• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // An open-addressing
16 // hashtable with quadratic probing.
17 //
18 // This is a low level hashtable on top of which different interfaces can be
19 // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
20 //
21 // The table interface is similar to that of std::unordered_set. Notable
22 // differences are that most member functions support heterogeneous keys when
23 // BOTH the hash and eq functions are marked as transparent. They do so by
24 // providing a typedef called `is_transparent`.
25 //
26 // When heterogeneous lookup is enabled, functions that take key_type act as if
27 // they have an overload set like:
28 //
29 //   iterator find(const key_type& key);
30 //   template <class K>
31 //   iterator find(const K& key);
32 //
33 //   size_type erase(const key_type& key);
34 //   template <class K>
35 //   size_type erase(const K& key);
36 //
37 //   std::pair<iterator, iterator> equal_range(const key_type& key);
38 //   template <class K>
39 //   std::pair<iterator, iterator> equal_range(const K& key);
40 //
41 // When heterogeneous lookup is disabled, only the explicit `key_type` overloads
42 // exist.
43 //
44 // find() also supports passing the hash explicitly:
45 //
46 //   iterator find(const key_type& key, size_t hash);
47 //   template <class U>
48 //   iterator find(const U& key, size_t hash);
49 //
50 // In addition the pointer to element and iterator stability guarantees are
51 // weaker: all iterators and pointers are invalidated after a new element is
52 // inserted.
53 //
54 // IMPLEMENTATION DETAILS
55 //
56 // # Table Layout
57 //
58 // A raw_hash_set's backing array consists of control bytes followed by slots
59 // that may or may not contain objects.
60 //
61 // The layout of the backing array, for `capacity` slots, is thus, as a
62 // pseudo-struct:
63 //
64 //   struct BackingArray {
65 //     // Control bytes for the "real" slots.
66 //     ctrl_t ctrl[capacity];
67 //     // Always `ctrl_t::kSentinel`. This is used by iterators to find when to
68 //     // stop and serves no other purpose.
69 //     ctrl_t sentinel;
70 //     // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so
71 //     // that if a probe sequence picks a value near the end of `ctrl`,
72 //     // `Group` will have valid control bytes to look at.
73 //     ctrl_t clones[kWidth - 1];
74 //     // The actual slot data.
75 //     slot_type slots[capacity];
76 //   };
77 //
78 // The length of this array is computed by `AllocSize()` below.
79 //
80 // Control bytes (`ctrl_t`) are bytes (collected into groups of a
81 // platform-specific size) that define the state of the corresponding slot in
82 // the slot array. Group manipulation is tightly optimized to be as efficient
83 // as possible: SSE and friends on x86, clever bit operations on other arches.
84 //
85 //      Group 1         Group 2        Group 3
86 // +---------------+---------------+---------------+
87 // | | | | | | | | | | | | | | | | | | | | | | | | |
88 // +---------------+---------------+---------------+
89 //
90 // Each control byte is either a special value for empty slots, deleted slots
91 // (sometimes called *tombstones*), and a special end-of-table marker used by
92 // iterators, or, if occupied, seven bits (H2) from the hash of the value in the
93 // corresponding slot.
94 //
95 // Storing control bytes in a separate array also has beneficial cache effects,
96 // since more logical slots will fit into a cache line.
97 //
98 // # Hashing
99 //
100 // We compute two separate hashes, `H1` and `H2`, from the hash of an object.
101 // `H1(hash(x))` is an index into `slots`, and essentially the starting point
102 // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out
103 // objects that cannot possibly be the one we are looking for.
104 //
105 // # Table operations.
106 //
107 // The key operations are `insert`, `find`, and `erase`.
108 //
109 // Since `insert` and `erase` are implemented in terms of `find`, we describe
110 // `find` first. To `find` a value `x`, we compute `hash(x)`. From
111 // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every
112 // group of slots in some interesting order.
113 //
114 // We now walk through these indices. At each index, we select the entire group
115 // starting with that index and extract potential candidates: occupied slots
116 // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the
117 // group, we stop and return an error. Each candidate slot `y` is compared with
118 // `x`; if `x == y`, we are done and return `&y`; otherwise we contine to the
119 // next probe index. Tombstones effectively behave like full slots that never
120 // match the value we're looking for.
121 //
122 // The `H2` bits ensure when we compare a slot to an object with `==`, we are
123 // likely to have actually found the object.  That is, the chance is low that
124 // `==` is called and returns `false`.  Thus, when we search for an object, we
125 // are unlikely to call `==` many times.  This likelyhood can be analyzed as
126 // follows (assuming that H2 is a random enough hash function).
127 //
128 // Let's assume that there are `k` "wrong" objects that must be examined in a
129 // probe sequence.  For example, when doing a `find` on an object that is in the
130 // table, `k` is the number of objects between the start of the probe sequence
131 // and the final found object (not including the final found object).  The
132 // expected number of objects with an H2 match is then `k/128`.  Measurements
133 // and analysis indicate that even at high load factors, `k` is less than 32,
134 // meaning that the number of "false positive" comparisons we must perform is
135 // less than 1/8 per `find`.
136 
137 // `insert` is implemented in terms of `unchecked_insert`, which inserts a
138 // value presumed to not be in the table (violating this requirement will cause
139 // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert
140 // it, we construct a `probe_seq` once again, and use it to find the first
141 // group with an unoccupied (empty *or* deleted) slot. We place `x` into the
142 // first such slot in the group and mark it as full with `x`'s H2.
143 //
144 // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and
145 // perform a `find` to see if it's already present; if it is, we're done. If
146 // it's not, we may decide the table is getting overcrowded (i.e. the load
147 // factor is greater than 7/8 for big tables; `is_small()` tables use a max load
148 // factor of 1); in this case, we allocate a bigger array, `unchecked_insert`
149 // each element of the table into the new array (we know that no insertion here
150 // will insert an already-present value), and discard the old backing array. At
151 // this point, we may `unchecked_insert` the value `x`.
152 //
153 // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which
154 // presents a viable, initialized slot pointee to the caller.
155 //
156 // `erase` is implemented in terms of `erase_at`, which takes an index to a
157 // slot. Given an offset, we simply create a tombstone and destroy its contents.
158 // If we can prove that the slot would not appear in a probe sequence, we can
159 // make the slot as empty, instead. We can prove this by observing that if a
160 // group has any empty slots, it has never been full (assuming we never create
161 // an empty slot in a group with no empties, which this heuristic guarantees we
162 // never do) and find would stop at this group anyways (since it does not probe
163 // beyond groups with empties).
164 //
165 // `erase` is `erase_at` composed with `find`: if we
166 // have a value `x`, we can perform a `find`, and then `erase_at` the resulting
167 // slot.
168 //
169 // To iterate, we simply traverse the array, skipping empty and deleted slots
170 // and stopping when we hit a `kSentinel`.
171 
172 #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
173 #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
174 
175 #include <algorithm>
176 #include <cmath>
177 #include <cstdint>
178 #include <cstring>
179 #include <iterator>
180 #include <limits>
181 #include <memory>
182 #include <tuple>
183 #include <type_traits>
184 #include <utility>
185 
186 #include "absl/base/config.h"
187 #include "absl/base/internal/endian.h"
188 #include "absl/base/internal/prefetch.h"
189 #include "absl/base/optimization.h"
190 #include "absl/base/port.h"
191 #include "absl/container/internal/common.h"
192 #include "absl/container/internal/compressed_tuple.h"
193 #include "absl/container/internal/container_memory.h"
194 #include "absl/container/internal/hash_policy_traits.h"
195 #include "absl/container/internal/hashtable_debug_hooks.h"
196 #include "absl/container/internal/hashtablez_sampler.h"
197 #include "absl/memory/memory.h"
198 #include "absl/meta/type_traits.h"
199 #include "absl/numeric/bits.h"
200 #include "absl/utility/utility.h"
201 
202 #ifdef ABSL_INTERNAL_HAVE_SSE2
203 #include <emmintrin.h>
204 #endif
205 
206 #ifdef ABSL_INTERNAL_HAVE_SSSE3
207 #include <tmmintrin.h>
208 #endif
209 
210 #ifdef _MSC_VER
211 #include <intrin.h>
212 #endif
213 
214 #ifdef ABSL_INTERNAL_HAVE_ARM_NEON
215 #include <arm_neon.h>
216 #endif
217 
218 namespace absl {
219 ABSL_NAMESPACE_BEGIN
220 namespace container_internal {
221 
222 template <typename AllocType>
SwapAlloc(AllocType & lhs,AllocType & rhs,std::true_type)223 void SwapAlloc(AllocType& lhs, AllocType& rhs,
224                std::true_type /* propagate_on_container_swap */) {
225   using std::swap;
226   swap(lhs, rhs);
227 }
228 template <typename AllocType>
SwapAlloc(AllocType &,AllocType &,std::false_type)229 void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
230                std::false_type /* propagate_on_container_swap */) {}
231 
232 // The state for a probe sequence.
233 //
234 // Currently, the sequence is a triangular progression of the form
235 //
236 //   p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1)
237 //
238 // The use of `Width` ensures that each probe step does not overlap groups;
239 // the sequence effectively outputs the addresses of *groups* (although not
240 // necessarily aligned to any boundary). The `Group` machinery allows us
241 // to check an entire group with minimal branching.
242 //
243 // Wrapping around at `mask + 1` is important, but not for the obvious reason.
244 // As described above, the first few entries of the control byte array
245 // are mirrored at the end of the array, which `Group` will find and use
246 // for selecting candidates. However, when those candidates' slots are
247 // actually inspected, there are no corresponding slots for the cloned bytes,
248 // so we need to make sure we've treated those offsets as "wrapping around".
249 //
250 // It turns out that this probe sequence visits every group exactly once if the
251 // number of groups is a power of two, since (i^2+i)/2 is a bijection in
252 // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing
253 template <size_t Width>
254 class probe_seq {
255  public:
256   // Creates a new probe sequence using `hash` as the initial value of the
257   // sequence and `mask` (usually the capacity of the table) as the mask to
258   // apply to each value in the progression.
probe_seq(size_t hash,size_t mask)259   probe_seq(size_t hash, size_t mask) {
260     assert(((mask + 1) & mask) == 0 && "not a mask");
261     mask_ = mask;
262     offset_ = hash & mask_;
263   }
264 
265   // The offset within the table, i.e., the value `p(i)` above.
offset()266   size_t offset() const { return offset_; }
offset(size_t i)267   size_t offset(size_t i) const { return (offset_ + i) & mask_; }
268 
next()269   void next() {
270     index_ += Width;
271     offset_ += index_;
272     offset_ &= mask_;
273   }
274   // 0-based probe index, a multiple of `Width`.
index()275   size_t index() const { return index_; }
276 
277  private:
278   size_t mask_;
279   size_t offset_;
280   size_t index_ = 0;
281 };
282 
283 template <class ContainerKey, class Hash, class Eq>
284 struct RequireUsableKey {
285   template <class PassedKey, class... Args>
286   std::pair<
287       decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
288       decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
289                                          std::declval<const PassedKey&>()))>*
290   operator()(const PassedKey&, const Args&...) const;
291 };
292 
293 template <class E, class Policy, class Hash, class Eq, class... Ts>
294 struct IsDecomposable : std::false_type {};
295 
296 template <class Policy, class Hash, class Eq, class... Ts>
297 struct IsDecomposable<
298     absl::void_t<decltype(Policy::apply(
299         RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
300         std::declval<Ts>()...))>,
301     Policy, Hash, Eq, Ts...> : std::true_type {};
302 
303 // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
304 template <class T>
305 constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
306   using std::swap;
307   return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
308 }
309 template <class T>
310 constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
311   return false;
312 }
313 
314 template <typename T>
315 uint32_t TrailingZeros(T x) {
316   ABSL_ASSUME(x != 0);
317   return static_cast<uint32_t>(countr_zero(x));
318 }
319 
320 // An abstract bitmask, such as that emitted by a SIMD instruction.
