_servers);
2495 
2496   EXPECT_EQ(1U, port_config.StunServers().size());
2497 }
2498 
2499 // Test that candidates from different servers get assigned a unique local
2500 // preference (the middle 16 bits of the priority)
TEST_F(BasicPortAllocatorTest,AssignsUniqueLocalPreferencetoRelayCandidates)2501 TEST_F(BasicPortAllocatorTest, AssignsUniqueLocalPreferencetoRelayCandidates) {
2502   allocator_->SetCandidateFilter(CF_RELAY);
2503   allocator_->AddTurnServerForTesting(
2504       CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
2505   allocator_->AddTurnServerForTesting(
2506       CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
2507   allocator_->AddTurnServerForTesting(
2508       CreateTurnServers(kTurnUdpIntAddr, SocketAddress()));
2509 
2510   AddInterface(kClientAddr);
2511   ASSERT_TRUE(CreateSession(ICE_CANDIDATE_COMPONENT_RTP));
2512   session_->StartGettingPorts();
2513   ASSERT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2514                              kDefaultAllocationTimeout, fake_clock);
2515   EXPECT_EQ(3u, candidates_.size());
2516   EXPECT_GT((candidates_[0].priority() >> 8) & 0xFFFF,
2517             (candidates_[1].priority() >> 8) & 0xFFFF);
2518   EXPECT_GT((candidates_[1].priority() >> 8) & 0xFFFF,
2519             (candidates_[2].priority() >> 8) & 0xFFFF);
2520 }
2521 
2522 // Test that no more than allocator.max_ipv6_networks() IPv6 networks are used
2523 // to gather candidates.
TEST_F(BasicPortAllocatorTest,TwoIPv6AreSelectedBecauseOfMaxIpv6Limit)2524 TEST_F(BasicPortAllocatorTest, TwoIPv6AreSelectedBecauseOfMaxIpv6Limit) {
2525   rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2526                      64, rtc::ADAPTER_TYPE_WIFI);
2527   rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
2528                      kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2529   rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
2530                      kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
2531   std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};
2532 
2533   // Ensure that only 2 interfaces were selected.
2534   EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
2535                     networks, /*max_ipv6_networks=*/2)
2536                     .size());
2537 }
2538 
2539 // Test that if the number of available IPv6 networks is less than
2540 // allocator.max_ipv6_networks(), all IPv6 networks will be selected.
TEST_F(BasicPortAllocatorTest,AllIPv6AreSelected)2541 TEST_F(BasicPortAllocatorTest, AllIPv6AreSelected) {
2542   rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2543                      64, rtc::ADAPTER_TYPE_WIFI);
2544   rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
2545                      kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2546   std::vector<const rtc::Network*> networks = {&wifi1, &ethe1};
2547 
2548   // Ensure that all 2 interfaces were selected.
2549   EXPECT_EQ(2U, BasicPortAllocatorSession::SelectIPv6Networks(
2550                     networks, /*max_ipv6_networks=*/3)
2551                     .size());
2552 }
2553 
2554 // If there are some IPv6 networks with different types, diversify IPv6
2555 // networks.
TEST_F(BasicPortAllocatorTest,TwoIPv6WifiAreSelectedIfThereAreTwo)2556 TEST_F(BasicPortAllocatorTest, TwoIPv6WifiAreSelectedIfThereAreTwo) {
2557   rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2558                      64, rtc::ADAPTER_TYPE_WIFI);
2559   rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
2560                      kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2561   rtc::Network ethe2("ethe2", "Test NetworkAdapter 3",
2562                      kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2563   rtc::Network unknown1("unknown1", "Test NetworkAdapter 4",
2564                         kClientIPv6Addr2.ipaddr(), 64,
2565                         rtc::ADAPTER_TYPE_UNKNOWN);
2566   rtc::Network cell1("cell1", "Test NetworkAdapter 5",
2567                      kClientIPv6Addr3.ipaddr(), 64,
2568                      rtc::ADAPTER_TYPE_CELLULAR_4G);
2569   std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &ethe2,
2570                                                &unknown1, &cell1};
2571 
2572   networks = BasicPortAllocatorSession::SelectIPv6Networks(
2573       networks, /*max_ipv6_networks=*/4);
2574 
2575   EXPECT_EQ(4U, networks.size());
2576   // Ensure the expected 4 interfaces (wifi1, ethe1, cell1, unknown1) were
2577   // selected.
