• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
16 #define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
17 
18 #include <algorithm>
19 #include <cstddef>
20 #include <cstring>
21 #include <iterator>
22 #include <limits>
23 #include <memory>
24 #include <new>
25 #include <type_traits>
26 #include <utility>
27 
28 #include "absl/base/attributes.h"
29 #include "absl/base/macros.h"
30 #include "absl/container/internal/compressed_tuple.h"
31 #include "absl/memory/memory.h"
32 #include "absl/meta/type_traits.h"
33 #include "absl/types/span.h"
34 
35 namespace absl {
36 ABSL_NAMESPACE_BEGIN
37 namespace inlined_vector_internal {
38 
39 // GCC does not deal very well with the below code
40 #if !defined(__clang__) && defined(__GNUC__)
41 #pragma GCC diagnostic push
42 #pragma GCC diagnostic ignored "-Warray-bounds"
43 #endif
44 
45 template <typename A>
46 using AllocatorTraits = std::allocator_traits<A>;
47 template <typename A>
48 using ValueType = typename AllocatorTraits<A>::value_type;
49 template <typename A>
50 using SizeType = typename AllocatorTraits<A>::size_type;
51 template <typename A>
52 using Pointer = typename AllocatorTraits<A>::pointer;
53 template <typename A>
54 using ConstPointer = typename AllocatorTraits<A>::const_pointer;
55 template <typename A>
56 using SizeType = typename AllocatorTraits<A>::size_type;
57 template <typename A>
58 using DifferenceType = typename AllocatorTraits<A>::difference_type;
59 template <typename A>
60 using Reference = ValueType<A>&;
61 template <typename A>
62 using ConstReference = const ValueType<A>&;
63 template <typename A>
64 using Iterator = Pointer<A>;
65 template <typename A>
66 using ConstIterator = ConstPointer<A>;
67 template <typename A>
68 using ReverseIterator = typename std::reverse_iterator<Iterator<A>>;
69 template <typename A>
70 using ConstReverseIterator = typename std::reverse_iterator<ConstIterator<A>>;
71 template <typename A>
72 using MoveIterator = typename std::move_iterator<Iterator<A>>;
73 
74 template <typename Iterator>
75 using IsAtLeastForwardIterator = std::is_convertible<
76     typename std::iterator_traits<Iterator>::iterator_category,
77     std::forward_iterator_tag>;
78 
79 template <typename A>
80 using IsMemcpyOk =
81     absl::conjunction<std::is_same<A, std::allocator<ValueType<A>>>,
82                       absl::is_trivially_copy_constructible<ValueType<A>>,
83                       absl::is_trivially_copy_assignable<ValueType<A>>,
84                       absl::is_trivially_destructible<ValueType<A>>>;
85 
86 template <typename A>
87 using IsMoveAssignOk = std::is_move_assignable<ValueType<A>>;
88 template <typename A>
89 using IsSwapOk = absl::type_traits_internal::IsSwappable<ValueType<A>>;
90 
91 template <typename T>
92 struct TypeIdentity {
93   using type = T;
94 };
95 
96 // Used for function arguments in template functions to prevent ADL by forcing
97 // callers to explicitly specify the template parameter.
98 template <typename T>
99 using NoTypeDeduction = typename TypeIdentity<T>::type;
100 
101 template <typename A, bool IsTriviallyDestructible =
102                           absl::is_trivially_destructible<ValueType<A>>::value>
103 struct DestroyAdapter;
104 
105 template <typename A>
106 struct DestroyAdapter<A, /* IsTriviallyDestructible */ false> {
107   static void DestroyElements(A& allocator, Pointer<A> destroy_first,
108                               SizeType<A> destroy_size) {
109     for (SizeType<A> i = destroy_size; i != 0;) {
110       --i;
111       AllocatorTraits<A>::destroy(allocator, destroy_first + i);
112     }
113   }
114 };
115 
116 template <typename A>
117 struct DestroyAdapter<A, /* IsTriviallyDestructible */ true> {
118   static void DestroyElements(A& allocator, Pointer<A> destroy_first,
119                               SizeType<A> destroy_size) {
120     static_cast<void>(allocator);
121     static_cast<void>(destroy_first);
122     static_cast<void>(destroy_size);
123   }
124 };
125 
126 template <typename A>
127 struct Allocation {
128   Pointer<A> data;
129   SizeType<A> capacity;
130 };
131 
132 template <typename A,
133           bool IsOverAligned =
134               (alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)>
135 struct MallocAdapter {
136   static Allocation<A> Allocate(A& allocator, SizeType<A> requested_capacity) {
137     return {AllocatorTraits<A>::allocate(allocator, requested_capacity),
138             requested_capacity};
139   }
140 
141   static void Deallocate(A& allocator, Pointer<A> pointer,
142                          SizeType<A> capacity) {
143     AllocatorTraits<A>::deallocate(allocator, pointer, capacity);