321 //
322 // Specifically, this type implements a simple bitset whose representation is
323 // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number
324 // of abstract bits in the bitset, while `Shift` is the log-base-two of the
325 // width of an abstract bit in the representation.
326 // This mask provides operations for any number of real bits set in an abstract
327 // bit. To add iteration on top of that, implementation must guarantee no more
328 // than one real bit is set in an abstract bit.
329 template <class T, int SignificantBits, int Shift = 0>
330 class NonIterableBitMask {
331  public:
332   explicit NonIterableBitMask(T mask) : mask_(mask) {}
333 
334   explicit operator bool() const { return this->mask_ != 0; }
335 
336   // Returns the index of the lowest *abstract* bit set in `self`.
337   uint32_t LowestBitSet() const {
338     return container_internal::TrailingZeros(mask_) >> Shift;
339   }
340 
341   // Returns the index of the highest *abstract* bit set in `self`.
342   uint32_t HighestBitSet() const {
343     return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
344   }
345 
346   // Return the number of trailing zero *abstract* bits.
347   uint32_t TrailingZeros() const {
348     return container_internal::TrailingZeros(mask_) >> Shift;
349   }
350 
351   // Return the number of leading zero *abstract* bits.
352   uint32_t LeadingZeros() const {
353     constexpr int total_significant_bits = SignificantBits << Shift;
354     constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
355     return static_cast<uint32_t>(countl_zero(mask_ << extra_bits)) >> Shift;
356   }
357 
358   T mask_;
359 };
360 
361 // Mask that can be iterable
362 //
363 // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just
364 // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When
365 // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as
366 // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask.
367 //
368 // For example:
369 //   for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2
370 //   for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
371 template <class T, int SignificantBits, int Shift = 0>
372 class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
373   using Base = NonIterableBitMask<T, SignificantBits, Shift>;
374   static_assert(std::is_unsigned<T>::value, "");
375   static_assert(Shift == 0 || Shift == 3, "");
376 
377  public:
378   explicit BitMask(T mask) : Base(mask) {}
379   // BitMask is an iterator over the indices of its abstract bits.
380   using value_type = int;
381   using iterator = BitMask;
382   using const_iterator = BitMask;
383 
384   BitMask& operator++() {
385     this->mask_ &= (this->mask_ - 1);
386     return *this;
387   }
388 
389   uint32_t operator*() const { return Base::LowestBitSet(); }
390 
391   BitMask begin() const { return *this; }
392   BitMask end() const { return BitMask(0); }
393 
394  private:
395   friend bool operator==(const BitMask& a, const BitMask& b) {
396     return a.mask_ == b.mask_;
397   }
398   friend bool operator!=(const BitMask& a, const BitMask& b) {
399     return a.mask_ != b.mask_;
400   }
401 };
402 
403 using h2_t = uint8_t;
404 
405 // The values here are selected for maximum performance. See the static asserts
406 // below for details.
407 
408 // A `ctrl_t` is a single control byte, which can have one of four
409 // states: empty, deleted, full (which has an associated seven-bit h2_t value)
410 // and the sentinel. They have the following bit patterns:
411 //
412 //      empty: 1 0 0 0 0 0 0 0
413 //    deleted: 1 1 1 1 1 1 1 0
414 //       full: 0 h h h h h h h  // h represents the hash bits.
415 //   sentinel: 1 1 1 1 1 1 1 1
416 //
417 // These values are specifically tuned for SSE-flavored SIMD.
418 // The static_asserts below detail the source of these choices.
419 //
420 // We use an enum class so that when strict aliasing is enabled, the compiler
421 // knows ctrl_t doesn't alias other types.
422 enum class ctrl_t : int8_t {
423   kEmpty = -128,   // 0b10000000
424   kDeleted = -2,   // 0b11111110
425   kSentinel = -1,  // 0b11111111
426 };
427 static_assert(
428     (static_cast<int8_t>(ctrl_t::kEmpty) &
429      static_cast<int8_t>(ctrl_t::kDeleted) &
430      static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
431     "Special markers need to have the MSB to make checking for them efficient");
432 static_assert(
433     ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
434     "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
435     "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
436 static_assert(
437     ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
438     "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
439     "registers (pcmpeqd xmm, xmm)");
440 static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
441               "ctrl_t::kEmpty must be -128 to make the SIMD check for its "
442               "existence efficient (psignb xmm, xmm)");
443 static_assert(
444     (~static_cast<int8_t>(ctrl_t::kEmpty) &
445      ~static_cast<int8_t>(ctrl_t::kDeleted) &
446      static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
447     "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
448     "shared by ctrl_t::kSentinel to make the scalar test for "
449     "MaskEmptyOrDeleted() efficient");
450 static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
451               "ctrl_t::kDeleted must be -2 to make the implementation of "
452               "ConvertSpecialToEmptyAndFullToDeleted efficient");
453 
454 ABSL_DLL extern const ctrl_t kEmptyGroup[16];
455 
456 // Returns a pointer to a control byte group that can be used by empty tables.
457 inline ctrl_t* EmptyGroup() {
458   // Const must be cast away here; no uses of this function will actually write
459   // to it, because it is only used for empty tables.
460   return const_cast<ctrl_t*>(kEmptyGroup);
461 }
462 
463 // Mixes a randomly generated per-process seed with `hash` and `ctrl` to
464 // randomize insertion order within groups.
465 bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);
466 
467 // Returns a per-table, hash salt, which changes on resize. This gets mixed into
468 // H1 to randomize iteration order per-table.
469 //
470 // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
471 // non-determinism of iteration order in most cases.
472 inline size_t PerTableSalt(const ctrl_t* ctrl) {
473   // The low bits of the pointer have little or no entropy because of
474   // alignment. We shift the pointer to try to use higher entropy bits. A
475   // good number seems to be 12 bits, because that aligns with page size.
476   return reinterpret_cast<uintptr_t>(ctrl) >> 12;
477 }
478 // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt.
479 inline size_t H1(size_t hash, const ctrl_t* ctrl) {
480   return (hash >> 7) ^ PerTableSalt(ctrl);
481 }
482 
483 // Extracts the H2 portion of a hash: the 7 bits not used for H1.
484 //
485 // These are used as an occupied control byte.
486 inline h2_t H2(size_t hash) { return hash & 0x7F; }
487 
488 // Helpers for checking the state of a control byte.
489 inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
490 inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
491 inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
492 inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
493 
494 #ifdef ABSL_INTERNAL_HAVE_SSE2
495 // Quick reference guide for intrinsics used below:
496 //
497 // * __m128i: An XMM (128-bit) word.
498 //
499 // * _mm_setzero_si128: Returns a zero vector.
500 // * _mm_set1_epi8:     Returns a vector with the same i8 in each lane.
501 //
502 // * _mm_subs_epi8:    Saturating-subtracts two i8 vectors.
503 // * _mm_and_si128:    Ands two i128s together.
504 // * _mm_or_si128:     Ors two i128s together.
505 // * _mm_andnot_si128: And-nots two i128s together.
506 //
507 // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality,
508 //                   filling each lane with 0x00 or 0xff.
509 // * _mm_cmpgt_epi8: Same as above, but using > rather than ==.
510 //
511 // * _mm_loadu_si128:  Performs an unaligned load of an i128.
512 // * _mm_storeu_si128: Performs an unaligned store of an i128.
513 //
514 // * _mm_sign_epi8:     Retains, negates, or zeroes each i8 lane of the first
515 //                      argument if the corresponding lane of the second
516 //                      argument is positive, negative, or zero, respectively.
517 // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a
518 //                      bitmask consisting of those bits.
519 // * _mm_shuffle_epi8:  Selects i8s from the first argument, using the low
520 //                      four bits of each i8 lane in the second argument as
521 //                      indices.
522 
523 // https://github.com/abseil/abseil-cpp/issues/209
524 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
525 // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
526 // Work around this by using the portable implementation of Group
527 // when using -funsigned-char under GCC.
528 inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
529 #if defined(__GNUC__) && !defined(__clang__)
530   if (std::is_unsigned<char>::value) {
531     const __m128i mask = _mm_set1_epi8(0x80);
532     const __m128i diff = _mm_subs_epi8(b, a);
533     return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
534   }
535 #endif
536   return _mm_cmpgt_epi8(a, b);
537 }
538 
539 struct GroupSse2Impl {
540   static constexpr size_t kWidth = 16;  // the number of slots per group
541 
542   explicit GroupSse2Impl(const ctrl_t* pos) {
543     ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
544   }
545 
546   // Returns a bitmask representing the positions of slots that match hash.
547   BitMask<uint32_t, kWidth> Match(h2_t hash) const {
548     auto match = _mm_set1_epi8(static_cast<char>(hash));
549     return BitMask<uint32_t, kWidth>(
550         static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
551   }
552 
553   // Returns a bitmask representing the positions of empty slots.
554   NonIterableBitMask<uint32_t, kWidth> MaskEmpty() const {
555 #ifdef ABSL_INTERNAL_HAVE_SSSE3
556     // This only works because ctrl_t::kEmpty is -128.
557     return NonIterableBitMask<uint32_t, kWidth>(
558         static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
559 #else
560     auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty));
561     return NonIterableBitMask<uint32_t, kWidth>(
562         static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
563 #endif
564   }
565 
566   // Returns a bitmask representing the positions of empty or deleted slots.
567   NonIterableBitMask<uint32_t, kWidth> MaskEmptyOrDeleted() const {
568     auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
569     return NonIterableBitMask<uint32_t, kWidth>(static_cast<uint32_t>(
570         _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
571   }
572 
573   // Returns the number of trailing empty or deleted elements in the group.