2578   EXPECT_TRUE(HasNetwork(networks, wifi1));
2579   EXPECT_TRUE(HasNetwork(networks, ethe1));
2580   EXPECT_TRUE(HasNetwork(networks, cell1));
2581   EXPECT_TRUE(HasNetwork(networks, unknown1));
2582 }
2583 
2584 // If there are some IPv6 networks with the same type, select them because there
2585 // is no other option.
TEST_F(BasicPortAllocatorTest,IPv6WithSameTypeAreSelectedIfNoOtherOption)2586 TEST_F(BasicPortAllocatorTest, IPv6WithSameTypeAreSelectedIfNoOtherOption) {
2587   // Add 5 cellular interfaces
2588   rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2589                      64, rtc::ADAPTER_TYPE_CELLULAR_2G);
2590   rtc::Network cell2("cell2", "Test NetworkAdapter 2",
2591                      kClientIPv6Addr2.ipaddr(), 64,
2592                      rtc::ADAPTER_TYPE_CELLULAR_3G);
2593   rtc::Network cell3("cell3", "Test NetworkAdapter 3",
2594                      kClientIPv6Addr3.ipaddr(), 64,
2595                      rtc::ADAPTER_TYPE_CELLULAR_4G);
2596   rtc::Network cell4("cell4", "Test NetworkAdapter 4",
2597                      kClientIPv6Addr2.ipaddr(), 64,
2598                      rtc::ADAPTER_TYPE_CELLULAR_5G);
2599   rtc::Network cell5("cell5", "Test NetworkAdapter 5",
2600                      kClientIPv6Addr3.ipaddr(), 64,
2601                      rtc::ADAPTER_TYPE_CELLULAR_3G);
2602   std::vector<const rtc::Network*> networks = {&cell1, &cell2, &cell3, &cell4,
2603                                                &cell5};
2604 
2605   // Ensure that 4 interfaces were selected.
2606   EXPECT_EQ(4U, BasicPortAllocatorSession::SelectIPv6Networks(
2607                     networks, /*max_ipv6_networks=*/4)
2608                     .size());
2609 }
2610 
TEST_F(BasicPortAllocatorTest,IPv6EthernetHasHigherPriorityThanWifi)2611 TEST_F(BasicPortAllocatorTest, IPv6EthernetHasHigherPriorityThanWifi) {
2612   rtc::Network wifi1("wifi1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2613                      64, rtc::ADAPTER_TYPE_WIFI);
2614   rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
2615                      kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2616   rtc::Network wifi2("wifi2", "Test NetworkAdapter 3",
2617                      kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
2618   std::vector<const rtc::Network*> networks = {&wifi1, &ethe1, &wifi2};
2619 
2620   networks = BasicPortAllocatorSession::SelectIPv6Networks(
2621       networks, /*max_ipv6_networks=*/1);
2622 
2623   EXPECT_EQ(1U, networks.size());
2624   // Ensure ethe1 was selected.
2625   EXPECT_TRUE(HasNetwork(networks, ethe1));
2626 }
2627 
TEST_F(BasicPortAllocatorTest,IPv6EtherAndWifiHaveHigherPriorityThanOthers)2628 TEST_F(BasicPortAllocatorTest, IPv6EtherAndWifiHaveHigherPriorityThanOthers) {
2629   rtc::Network cell1("cell1", "Test NetworkAdapter 1", kClientIPv6Addr.ipaddr(),
2630                      64, rtc::ADAPTER_TYPE_CELLULAR_3G);
2631   rtc::Network ethe1("ethe1", "Test NetworkAdapter 2",
2632                      kClientIPv6Addr2.ipaddr(), 64, rtc::ADAPTER_TYPE_ETHERNET);
2633   rtc::Network wifi1("wifi1", "Test NetworkAdapter 3",
2634                      kClientIPv6Addr3.ipaddr(), 64, rtc::ADAPTER_TYPE_WIFI);
2635   rtc::Network unknown("unknown", "Test NetworkAdapter 4",
2636                        kClientIPv6Addr2.ipaddr(), 64,
2637                        rtc::ADAPTER_TYPE_UNKNOWN);
2638   rtc::Network vpn1("vpn1", "Test NetworkAdapter 5", kClientIPv6Addr3.ipaddr(),
2639                     64, rtc::ADAPTER_TYPE_VPN);
2640   std::vector<const rtc::Network*> networks = {&cell1, &ethe1, &wifi1, &unknown,
2641                                                &vpn1};
2642 
2643   networks = BasicPortAllocatorSession::SelectIPv6Networks(
2644       networks, /*max_ipv6_networks=*/2);
2645 
2646   EXPECT_EQ(2U, networks.size());
2647   // Ensure ethe1 and wifi1 were selected.
