• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * aidl interface for wpa_hostapd daemon
3  * Copyright (c) 2004-2018, Jouni Malinen <j@w1.fi>
4  * Copyright (c) 2004-2018, Roshan Pius <rpius@google.com>
5  *
6  * This software may be distributed under the terms of the BSD license.
7  * See README for more details.
8  */
9 #include <iomanip>
10 #include <sstream>
11 #include <string>
12 #include <vector>
13 #include <net/if.h>
14 #include <sys/socket.h>
15 #include <linux/if_bridge.h>
16 
17 #include <android-base/file.h>
18 #include <android-base/stringprintf.h>
19 #include <android-base/unique_fd.h>
20 
21 #include "hostapd.h"
22 #include <aidl/android/hardware/wifi/hostapd/ApInfo.h>
23 #include <aidl/android/hardware/wifi/hostapd/BandMask.h>
24 #include <aidl/android/hardware/wifi/hostapd/ChannelParams.h>
25 #include <aidl/android/hardware/wifi/hostapd/ClientInfo.h>
26 #include <aidl/android/hardware/wifi/hostapd/EncryptionType.h>
27 #include <aidl/android/hardware/wifi/hostapd/HostapdStatusCode.h>
28 #include <aidl/android/hardware/wifi/hostapd/IfaceParams.h>
29 #include <aidl/android/hardware/wifi/hostapd/NetworkParams.h>
30 #include <aidl/android/hardware/wifi/hostapd/ParamSizeLimits.h>
31 
32 extern "C"
33 {
34 #include "common/wpa_ctrl.h"
35 #include "drivers/linux_ioctl.h"
36 }
37 
38 // The AIDL implementation for hostapd creates a hostapd.conf dynamically for
39 // each interface. This file can then be used to hook onto the normal config
40 // file parsing logic in hostapd code.  Helps us to avoid duplication of code
41 // in the AIDL interface.
42 // TOOD(b/71872409): Add unit tests for this.
43 namespace {
44 constexpr char kConfFileNameFmt[] = "/data/vendor/wifi/hostapd/hostapd_%s.conf";
45 
46 using android::base::RemoveFileIfExists;
47 using android::base::StringPrintf;
48 using android::base::WriteStringToFile;
49 using aidl::android::hardware::wifi::hostapd::BandMask;
50 using aidl::android::hardware::wifi::hostapd::ChannelBandwidth;
51 using aidl::android::hardware::wifi::hostapd::ChannelParams;
52 using aidl::android::hardware::wifi::hostapd::EncryptionType;
53 using aidl::android::hardware::wifi::hostapd::Generation;
54 using aidl::android::hardware::wifi::hostapd::HostapdStatusCode;
55 using aidl::android::hardware::wifi::hostapd::IfaceParams;
56 using aidl::android::hardware::wifi::hostapd::NetworkParams;
57 using aidl::android::hardware::wifi::hostapd::ParamSizeLimits;
58 
59 int band2Ghz = (int)BandMask::BAND_2_GHZ;
60 int band5Ghz = (int)BandMask::BAND_5_GHZ;
61 int band6Ghz = (int)BandMask::BAND_6_GHZ;
62 int band60Ghz = (int)BandMask::BAND_60_GHZ;
63 
64 int32_t aidl_client_version = 0;
65 int32_t aidl_service_version = 0;
66 
67 /**
68  * Check that the AIDL service is running at least the expected version.
69  * Use to avoid the case where the AIDL interface version
70  * is greater than the version implemented by the service.