574   uint32_t CountLeadingEmptyOrDeleted() const {
575     auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
576     return TrailingZeros(static_cast<uint32_t>(
577         _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
578   }
579 
580   void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
581     auto msbs = _mm_set1_epi8(static_cast<char>(-128));
582     auto x126 = _mm_set1_epi8(126);
583 #ifdef ABSL_INTERNAL_HAVE_SSSE3
584     auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
585 #else
586     auto zero = _mm_setzero_si128();
587     auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
588     auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
589 #endif
590     _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
591   }
592 
593   __m128i ctrl;
594 };
595 #endif  // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
596 
597 #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
598 struct GroupAArch64Impl {
599   static constexpr size_t kWidth = 8;
600 
601   explicit GroupAArch64Impl(const ctrl_t* pos) {
602     ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
603   }
604 
605   BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
606     uint8x8_t dup = vdup_n_u8(hash);
607     auto mask = vceq_u8(ctrl, dup);
608     constexpr uint64_t msbs = 0x8080808080808080ULL;
609     return BitMask<uint64_t, kWidth, 3>(
610         vget_lane_u64(vreinterpret_u64_u8(mask), 0) & msbs);
611   }
612 
613   NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
614     uint64_t mask =
615         vget_lane_u64(vreinterpret_u64_u8(vceq_s8(
616                           vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)),
617                           vreinterpret_s8_u8(ctrl))),
618                       0);
619     return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
620   }
621 
622   NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
623     uint64_t mask =
624         vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
625                           vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
626                           vreinterpret_s8_u8(ctrl))),
627                       0);
628     return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
629   }
630 
631   uint32_t CountLeadingEmptyOrDeleted() const {
632     uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
633     // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
634     // kDeleted. We lower all other bits and count number of trailing zeros.
635     // Clang and GCC optimize countr_zero to rbit+clz without any check for 0,
636     // so we should be fine.
637     constexpr uint64_t bits = 0x0101010101010101ULL;
638     return static_cast<uint32_t>(countr_zero((mask | ~(mask >> 7)) & bits) >>
639                                  3);
640   }
641 
642   void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
643     uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0);
644     constexpr uint64_t msbs = 0x8080808080808080ULL;
645     constexpr uint64_t lsbs = 0x0101010101010101ULL;
646     auto x = mask & msbs;
647     auto res = (~x + (x >> 7)) & ~lsbs;
648     little_endian::Store64(dst, res);
649   }
650 
651   uint8x8_t ctrl;
652 };
653 #endif  // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN
654 
655 struct GroupPortableImpl {
656   static constexpr size_t kWidth = 8;
657 
658   explicit GroupPortableImpl(const ctrl_t* pos)
659       : ctrl(little_endian::Load64(pos)) {}
660 
661   BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
662     // For the technique, see:
663     // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
664     // (Determine if a word has a byte equal to n).
665     //
666     // Caveat: there are false positives but:
667     // - they only occur if there is a real match
668     // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
669     // - they will be handled gracefully by subsequent checks in code
670     //
671     // Example:
672     //   v = 0x1716151413121110
673     //   hash = 0x12
674     //   retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
675     constexpr uint64_t msbs = 0x8080808080808080ULL;
676     constexpr uint64_t lsbs = 0x0101010101010101ULL;
677     auto x = ctrl ^ (lsbs * hash);
678     return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
679   }
680 
681   NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
682     constexpr uint64_t msbs = 0x8080808080808080ULL;
683     return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) &
684                                                    msbs);
685   }
686 
687   NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
688     constexpr uint64_t msbs = 0x8080808080808080ULL;
689     return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) &
690                                                    msbs);
691   }
692 
693   uint32_t CountLeadingEmptyOrDeleted() const {
694     // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and
695     // kDeleted. We lower all other bits and count number of trailing zeros.
696     constexpr uint64_t bits = 0x0101010101010101ULL;
697     return static_cast<uint32_t>(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >>
698                                  3);
699   }
700 
701   void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
702     constexpr uint64_t msbs = 0x8080808080808080ULL;
703     constexpr uint64_t lsbs = 0x0101010101010101ULL;
704     auto x = ctrl & msbs;
705     auto res = (~x + (x >> 7)) & ~lsbs;
706     little_endian::Store64(dst, res);
707   }
708 
709   uint64_t ctrl;
710 };
711 
712 #ifdef ABSL_INTERNAL_HAVE_SSE2
713 using Group = GroupSse2Impl;
714 #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
715 using Group = GroupAArch64Impl;
716 #else
717 using Group = GroupPortableImpl;
718 #endif
719 
720 // Returns he number of "cloned control bytes".
721 //
722 // This is the number of control bytes that are present both at the beginning
723 // of the control byte array and at the end, such that we can create a
724 // `Group::kWidth`-width probe window starting from any control byte.
725 constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
726 
727 template <class Policy, class Hash, class Eq, class Alloc>
728 class raw_hash_set;
729 
730 // Returns whether `n` is a valid capacity (i.e., number of slots).
731 //
732 // A valid capacity is a non-zero integer `2^m - 1`.
733 inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
734 
735 // Applies the following mapping to every byte in the control array:
736 //   * kDeleted -> kEmpty
737 //   * kEmpty -> kEmpty
738 //   * _ -> kDeleted
739 // PRECONDITION:
740 //   IsValidCapacity(capacity)
741 //   ctrl[capacity] == ctrl_t::kSentinel
742 //   ctrl[i] != ctrl_t::kSentinel for all i < capacity
743 void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
744 
745 // Converts `n` into the next valid capacity, per `IsValidCapacity`.
746 inline size_t NormalizeCapacity(size_t n) {
747   return n ? ~size_t{} >> countl_zero(n) : 1;
748 }
749 
750 // General notes on capacity/growth methods below:
751 // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
752 //   average of two empty slots per group.
753 // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
754 // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
755 //   never need to probe (the whole table fits in one group) so we don't need a
756 //   load factor less than 1.
757 
758 // Given `capacity`, applies the load factor; i.e., it returns the maximum
759 // number of values we should put into the table before a resizing rehash.
760 inline size_t CapacityToGrowth(size_t capacity) {
761   assert(IsValidCapacity(capacity));
762   // `capacity*7/8`
763   if (Group::kWidth == 8 && capacity == 7) {
764     // x-x/8 does not work when x==7.
765     return 6;
766   }
767   return capacity - capacity / 8;
768 }
769 
770 // Given `growth`, "unapplies" the load factor to find how large the capacity
771 // should be to stay within the load factor.
772 //
773 // This might not be a valid capacity and `NormalizeCapacity()` should be
774 // called on this.
775 inline size_t GrowthToLowerboundCapacity(size_t growth) {
776   // `growth*8/7`
777   if (Group::kWidth == 8 && growth == 7) {
778     // x+(x-1)/7 does not work when x==7.
779     return 8;
780   }
781   return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
782 }
783 
784 template <class InputIter>
785 size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
786                                      size_t bucket_count) {
787   if (bucket_count != 0) {
788     return bucket_count;
789   }
790   using InputIterCategory =
791       typename std::iterator_traits<InputIter>::iterator_category;
792   if (std::is_base_of<std::random_access_iterator_tag,
793                       InputIterCategory>::value) {
794     return GrowthToLowerboundCapacity(
795         static_cast<size_t>(std::distance(first, last)));
796   }
797   return 0;
798 }
799 
800 #define ABSL_INTERNAL_ASSERT_IS_FULL(ctrl, operation)                         \
801   do {                                                                        \
802     ABSL_HARDENING_ASSERT(                                                    \
803         (ctrl != nullptr) && operation                                        \
804         " called on invalid iterator. The iterator might be an end() "        \
805         "iterator or may have been default constructed.");                    \
806     ABSL_HARDENING_ASSERT(                                                    \
807         (IsFull(*ctrl)) && operation                                          \
808         " called on invalid iterator. The element might have been erased or " \
809         "the table might have rehashed.");                                    \
810   } while (0)
811 
812 inline void AssertIsValid(ctrl_t* ctrl) {
813   ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) &&
814                         "Invalid operation on iterator. The element might have "
815                         "been erased or the table might have rehashed.");
816 }
817 
818 struct FindInfo {
819   size_t offset;
820   size_t probe_length;
821 };
822 
823 // Whether a table is "small". A small table fits entirely into a probing
824 // group, i.e., has a capacity < `Group::kWidth`.
825 //
826 // In small mode we are able to use the whole capacity. The extra control
827 // bytes give us at least one "empty" control byte to stop the iteration.
828 // This is important to make 1 a valid capacity.
829 //
830 // In small mode only the first `capacity` control bytes after the sentinel
831 // are valid. The rest contain dummy ctrl_t::kEmpty values that do not
832 // represent a real slot. This is important to take into account on
833 // `find_first_non_full()`, where we never try
834 // `ShouldInsertBackwards()` for small tables.
835 inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
836 
837 // Begins a probing operation on `ctrl`, using `hash`.
838 inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash,
839                                       size_t capacity) {
840   return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
841 }
842 
843 // Probes an array of control bits using a probe sequence derived from `hash`,
844 // and returns the offset corresponding to the first deleted or empty slot.
845 //
846 // Behavior when the entire table is full is undefined.
847 //
848 // NOTE: this function must work with tables having both empty and deleted
849 // slots in the same group. Such tables appear during `erase()`.
850 template <typename = void>
851 inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash,
852                                     size_t capacity) {
853   auto seq = probe(ctrl, hash, capacity);
854   while (true) {
855     Group g{ctrl + seq.offset()};
856     auto mask = g.MaskEmptyOrDeleted();
857     if (mask) {
858 #if !defined(NDEBUG)
859       // We want to add entropy even when ASLR is not enabled.
860       // In debug build we will randomly insert in either the front or back of
861       // the group.
862       // TODO(kfm,sbenza): revisit after we do unconditional mixing
863       if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) {
864         return {seq.offset(mask.HighestBitSet()), seq.index()};
865       }
866 #endif
867       return {seq.offset(mask.LowestBitSet()), seq.index()};
868     }
869     seq.next();
870     assert(seq.index() <= capacity && "full table!");
871   }
872 }
873 
874 // Extern template for inline function keep possibility of inlining.
875 // When compiler decided to not inline, no symbols will be added to the
876 // corresponding translation unit.
877 extern template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t);
878 
879 // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire
880 // array as marked as empty.
881 inline void ResetCtrl(size_t capacity, ctrl_t* ctrl, const void* slot,
882                       size_t slot_size) {
883   std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
884               capacity + 1 + NumClonedBytes());
885   ctrl[capacity] = ctrl_t::kSentinel;
886   SanitizerPoisonMemoryRegion(slot, slot_size * capacity);
887 }
888 
889 // Sets `ctrl[i]` to `h`.
890 //
891 // Unlike setting it directly, this function will perform bounds checks and
892 // mirror the value to the cloned tail if necessary.
893 inline void SetCtrl(size_t i, ctrl_t h, size_t capacity, ctrl_t* ctrl,
894                     const void* slot, size_t slot_size) {
895   assert(i < capacity);
896 
897   auto* slot_i = static_cast<const char*>(slot) + i * slot_size;
898   if (IsFull(h)) {
899     SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
900   } else {
901     SanitizerPoisonMemoryRegion(slot_i, slot_size);
902   }
903 
904   ctrl[i] = h;
905   ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
906 }
907 
908 // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`.
