1// Copyright 2017 The Abseil Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14// 15// Produce stack trace 16 17#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 18#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 19 20#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) 21#include <ucontext.h> // for ucontext_t 22#endif 23 24#if !defined(_WIN32) 25#include <unistd.h> 26#endif 27 28#include <cassert> 29#include <cstdint> 30#include <limits> 31 32#include "absl/base/macros.h" 33#include "absl/base/port.h" 34#include "absl/debugging/internal/address_is_readable.h" 35#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems 36#include "absl/debugging/stacktrace.h" 37 38using absl::debugging_internal::AddressIsReadable; 39 40#if defined(__linux__) && defined(__i386__) 41// Count "push %reg" instructions in VDSO __kernel_vsyscall(), 42// preceeding "syscall" or "sysenter". 43// If __kernel_vsyscall uses frame pointer, answer 0. 44// 45// kMaxBytes tells how many instruction bytes of __kernel_vsyscall 46// to analyze before giving up. Up to kMaxBytes+1 bytes of 47// instructions could be accessed. 48// 49// Here are known __kernel_vsyscall instruction sequences: 50// 51// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). 52// Used on Intel. 53// 0xffffe400 <__kernel_vsyscall+0>: push %ecx 54// 0xffffe401 <__kernel_vsyscall+1>: push %edx 55// 0xffffe402 <__kernel_vsyscall+2>: push %ebp 56// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp 57// 0xffffe405 <__kernel_vsyscall+5>: sysenter 58// 59// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). 60// Used on AMD. 61// 0xffffe400 <__kernel_vsyscall+0>: push %ebp 62// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp 63// 0xffffe403 <__kernel_vsyscall+3>: syscall 64// 65 66// The sequence below isn't actually expected in Google fleet, 67// here only for completeness. Remove this comment from OSS release. 68 69// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) 70// 0xffffe400 <__kernel_vsyscall+0>: int $0x80 71// 0xffffe401 <__kernel_vsyscall+1>: ret 72// 73static const int kMaxBytes = 10; 74 75// We use assert()s instead of DCHECK()s -- this is too low level 76// for DCHECK(). 77 78static int CountPushInstructions(const unsigned char *const addr) { 79 int result = 0; 80 for (int i = 0; i < kMaxBytes; ++i) { 81 if (addr[i] == 0x89) { 82 // "mov reg,reg" 83 if (addr[i + 1] == 0xE5) { 84 // Found "mov %esp,%ebp". 85 return 0; 86 } 87 ++i; // Skip register encoding byte. 88 } else if (addr[i] == 0x0F && 89 (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { 90 // Found "sysenter" or "syscall". 91 return result; 92 } else if ((addr[i] & 0xF0) == 0x50) { 93 // Found "push %reg". 94 ++result; 95 } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { 96 // Found "int $0x80" 97 assert(result == 0); 98 return 0; 99 } else { 100 // Unexpected instruction. 101 assert(false && "unexpected instruction in __kernel_vsyscall"); 102 return 0; 103 } 104 } 105 // Unexpected: didn't find SYSENTER or SYSCALL in 106 // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. 107 assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); 108 return 0; 109} 110#endif 111 112// Assume stack frames larger than 100,000 bytes are bogus. 113static const int kMaxFrameBytes = 100000; 114 115// Returns the stack frame pointer from signal context, 0 if unknown. 116// vuc is a ucontext_t *. We use void* to avoid the use 117// of ucontext_t on non-POSIX systems. 118static uintptr_t GetFP(const void *vuc) { 119#if !defined(__linux__) 120 static_cast<void>(vuc); // Avoid an unused argument compiler warning. 121#else 122 if (vuc != nullptr) { 123 auto *uc = reinterpret_cast<const ucontext_t *>(vuc); 124#if defined(__i386__) 125 const auto bp = uc->uc_mcontext.gregs[REG_EBP]; 126 const auto sp = uc->uc_mcontext.gregs[REG_ESP]; 127#elif defined(__x86_64__) 128 const auto bp = uc->uc_mcontext.gregs[REG_RBP]; 129 const auto sp = uc->uc_mcontext.gregs[REG_RSP]; 130#else 131 const uintptr_t bp = 0; 132 const uintptr_t sp = 0; 133#endif 134 // Sanity-check that the base pointer is valid. It's possible that some 135 // code in the process is compiled with --copt=-fomit-frame-pointer or 136 // --copt=-momit-leaf-frame-pointer. 137 // 138 // TODO(bcmills): -momit-leaf-frame-pointer is currently the default 139 // behavior when building with clang. Talk to the C++ toolchain team about 140 // fixing that. 141 if (bp >= sp && bp - sp <= kMaxFrameBytes) 142 return static_cast<uintptr_t>(bp); 143 144 // If bp isn't a plausible frame pointer, return the stack pointer instead. 