71  */
isAidlServiceVersionAtLeast(int32_t expected_version)72 inline int32_t isAidlServiceVersionAtLeast(int32_t expected_version)
73 {
74 	return expected_version <= aidl_service_version;
75 }
76 
isAidlClientVersionAtLeast(int32_t expected_version)77 inline int32_t isAidlClientVersionAtLeast(int32_t expected_version)
78 {
79 	return expected_version <= aidl_client_version;
80 }
81 
82 #define MAX_PORTS 1024
GetInterfacesInBridge(std::string br_name,std::vector<std::string> * interfaces)83 bool GetInterfacesInBridge(std::string br_name,
84                            std::vector<std::string>* interfaces) {
85 	android::base::unique_fd sock(socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
86 	if (sock.get() < 0) {
87 		wpa_printf(MSG_ERROR, "Failed to create sock (%s) in %s",
88 			strerror(errno), __FUNCTION__);
89 		return false;
90 	}
91 
92 	struct ifreq request;
93 	int i, ifindices[MAX_PORTS];
94 	char if_name[IFNAMSIZ];
95 	unsigned long args[3];
96 
97 	memset(ifindices, 0, MAX_PORTS * sizeof(int));
98 
99 	args[0] = BRCTL_GET_PORT_LIST;
100 	args[1] = (unsigned long) ifindices;
101 	args[2] = MAX_PORTS;
102 
103 	strlcpy(request.ifr_name, br_name.c_str(), IFNAMSIZ);
104 	request.ifr_data = (char *)args;
105 
106 	if (ioctl(sock.get(), SIOCDEVPRIVATE, &request) < 0) {
107 		wpa_printf(MSG_ERROR, "Failed to ioctl SIOCDEVPRIVATE in %s",
108 			__FUNCTION__);
109 		return false;
110 	}
111 
112 	for (i = 0; i < MAX_PORTS; i ++) {
113 		memset(if_name, 0, IFNAMSIZ);
114 		if (ifindices[i] == 0 || !if_indextoname(ifindices[i], if_name)) {
115 			continue;
116 		}
117 		interfaces->push_back(if_name);
118 	}
119 	return true;
120 }
121 
WriteHostapdConfig(const std::string & interface_name,const std::string & config)122 std::string WriteHostapdConfig(
123     const std::string& interface_name, const std::string& config)
124 {
125 	const std::string file_path =
126 	    StringPrintf(kConfFileNameFmt, interface_name.c_str());
127 	if (WriteStringToFile(
128 		config, file_path, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP,
129 		getuid(), getgid())) {
130 		return file_path;
131 	}
132 	// Diagnose failure
133 	int error = errno;
134 	wpa_printf(
135 		MSG_ERROR, "Cannot write hostapd config to %s, error: %s",
136 		file_path.c_str(), strerror(error));
137 	struct stat st;
138 	int result = stat(file_path.c_str(), &st);
139 	if (result == 0) {
140 		wpa_printf(
141 			MSG_ERROR, "hostapd config file uid: %d, gid: %d, mode: %d",
142 			st.st_uid, st.st_gid, st.st_mode);
143 	} else {
144 		wpa_printf(
145 			MSG_ERROR,
146 			"Error calling stat() on hostapd config file: %s",
147 			strerror(errno));
148 	}
149 	return "";
150 }
151 
152 /*
153  * Get the op_class for a channel/band
154  * The logic here is based on Table E-4 in the 802.11 Specification
155  */
getOpClassForChannel(int channel,int band,bool support11n,bool support11ac)156 int getOpClassForChannel(int channel, int band, bool support11n, bool support11ac) {
157 	// 2GHz Band
158 	if ((band & band2Ghz) != 0) {
159 		if (channel == 14) {
160 			return 82;
161 		}
162 		if (channel >= 1 && channel <= 13) {
163 			if (!support11n) {
164 				//20MHz channel
165 				return 81;
166 			}
167 			if (channel <= 9) {
168 				// HT40 with secondary channel above primary
169 				return 83;
170 			}
171 			// HT40 with secondary channel below primary
172 			return 84;
173 		}
174 		// Error
175 		return 0;
176 	}
177 
178 	// 5GHz Band
179 	if ((band & band5Ghz) != 0) {
180 		if (support11ac) {