909 inline void SetCtrl(size_t i, h2_t h, size_t capacity, ctrl_t* ctrl,
910                     const void* slot, size_t slot_size) {
911   SetCtrl(i, static_cast<ctrl_t>(h), capacity, ctrl, slot, slot_size);
912 }
913 
914 // Given the capacity of a table, computes the offset (from the start of the
915 // backing allocation) at which the slots begin.
916 inline size_t SlotOffset(size_t capacity, size_t slot_align) {
917   assert(IsValidCapacity(capacity));
918   const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
919   return (num_control_bytes + slot_align - 1) & (~slot_align + 1);
920 }
921 
922 // Given the capacity of a table, computes the total size of the backing
923 // array.
924 inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) {
925   return SlotOffset(capacity, slot_align) + capacity * slot_size;
926 }
927 
928 // A SwissTable.
929 //
930 // Policy: a policy defines how to perform different operations on
931 // the slots of the hashtable (see hash_policy_traits.h for the full interface
932 // of policy).
933 //
934 // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
935 // functor should accept a key and return size_t as hash. For best performance
936 // it is important that the hash function provides high entropy across all bits
937 // of the hash.
938 //
939 // Eq: a (possibly polymorphic) functor that compares two keys for equality. It
940 // should accept two (of possibly different type) keys and return a bool: true
941 // if they are equal, false if they are not. If two keys compare equal, then
942 // their hash values as defined by Hash MUST be equal.
943 //
944 // Allocator: an Allocator
945 // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
946 // the storage of the hashtable will be allocated and the elements will be
947 // constructed and destroyed.
948 template <class Policy, class Hash, class Eq, class Alloc>
949 class raw_hash_set {
950   using PolicyTraits = hash_policy_traits<Policy>;
951   using KeyArgImpl =
952       KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
953 
954  public:
955   using init_type = typename PolicyTraits::init_type;
956   using key_type = typename PolicyTraits::key_type;
957   // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
958   // code fixes!
959   using slot_type = typename PolicyTraits::slot_type;
960   using allocator_type = Alloc;
961   using size_type = size_t;
962   using difference_type = ptrdiff_t;
963   using hasher = Hash;
964   using key_equal = Eq;
965   using policy_type = Policy;
966   using value_type = typename PolicyTraits::value_type;
967   using reference = value_type&;
968   using const_reference = const value_type&;
969   using pointer = typename absl::allocator_traits<
970       allocator_type>::template rebind_traits<value_type>::pointer;
971   using const_pointer = typename absl::allocator_traits<
972       allocator_type>::template rebind_traits<value_type>::const_pointer;
973 
974   // Alias used for heterogeneous lookup functions.
975   // `key_arg<K>` evaluates to `K` when the functors are transparent and to
976   // `key_type` otherwise. It permits template argument deduction on `K` for the
977   // transparent case.
978   template <class K>
979   using key_arg = typename KeyArgImpl::template type<K, key_type>;
980 
981  private:
982   // Give an early error when key_type is not hashable/eq.
983   auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
984   auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
985 
986   using AllocTraits = absl::allocator_traits<allocator_type>;
987   using SlotAlloc = typename absl::allocator_traits<
988       allocator_type>::template rebind_alloc<slot_type>;
989   using SlotAllocTraits = typename absl::allocator_traits<
990       allocator_type>::template rebind_traits<slot_type>;
991 
992   static_assert(std::is_lvalue_reference<reference>::value,
993                 "Policy::element() must return a reference");
994 
995   template <typename T>
996   struct SameAsElementReference
997       : std::is_same<typename std::remove_cv<
998                          typename std::remove_reference<reference>::type>::type,
999                      typename std::remove_cv<
1000                          typename std::remove_reference<T>::type>::type> {};
1001 
1002   // An enabler for insert(T&&): T must be convertible to init_type or be the
1003   // same as [cv] value_type [ref].
1004   // Note: we separate SameAsElementReference into its own type to avoid using
1005   // reference unless we need to. MSVC doesn't seem to like it in some
1006   // cases.
1007   template <class T>
1008   using RequiresInsertable = typename std::enable_if<
1009       absl::disjunction<std::is_convertible<T, init_type>,
1010                         SameAsElementReference<T>>::value,
1011       int>::type;
1012 
1013   // RequiresNotInit is a workaround for gcc prior to 7.1.
1014   // See https://godbolt.org/g/Y4xsUh.
1015   template <class T>
1016   using RequiresNotInit =
1017       typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
1018 
1019   template <class... Ts>
1020   using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
1021 
1022  public:
1023   static_assert(std::is_same<pointer, value_type*>::value,
1024                 "Allocators with custom pointer types are not supported");
1025   static_assert(std::is_same<const_pointer, const value_type*>::value,
1026                 "Allocators with custom pointer types are not supported");
1027 
1028   class iterator {
1029     friend class raw_hash_set;
1030 
1031    public:
1032     using iterator_category = std::forward_iterator_tag;
1033     using value_type = typename raw_hash_set::value_type;
1034     using reference =
1035         absl::conditional_t<PolicyTraits::constant_iterators::value,
1036                             const value_type&, value_type&>;
1037     using pointer = absl::remove_reference_t<reference>*;
1038     using difference_type = typename raw_hash_set::difference_type;
1039 
1040     iterator() {}
1041 
1042     // PRECONDITION: not an end() iterator.
1043     reference operator*() const {
1044       ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, "operator*()");
1045       return PolicyTraits::element(slot_);
1046     }
1047 
1048     // PRECONDITION: not an end() iterator.
1049     pointer operator->() const {
1050       ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, "operator->");
1051       return &operator*();
1052     }
1053 
1054     // PRECONDITION: not an end() iterator.
1055     iterator& operator++() {
1056       ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, "operator++");
1057       ++ctrl_;
1058       ++slot_;
1059       skip_empty_or_deleted();
1060       return *this;
1061     }
1062     // PRECONDITION: not an end() iterator.
1063     iterator operator++(int) {
1064       auto tmp = *this;
1065       ++*this;
1066       return tmp;
1067     }
1068 
1069     friend bool operator==(const iterator& a, const iterator& b) {
1070       AssertIsValid(a.ctrl_);
1071       AssertIsValid(b.ctrl_);
1072       return a.ctrl_ == b.ctrl_;
1073     }
1074     friend bool operator!=(const iterator& a, const iterator& b) {
1075       return !(a == b);
1076     }
1077 
1078    private:
1079     iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {
1080       // This assumption helps the compiler know that any non-end iterator is
1081       // not equal to any end iterator.
1082       ABSL_ASSUME(ctrl != nullptr);
1083     }
1084 
1085     // Fixes up `ctrl_` to point to a full by advancing it and `slot_` until
1086     // they reach one.
1087     //
1088     // If a sentinel is reached, we null `ctrl_` out instead.
1089     void skip_empty_or_deleted() {
1090       while (IsEmptyOrDeleted(*ctrl_)) {
1091         uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
1092         ctrl_ += shift;
1093         slot_ += shift;
1094       }
1095       if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
1096     }
1097 
1098     ctrl_t* ctrl_ = nullptr;
1099     // To avoid uninitialized member warnings, put slot_ in an anonymous union.
1100     // The member is not initialized on singleton and end iterators.
1101     union {
1102       slot_type* slot_;
1103     };
1104   };
1105 
1106   class const_iterator {
1107     friend class raw_hash_set;
1108 
1109    public:
1110     using iterator_category = typename iterator::iterator_category;
1111     using value_type = typename raw_hash_set::value_type;
1112     using reference = typename raw_hash_set::const_reference;
1113     using pointer = typename raw_hash_set::const_pointer;
1114     using difference_type = typename raw_hash_set::difference_type;
1115 
1116     const_iterator() {}
1117     // Implicit construction from iterator.
1118     const_iterator(iterator i) : inner_(std::move(i)) {}
1119 
1120     reference operator*() const { return *inner_; }
1121     pointer operator->() const { return inner_.operator->(); }
1122 
1123     const_iterator& operator++() {
1124       ++inner_;
1125       return *this;
1126     }
1127     const_iterator operator++(int) { return inner_++; }
1128 
1129     friend bool operator==(const const_iterator& a, const const_iterator& b) {
1130       return a.inner_ == b.inner_;
1131     }
1132     friend bool operator!=(const const_iterator& a, const const_iterator& b) {
1133       return !(a == b);
1134     }
1135 
1136    private:
1137     const_iterator(const ctrl_t* ctrl, const slot_type* slot)
1138         : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
1139 
1140     iterator inner_;
1141   };
1142 
1143   using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
1144   using insert_return_type = InsertReturnType<iterator, node_type>;
1145 
1146   raw_hash_set() noexcept(
1147       std::is_nothrow_default_constructible<hasher>::value&&
1148           std::is_nothrow_default_constructible<key_equal>::value&&
1149               std::is_nothrow_default_constructible<allocator_type>::value) {}
1150 
1151   explicit raw_hash_set(size_t bucket_count,
1152                         const hasher& hash = hasher(),
1153                         const key_equal& eq = key_equal(),
1154                         const allocator_type& alloc = allocator_type())
1155       : ctrl_(EmptyGroup()),
1156         settings_(0u, HashtablezInfoHandle(), hash, eq, alloc) {
1157     if (bucket_count) {
1158       capacity_ = NormalizeCapacity(bucket_count);
1159       initialize_slots();
1160     }
1161   }
1162 
1163   raw_hash_set(size_t bucket_count, const hasher& hash,
1164                const allocator_type& alloc)
1165       : raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
1166 
1167   raw_hash_set(size_t bucket_count, const allocator_type& alloc)
1168       : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
1169 
1170   explicit raw_hash_set(const allocator_type& alloc)
1171       : raw_hash_set(0, hasher(), key_equal(), alloc) {}
1172 
1173   template <class InputIter>
1174   raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
1175                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1176                const allocator_type& alloc = allocator_type())
1177       : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
1178                      hash, eq, alloc) {
1179     insert(first, last);
1180   }
1181 
1182   template <class InputIter>
1183   raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
1184                const hasher& hash, const allocator_type& alloc)
1185       : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
1186 
1187   template <class InputIter>
1188   raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
1189                const allocator_type& alloc)
1190       : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
1191 
1192   template <class InputIter>
1193   raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
1194       : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
1195 
1196   // Instead of accepting std::initializer_list<value_type> as the first
1197   // argument like std::unordered_set<value_type> does, we have two overloads
1198   // that accept std::initializer_list<T> and std::initializer_list<init_type>.
1199   // This is advantageous for performance.
1200   //
1201   //   // Turns {"abc", "def"} into std::initializer_list<std::string>, then
1202   //   // copies the strings into the set.
1203   //   std::unordered_set<std::string> s = {"abc", "def"};
1204   //
1205   //   // Turns {"abc", "def"} into std::initializer_list<const char*>, then
1206   //   // copies the strings into the set.
1207   //   absl::flat_hash_set<std::string> s = {"abc", "def"};
1208   //
1209   // The same trick is used in insert().
1210   //
1211   // The enabler is necessary to prevent this constructor from triggering where
1212   // the copy constructor is meant to be called.