144   }
145 };
146 
147 template <typename A, typename ValueAdapter>
148 void ConstructElements(NoTypeDeduction<A>& allocator,
149                        Pointer<A> construct_first, ValueAdapter& values,
150                        SizeType<A> construct_size) {
151   for (SizeType<A> i = 0; i < construct_size; ++i) {
152     ABSL_INTERNAL_TRY { values.ConstructNext(allocator, construct_first + i); }
153     ABSL_INTERNAL_CATCH_ANY {
154       DestroyAdapter<A>::DestroyElements(allocator, construct_first, i);
155       ABSL_INTERNAL_RETHROW;
156     }
157   }
158 }
159 
160 template <typename A, typename ValueAdapter>
161 void AssignElements(Pointer<A> assign_first, ValueAdapter& values,
162                     SizeType<A> assign_size) {
163   for (SizeType<A> i = 0; i < assign_size; ++i) {
164     values.AssignNext(assign_first + i);
165   }
166 }
167 
168 template <typename A>
169 struct StorageView {
170   Pointer<A> data;
171   SizeType<A> size;
172   SizeType<A> capacity;
173 };
174 
175 template <typename A, typename Iterator>
176 class IteratorValueAdapter {
177  public:
178   explicit IteratorValueAdapter(const Iterator& it) : it_(it) {}
179 
180   void ConstructNext(A& allocator, Pointer<A> construct_at) {
181     AllocatorTraits<A>::construct(allocator, construct_at, *it_);
182     ++it_;
183   }
184 
185   void AssignNext(Pointer<A> assign_at) {
186     *assign_at = *it_;
187     ++it_;
188   }
189 
190  private:
191   Iterator it_;
192 };
193 
194 template <typename A>
195 class CopyValueAdapter {
196  public:
197   explicit CopyValueAdapter(ConstPointer<A> p) : ptr_(p) {}
198 
199   void ConstructNext(A& allocator, Pointer<A> construct_at) {
200     AllocatorTraits<A>::construct(allocator, construct_at, *ptr_);
201   }
202 
203   void AssignNext(Pointer<A> assign_at) { *assign_at = *ptr_; }
204 
205  private:
206   ConstPointer<A> ptr_;
207 };
208 
209 template <typename A>
210 class DefaultValueAdapter {
211  public:
212   explicit DefaultValueAdapter() {}
213 
214   void ConstructNext(A& allocator, Pointer<A> construct_at) {
215     AllocatorTraits<A>::construct(allocator, construct_at);
216   }
217 
218   void AssignNext(Pointer<A> assign_at) { *assign_at = ValueType<A>(); }
219 };
220 
221 template <typename A>
222 class AllocationTransaction {
223  public:
224   explicit AllocationTransaction(A& allocator)
225       : allocator_data_(allocator, nullptr), capacity_(0) {}
226 
227   ~AllocationTransaction() {
228     if (DidAllocate()) {
229       MallocAdapter<A>::Deallocate(GetAllocator(), GetData(), GetCapacity());
230     }
231   }
232 
233   AllocationTransaction(const AllocationTransaction&) = delete;
234   void operator=(const AllocationTransaction&) = delete;
235 
236   A& GetAllocator() { return allocator_data_.template get<0>(); }
237   Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
238   SizeType<A>& GetCapacity() { return capacity_; }
239 
240   bool DidAllocate() { return GetData() != nullptr; }
241 
242   Pointer<A> Allocate(SizeType<A> requested_capacity) {
243     Allocation<A> result =
244         MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
245     GetData() = result.data;
246     GetCapacity() = result.capacity;
247     return result.data;
248   }
249 
250   ABSL_MUST_USE_RESULT Allocation<A> Release() && {
251     Allocation<A> result = {GetData(), GetCapacity()};
252     Reset();
253     return result;
254   }
255 
256  private:
257   void Reset() {
258     GetData() = nullptr;
259     GetCapacity() = 0;
260   }
261 
262   container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
263   SizeType<A> capacity_;
264 };
265 
266 template <typename A>
267 class ConstructionTransaction {
268  public:
269   explicit ConstructionTransaction(A& allocator)
270       : allocator_data_(allocator, nullptr), size_(0) {}
271 
272   ~ConstructionTransaction() {
273     if (DidConstruct()) {
274       DestroyAdapter<A>::DestroyElements(GetAllocator(), GetData(), GetSize());
275     }
276   }
277 
278   ConstructionTransaction(const ConstructionTransaction&) = delete;
279   void operator=(const ConstructionTransaction&) = delete;
280 
281   A& GetAllocator() { return allocator_data_.template get<0>(); }
282   Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
283   SizeType<A>& GetSize() { return size_; }
284 
285   bool DidConstruct() { return GetData() != nullptr; }
286   template <typename ValueAdapter>
287   void Construct(Pointer<A> data, ValueAdapter& values, SizeType<A> size) {
288     ConstructElements<A>(GetAllocator(), data, values, size);
289     GetData() = data;
290     GetSize() = size;
291   }