145 // If we're lucky, it points to the start of a stack frame; otherwise, we'll 146 // get one frame of garbage in the stack trace and fail the sanity check on 147 // the next iteration. 148 return static_cast<uintptr_t>(sp); 149 } 150#endif 151 return 0; 152} 153 154// Given a pointer to a stack frame, locate and return the calling 155// stackframe, or return null if no stackframe can be found. Perform sanity 156// checks (the strictness of which is controlled by the boolean parameter 157// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. 158template <bool STRICT_UNWINDING, bool WITH_CONTEXT> 159ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 160ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 161static void **NextStackFrame(void **old_fp, const void *uc, 162 size_t stack_low, size_t stack_high) { 163 void **new_fp = (void **)*old_fp; 164 165#if defined(__linux__) && defined(__i386__) 166 if (WITH_CONTEXT && uc != nullptr) { 167 // How many "push %reg" instructions are there at __kernel_vsyscall? 168 // This is constant for a given kernel and processor, so compute 169 // it only once. 170 static int num_push_instructions = -1; // Sentinel: not computed yet. 171 // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly 172 // be there. 173 static const unsigned char *kernel_rt_sigreturn_address = nullptr; 174 static const unsigned char *kernel_vsyscall_address = nullptr; 175 if (num_push_instructions == -1) { 176#ifdef ABSL_HAVE_VDSO_SUPPORT 177 absl::debugging_internal::VDSOSupport vdso; 178 if (vdso.IsPresent()) { 179 absl::debugging_internal::VDSOSupport::SymbolInfo 180 rt_sigreturn_symbol_info; 181 absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; 182 if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, 183 &rt_sigreturn_symbol_info) || 184 !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, 185 &vsyscall_symbol_info) || 186 rt_sigreturn_symbol_info.address == nullptr || 187 vsyscall_symbol_info.address == nullptr) { 188 // Unexpected: 32-bit VDSO is present, yet one of the expected 189 // symbols is missing or null. 190 assert(false && "VDSO is present, but doesn't have expected symbols"); 191 num_push_instructions = 0; 192 } else { 193 kernel_rt_sigreturn_address = 194 reinterpret_cast<const unsigned char *>( 195 rt_sigreturn_symbol_info.address); 196 kernel_vsyscall_address = 197 reinterpret_cast<const unsigned char *>( 198 vsyscall_symbol_info.address); 199 num_push_instructions = 200 CountPushInstructions(kernel_vsyscall_address); 201 } 202 } else { 203 num_push_instructions = 0; 204 } 205#else // ABSL_HAVE_VDSO_SUPPORT 206 num_push_instructions = 0; 207#endif // ABSL_HAVE_VDSO_SUPPORT 208 } 209 if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && 210 old_fp[1] == kernel_rt_sigreturn_address) { 211 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); 212 // This kernel does not use frame pointer in its VDSO code, 213 // and so %ebp is not suitable for unwinding. 214 void **const reg_ebp = 215 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); 216 const unsigned char *const reg_eip = 217 reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); 218 if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && 219 reg_eip - kernel_vsyscall_address < kMaxBytes) { 220 // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. 221 // Restore from 'ucv' instead. 222 void **const reg_esp = 223 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); 224 // Check that alleged %esp is not null and is reasonably aligned. 225 if (reg_esp && 226 ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { 227 // Check that alleged %esp is actually readable. This is to prevent 228 // "double fault" in case we hit the first fault due to e.g. stack 229 // corruption. 230 void *const reg_esp2 = reg_esp[num_push_instructions - 1]; 231 if (AddressIsReadable(reg_esp2)) { 232 // Alleged %esp is readable, use it for further unwinding. 233 new_fp = reinterpret_cast<void **>(reg_esp2); 234 } 235 } 236 } 237 } 238 } 239#endif 240 241 const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); 242 const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); 243 244 // Check that the transition from frame pointer old_fp to frame 245 // pointer new_fp isn't clearly bogus. Skip the checks if new_fp 246 // matches the signal context, so that we don't skip out early when 247 // using an alternate signal stack. 