1213   //
1214   //   absl::flat_hash_set<int> a, b{a};
1215   //
1216   // RequiresNotInit<T> is a workaround for gcc prior to 7.1.
1217   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1218   raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
1219                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1220                const allocator_type& alloc = allocator_type())
1221       : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
1222 
1223   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
1224                const hasher& hash = hasher(), const key_equal& eq = key_equal(),
1225                const allocator_type& alloc = allocator_type())
1226       : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
1227 
1228   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1229   raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
1230                const hasher& hash, const allocator_type& alloc)
1231       : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
1232 
1233   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
1234                const hasher& hash, const allocator_type& alloc)
1235       : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
1236 
1237   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1238   raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
1239                const allocator_type& alloc)
1240       : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
1241 
1242   raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
1243                const allocator_type& alloc)
1244       : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
1245 
1246   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
1247   raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
1248       : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
1249 
1250   raw_hash_set(std::initializer_list<init_type> init,
1251                const allocator_type& alloc)
1252       : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
1253 
1254   raw_hash_set(const raw_hash_set& that)
1255       : raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
1256                                that.alloc_ref())) {}
1257 
1258   raw_hash_set(const raw_hash_set& that, const allocator_type& a)
1259       : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
1260     reserve(that.size());
1261     // Because the table is guaranteed to be empty, we can do something faster
1262     // than a full `insert`.
1263     for (const auto& v : that) {
1264       const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
1265       auto target = find_first_non_full(ctrl_, hash, capacity_);
1266       SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
1267               sizeof(slot_type));
1268       emplace_at(target.offset, v);
1269       infoz().RecordInsert(hash, target.probe_length);
1270     }
1271     size_ = that.size();
1272     growth_left() -= that.size();
1273   }
1274 
1275   raw_hash_set(raw_hash_set&& that) noexcept(
1276       std::is_nothrow_copy_constructible<hasher>::value&&
1277           std::is_nothrow_copy_constructible<key_equal>::value&&
1278               std::is_nothrow_copy_constructible<allocator_type>::value)
1279       : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
1280         slots_(absl::exchange(that.slots_, nullptr)),
1281         size_(absl::exchange(that.size_, size_t{0})),
1282         capacity_(absl::exchange(that.capacity_, size_t{0})),
1283         // Hash, equality and allocator are copied instead of moved because
1284         // `that` must be left valid. If Hash is std::function<Key>, moving it
1285         // would create a nullptr functor that cannot be called.
1286         settings_(absl::exchange(that.growth_left(), size_t{0}),
1287                   absl::exchange(that.infoz(), HashtablezInfoHandle()),
1288                   that.hash_ref(),
1289                   that.eq_ref(),
1290                   that.alloc_ref()) {}
1291 
1292   raw_hash_set(raw_hash_set&& that, const allocator_type& a)
1293       : ctrl_(EmptyGroup()),
1294         slots_(nullptr),
1295         size_(0),
1296         capacity_(0),
1297         settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(),
1298                   a) {
1299     if (a == that.alloc_ref()) {
1300       std::swap(ctrl_, that.ctrl_);
1301       std::swap(slots_, that.slots_);
1302       std::swap(size_, that.size_);
1303       std::swap(capacity_, that.capacity_);
1304       std::swap(growth_left(), that.growth_left());
1305       std::swap(infoz(), that.infoz());
1306     } else {
1307       reserve(that.size());
1308       // Note: this will copy elements of dense_set and unordered_set instead of
1309       // moving them. This can be fixed if it ever becomes an issue.
1310       for (auto& elem : that) insert(std::move(elem));
1311     }
1312   }
1313 
1314   raw_hash_set& operator=(const raw_hash_set& that) {
1315     raw_hash_set tmp(that,
1316                      AllocTraits::propagate_on_container_copy_assignment::value
1317                          ? that.alloc_ref()
1318                          : alloc_ref());
1319     swap(tmp);
1320     return *this;
1321   }
1322 
1323   raw_hash_set& operator=(raw_hash_set&& that) noexcept(
1324       absl::allocator_traits<allocator_type>::is_always_equal::value&&
1325           std::is_nothrow_move_assignable<hasher>::value&&
1326               std::is_nothrow_move_assignable<key_equal>::value) {
1327     // TODO(sbenza): We should only use the operations from the noexcept clause
1328     // to make sure we actually adhere to that contract.
1329     return move_assign(
1330         std::move(that),
1331         typename AllocTraits::propagate_on_container_move_assignment());
1332   }
1333 
1334   ~raw_hash_set() { destroy_slots(); }
1335 
1336   iterator begin() {
1337     auto it = iterator_at(0);
1338     it.skip_empty_or_deleted();
1339     return it;
1340   }
1341   iterator end() { return {}; }
1342 
1343   const_iterator begin() const {
1344     return const_cast<raw_hash_set*>(this)->begin();
1345   }
1346   const_iterator end() const { return {}; }
1347   const_iterator cbegin() const { return begin(); }
1348   const_iterator cend() const { return end(); }
1349 
1350   bool empty() const { return !size(); }
1351   size_t size() const { return size_; }
1352   size_t capacity() const { return capacity_; }
1353   size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
1354 
1355   ABSL_ATTRIBUTE_REINITIALIZES void clear() {
1356     // Iterating over this container is O(bucket_count()). When bucket_count()
1357     // is much greater than size(), iteration becomes prohibitively expensive.
1358     // For clear() it is more important to reuse the allocated array when the
1359     // container is small because allocation takes comparatively long time
1360     // compared to destruction of the elements of the container. So we pick the
1361     // largest bucket_count() threshold for which iteration is still fast and
1362     // past that we simply deallocate the array.
1363     if (capacity_ > 127) {
1364       destroy_slots();
1365 
1366       infoz().RecordClearedReservation();
1367     } else if (capacity_) {
1368       for (size_t i = 0; i != capacity_; ++i) {
1369         if (IsFull(ctrl_[i])) {
1370           PolicyTraits::destroy(&alloc_ref(), slots_ + i);
1371         }
1372       }
1373       size_ = 0;
1374       ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
1375       reset_growth_left();
1376     }
1377     assert(empty());
1378     infoz().RecordStorageChanged(0, capacity_);
1379   }
1380 
1381   // This overload kicks in when the argument is an rvalue of insertable and
1382   // decomposable type other than init_type.
1383   //
1384   //   flat_hash_map<std::string, int> m;
1385   //   m.insert(std::make_pair("abc", 42));
1386   // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
1387   // bug.
1388   template <class T, RequiresInsertable<T> = 0, class T2 = T,
1389             typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
1390             T* = nullptr>
1391   std::pair<iterator, bool> insert(T&& value) {
1392     return emplace(std::forward<T>(value));
1393   }
1394 
1395   // This overload kicks in when the argument is a bitfield or an lvalue of
1396   // insertable and decomposable type.
1397   //
1398   //   union { int n : 1; };
1399   //   flat_hash_set<int> s;
1400   //   s.insert(n);
1401   //
1402   //   flat_hash_set<std::string> s;
1403   //   const char* p = "hello";
1404   //   s.insert(p);
1405   //
1406   // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
1407   // RequiresInsertable<T> with RequiresInsertable<const T&>.
1408   // We are hitting this bug: https://godbolt.org/g/1Vht4f.
1409   template <
1410       class T, RequiresInsertable<T> = 0,
1411       typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
1412   std::pair<iterator, bool> insert(const T& value) {
1413     return emplace(value);
1414   }
1415 
1416   // This overload kicks in when the argument is an rvalue of init_type. Its
1417   // purpose is to handle brace-init-list arguments.
1418   //
1419   //   flat_hash_map<std::string, int> s;
1420   //   s.insert({"abc", 42});
1421   std::pair<iterator, bool> insert(init_type&& value) {
1422     return emplace(std::move(value));
1423   }
1424 
1425   // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
1426   // bug.
1427   template <class T, RequiresInsertable<T> = 0, class T2 = T,
1428             typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
1429             T* = nullptr>
1430   iterator insert(const_iterator, T&& value) {
1431     return insert(std::forward<T>(value)).first;
1432   }
1433 
1434   // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
1435   // RequiresInsertable<T> with RequiresInsertable<const T&>.
1436   // We are hitting this bug: https://godbolt.org/g/1Vht4f.
1437   template <
1438       class T, RequiresInsertable<T> = 0,
1439       typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
1440   iterator insert(const_iterator, const T& value) {
1441     return insert(value).first;
1442   }
1443 
1444   iterator insert(const_iterator, init_type&& value) {
1445     return insert(std::move(value)).first;
1446   }
1447 
1448   template <class InputIt>
1449   void insert(InputIt first, InputIt last) {
1450     for (; first != last; ++first) emplace(*first);
1451   }
1452 
1453   template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
1454   void insert(std::initializer_list<T> ilist) {
1455     insert(ilist.begin(), ilist.end());
1456   }
1457 
1458   void insert(std::initializer_list<init_type> ilist) {
1459     insert(ilist.begin(), ilist.end());
1460   }
1461 
1462   insert_return_type insert(node_type&& node) {
1463     if (!node) return {end(), false, node_type()};
1464     const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
1465     auto res = PolicyTraits::apply(
1466         InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
1467         elem);
1468     if (res.second) {
1469       CommonAccess::Reset(&node);
1470       return {res.first, true, node_type()};
1471     } else {
1472       return {res.first, false, std::move(node)};
1473     }
1474   }
1475 
1476   iterator insert(const_iterator, node_type&& node) {
1477     auto res = insert(std::move(node));
1478     node = std::move(res.node);
1479     return res.position;
1480   }
1481 
1482   // This overload kicks in if we can deduce the key from args. This enables us
1483   // to avoid constructing value_type if an entry with the same key already
1484   // exists.
1485   //
1486   // For example:
1487   //
1488   //   flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
1489   //   // Creates no std::string copies and makes no heap allocations.
1490   //   m.emplace("abc", "xyz");
1491   template <class... Args, typename std::enable_if<
1492                                IsDecomposable<Args...>::value, int>::type = 0>
1493   std::pair<iterator, bool> emplace(Args&&... args) {
1494     return PolicyTraits::apply(EmplaceDecomposable{*this},
1495                                std::forward<Args>(args)...);
1496   }
1497 
1498   // This overload kicks in if we cannot deduce the key from args. It constructs
1499   // value_type unconditionally and then either moves it into the table or
1500   // destroys.
1501   template <class... Args, typename std::enable_if<
1502                                !IsDecomposable<Args...>::value, int>::type = 0>
1503   std::pair<iterator, bool> emplace(Args&&... args) {
1504     alignas(slot_type) unsigned char raw[sizeof(slot_type)];
1505     slot_type* slot = reinterpret_cast<slot_type*>(&raw);
1506 
1507     PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
1508     const auto& elem = PolicyTraits::element(slot);
1509     return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
1510   }
1511 
1512   template <class... Args>
1513   iterator emplace_hint(const_iterator, Args&&... args) {
1514     return emplace(std::forward<Args>(args)...).first;
1515   }
1516 
1517   // Extension API: support for lazy emplace.