292   void Commit() && {
293     GetData() = nullptr;
294     GetSize() = 0;
295   }
296 
297  private:
298   container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
299   SizeType<A> size_;
300 };
301 
302 template <typename T, size_t N, typename A>
303 class Storage {
304  public:
305   struct MemcpyPolicy {};
306   struct ElementwiseAssignPolicy {};
307   struct ElementwiseSwapPolicy {};
308   struct ElementwiseConstructPolicy {};
309 
310   using MoveAssignmentPolicy = absl::conditional_t<
311       IsMemcpyOk<A>::value, MemcpyPolicy,
312       absl::conditional_t<IsMoveAssignOk<A>::value, ElementwiseAssignPolicy,
313                           ElementwiseConstructPolicy>>;
314   using SwapPolicy = absl::conditional_t<
315       IsMemcpyOk<A>::value, MemcpyPolicy,
316       absl::conditional_t<IsSwapOk<A>::value, ElementwiseSwapPolicy,
317                           ElementwiseConstructPolicy>>;
318 
319   static SizeType<A> NextCapacity(SizeType<A> current_capacity) {
320     return current_capacity * 2;
321   }
322 
323   static SizeType<A> ComputeCapacity(SizeType<A> current_capacity,
324                                      SizeType<A> requested_capacity) {
325     return (std::max)(NextCapacity(current_capacity), requested_capacity);
326   }
327 
328   // ---------------------------------------------------------------------------
329   // Storage Constructors and Destructor
330   // ---------------------------------------------------------------------------
331 
332   Storage() : metadata_(A(), /* size and is_allocated */ 0u) {}
333 
334   explicit Storage(const A& allocator)
335       : metadata_(allocator, /* size and is_allocated */ 0u) {}
336 
337   ~Storage() {
338     if (GetSizeAndIsAllocated() == 0) {
339       // Empty and not allocated; nothing to do.
340     } else if (IsMemcpyOk<A>::value) {
341       // No destructors need to be run; just deallocate if necessary.
342       DeallocateIfAllocated();
343     } else {
344       DestroyContents();
345     }
346   }
347 
348   // ---------------------------------------------------------------------------
349   // Storage Member Accessors
350   // ---------------------------------------------------------------------------
351 
352   SizeType<A>& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }
353 
354   const SizeType<A>& GetSizeAndIsAllocated() const {
355     return metadata_.template get<1>();
356   }
357 
358   SizeType<A> GetSize() const { return GetSizeAndIsAllocated() >> 1; }
359 
360   bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; }
361 
362   Pointer<A> GetAllocatedData() { return data_.allocated.allocated_data; }
363 
364   ConstPointer<A> GetAllocatedData() const {
365     return data_.allocated.allocated_data;
366   }
367 
368   Pointer<A> GetInlinedData() {
369     return reinterpret_cast<Pointer<A>>(
370         std::addressof(data_.inlined.inlined_data[0]));
371   }
372 
373   ConstPointer<A> GetInlinedData() const {
374     return reinterpret_cast<ConstPointer<A>>(
375         std::addressof(data_.inlined.inlined_data[0]));
376   }
377 
378   SizeType<A> GetAllocatedCapacity() const {
379     return data_.allocated.allocated_capacity;
380   }
381 
382   SizeType<A> GetInlinedCapacity() const { return static_cast<SizeType<A>>(N); }
383 
384   StorageView<A> MakeStorageView() {
385     return GetIsAllocated() ? StorageView<A>{GetAllocatedData(), GetSize(),
386                                              GetAllocatedCapacity()}
387                             : StorageView<A>{GetInlinedData(), GetSize(),
388                                              GetInlinedCapacity()};
389   }
390 
391   A& GetAllocator() { return metadata_.template get<0>(); }
392 
393   const A& GetAllocator() const { return metadata_.template get<0>(); }
394 
395   // ---------------------------------------------------------------------------
396   // Storage Member Mutators
397   // ---------------------------------------------------------------------------
398 
399   ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other);
400 
401   template <typename ValueAdapter>
402   void Initialize(ValueAdapter values, SizeType<A> new_size);
403 
404   template <typename ValueAdapter>
405   void Assign(ValueAdapter values, SizeType<A> new_size);
406 
407   template <typename ValueAdapter>
408   void Resize(ValueAdapter values, SizeType<A> new_size);
409 
410   template <typename ValueAdapter>
411   Iterator<A> Insert(ConstIterator<A> pos, ValueAdapter values,
412                      SizeType<A> insert_count);
413 
414   template <typename... Args>
415   Reference<A> EmplaceBack(Args&&... args);
416 