181 			switch (channel) {
182 				case 42:
183 				case 58:
184 				case 106:
185 				case 122:
186 				case 138:
187 				case 155:
188 					// 80MHz channel
189 					return 128;
190 				case 50:
191 				case 114:
192 					// 160MHz channel
193 					return 129;
194 			}
195 		}
196 
197 		if (!support11n) {
198 			if (channel >= 36 && channel <= 48) {
199 				return 115;
200 			}
201 			if (channel >= 52 && channel <= 64) {
202 				return 118;
203 			}
204 			if (channel >= 100 && channel <= 144) {
205 				return 121;
206 			}
207 			if (channel >= 149 && channel <= 161) {
208 				return 124;
209 			}
210 			if (channel >= 165 && channel <= 169) {
211 				return 125;
212 			}
213 		} else {
214 			switch (channel) {
215 				case 36:
216 				case 44:
217 					// HT40 with secondary channel above primary
218 					return 116;
219 				case 40:
220 				case 48:
221 					// HT40 with secondary channel below primary
222 					return 117;
223 				case 52:
224 				case 60:
225 					// HT40 with secondary channel above primary
226 					return  119;
227 				case 56:
228 				case 64:
229 					// HT40 with secondary channel below primary
230 					return 120;
231 				case 100:
232 				case 108:
233 				case 116:
234 				case 124:
235 				case 132:
236 				case 140:
237 					// HT40 with secondary channel above primary
238 					return 122;
239 				case 104:
240 				case 112:
241 				case 120:
242 				case 128:
243 				case 136:
244 				case 144:
245 					// HT40 with secondary channel below primary
246 					return 123;
247 				case 149:
248 				case 157:
249 					// HT40 with secondary channel above primary
250 					return 126;
251 				case 153:
252 				case 161:
253 					// HT40 with secondary channel below primary
254 					return 127;
255 			}
256 		}
257 		// Error
258 		return 0;
259 	}
260 
261 	// 6GHz Band
262 	if ((band & band6Ghz) != 0) {
263 		// Channels 1, 5. 9, 13, ...
264 		if ((channel & 0x03) == 0x01) {
265 			// 20MHz channel
266 			return 131;
267 		}
268 		// Channels 3, 11, 19, 27, ...
269 		if ((channel & 0x07) == 0x03) {
270 			// 40MHz channel
271 			return 132;
272 		}
273 		// Channels 7, 23, 39, 55, ...
274 		if ((channel & 0x0F) == 0x07) {
275 			// 80MHz channel
276 			return 133;
277 		}
278 		// Channels 15, 47, 69, ...
279 		if ((channel & 0x1F) == 0x0F) {
280 			// 160MHz channel
281 			return 134;
282 		}
283 		if (channel == 2) {
284 			// 20MHz channel
285 			return 136;
286 		}
287 		// Error
288 		return 0;
289 	}
290 
291 	if ((band & band60Ghz) != 0) {
292 		if (1 <= channel && channel <= 8) {
293 			return 180;
294 		} else if (9 <= channel && channel <= 15) {
295 			return 181;
296 		} else if (17 <= channel && channel <= 22) {
297 			return 182;
298 		} else if (25 <= channel && channel <= 29) {
299 			return 183;
300 		}
301 		// Error
302 		return 0;
303 	}
304 
305 	return 0;
306 }
307 
validatePassphrase(int passphrase_len,int min_len,int max_len)308 bool validatePassphrase(int passphrase_len, int min_len, int max_len)
309 {
310 	if (min_len != -1 && passphrase_len < min_len) return false;
311 	if (max_len != -1 && passphrase_len > max_len) return false;
312 	return true;
313 }
314 
getInterfaceMacAddress(const std::string & if_name)315 std::string getInterfaceMacAddress(const std::string& if_name)
316 {
317 	u8 addr[ETH_ALEN] = {};
318 	struct ifreq ifr;
319 	std::string mac_addr;
320 
321 	android::base::unique_fd sock(socket(PF_INET, SOCK_DGRAM | SOCK_CLOEXEC, 0));
322 	if (sock.get() < 0) {
323 		wpa_printf(MSG_ERROR, "Failed to create sock (%s) in %s",