2648   EXPECT_TRUE(HasNetwork(networks, wifi1));
2649   EXPECT_TRUE(HasNetwork(networks, ethe1));
2650 }
2651 
2652 // Do not change the default IPv6 selection behavior if
2653 // IPv6NetworkResolutionFixes is disabled.
TEST_F(BasicPortAllocatorTest,NotDiversifyIPv6NetworkTypesIfIPv6NetworkResolutionFixesDisabled)2654 TEST_F(BasicPortAllocatorTest,
2655        NotDiversifyIPv6NetworkTypesIfIPv6NetworkResolutionFixesDisabled) {
2656   webrtc::test::ScopedKeyValueConfig field_trials(
2657       field_trials_, "WebRTC-IPv6NetworkResolutionFixes/Disabled/");
2658   // Add three IPv6 network interfaces, but tell the allocator to only use two.
2659   allocator().set_max_ipv6_networks(2);
2660   AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
2661   AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
2662   AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
2663   // To simplify the test, only gather UDP host candidates.
2664   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
2665                         PORTALLOCATOR_DISABLE_STUN |
2666                         PORTALLOCATOR_DISABLE_RELAY |
2667                         PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
2668 
2669   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
2670   session_->StartGettingPorts();
2671   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2672                              kDefaultAllocationTimeout, fake_clock);
2673 
2674   EXPECT_EQ(2U, candidates_.size());
2675   // Wifi1 was not selected because it comes after ethe1 and ethe2.
2676   EXPECT_FALSE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
2677 }
2678 
2679 // Do not change the default IPv6 selection behavior if
2680 // IPv6NetworkResolutionFixes is enabled but DiversifyIpv6Interfaces is not
2681 // enabled.
TEST_F(BasicPortAllocatorTest,NotDiversifyIPv6NetworkTypesIfDiversifyIpv6InterfacesDisabled)2682 TEST_F(BasicPortAllocatorTest,
2683        NotDiversifyIPv6NetworkTypesIfDiversifyIpv6InterfacesDisabled) {
2684   webrtc::test::ScopedKeyValueConfig field_trials(
2685       field_trials_,
2686       "WebRTC-IPv6NetworkResolutionFixes/"
2687       "Enabled,DiversifyIpv6Interfaces:false/");
2688   // Add three IPv6 network interfaces, but tell the allocator to only use two.
2689   allocator().set_max_ipv6_networks(2);
2690   AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
2691   AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
2692   AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
2693   // To simplify the test, only gather UDP host candidates.
2694   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
2695                         PORTALLOCATOR_DISABLE_STUN |
2696                         PORTALLOCATOR_DISABLE_RELAY |
2697                         PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
2698 
2699   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
2700   session_->StartGettingPorts();
2701   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2702                              kDefaultAllocationTimeout, fake_clock);
2703 
2704   EXPECT_EQ(2U, candidates_.size());
2705   // Wifi1 was not selected because it comes after ethe1 and ethe2.
2706   EXPECT_FALSE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
2707 }
2708 
TEST_F(BasicPortAllocatorTest,Select2DifferentIntefacesIfDiversifyIpv6InterfacesEnabled)2709 TEST_F(BasicPortAllocatorTest,
2710        Select2DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) {
2711   webrtc::test::ScopedKeyValueConfig field_trials(
2712       field_trials_,
2713       "WebRTC-IPv6NetworkResolutionFixes/"
2714       "Enabled,DiversifyIpv6Interfaces:true/");
2715   allocator().set_max_ipv6_networks(2);
2716   AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
2717   AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
2718   AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
2719   AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
2720   AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
2721 
2722   // To simplify the test, only gather UDP host candidates.