417   Iterator<A> Erase(ConstIterator<A> from, ConstIterator<A> to);
418 
419   void Reserve(SizeType<A> requested_capacity);
420 
421   void ShrinkToFit();
422 
423   void Swap(Storage* other_storage_ptr);
424 
425   void SetIsAllocated() {
426     GetSizeAndIsAllocated() |= static_cast<SizeType<A>>(1);
427   }
428 
429   void UnsetIsAllocated() {
430     GetSizeAndIsAllocated() &= ((std::numeric_limits<SizeType<A>>::max)() - 1);
431   }
432 
433   void SetSize(SizeType<A> size) {
434     GetSizeAndIsAllocated() =
435         (size << 1) | static_cast<SizeType<A>>(GetIsAllocated());
436   }
437 
438   void SetAllocatedSize(SizeType<A> size) {
439     GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(1);
440   }
441 
442   void SetInlinedSize(SizeType<A> size) {
443     GetSizeAndIsAllocated() = size << static_cast<SizeType<A>>(1);
444   }
445 
446   void AddSize(SizeType<A> count) {
447     GetSizeAndIsAllocated() += count << static_cast<SizeType<A>>(1);
448   }
449 
450   void SubtractSize(SizeType<A> count) {
451     ABSL_HARDENING_ASSERT(count <= GetSize());
452 
453     GetSizeAndIsAllocated() -= count << static_cast<SizeType<A>>(1);
454   }
455 
456   void SetAllocation(Allocation<A> allocation) {
457     data_.allocated.allocated_data = allocation.data;
458     data_.allocated.allocated_capacity = allocation.capacity;
459   }
460 
461   void MemcpyFrom(const Storage& other_storage) {
462     ABSL_HARDENING_ASSERT(IsMemcpyOk<A>::value ||
463                           other_storage.GetIsAllocated());
464 
465     GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated();
466     data_ = other_storage.data_;
467   }
468 
469   void DeallocateIfAllocated() {
470     if (GetIsAllocated()) {
471       MallocAdapter<A>::Deallocate(GetAllocator(), GetAllocatedData(),
472                                    GetAllocatedCapacity());
473     }
474   }
475 
476  private:
477   ABSL_ATTRIBUTE_NOINLINE void DestroyContents();
478 
479   using Metadata = container_internal::CompressedTuple<A, SizeType<A>>;
480 
481   struct Allocated {
482     Pointer<A> allocated_data;
483     SizeType<A> allocated_capacity;
484   };
485 
486   struct Inlined {
487     alignas(ValueType<A>) char inlined_data[sizeof(ValueType<A>[N])];
488   };
489 
490   union Data {
491     Allocated allocated;
492     Inlined inlined;
493   };
494 
495   void SwapN(ElementwiseSwapPolicy, Storage* other, SizeType<A> n);
496   void SwapN(ElementwiseConstructPolicy, Storage* other, SizeType<A> n);
497 
498   void SwapInlinedElements(MemcpyPolicy, Storage* other);
499   template <typename NotMemcpyPolicy>
500   void SwapInlinedElements(NotMemcpyPolicy, Storage* other);
501 
502   template <typename... Args>
503   ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args);
504 
505   Metadata metadata_;
506   Data data_;
507 };
508 
509 template <typename T, size_t N, typename A>
510 void Storage<T, N, A>::DestroyContents() {
511   Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData();
512   DestroyAdapter<A>::DestroyElements(GetAllocator(), data, GetSize());
513   DeallocateIfAllocated();
514 }
515 
516 template <typename T, size_t N, typename A>
517 void Storage<T, N, A>::InitFrom(const Storage& other) {
518   const SizeType<A> n = other.GetSize();
519   ABSL_HARDENING_ASSERT(n > 0);  // Empty sources handled handled in caller.
520   ConstPointer<A> src;
521   Pointer<A> dst;
522   if (!other.GetIsAllocated()) {
523     dst = GetInlinedData();
524     src = other.GetInlinedData();
525   } else {
526     // Because this is only called from the `InlinedVector` constructors, it's
527     // safe to take on the allocation with size `0`. If `ConstructElements(...)`
528     // throws, deallocation will be automatically handled by `~Storage()`.
529     SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n);
530     Allocation<A> allocation =
531         MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
532     SetAllocation(allocation);
533     dst = allocation.data;
534     src = other.GetAllocatedData();
535   }
536   if (IsMemcpyOk<A>::value) {
537     std::memcpy(reinterpret_cast<char*>(dst),
538                 reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>));
539   } else {
540     auto values = IteratorValueAdapter<A, ConstPointer<A>>(src);
541     ConstructElements<A>(GetAllocator(), dst, values, n);
542   }
543   GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated();
544 }
545 
546 template <typename T, size_t N, typename A>
547 template <typename ValueAdapter>
548 auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size)
549     -> void {
550   // Only callable from constructors!