324 			strerror(errno), __FUNCTION__);
325 		return "";
326 	}
327 
328 	memset(&ifr, 0, sizeof(ifr));
329 	strlcpy(ifr.ifr_name, if_name.c_str(), IFNAMSIZ);
330 	if (ioctl(sock.get(), SIOCGIFHWADDR, &ifr) < 0) {
331 		wpa_printf(MSG_ERROR, "Could not get interface %s hwaddr: %s",
332 			   if_name.c_str(), strerror(errno));
333 		return "";
334 	}
335 
336 	memcpy(addr, ifr.ifr_hwaddr.sa_data, ETH_ALEN);
337 	mac_addr = StringPrintf("" MACSTR, MAC2STR(addr));
338 
339 	return mac_addr;
340 }
341 
CreateHostapdConfig(const IfaceParams & iface_params,const ChannelParams & channelParams,const NetworkParams & nw_params,const std::string br_name,const std::string owe_transition_ifname)342 std::string CreateHostapdConfig(
343 	const IfaceParams& iface_params,
344 	const ChannelParams& channelParams,
345 	const NetworkParams& nw_params,
346 	const std::string br_name,
347 	const std::string owe_transition_ifname)
348 {
349 	if (nw_params.ssid.size() >
350 		static_cast<uint32_t>(
351 		ParamSizeLimits::SSID_MAX_LEN_IN_BYTES)) {
352 		wpa_printf(
353 			MSG_ERROR, "Invalid SSID size: %zu", nw_params.ssid.size());
354 		return "";
355 	}
356 
357 	// SSID string
358 	std::stringstream ss;
359 	ss << std::hex;
360 	ss << std::setfill('0');
361 	for (uint8_t b : nw_params.ssid) {
362 		ss << std::setw(2) << static_cast<unsigned int>(b);
363 	}
364 	const std::string ssid_as_string = ss.str();
365 
366 	// Encryption config string
367 	uint32_t band = 0;
368 	band |= static_cast<uint32_t>(channelParams.bandMask);
369 	bool is_2Ghz_band_only = band == static_cast<uint32_t>(band2Ghz);
370 	bool is_6Ghz_band_only = band == static_cast<uint32_t>(band6Ghz);
371 	bool is_60Ghz_band_only = band == static_cast<uint32_t>(band60Ghz);
372 	std::string encryption_config_as_string;
373 	switch (nw_params.encryptionType) {
374 	case EncryptionType::NONE:
375 		// no security params
376 		break;
377 	case EncryptionType::WPA:
378 		if (!validatePassphrase(
379 			nw_params.passphrase.size(),
380 			static_cast<uint32_t>(ParamSizeLimits::
381 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
382 			static_cast<uint32_t>(ParamSizeLimits::
383 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
384 			return "";
385 		}
386 		encryption_config_as_string = StringPrintf(
387 			"wpa=3\n"
388 			"wpa_pairwise=%s\n"
389 			"wpa_passphrase=%s",
390 			is_60Ghz_band_only ? "GCMP" : "TKIP CCMP",
391 			nw_params.passphrase.c_str());
392 		break;
393 	case EncryptionType::WPA2:
394 		if (!validatePassphrase(
395 			nw_params.passphrase.size(),
396 			static_cast<uint32_t>(ParamSizeLimits::
397 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
398 			static_cast<uint32_t>(ParamSizeLimits::
399 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
400 			return "";
401 		}
402 		encryption_config_as_string = StringPrintf(
403 			"wpa=2\n"
404 			"rsn_pairwise=%s\n"
405 #ifdef ENABLE_HOSTAPD_CONFIG_80211W_MFP_OPTIONAL
406 			"ieee80211w=1\n"
407 #endif
408 			"wpa_passphrase=%s",
409 			is_60Ghz_band_only ? "GCMP" : "CCMP",
410 			nw_params.passphrase.c_str());
411 		break;
412 	case EncryptionType::WPA3_SAE_TRANSITION:
413 		if (!validatePassphrase(
414 			nw_params.passphrase.size(),
415 			static_cast<uint32_t>(ParamSizeLimits::
416 				WPA2_PSK_PASSPHRASE_MIN_LEN_IN_BYTES),
417 			static_cast<uint32_t>(ParamSizeLimits::
418 				WPA2_PSK_PASSPHRASE_MAX_LEN_IN_BYTES))) {
419 			return "";
420 		}
421 		// WPA3 transition mode or SAE+WPA_PSK key management(AKM) is not allowed in 6GHz.