1518   //
1519   // Looks up key in the table. If found, returns the iterator to the element.
1520   // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`.
1521   //
1522   // `f` must abide by several restrictions:
1523   //  - it MUST call `raw_hash_set::constructor` with arguments as if a
1524   //    `raw_hash_set::value_type` is constructed,
1525   //  - it MUST NOT access the container before the call to
1526   //    `raw_hash_set::constructor`, and
1527   //  - it MUST NOT erase the lazily emplaced element.
1528   // Doing any of these is undefined behavior.
1529   //
1530   // For example:
1531   //
1532   //   std::unordered_set<ArenaString> s;
1533   //   // Makes ArenaStr even if "abc" is in the map.
1534   //   s.insert(ArenaString(&arena, "abc"));
1535   //
1536   //   flat_hash_set<ArenaStr> s;
1537   //   // Makes ArenaStr only if "abc" is not in the map.
1538   //   s.lazy_emplace("abc", [&](const constructor& ctor) {
1539   //     ctor(&arena, "abc");
1540   //   });
1541   //
1542   // WARNING: This API is currently experimental. If there is a way to implement
1543   // the same thing with the rest of the API, prefer that.
1544   class constructor {
1545     friend class raw_hash_set;
1546 
1547    public:
1548     template <class... Args>
1549     void operator()(Args&&... args) const {
1550       assert(*slot_);
1551       PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
1552       *slot_ = nullptr;
1553     }
1554 
1555    private:
1556     constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
1557 
1558     allocator_type* alloc_;
1559     slot_type** slot_;
1560   };
1561 
1562   template <class K = key_type, class F>
1563   iterator lazy_emplace(const key_arg<K>& key, F&& f) {
1564     auto res = find_or_prepare_insert(key);
1565     if (res.second) {
1566       slot_type* slot = slots_ + res.first;
1567       std::forward<F>(f)(constructor(&alloc_ref(), &slot));
1568       assert(!slot);
1569     }
1570     return iterator_at(res.first);
1571   }
1572 
1573   // Extension API: support for heterogeneous keys.
1574   //
1575   //   std::unordered_set<std::string> s;
1576   //   // Turns "abc" into std::string.
1577   //   s.erase("abc");
1578   //
1579   //   flat_hash_set<std::string> s;
1580   //   // Uses "abc" directly without copying it into std::string.
1581   //   s.erase("abc");
1582   template <class K = key_type>
1583   size_type erase(const key_arg<K>& key) {
1584     auto it = find(key);
1585     if (it == end()) return 0;
1586     erase(it);
1587     return 1;
1588   }
1589 
1590   // Erases the element pointed to by `it`.  Unlike `std::unordered_set::erase`,
1591   // this method returns void to reduce algorithmic complexity to O(1).  The
1592   // iterator is invalidated, so any increment should be done before calling
1593   // erase.  In order to erase while iterating across a map, use the following
1594   // idiom (which also works for standard containers):
1595   //
1596   // for (auto it = m.begin(), end = m.end(); it != end;) {
1597   //   // `erase()` will invalidate `it`, so advance `it` first.
1598   //   auto copy_it = it++;
1599   //   if (<pred>) {
1600   //     m.erase(copy_it);
1601   //   }
1602   // }
1603   void erase(const_iterator cit) { erase(cit.inner_); }
1604 
1605   // This overload is necessary because otherwise erase<K>(const K&) would be
1606   // a better match if non-const iterator is passed as an argument.
1607   void erase(iterator it) {
1608     ABSL_INTERNAL_ASSERT_IS_FULL(it.ctrl_, "erase()");
1609     PolicyTraits::destroy(&alloc_ref(), it.slot_);
1610     erase_meta_only(it);
1611   }
1612 
1613   iterator erase(const_iterator first, const_iterator last) {
1614     while (first != last) {
1615       erase(first++);
1616     }
1617     return last.inner_;
1618   }
1619 
1620   // Moves elements from `src` into `this`.
1621   // If the element already exists in `this`, it is left unmodified in `src`.
1622   template <typename H, typename E>
1623   void merge(raw_hash_set<Policy, H, E, Alloc>& src) {  // NOLINT
1624     assert(this != &src);
1625     for (auto it = src.begin(), e = src.end(); it != e;) {
1626       auto next = std::next(it);
1627       if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
1628                               PolicyTraits::element(it.slot_))
1629               .second) {
1630         src.erase_meta_only(it);
1631       }
1632       it = next;
1633     }
1634   }
1635 
1636   template <typename H, typename E>
1637   void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
1638     merge(src);
1639   }
1640 
1641   node_type extract(const_iterator position) {
1642     ABSL_INTERNAL_ASSERT_IS_FULL(position.inner_.ctrl_, "extract()");
1643     auto node =
1644         CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
1645     erase_meta_only(position);
1646     return node;
1647   }
1648 
1649   template <
1650       class K = key_type,
1651       typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
1652   node_type extract(const key_arg<K>& key) {
1653     auto it = find(key);
1654     return it == end() ? node_type() : extract(const_iterator{it});
1655   }
1656 
1657   void swap(raw_hash_set& that) noexcept(
1658       IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
1659       IsNoThrowSwappable<allocator_type>(
1660           typename AllocTraits::propagate_on_container_swap{})) {
1661     using std::swap;
1662     swap(ctrl_, that.ctrl_);
1663     swap(slots_, that.slots_);
1664     swap(size_, that.size_);
1665     swap(capacity_, that.capacity_);
1666     swap(growth_left(), that.growth_left());
1667     swap(hash_ref(), that.hash_ref());
1668     swap(eq_ref(), that.eq_ref());
1669     swap(infoz(), that.infoz());
1670     SwapAlloc(alloc_ref(), that.alloc_ref(),
1671               typename AllocTraits::propagate_on_container_swap{});
1672   }
1673 
1674   void rehash(size_t n) {
1675     if (n == 0 && capacity_ == 0) return;
1676     if (n == 0 && size_ == 0) {
1677       destroy_slots();
1678       infoz().RecordStorageChanged(0, 0);
1679       infoz().RecordClearedReservation();
1680       return;
1681     }
1682 
1683     // bitor is a faster way of doing `max` here. We will round up to the next
1684     // power-of-2-minus-1, so bitor is good enough.
1685     auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
1686     // n == 0 unconditionally rehashes as per the standard.
1687     if (n == 0 || m > capacity_) {
1688       resize(m);
1689 
1690       // This is after resize, to ensure that we have completed the allocation
1691       // and have potentially sampled the hashtable.
1692       infoz().RecordReservation(n);
1693     }
1694   }
1695 
1696   void reserve(size_t n) {
1697     if (n > size() + growth_left()) {
1698       size_t m = GrowthToLowerboundCapacity(n);
1699       resize(NormalizeCapacity(m));
1700 
1701       // This is after resize, to ensure that we have completed the allocation
1702       // and have potentially sampled the hashtable.
1703       infoz().RecordReservation(n);
1704     }
1705   }
1706 
1707   // Extension API: support for heterogeneous keys.
1708   //
1709   //   std::unordered_set<std::string> s;
1710   //   // Turns "abc" into std::string.
1711   //   s.count("abc");
1712   //
1713   //   ch_set<std::string> s;
1714   //   // Uses "abc" directly without copying it into std::string.
1715   //   s.count("abc");
1716   template <class K = key_type>
1717   size_t count(const key_arg<K>& key) const {
1718     return find(key) == end() ? 0 : 1;
1719   }
1720 
1721   // Issues CPU prefetch instructions for the memory needed to find or insert
1722   // a key.  Like all lookup functions, this support heterogeneous keys.
1723   //
1724   // NOTE: This is a very low level operation and should not be used without
1725   // specific benchmarks indicating its importance.
1726   template <class K = key_type>
1727   void prefetch(const key_arg<K>& key) const {
1728     (void)key;
1729     // Avoid probing if we won't be able to prefetch the addresses received.
1730 #ifdef ABSL_INTERNAL_HAVE_PREFETCH
1731     prefetch_heap_block();
1732     auto seq = probe(ctrl_, hash_ref()(key), capacity_);
1733     base_internal::PrefetchT0(ctrl_ + seq.offset());
1734     base_internal::PrefetchT0(slots_ + seq.offset());
1735 #endif  // ABSL_INTERNAL_HAVE_PREFETCH
1736   }
1737 
1738   // The API of find() has two extensions.
1739   //
1740   // 1. The hash can be passed by the user. It must be equal to the hash of the
1741   // key.
1742   //
1743   // 2. The type of the key argument doesn't have to be key_type. This is so
1744   // called heterogeneous key support.
1745   template <class K = key_type>
1746   iterator find(const key_arg<K>& key, size_t hash) {
1747     auto seq = probe(ctrl_, hash, capacity_);
1748     while (true) {
1749       Group g{ctrl_ + seq.offset()};
1750       for (uint32_t i : g.Match(H2(hash))) {
1751         if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
1752                 EqualElement<K>{key, eq_ref()},
1753                 PolicyTraits::element(slots_ + seq.offset(i)))))
1754           return iterator_at(seq.offset(i));
1755       }
1756       if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end();
1757       seq.next();
1758       assert(seq.index() <= capacity_ && "full table!");
1759     }
1760   }
1761   template <class K = key_type>
1762   iterator find(const key_arg<K>& key) {
1763     prefetch_heap_block();
1764     return find(key, hash_ref()(key));
1765   }
1766 
1767   template <class K = key_type>
1768   const_iterator find(const key_arg<K>& key, size_t hash) const {
1769     return const_cast<raw_hash_set*>(this)->find(key, hash);
1770   }
1771   template <class K = key_type>
1772   const_iterator find(const key_arg<K>& key) const {
1773     prefetch_heap_block();
1774     return find(key, hash_ref()(key));
1775   }
1776 
1777   template <class K = key_type>
1778   bool contains(const key_arg<K>& key) const {
1779     return find(key) != end();
1780   }
1781 
1782   template <class K = key_type>
1783   std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
1784     auto it = find(key);
1785     if (it != end()) return {it, std::next(it)};
1786     return {it, it};
1787   }
1788   template <class K = key_type>
1789   std::pair<const_iterator, const_iterator> equal_range(
1790       const key_arg<K>& key) const {
1791     auto it = find(key);
1792     if (it != end()) return {it, std::next(it)};
1793     return {it, it};
1794   }
1795 
1796   size_t bucket_count() const { return capacity_; }
1797   float load_factor() const {
1798     return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
1799   }
1800   float max_load_factor() const { return 1.0f; }
1801   void max_load_factor(float) {
1802     // Does nothing.