551   ABSL_HARDENING_ASSERT(!GetIsAllocated());
552   ABSL_HARDENING_ASSERT(GetSize() == 0);
553 
554   Pointer<A> construct_data;
555   if (new_size > GetInlinedCapacity()) {
556     // Because this is only called from the `InlinedVector` constructors, it's
557     // safe to take on the allocation with size `0`. If `ConstructElements(...)`
558     // throws, deallocation will be automatically handled by `~Storage()`.
559     SizeType<A> requested_capacity =
560         ComputeCapacity(GetInlinedCapacity(), new_size);
561     Allocation<A> allocation =
562         MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
563     construct_data = allocation.data;
564     SetAllocation(allocation);
565     SetIsAllocated();
566   } else {
567     construct_data = GetInlinedData();
568   }
569 
570   ConstructElements<A>(GetAllocator(), construct_data, values, new_size);
571 
572   // Since the initial size was guaranteed to be `0` and the allocated bit is
573   // already correct for either case, *adding* `new_size` gives us the correct
574   // result faster than setting it directly.
575   AddSize(new_size);
576 }
577 
578 template <typename T, size_t N, typename A>
579 template <typename ValueAdapter>
580 auto Storage<T, N, A>::Assign(ValueAdapter values, SizeType<A> new_size)
581     -> void {
582   StorageView<A> storage_view = MakeStorageView();
583 
584   AllocationTransaction<A> allocation_tx(GetAllocator());
585 
586   absl::Span<ValueType<A>> assign_loop;
587   absl::Span<ValueType<A>> construct_loop;
588   absl::Span<ValueType<A>> destroy_loop;
589 
590   if (new_size > storage_view.capacity) {
591     SizeType<A> requested_capacity =
592         ComputeCapacity(storage_view.capacity, new_size);
593     construct_loop = {allocation_tx.Allocate(requested_capacity), new_size};
594     destroy_loop = {storage_view.data, storage_view.size};
595   } else if (new_size > storage_view.size) {
596     assign_loop = {storage_view.data, storage_view.size};
597     construct_loop = {storage_view.data + storage_view.size,
598                       new_size - storage_view.size};
599   } else {
600     assign_loop = {storage_view.data, new_size};
601     destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
602   }
603 
604   AssignElements<A>(assign_loop.data(), values, assign_loop.size());
605 
606   ConstructElements<A>(GetAllocator(), construct_loop.data(), values,
607                        construct_loop.size());
608 
609   DestroyAdapter<A>::DestroyElements(GetAllocator(), destroy_loop.data(),
610                                      destroy_loop.size());
611 
612   if (allocation_tx.DidAllocate()) {
613     DeallocateIfAllocated();
614     SetAllocation(std::move(allocation_tx).Release());
615     SetIsAllocated();
616   }
617 
618   SetSize(new_size);
619 }
620 
621 template <typename T, size_t N, typename A>
622 template <typename ValueAdapter>
623 auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size)
624     -> void {
625   StorageView<A> storage_view = MakeStorageView();
626   Pointer<A> const base = storage_view.data;
627   const SizeType<A> size = storage_view.size;
628   A& alloc = GetAllocator();
629   if (new_size <= size) {
630     // Destroy extra old elements.
631     DestroyAdapter<A>::DestroyElements(alloc, base + new_size, size - new_size);
632   } else if (new_size <= storage_view.capacity) {
633     // Construct new elements in place.
634     ConstructElements<A>(alloc, base + size, values, new_size - size);
635   } else {
636     // Steps:
637     //  a. Allocate new backing store.
638     //  b. Construct new elements in new backing store.
639     //  c. Move existing elements from old backing store to new backing store.
640     //  d. Destroy all elements in old backing store.
641     // Use transactional wrappers for the first two steps so we can roll
642     // back if necessary due to exceptions.