422 		// Auto-convert any such configurations to SAE.
423 		if ((band & band6Ghz) != 0) {
424 			wpa_printf(MSG_INFO, "WPA3_SAE_TRANSITION configured in 6GHz band."
425 				   "Enable only SAE in key_mgmt");
426 			encryption_config_as_string = StringPrintf(
427 				"wpa=2\n"
428 				"rsn_pairwise=CCMP\n"
429 				"wpa_key_mgmt=%s\n"
430 				"ieee80211w=2\n"
431 				"sae_require_mfp=2\n"
432 				"sae_pwe=%d\n"
433 				"sae_password=%s",
434 #ifdef CONFIG_IEEE80211BE
435 				iface_params.hwModeParams.enable80211BE ?
436 					"SAE SAE-EXT-KEY" : "SAE",
437 #else
438 					"SAE",
439 #endif
440 				is_6Ghz_band_only ? 1 : 2,
441 				nw_params.passphrase.c_str());
442 		} else {
443 			encryption_config_as_string = StringPrintf(
444 				"wpa=2\n"
445 				"rsn_pairwise=%s\n"
446 				"wpa_key_mgmt=%s\n"
447 				"ieee80211w=1\n"
448 				"sae_require_mfp=1\n"
449 				"wpa_passphrase=%s\n"
450 				"sae_password=%s",
451 				is_60Ghz_band_only ? "GCMP" : "CCMP",
452 #ifdef CONFIG_IEEE80211BE
453 				iface_params.hwModeParams.enable80211BE ?
454 					"WPA-PSK SAE SAE-EXT-KEY" : "WPA-PSK SAE",
455 #else
456 					"WPA-PSK SAE",
457 #endif
458 				nw_params.passphrase.c_str(),
459 				nw_params.passphrase.c_str());
460                 }
461 		break;
462 	case EncryptionType::WPA3_SAE:
463 		if (!validatePassphrase(nw_params.passphrase.size(), 1, -1)) {
464 			return "";
465 		}
466 		encryption_config_as_string = StringPrintf(
467 			"wpa=2\n"
468 			"rsn_pairwise=%s\n"
469 			"wpa_key_mgmt=%s\n"
470 			"ieee80211w=2\n"
471 			"sae_require_mfp=2\n"
472 			"sae_pwe=%d\n"
473 			"sae_password=%s",
474 			is_60Ghz_band_only ? "GCMP" : "CCMP",
475 #ifdef CONFIG_IEEE80211BE
476 			iface_params.hwModeParams.enable80211BE ? "SAE SAE-EXT-KEY" : "SAE",
477 #else
478 			"SAE",
479 #endif
480 			is_6Ghz_band_only ? 1 : 2,
481 			nw_params.passphrase.c_str());
482 		break;
483 	case EncryptionType::WPA3_OWE_TRANSITION:
484 		encryption_config_as_string = StringPrintf(
485 			"wpa=2\n"
486 			"rsn_pairwise=%s\n"
487 			"wpa_key_mgmt=OWE\n"
488 			"ieee80211w=2",
489 			is_60Ghz_band_only ? "GCMP" : "CCMP");
490 		break;
491 	case EncryptionType::WPA3_OWE:
492 		encryption_config_as_string = StringPrintf(
493 			"wpa=2\n"
494 			"rsn_pairwise=%s\n"
495 			"wpa_key_mgmt=OWE\n"
496 			"ieee80211w=2",
497 			is_60Ghz_band_only ? "GCMP" : "CCMP");
498 		break;
499 	default:
500 		wpa_printf(MSG_ERROR, "Unknown encryption type");
501 		return "";
502 	}
503 
504 	std::string channel_config_as_string;
505 	bool isFirst = true;
506 	if (channelParams.enableAcs) {
507 		std::string freqList_as_string;
508 		for (const auto &range :
509 			channelParams.acsChannelFreqRangesMhz) {
510 			if (!isFirst) {
511 				freqList_as_string += ",";
512 			}
513 			isFirst = false;
514 
515 			if (range.startMhz != range.endMhz) {
516 				freqList_as_string +=
517 					StringPrintf("%d-%d", range.startMhz, range.endMhz);
518 			} else {
519 				freqList_as_string += StringPrintf("%d", range.startMhz);
520 			}
521 		}
522 		channel_config_as_string = StringPrintf(
523 			"channel=0\n"
524 			"acs_exclude_dfs=%d\n"
525 			"freqlist=%s",