248 // 249 // TODO(bcmills): The GetFP call should be completely unnecessary when 250 // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's 251 // stack by this point), but it is empirically still needed (e.g. when the 252 // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some 253 // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what 254 // it's supposed to. 255 if (STRICT_UNWINDING && 256 (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { 257 // With the stack growing downwards, older stack frame must be 258 // at a greater address that the current one. 259 if (new_fp_u <= old_fp_u) return nullptr; 260 if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr; 261 262 if (stack_low < old_fp_u && old_fp_u <= stack_high) { 263 // Old BP was in the expected stack region... 264 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { 265 // ... but new BP is outside of expected stack region. 266 // It is most likely bogus. 267 return nullptr; 268 } 269 } else { 270 // We may be here if we are executing in a co-routine with a 271 // separate stack. We can't do safety checks in this case. 272 } 273 } else { 274 if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below 275 // In the non-strict mode, allow discontiguous stack frames. 276 // (alternate-signal-stacks for example). 277 if (new_fp == old_fp) return nullptr; 278 } 279 280 if (new_fp_u & (sizeof(void *) - 1)) return nullptr; 281#ifdef __i386__ 282 // On 32-bit machines, the stack pointer can be very close to 283 // 0xffffffff, so we explicitly check for a pointer into the 284 // last two pages in the address space 285 if (new_fp_u >= 0xffffe000) return nullptr; 286#endif 287#if !defined(_WIN32) 288 if (!STRICT_UNWINDING) { 289 // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test 290 // on AMD-based machines with VDSO-enabled kernels. 291 // Make an extra sanity check to insure new_fp is readable. 292 // Note: NextStackFrame<false>() is only called while the program 293 // is already on its last leg, so it's ok to be slow here. 294 295 if (!AddressIsReadable(new_fp)) { 296 return nullptr; 297 } 298 } 299#endif 300 return new_fp; 301} 302 303template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> 304ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 305ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 306ABSL_ATTRIBUTE_NOINLINE 307static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, 308 const void *ucp, int *min_dropped_frames) { 309 int n = 0; 310 void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); 311 312 // Assume that the first page is not stack. 313 size_t stack_low = static_cast<size_t>(getpagesize()); 314 size_t stack_high = std::numeric_limits<size_t>::max() - sizeof(void *); 315 316 while (fp && n < max_depth) { 317 if (*(fp + 1) == reinterpret_cast<void *>(0)) { 318 // In 64-bit code, we often see a frame that 319 // points to itself and has a return address of 0. 320 break; 321 } 322 void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( 323 fp, ucp, stack_low, stack_high); 324 if (skip_count > 0) { 325 skip_count--; 326 } else { 327 result[n] = *(fp + 1); 328 if (IS_STACK_FRAMES) { 329 if (next_fp > fp) { 330 sizes[n] = static_cast<int>( 331 reinterpret_cast<uintptr_t>(next_fp) - 332 reinterpret_cast<uintptr_t>(fp)); 333 } else { 334 // A frame-size of 0 is used to indicate unknown frame size. 335 sizes[n] = 0; 336 } 337 } 338 n++; 339 } 340 fp = next_fp; 341 } 342 if (min_dropped_frames != nullptr) { 343 // Implementation detail: we clamp the max of frames we are willing to 344 // count, so as not to spend too much time in the loop below. 345 const int kMaxUnwind = 1000; 346 int num_dropped_frames = 0; 347 for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { 348 if (skip_count > 0) { 349 skip_count--; 350 } else { 351 num_dropped_frames++; 352 } 353 fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low, 354 stack_high); 355 } 356 *min_dropped_frames = num_dropped_frames; 357 } 358 return n; 359} 360 361namespace absl { 362ABSL_NAMESPACE_BEGIN 363namespace debugging_internal { 364bool StackTraceWorksForTest() { 365 return true; 366} 367} // namespace debugging_internal 368ABSL_NAMESPACE_END 369} // namespace absl 370 371#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 372