643     AllocationTransaction<A> allocation_tx(alloc);
644     SizeType<A> requested_capacity =
645         ComputeCapacity(storage_view.capacity, new_size);
646     Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
647 
648     ConstructionTransaction<A> construction_tx(alloc);
649     construction_tx.Construct(new_data + size, values, new_size - size);
650 
651     IteratorValueAdapter<A, MoveIterator<A>> move_values(
652         (MoveIterator<A>(base)));
653     ConstructElements<A>(alloc, new_data, move_values, size);
654 
655     DestroyAdapter<A>::DestroyElements(alloc, base, size);
656     std::move(construction_tx).Commit();
657     DeallocateIfAllocated();
658     SetAllocation(std::move(allocation_tx).Release());
659     SetIsAllocated();
660   }
661   SetSize(new_size);
662 }
663 
664 template <typename T, size_t N, typename A>
665 template <typename ValueAdapter>
666 auto Storage<T, N, A>::Insert(ConstIterator<A> pos, ValueAdapter values,
667                               SizeType<A> insert_count) -> Iterator<A> {
668   StorageView<A> storage_view = MakeStorageView();
669 
670   auto insert_index = static_cast<SizeType<A>>(
671       std::distance(ConstIterator<A>(storage_view.data), pos));
672   SizeType<A> insert_end_index = insert_index + insert_count;
673   SizeType<A> new_size = storage_view.size + insert_count;
674 
675   if (new_size > storage_view.capacity) {
676     AllocationTransaction<A> allocation_tx(GetAllocator());
677     ConstructionTransaction<A> construction_tx(GetAllocator());
678     ConstructionTransaction<A> move_construction_tx(GetAllocator());
679 
680     IteratorValueAdapter<A, MoveIterator<A>> move_values(
681         MoveIterator<A>(storage_view.data));
682 
683     SizeType<A> requested_capacity =
684         ComputeCapacity(storage_view.capacity, new_size);
685     Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
686 
687     construction_tx.Construct(new_data + insert_index, values, insert_count);
688 
689     move_construction_tx.Construct(new_data, move_values, insert_index);
690 
691     ConstructElements<A>(GetAllocator(), new_data + insert_end_index,
692                          move_values, storage_view.size - insert_index);
693 
694     DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
695                                        storage_view.size);
696 
697     std::move(construction_tx).Commit();
698     std::move(move_construction_tx).Commit();
699     DeallocateIfAllocated();
700     SetAllocation(std::move(allocation_tx).Release());
701 
702     SetAllocatedSize(new_size);
703     return Iterator<A>(new_data + insert_index);
704   } else {
705     SizeType<A> move_construction_destination_index =
706         (std::max)(insert_end_index, storage_view.size);
707 
708     ConstructionTransaction<A> move_construction_tx(GetAllocator());
709 
710     IteratorValueAdapter<A, MoveIterator<A>> move_construction_values(
711         MoveIterator<A>(storage_view.data +
712                         (move_construction_destination_index - insert_count)));
713     absl::Span<ValueType<A>> move_construction = {
714         storage_view.data + move_construction_destination_index,
715         new_size - move_construction_destination_index};
716 
717     Pointer<A> move_assignment_values = storage_view.data + insert_index;
718     absl::Span<ValueType<A>> move_assignment = {
719         storage_view.data + insert_end_index,
720         move_construction_destination_index - insert_end_index};
721 
722     absl::Span<ValueType<A>> insert_assignment = {move_assignment_values,
723                                                   move_construction.size()};
724 
725     absl::Span<ValueType<A>> insert_construction = {
726         insert_assignment.data() + insert_assignment.size(),
727         insert_count - insert_assignment.size()};
728 
729     move_construction_tx.Construct(move_construction.data(),
730                                    move_construction_values,
731                                    move_construction.size());
732 
733     for (Pointer<A>
734              destination = move_assignment.data() + move_assignment.size(),
735              last_destination = move_assignment.data(),
736              source = move_assignment_values + move_assignment.size();
737          ;) {
738       --destination;
739       --source;
740       if (destination < last_destination) break;
741       *destination = std::move(*source);
742     }
743 
744     AssignElements<A>(insert_assignment.data(), values,
745                       insert_assignment.size());
746 
747     ConstructElements<A>(GetAllocator(), insert_construction.data(), values,
748                          insert_construction.size());
749 
750     std::move(move_construction_tx).Commit();
751 
752     AddSize(insert_count);
753     return Iterator<A>(storage_view.data + insert_index);
754   }
755 }
756 
757 template <typename T, size_t N, typename A>
758 template <typename... Args>
759 auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> {
760   StorageView<A> storage_view = MakeStorageView();
761   const SizeType<A> n = storage_view.size;
762   if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) {
763     // Fast path; new element fits.
764     Pointer<A> last_ptr = storage_view.data + n;
765     AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
766                                   std::forward<Args>(args)...);
767     AddSize(1);
768     return *last_ptr;
769   }
770   // TODO(b/173712035): Annotate with musttail attribute to prevent regression.
771   return EmplaceBackSlow(std::forward<Args>(args)...);
772 }
773 
774 template <typename T, size_t N, typename A>
775 template <typename... Args>
776 auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> {
777   StorageView<A> storage_view = MakeStorageView();
778   AllocationTransaction<A> allocation_tx(GetAllocator());
779   IteratorValueAdapter<A, MoveIterator<A>> move_values(
780       MoveIterator<A>(storage_view.data));
781   SizeType<A> requested_capacity = NextCapacity(storage_view.capacity);
782   Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity);
783   Pointer<A> last_ptr = construct_data + storage_view.size;
784 
785   // Construct new element.