1803   }
1804 
1805   hasher hash_function() const { return hash_ref(); }
1806   key_equal key_eq() const { return eq_ref(); }
1807   allocator_type get_allocator() const { return alloc_ref(); }
1808 
1809   friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
1810     if (a.size() != b.size()) return false;
1811     const raw_hash_set* outer = &a;
1812     const raw_hash_set* inner = &b;
1813     if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
1814     for (const value_type& elem : *outer)
1815       if (!inner->has_element(elem)) return false;
1816     return true;
1817   }
1818 
1819   friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
1820     return !(a == b);
1821   }
1822 
1823   template <typename H>
1824   friend typename std::enable_if<H::template is_hashable<value_type>::value,
1825                                  H>::type
1826   AbslHashValue(H h, const raw_hash_set& s) {
1827     return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()),
1828                       s.size());
1829   }
1830 
1831   friend void swap(raw_hash_set& a,
1832                    raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
1833     a.swap(b);
1834   }
1835 
1836  private:
1837   template <class Container, typename Enabler>
1838   friend struct absl::container_internal::hashtable_debug_internal::
1839       HashtableDebugAccess;
1840 
1841   struct FindElement {
1842     template <class K, class... Args>
1843     const_iterator operator()(const K& key, Args&&...) const {
1844       return s.find(key);
1845     }
1846     const raw_hash_set& s;
1847   };
1848 
1849   struct HashElement {
1850     template <class K, class... Args>
1851     size_t operator()(const K& key, Args&&...) const {
1852       return h(key);
1853     }
1854     const hasher& h;
1855   };
1856 
1857   template <class K1>
1858   struct EqualElement {
1859     template <class K2, class... Args>
1860     bool operator()(const K2& lhs, Args&&...) const {
1861       return eq(lhs, rhs);
1862     }
1863     const K1& rhs;
1864     const key_equal& eq;
1865   };
1866 
1867   struct EmplaceDecomposable {
1868     template <class K, class... Args>
1869     std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
1870       auto res = s.find_or_prepare_insert(key);
1871       if (res.second) {
1872         s.emplace_at(res.first, std::forward<Args>(args)...);
1873       }
1874       return {s.iterator_at(res.first), res.second};
1875     }
1876     raw_hash_set& s;
1877   };
1878 
1879   template <bool do_destroy>
1880   struct InsertSlot {
1881     template <class K, class... Args>
1882     std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
1883       auto res = s.find_or_prepare_insert(key);
1884       if (res.second) {
1885         PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
1886       } else if (do_destroy) {
1887         PolicyTraits::destroy(&s.alloc_ref(), &slot);
1888       }
1889       return {s.iterator_at(res.first), res.second};
1890     }
1891     raw_hash_set& s;
1892     // Constructed slot. Either moved into place or destroyed.
1893     slot_type&& slot;
1894   };
1895 
1896   // Erases, but does not destroy, the value pointed to by `it`.
1897   //
1898   // This merely updates the pertinent control byte. This can be used in
1899   // conjunction with Policy::transfer to move the object to another place.
1900   void erase_meta_only(const_iterator it) {
1901     assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
1902     --size_;
1903     const size_t index = static_cast<size_t>(it.inner_.ctrl_ - ctrl_);
1904     const size_t index_before = (index - Group::kWidth) & capacity_;
1905     const auto empty_after = Group(it.inner_.ctrl_).MaskEmpty();
1906     const auto empty_before = Group(ctrl_ + index_before).MaskEmpty();
1907 
1908     // We count how many consecutive non empties we have to the right and to the
1909     // left of `it`. If the sum is >= kWidth then there is at least one probe
1910     // window that might have seen a full group.
1911     bool was_never_full =
1912         empty_before && empty_after &&
1913         static_cast<size_t>(empty_after.TrailingZeros() +
1914                             empty_before.LeadingZeros()) < Group::kWidth;
1915 
1916     SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted,
1917             capacity_, ctrl_, slots_, sizeof(slot_type));
1918     growth_left() += was_never_full;
1919     infoz().RecordErase();
1920   }
1921 
1922   // Allocates a backing array for `self` and initializes its control bytes.
1923   // This reads `capacity_` and updates all other fields based on the result of
1924   // the allocation.
1925   //
1926   // This does not free the currently held array; `capacity_` must be nonzero.
1927   void initialize_slots() {
1928     assert(capacity_);
1929     // Folks with custom allocators often make unwarranted assumptions about the
1930     // behavior of their classes vis-a-vis trivial destructability and what
1931     // calls they will or wont make.  Avoid sampling for people with custom
1932     // allocators to get us out of this mess.  This is not a hard guarantee but
1933     // a workaround while we plan the exact guarantee we want to provide.
1934     //
1935     // People are often sloppy with the exact type of their allocator (sometimes
1936     // it has an extra const or is missing the pair, but rebinds made it work
1937     // anyway).  To avoid the ambiguity, we work off SlotAlloc which we have
1938     // bound more carefully.
1939     if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
1940         slots_ == nullptr) {
1941       infoz() = Sample(sizeof(slot_type));
1942     }
1943 
1944     char* mem = static_cast<char*>(Allocate<alignof(slot_type)>(
1945         &alloc_ref(),
1946         AllocSize(capacity_, sizeof(slot_type), alignof(slot_type))));
1947     ctrl_ = reinterpret_cast<ctrl_t*>(mem);
1948     slots_ = reinterpret_cast<slot_type*>(
1949         mem + SlotOffset(capacity_, alignof(slot_type)));
1950     ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
1951     reset_growth_left();
1952     infoz().RecordStorageChanged(size_, capacity_);
1953   }
1954 
1955   // Destroys all slots in the backing array, frees the backing array, and
1956   // clears all top-level book-keeping data.
1957   //
1958   // This essentially implements `map = raw_hash_set();`.
1959   void destroy_slots() {
1960     if (!capacity_) return;
1961     for (size_t i = 0; i != capacity_; ++i) {
1962       if (IsFull(ctrl_[i])) {
1963         PolicyTraits::destroy(&alloc_ref(), slots_ + i);
1964       }
1965     }
1966 
1967     // Unpoison before returning the memory to the allocator.
1968     SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
1969     Deallocate<alignof(slot_type)>(
1970         &alloc_ref(), ctrl_,
1971         AllocSize(capacity_, sizeof(slot_type), alignof(slot_type)));
1972     ctrl_ = EmptyGroup();
1973     slots_ = nullptr;
1974     size_ = 0;
1975     capacity_ = 0;
1976     growth_left() = 0;
1977   }
1978 
1979   void resize(size_t new_capacity) {
1980     assert(IsValidCapacity(new_capacity));
1981     auto* old_ctrl = ctrl_;
1982     auto* old_slots = slots_;
1983     const size_t old_capacity = capacity_;
1984     capacity_ = new_capacity;
1985     initialize_slots();
1986 
1987     size_t total_probe_length = 0;
1988     for (size_t i = 0; i != old_capacity; ++i) {
1989       if (IsFull(old_ctrl[i])) {
1990         size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
1991                                           PolicyTraits::element(old_slots + i));
1992         auto target = find_first_non_full(ctrl_, hash, capacity_);
1993         size_t new_i = target.offset;
1994         total_probe_length += target.probe_length;
1995         SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
1996         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
1997       }
1998     }
1999     if (old_capacity) {
2000       SanitizerUnpoisonMemoryRegion(old_slots,
2001                                     sizeof(slot_type) * old_capacity);
2002       Deallocate<alignof(slot_type)>(
2003           &alloc_ref(), old_ctrl,
2004           AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type)));
2005     }
2006     infoz().RecordRehash(total_probe_length);
2007   }
2008 
2009   // Prunes control bytes to remove as many tombstones as possible.
2010   //
2011   // See the comment on `rehash_and_grow_if_necessary()`.
2012   void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
2013     assert(IsValidCapacity(capacity_));
2014     assert(!is_small(capacity_));
2015     // Algorithm:
2016     // - mark all DELETED slots as EMPTY
2017     // - mark all FULL slots as DELETED
2018     // - for each slot marked as DELETED
2019     //     hash = Hash(element)
2020     //     target = find_first_non_full(hash)
2021     //     if target is in the same group
2022     //       mark slot as FULL
2023     //     else if target is EMPTY
2024     //       transfer element to target
2025     //       mark slot as EMPTY
2026     //       mark target as FULL
2027     //     else if target is DELETED
2028     //       swap current element with target element
2029     //       mark target as FULL
2030     //       repeat procedure for current slot with moved from element (target)
2031     ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
2032     alignas(slot_type) unsigned char raw[sizeof(slot_type)];
2033     size_t total_probe_length = 0;
2034     slot_type* slot = reinterpret_cast<slot_type*>(&raw);
2035     for (size_t i = 0; i != capacity_; ++i) {
2036       if (!IsDeleted(ctrl_[i])) continue;
2037       const size_t hash = PolicyTraits::apply(
2038           HashElement{hash_ref()}, PolicyTraits::element(slots_ + i));
2039       const FindInfo target = find_first_non_full(ctrl_, hash, capacity_);
2040       const size_t new_i = target.offset;
2041       total_probe_length += target.probe_length;
2042 
2043       // Verify if the old and new i fall within the same group wrt the hash.
2044       // If they do, we don't need to move the object as it falls already in the
2045       // best probe we can.
2046       const size_t probe_offset = probe(ctrl_, hash, capacity_).offset();
2047       const auto probe_index = [probe_offset, this](size_t pos) {
2048         return ((pos - probe_offset) & capacity_) / Group::kWidth;
2049       };
2050 
2051       // Element doesn't move.
2052       if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
2053         SetCtrl(i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
2054         continue;
2055       }
2056       if (IsEmpty(ctrl_[new_i])) {
2057         // Transfer element to the empty spot.
2058         // SetCtrl poisons/unpoisons the slots so we have to call it at the
2059         // right time.
2060         SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
2061         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
2062         SetCtrl(i, ctrl_t::kEmpty, capacity_, ctrl_, slots_, sizeof(slot_type));
2063       } else {
2064         assert(IsDeleted(ctrl_[new_i]));
2065         SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
2066         // Until we are done rehashing, DELETED marks previously FULL slots.
2067         // Swap i and new_i elements.
2068         PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
2069         PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
2070         PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
2071         --i;  // repeat
2072       }
2073     }
2074     reset_growth_left();
2075     infoz().RecordRehash(total_probe_length);
2076   }
2077 
2078   // Called whenever the table *might* need to conditionally grow.
2079   //
2080   // This function is an optimization opportunity to perform a rehash even when
2081   // growth is unnecessary, because vacating tombstones is beneficial for
2082   // performance in the long-run.
2083   void rehash_and_grow_if_necessary() {
2084     if (capacity_ == 0) {
2085       resize(1);
2086     } else if (capacity_ > Group::kWidth &&
2087                // Do these calcuations in 64-bit to avoid overflow.
2088                size() * uint64_t{32} <= capacity_ * uint64_t{25}) {
2089       // Squash DELETED without growing if there is enough capacity.
2090       //
2091       // Rehash in place if the current size is <= 25/32 of capacity_.