526 			channelParams.acsShouldExcludeDfs,
527 			freqList_as_string.c_str());
528 	} else {
529 		int op_class = getOpClassForChannel(
530 			channelParams.channel,
531 			band,
532 			iface_params.hwModeParams.enable80211N,
533 			iface_params.hwModeParams.enable80211AC);
534 		channel_config_as_string = StringPrintf(
535 			"channel=%d\n"
536 			"op_class=%d",
537 			channelParams.channel, op_class);
538 	}
539 
540 	std::string hw_mode_as_string;
541 	std::string enable_edmg_as_string;
542 	std::string edmg_channel_as_string;
543 	bool is_60Ghz_used = false;
544 
545 	if (((band & band60Ghz) != 0)) {
546 		hw_mode_as_string = "hw_mode=ad";
547 		if (iface_params.hwModeParams.enableEdmg) {
548 			enable_edmg_as_string = "enable_edmg=1";
549 			edmg_channel_as_string = StringPrintf(
550 				"edmg_channel=%d",
551 				channelParams.channel);
552 		}
553 		is_60Ghz_used = true;
554 	} else if ((band & band2Ghz) != 0) {
555 		if (((band & band5Ghz) != 0)
556 		    || ((band & band6Ghz) != 0)) {
557 			hw_mode_as_string = "hw_mode=any";
558 		} else {
559 			hw_mode_as_string = "hw_mode=g";
560 		}
561 	} else if (((band & band5Ghz) != 0)
562 		    || ((band & band6Ghz) != 0)) {
563 			hw_mode_as_string = "hw_mode=a";
564 	} else {
565 		wpa_printf(MSG_ERROR, "Invalid band");
566 		return "";
567 	}
568 
569 	std::string he_params_as_string;
570 #ifdef CONFIG_IEEE80211AX
571 	if (iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) {
572 		he_params_as_string = StringPrintf(
573 			"ieee80211ax=1\n"
574 			"he_su_beamformer=%d\n"
575 			"he_su_beamformee=%d\n"
576 			"he_mu_beamformer=%d\n"
577 			"he_twt_required=%d\n",
578 			iface_params.hwModeParams.enableHeSingleUserBeamformer ? 1 : 0,
579 			iface_params.hwModeParams.enableHeSingleUserBeamformee ? 1 : 0,
580 			iface_params.hwModeParams.enableHeMultiUserBeamformer ? 1 : 0,
581 			iface_params.hwModeParams.enableHeTargetWakeTime ? 1 : 0);
582 	} else {
583 		he_params_as_string = "ieee80211ax=0";
584 	}
585 #endif /* CONFIG_IEEE80211AX */
586 	std::string eht_params_as_string;
587 #ifdef CONFIG_IEEE80211BE
588 	if (iface_params.hwModeParams.enable80211BE && !is_60Ghz_used) {
589 		eht_params_as_string = "ieee80211be=1\n";
590 		if (isAidlServiceVersionAtLeast(2) && isAidlClientVersionAtLeast(2)) {
591 			std::string interface_mac_addr = getInterfaceMacAddress(iface_params.name);
592 			if (interface_mac_addr.empty()) {
593 				wpa_printf(MSG_ERROR,
594 				    "Unable to set interface mac address as bssid for 11BE SAP");
595 				return "";
596 			}
597 			eht_params_as_string += StringPrintf(
598 				"bssid=%s\n"
599 				"mld_ap=1",
600 				interface_mac_addr.c_str());
601 		}
602 		/* TODO set eht_su_beamformer, eht_su_beamformee, eht_mu_beamformer */
603 	} else {
604 		eht_params_as_string = "ieee80211be=0";
605 	}
606 #endif /* CONFIG_IEEE80211BE */
607 
608 	std::string ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string;
609 	switch (iface_params.hwModeParams.maximumChannelBandwidth) {
610 	case ChannelBandwidth::BANDWIDTH_20:
611 		ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string = StringPrintf(