786   AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
787                                 std::forward<Args>(args)...);
788   // Move elements from old backing store to new backing store.
789   ABSL_INTERNAL_TRY {
790     ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values,
791                          storage_view.size);
792   }
793   ABSL_INTERNAL_CATCH_ANY {
794     AllocatorTraits<A>::destroy(GetAllocator(), last_ptr);
795     ABSL_INTERNAL_RETHROW;
796   }
797   // Destroy elements in old backing store.
798   DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
799                                      storage_view.size);
800 
801   DeallocateIfAllocated();
802   SetAllocation(std::move(allocation_tx).Release());
803   SetIsAllocated();
804   AddSize(1);
805   return *last_ptr;
806 }
807 
808 template <typename T, size_t N, typename A>
809 auto Storage<T, N, A>::Erase(ConstIterator<A> from, ConstIterator<A> to)
810     -> Iterator<A> {
811   StorageView<A> storage_view = MakeStorageView();
812 
813   auto erase_size = static_cast<SizeType<A>>(std::distance(from, to));
814   auto erase_index = static_cast<SizeType<A>>(
815       std::distance(ConstIterator<A>(storage_view.data), from));
816   SizeType<A> erase_end_index = erase_index + erase_size;
817 
818   IteratorValueAdapter<A, MoveIterator<A>> move_values(
819       MoveIterator<A>(storage_view.data + erase_end_index));
820 
821   AssignElements<A>(storage_view.data + erase_index, move_values,
822                     storage_view.size - erase_end_index);
823 
824   DestroyAdapter<A>::DestroyElements(
825       GetAllocator(), storage_view.data + (storage_view.size - erase_size),
826       erase_size);
827 
828   SubtractSize(erase_size);
829   return Iterator<A>(storage_view.data + erase_index);
830 }
831 
832 template <typename T, size_t N, typename A>
833 auto Storage<T, N, A>::Reserve(SizeType<A> requested_capacity) -> void {
834   StorageView<A> storage_view = MakeStorageView();
835 
836   if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return;
837 
838   AllocationTransaction<A> allocation_tx(GetAllocator());
839 
840   IteratorValueAdapter<A, MoveIterator<A>> move_values(
841       MoveIterator<A>(storage_view.data));
842 
843   SizeType<A> new_requested_capacity =
844       ComputeCapacity(storage_view.capacity, requested_capacity);
845   Pointer<A> new_data = allocation_tx.Allocate(new_requested_capacity);
846 
847   ConstructElements<A>(GetAllocator(), new_data, move_values,
848                        storage_view.size);
849 
850   DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
851                                      storage_view.size);
852 
853   DeallocateIfAllocated();
854   SetAllocation(std::move(allocation_tx).Release());
855   SetIsAllocated();
856 }
857 
858 template <typename T, size_t N, typename A>
859 auto Storage<T, N, A>::ShrinkToFit() -> void {
860   // May only be called on allocated instances!
861   ABSL_HARDENING_ASSERT(GetIsAllocated());
862 
863   StorageView<A> storage_view{GetAllocatedData(), GetSize(),
864                               GetAllocatedCapacity()};
865 
866   if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return;
867 
868   AllocationTransaction<A> allocation_tx(GetAllocator());
869 
870   IteratorValueAdapter<A, MoveIterator<A>> move_values(
871       MoveIterator<A>(storage_view.data));
872 
873   Pointer<A> construct_data;
874   if (storage_view.size > GetInlinedCapacity()) {
875     SizeType<A> requested_capacity = storage_view.size;
876     construct_data = allocation_tx.Allocate(requested_capacity);
877     if (allocation_tx.GetCapacity() >= storage_view.capacity) {
878       // Already using the smallest available heap allocation.