2092       // Rationale for such a high factor: 1) drop_deletes_without_resize() is
2093       // faster than resize, and 2) it takes quite a bit of work to add
2094       // tombstones.  In the worst case, seems to take approximately 4
2095       // insert/erase pairs to create a single tombstone and so if we are
2096       // rehashing because of tombstones, we can afford to rehash-in-place as
2097       // long as we are reclaiming at least 1/8 the capacity without doing more
2098       // than 2X the work.  (Where "work" is defined to be size() for rehashing
2099       // or rehashing in place, and 1 for an insert or erase.)  But rehashing in
2100       // place is faster per operation than inserting or even doubling the size
2101       // of the table, so we actually afford to reclaim even less space from a
2102       // resize-in-place.  The decision is to rehash in place if we can reclaim
2103       // at about 1/8th of the usable capacity (specifically 3/28 of the
2104       // capacity) which means that the total cost of rehashing will be a small
2105       // fraction of the total work.
2106       //
2107       // Here is output of an experiment using the BM_CacheInSteadyState
2108       // benchmark running the old case (where we rehash-in-place only if we can
2109       // reclaim at least 7/16*capacity_) vs. this code (which rehashes in place
2110       // if we can recover 3/32*capacity_).
2111       //
2112       // Note that although in the worst-case number of rehashes jumped up from
2113       // 15 to 190, but the number of operations per second is almost the same.
2114       //
2115       // Abridged output of running BM_CacheInSteadyState benchmark from
2116       // raw_hash_set_benchmark.   N is the number of insert/erase operations.
2117       //
2118       //      | OLD (recover >= 7/16        | NEW (recover >= 3/32)
2119       // size |    N/s LoadFactor NRehashes |    N/s LoadFactor NRehashes
2120       //  448 | 145284       0.44        18 | 140118       0.44        19
2121       //  493 | 152546       0.24        11 | 151417       0.48        28
2122       //  538 | 151439       0.26        11 | 151152       0.53        38
2123       //  583 | 151765       0.28        11 | 150572       0.57        50
2124       //  628 | 150241       0.31        11 | 150853       0.61        66
2125       //  672 | 149602       0.33        12 | 150110       0.66        90
2126       //  717 | 149998       0.35        12 | 149531       0.70       129
2127       //  762 | 149836       0.37        13 | 148559       0.74       190
2128       //  807 | 149736       0.39        14 | 151107       0.39        14
2129       //  852 | 150204       0.42        15 | 151019       0.42        15
2130       drop_deletes_without_resize();
2131     } else {
2132       // Otherwise grow the container.
2133       resize(capacity_ * 2 + 1);
2134     }
2135   }
2136 
2137   bool has_element(const value_type& elem) const {
2138     size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
2139     auto seq = probe(ctrl_, hash, capacity_);
2140     while (true) {
2141       Group g{ctrl_ + seq.offset()};
2142       for (uint32_t i : g.Match(H2(hash))) {
2143         if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
2144                               elem))
2145           return true;
2146       }
2147       if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return false;
2148       seq.next();
2149       assert(seq.index() <= capacity_ && "full table!");
2150     }
2151     return false;
2152   }
2153 
2154   // TODO(alkis): Optimize this assuming *this and that don't overlap.
2155   raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
2156     raw_hash_set tmp(std::move(that));
2157     swap(tmp);
2158     return *this;
2159   }
2160   raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
2161     raw_hash_set tmp(std::move(that), alloc_ref());
2162     swap(tmp);
2163     return *this;
2164   }
2165 
2166  protected:
2167   // Attempts to find `key` in the table; if it isn't found, returns a slot that
2168   // the value can be inserted into, with the control byte already set to
2169   // `key`'s H2.
2170   template <class K>
2171   std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
2172     prefetch_heap_block();
2173     auto hash = hash_ref()(key);
2174     auto seq = probe(ctrl_, hash, capacity_);
2175     while (true) {
2176       Group g{ctrl_ + seq.offset()};
2177       for (uint32_t i : g.Match(H2(hash))) {
2178         if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
2179                 EqualElement<K>{key, eq_ref()},
2180                 PolicyTraits::element(slots_ + seq.offset(i)))))
2181           return {seq.offset(i), false};
2182       }
2183       if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break;
2184       seq.next();
2185       assert(seq.index() <= capacity_ && "full table!");
2186     }
2187     return {prepare_insert(hash), true};
2188   }
2189 
2190   // Given the hash of a value not currently in the table, finds the next
2191   // viable slot index to insert it at.
2192   //
2193   // REQUIRES: At least one non-full slot available.
2194   size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
2195     auto target = find_first_non_full(ctrl_, hash, capacity_);
2196     if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
2197                            !IsDeleted(ctrl_[target.offset]))) {
2198       rehash_and_grow_if_necessary();
2199       target = find_first_non_full(ctrl_, hash, capacity_);
2200     }
2201     ++size_;
2202     growth_left() -= IsEmpty(ctrl_[target.offset]);
2203     SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
2204             sizeof(slot_type));
2205     infoz().RecordInsert(hash, target.probe_length);
2206     return target.offset;
2207   }
2208 
2209   // Constructs the value in the space pointed by the iterator. This only works
2210   // after an unsuccessful find_or_prepare_insert() and before any other
2211   // modifications happen in the raw_hash_set.
2212   //
2213   // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
2214   // k is the key decomposed from `forward<Args>(args)...`, and the bool
2215   // returned by find_or_prepare_insert(k) was true.
2216   // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
2217   template <class... Args>
2218   void emplace_at(size_t i, Args&&... args) {
2219     PolicyTraits::construct(&alloc_ref(), slots_ + i,
2220                             std::forward<Args>(args)...);
2221 
2222     assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
2223                iterator_at(i) &&
2224            "constructed value does not match the lookup key");
2225   }
2226 
2227   iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
2228   const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
2229 
2230  private:
2231   friend struct RawHashSetTestOnlyAccess;
2232 
2233   void reset_growth_left() {
2234     growth_left() = CapacityToGrowth(capacity()) - size_;
2235   }
2236 
2237   // The number of slots we can still fill without needing to rehash.
2238   //
2239   // This is stored separately due to tombstones: we do not include tombstones
2240   // in the growth capacity, because we'd like to rehash when the table is
2241   // otherwise filled with tombstones: otherwise, probe sequences might get
2242   // unacceptably long without triggering a rehash. Callers can also force a
2243   // rehash via the standard `rehash(0)`, which will recompute this value as a
2244   // side-effect.
2245   //
2246   // See `CapacityToGrowth()`.
2247   size_t& growth_left() { return settings_.template get<0>(); }
2248 
2249   // Prefetch the heap-allocated memory region to resolve potential TLB misses.
2250   // This is intended to overlap with execution of calculating the hash for a
2251   // key.
2252   void prefetch_heap_block() const {
2253     base_internal::PrefetchT2(ctrl_);
2254   }
2255 
2256   HashtablezInfoHandle& infoz() { return settings_.template get<1>(); }
2257 
2258   hasher& hash_ref() { return settings_.template get<2>(); }
2259   const hasher& hash_ref() const { return settings_.template get<2>(); }
2260   key_equal& eq_ref() { return settings_.template get<3>(); }
2261   const key_equal& eq_ref() const { return settings_.template get<3>(); }
2262   allocator_type& alloc_ref() { return settings_.template get<4>(); }
2263   const allocator_type& alloc_ref() const {
2264     return settings_.template get<4>();
2265   }
2266 
2267   // TODO(alkis): Investigate removing some of these fields:
2268   // - ctrl/slots can be derived from each other
2269   // - size can be moved into the slot array
2270 
2271   // The control bytes (and, also, a pointer to the base of the backing array).
2272   //
2273   // This contains `capacity_ + 1 + NumClonedBytes()` entries, even
2274   // when the table is empty (hence EmptyGroup).
2275   ctrl_t* ctrl_ = EmptyGroup();
2276   // The beginning of the slots, located at `SlotOffset()` bytes after
2277   // `ctrl_`. May be null for empty tables.
2278   slot_type* slots_ = nullptr;
2279 
2280   // The number of filled slots.
2281   size_t size_ = 0;
2282 
2283   // The total number of available slots.
2284   size_t capacity_ = 0;
2285   absl::container_internal::CompressedTuple<size_t /* growth_left */,
2286                                             HashtablezInfoHandle, hasher,
2287                                             key_equal, allocator_type>
2288       settings_{0u, HashtablezInfoHandle{}, hasher{}, key_equal{},
2289                 allocator_type{}};
2290 };
2291 
2292 // Erases all elements that satisfy the predicate `pred` from the container `c`.
2293 template <typename P, typename H, typename E, typename A, typename Predicate>
2294 typename raw_hash_set<P, H, E, A>::size_type EraseIf(
2295     Predicate& pred, raw_hash_set<P, H, E, A>* c) {
2296   const auto initial_size = c->size();
2297   for (auto it = c->begin(), last = c->end(); it != last;) {
2298     if (pred(*it)) {
2299       c->erase(it++);
2300     } else {
2301       ++it;
2302     }
2303   }
2304   return initial_size - c->size();
2305 }
2306 
2307 namespace hashtable_debug_internal {
2308 template <typename Set>
2309 struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
2310   using Traits = typename Set::PolicyTraits;
2311   using Slot = typename Traits::slot_type;
2312 
2313   static size_t GetNumProbes(const Set& set,
2314                              const typename Set::key_type& key) {
2315     size_t num_probes = 0;
2316     size_t hash = set.hash_ref()(key);
2317     auto seq = probe(set.ctrl_, hash, set.capacity_);
2318     while (true) {
2319       container_internal::Group g{set.ctrl_ + seq.offset()};
2320       for (uint32_t i : g.Match(container_internal::H2(hash))) {
2321         if (Traits::apply(
2322                 typename Set::template EqualElement<typename Set::key_type>{
2323                     key, set.eq_ref()},
2324                 Traits::element(set.slots_ + seq.offset(i))))
2325           return num_probes;
2326         ++num_probes;
2327       }
2328       if (g.MaskEmpty()) return num_probes;
2329       seq.next();
2330       ++num_probes;
2331     }
2332   }
2333 
2334   static size_t AllocatedByteSize(const Set& c) {
2335     size_t capacity = c.capacity_;
2336     if (capacity == 0) return 0;
2337     size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot));
2338 
2339     size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
2340     if (per_slot != ~size_t{}) {
2341       m += per_slot * c.size();
2342     } else {
2343       for (size_t i = 0; i != capacity; ++i) {
2344         if (container_internal::IsFull(c.ctrl_[i])) {
2345           m += Traits::space_used(c.slots_ + i);
2346         }
2347       }
2348     }
2349     return m;
2350   }
2351 
2352   static size_t LowerBoundAllocatedByteSize(size_t size) {
2353     size_t capacity = GrowthToLowerboundCapacity(size);
2354     if (capacity == 0) return 0;
2355     size_t m =
2356         AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot));
2357     size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
2358     if (per_slot != ~size_t{}) {
2359       m += per_slot * size;
2360     }
2361     return m;
2362   }
2363 };
2364 
2365 }  // namespace hashtable_debug_internal
2366 }  // namespace container_internal
2367 ABSL_NAMESPACE_END
2368 }  // namespace absl
2369 
2370 #undef ABSL_INTERNAL_ASSERT_IS_FULL
2371 
2372 #endif  // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
2373