612 #ifdef CONFIG_IEEE80211BE
613 			"eht_oper_chwidth=0\n"
614 #endif /* CONFIG_IEEE80211BE */
615 #ifdef CONFIG_IEEE80211AX
616 			"he_oper_chwidth=0\n"
617 #endif
618 			"vht_oper_chwidth=0\n"
619 			"%s", (band & band6Ghz) ? "op_class=131" : "");
620 		break;
621 	case ChannelBandwidth::BANDWIDTH_40:
622 		ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string = StringPrintf(
623 			"ht_capab=[HT40+]\n"
624 #ifdef CONFIG_IEEE80211BE
625 			"eht_oper_chwidth=0\n"
626 #endif /* CONFIG_IEEE80211BE */
627 #ifdef CONFIG_IEEE80211AX
628 			"he_oper_chwidth=0\n"
629 #endif
630 			"vht_oper_chwidth=0\n"
631 			"%s", (band & band6Ghz) ? "op_class=132" : "");
632 		break;
633 	case ChannelBandwidth::BANDWIDTH_80:
634 		ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string = StringPrintf(
635 			"ht_capab=[HT40+]\n"
636 #ifdef CONFIG_IEEE80211BE
637 			"eht_oper_chwidth=%d\n"
638 #endif /* CONFIG_IEEE80211BE */
639 #ifdef CONFIG_IEEE80211AX
640 			"he_oper_chwidth=%d\n"
641 #endif
642 			"vht_oper_chwidth=%d\n"
643 			"%s",
644 #ifdef CONFIG_IEEE80211BE
645 			(iface_params.hwModeParams.enable80211BE && !is_60Ghz_used) ? 1 : 0,
646 #endif
647 #ifdef CONFIG_IEEE80211AX
648 			(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 1 : 0,
649 #endif
650 			iface_params.hwModeParams.enable80211AC ? 1 : 0,
651 			(band & band6Ghz) ? "op_class=133" : "");
652 		break;
653 	case ChannelBandwidth::BANDWIDTH_160:
654 		ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string = StringPrintf(
655 			"ht_capab=[HT40+]\n"
656 #ifdef CONFIG_IEEE80211BE
657 			"eht_oper_chwidth=%d\n"
658 #endif /* CONFIG_IEEE80211BE */
659 #ifdef CONFIG_IEEE80211AX
660 			"he_oper_chwidth=%d\n"
661 #endif
662 			"vht_oper_chwidth=%d\n"
663 			"%s",
664 #ifdef CONFIG_IEEE80211BE
665 			(iface_params.hwModeParams.enable80211BE && !is_60Ghz_used) ? 2 : 0,
666 #endif
667 #ifdef CONFIG_IEEE80211AX
668 			(iface_params.hwModeParams.enable80211AX && !is_60Ghz_used) ? 2 : 0,
669 #endif
670 			iface_params.hwModeParams.enable80211AC ? 2 : 0,
671 			(band & band6Ghz) ? "op_class=134" : "");
672 		break;
673 	default:
674 		if (!is_2Ghz_band_only && !is_60Ghz_used) {
675 			if (iface_params.hwModeParams.enable80211AC) {
676 				ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string =
677 					"ht_capab=[HT40+]\n"
678 					"vht_oper_chwidth=1\n";
679 			}
680 			if (band & band6Ghz) {
681 #ifdef CONFIG_IEEE80211BE
682 				if (iface_params.hwModeParams.enable80211BE)
683 					ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string += "op_class=137\n";
684 				else
685 					ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string += "op_class=134\n";
686 #else /* CONFIG_IEEE80211BE */
687 				ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string += "op_class=134\n";
688 #endif /* CONFIG_IEEE80211BE */
689 			}
690 #ifdef CONFIG_IEEE80211AX
691 			if (iface_params.hwModeParams.enable80211AX) {
692 				ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string += "he_oper_chwidth=1\n";
693 			}
694 #endif
695 #ifdef CONFIG_IEEE80211BE
696 			if (iface_params.hwModeParams.enable80211BE) {