2723   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
2724                         PORTALLOCATOR_DISABLE_STUN |
2725                         PORTALLOCATOR_DISABLE_RELAY |
2726                         PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
2727 
2728   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
2729   session_->StartGettingPorts();
2730   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2731                              kDefaultAllocationTimeout, fake_clock);
2732 
2733   EXPECT_EQ(2U, candidates_.size());
2734   // ethe1 and wifi1 were selected.
2735   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
2736   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
2737 }
2738 
TEST_F(BasicPortAllocatorTest,Select3DifferentIntefacesIfDiversifyIpv6InterfacesEnabled)2739 TEST_F(BasicPortAllocatorTest,
2740        Select3DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) {
2741   webrtc::test::ScopedKeyValueConfig field_trials(
2742       field_trials_,
2743       "WebRTC-IPv6NetworkResolutionFixes/"
2744       "Enabled,DiversifyIpv6Interfaces:true/");
2745   allocator().set_max_ipv6_networks(3);
2746   AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
2747   AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
2748   AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
2749   AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
2750   AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
2751 
2752   // To simplify the test, only gather UDP host candidates.
2753   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
2754                         PORTALLOCATOR_DISABLE_STUN |
2755                         PORTALLOCATOR_DISABLE_RELAY |
2756                         PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
2757 
2758   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
2759   session_->StartGettingPorts();
2760   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2761                              kDefaultAllocationTimeout, fake_clock);
2762 
2763   EXPECT_EQ(3U, candidates_.size());
2764   // ethe1, wifi1, and cell1 were selected.
2765   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
2766   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
2767   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
2768 }
2769 
TEST_F(BasicPortAllocatorTest,Select4DifferentIntefacesIfDiversifyIpv6InterfacesEnabled)2770 TEST_F(BasicPortAllocatorTest,
2771        Select4DifferentIntefacesIfDiversifyIpv6InterfacesEnabled) {
2772   webrtc::test::ScopedKeyValueConfig field_trials(
2773       field_trials_,
2774       "WebRTC-IPv6NetworkResolutionFixes/"
2775       "Enabled,DiversifyIpv6Interfaces:true/");
2776   allocator().set_max_ipv6_networks(4);
2777   AddInterface(kClientIPv6Addr, "ethe1", rtc::ADAPTER_TYPE_ETHERNET);
2778   AddInterface(kClientIPv6Addr2, "ethe2", rtc::ADAPTER_TYPE_ETHERNET);
2779   AddInterface(kClientIPv6Addr3, "wifi1", rtc::ADAPTER_TYPE_WIFI);
2780   AddInterface(kClientIPv6Addr4, "wifi2", rtc::ADAPTER_TYPE_WIFI);
2781   AddInterface(kClientIPv6Addr5, "cell1", rtc::ADAPTER_TYPE_CELLULAR_3G);
2782 
2783   // To simplify the test, only gather UDP host candidates.
2784   allocator().set_flags(PORTALLOCATOR_ENABLE_IPV6 | PORTALLOCATOR_DISABLE_TCP |
2785                         PORTALLOCATOR_DISABLE_STUN |
2786                         PORTALLOCATOR_DISABLE_RELAY |
2787                         PORTALLOCATOR_ENABLE_IPV6_ON_WIFI);
2788 
2789   ASSERT_TRUE(CreateSession(cricket::ICE_CANDIDATE_COMPONENT_RTP));
2790   session_->StartGettingPorts();
2791   EXPECT_TRUE_SIMULATED_WAIT(candidate_allocation_done_,
2792                              kDefaultAllocationTimeout, fake_clock);
2793 
2794   EXPECT_EQ(4U, candidates_.size());
2795   // ethe1, ethe2, wifi1, and cell1 were selected.
2796   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr));
2797   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr2));
2798   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr3));
2799   EXPECT_TRUE(HasCandidate(candidates_, "local", "udp", kClientIPv6Addr5));
2800 }
2801 
2802 }  // namespace cricket
2803