879       return;
880     }
881   } else {
882     construct_data = GetInlinedData();
883   }
884 
885   ABSL_INTERNAL_TRY {
886     ConstructElements<A>(GetAllocator(), construct_data, move_values,
887                          storage_view.size);
888   }
889   ABSL_INTERNAL_CATCH_ANY {
890     SetAllocation({storage_view.data, storage_view.capacity});
891     ABSL_INTERNAL_RETHROW;
892   }
893 
894   DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
895                                      storage_view.size);
896 
897   MallocAdapter<A>::Deallocate(GetAllocator(), storage_view.data,
898                                storage_view.capacity);
899 
900   if (allocation_tx.DidAllocate()) {
901     SetAllocation(std::move(allocation_tx).Release());
902   } else {
903     UnsetIsAllocated();
904   }
905 }
906 
907 template <typename T, size_t N, typename A>
908 auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
909   using std::swap;
910   ABSL_HARDENING_ASSERT(this != other_storage_ptr);
911 
912   if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
913     swap(data_.allocated, other_storage_ptr->data_.allocated);
914   } else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
915     SwapInlinedElements(SwapPolicy{}, other_storage_ptr);
916   } else {
917     Storage* allocated_ptr = this;
918     Storage* inlined_ptr = other_storage_ptr;
919     if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
920 
921     StorageView<A> allocated_storage_view{
922         allocated_ptr->GetAllocatedData(), allocated_ptr->GetSize(),
923         allocated_ptr->GetAllocatedCapacity()};
924 
925     IteratorValueAdapter<A, MoveIterator<A>> move_values(
926         MoveIterator<A>(inlined_ptr->GetInlinedData()));
927 
928     ABSL_INTERNAL_TRY {
929       ConstructElements<A>(inlined_ptr->GetAllocator(),
930                            allocated_ptr->GetInlinedData(), move_values,
931                            inlined_ptr->GetSize());
932     }
933     ABSL_INTERNAL_CATCH_ANY {
934       allocated_ptr->SetAllocation(Allocation<A>{
935           allocated_storage_view.data, allocated_storage_view.capacity});
936       ABSL_INTERNAL_RETHROW;
937     }
938 
939     DestroyAdapter<A>::DestroyElements(inlined_ptr->GetAllocator(),
940                                        inlined_ptr->GetInlinedData(),
941                                        inlined_ptr->GetSize());
942 
943     inlined_ptr->SetAllocation(Allocation<A>{allocated_storage_view.data,
944                                              allocated_storage_view.capacity});
945   }
946 
947   swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
948   swap(GetAllocator(), other_storage_ptr->GetAllocator());
949 }
950 
951 template <typename T, size_t N, typename A>
952 void Storage<T, N, A>::SwapN(ElementwiseSwapPolicy, Storage* other,
953                              SizeType<A> n) {
954   std::swap_ranges(GetInlinedData(), GetInlinedData() + n,
955                    other->GetInlinedData());
956 }
957 
958 template <typename T, size_t N, typename A>
959 void Storage<T, N, A>::SwapN(ElementwiseConstructPolicy, Storage* other,
960                              SizeType<A> n) {
961   Pointer<A> a = GetInlinedData();
962   Pointer<A> b = other->GetInlinedData();
963   // see note on allocators in `SwapInlinedElements`.
964   A& allocator_a = GetAllocator();
965   A& allocator_b = other->GetAllocator();
966   for (SizeType<A> i = 0; i < n; ++i, ++a, ++b) {
967     ValueType<A> tmp(std::move(*a));
968 
969     AllocatorTraits<A>::destroy(allocator_a, a);
970     AllocatorTraits<A>::construct(allocator_b, a, std::move(*b));
971 
972     AllocatorTraits<A>::destroy(allocator_b, b);
973     AllocatorTraits<A>::construct(allocator_a, b, std::move(tmp));
974   }
975 }
976 
977 template <typename T, size_t N, typename A>
978 void Storage<T, N, A>::SwapInlinedElements(MemcpyPolicy, Storage* other) {
979   Data tmp = data_;
980   data_ = other->data_;
981   other->data_ = tmp;
982 }
983 
984 template <typename T, size_t N, typename A>
985 template <typename NotMemcpyPolicy>
986 void Storage<T, N, A>::SwapInlinedElements(NotMemcpyPolicy policy,
987                                            Storage* other) {
988   // Note: `destroy` needs to use pre-swap allocator while `construct` -
989   // post-swap allocator. Allocators will be swaped later on outside of
990   // `SwapInlinedElements`.
991   Storage* small_ptr = this;
992   Storage* large_ptr = other;
993   if (small_ptr->GetSize() > large_ptr->GetSize()) {
994     std::swap(small_ptr, large_ptr);
995   }
996 
997   auto small_size = small_ptr->GetSize();
998   auto diff = large_ptr->GetSize() - small_size;
999   SwapN(policy, other, small_size);
1000 
1001   IteratorValueAdapter<A, MoveIterator<A>> move_values(
1002       MoveIterator<A>(large_ptr->GetInlinedData() + small_size));
1003 
1004   ConstructElements<A>(large_ptr->GetAllocator(),
1005                        small_ptr->GetInlinedData() + small_size, move_values,
1006                        diff);
1007 
1008   DestroyAdapter<A>::DestroyElements(large_ptr->GetAllocator(),
1009                                      large_ptr->GetInlinedData() + small_size,
1010                                      diff);
1011 }
1012 
1013 // End ignore "array-bounds"
1014 #if !defined(__clang__) && defined(__GNUC__)
1015 #pragma GCC diagnostic pop
1016 #endif
1017 
1018 }  // namespace inlined_vector_internal
1019 ABSL_NAMESPACE_END
1020 }  // namespace absl
1021 
1022 #endif  // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
1023