697 				ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string += "eht_oper_chwidth=1";
698 			}
699 #endif
700 		}
701 		break;
702 	}
703 
704 #ifdef CONFIG_INTERWORKING
705 	std::string access_network_params_as_string;
706 	if (nw_params.isMetered) {
707 		access_network_params_as_string = StringPrintf(
708 			"interworking=1\n"
709 			"access_network_type=2\n"); // CHARGEABLE_PUBLIC_NETWORK
710 	} else {
711 	    access_network_params_as_string = StringPrintf(
712 			"interworking=0\n");
713 	}
714 #endif /* CONFIG_INTERWORKING */
715 
716 	std::string bridge_as_string;
717 	if (!br_name.empty()) {
718 		bridge_as_string = StringPrintf("bridge=%s", br_name.c_str());
719 	}
720 
721 	// vendor_elements string
722 	std::string vendor_elements_as_string;
723 	if (nw_params.vendorElements.size() > 0) {
724 		std::stringstream ss;
725 		ss << std::hex;
726 		ss << std::setfill('0');
727 		for (uint8_t b : nw_params.vendorElements) {
728 			ss << std::setw(2) << static_cast<unsigned int>(b);
729 		}
730 		vendor_elements_as_string = StringPrintf("vendor_elements=%s", ss.str().c_str());
731 	}
732 
733 	std::string owe_transition_ifname_as_string;
734 	if (!owe_transition_ifname.empty()) {
735 		owe_transition_ifname_as_string = StringPrintf(
736 			"owe_transition_ifname=%s", owe_transition_ifname.c_str());
737 	}
738 
739 	return StringPrintf(
740 		"interface=%s\n"
741 		"driver=nl80211\n"
742 		"ctrl_interface=/data/vendor/wifi/hostapd/ctrl\n"
743 		// ssid2 signals to hostapd that the value is not a literal value
744 		// for use as a SSID.  In this case, we're giving it a hex
745 		// std::string and hostapd needs to expect that.
746 		"ssid2=%s\n"
747 		"%s\n"
748 		"ieee80211n=%d\n"
749 		"ieee80211ac=%d\n"
750 		"%s\n"
751 		"%s\n"
752 		"%s\n"
753 		"%s\n"
754 		"ignore_broadcast_ssid=%d\n"
755 		"wowlan_triggers=any\n"
756 #ifdef CONFIG_INTERWORKING
757 		"%s\n"
758 #endif /* CONFIG_INTERWORKING */
759 		"%s\n"
760 		"%s\n"
761 		"%s\n"
762 		"%s\n"
763 		"%s\n"
764 		"%s\n",
765 		iface_params.name.c_str(), ssid_as_string.c_str(),
766 		channel_config_as_string.c_str(),
767 		iface_params.hwModeParams.enable80211N ? 1 : 0,
768 		iface_params.hwModeParams.enable80211AC ? 1 : 0,
769 		he_params_as_string.c_str(),
770 		eht_params_as_string.c_str(),
771 		hw_mode_as_string.c_str(), ht_cap_vht_oper_he_oper_eht_oper_chwidth_as_string.c_str(),
772 		nw_params.isHidden ? 1 : 0,
773 #ifdef CONFIG_INTERWORKING
774 		access_network_params_as_string.c_str(),
775 #endif /* CONFIG_INTERWORKING */
776 		encryption_config_as_string.c_str(),
777 		bridge_as_string.c_str(),
778 		owe_transition_ifname_as_string.c_str(),
779 		enable_edmg_as_string.c_str(),
780 		edmg_channel_as_string.c_str(),
781 		vendor_elements_as_string.c_str());
782 }
783 
getGeneration(hostapd_hw_modes * current_mode)784 Generation getGeneration(hostapd_hw_modes *current_mode)
785 {
786 	wpa_printf(MSG_DEBUG, "getGeneration hwmode=%d, ht_enabled=%d,"
787 		   " vht_enabled=%d, he_supported=%d",
788 		   current_mode->mode, current_mode->ht_capab != 0,
789 		   current_mode->vht_capab != 0, current_mode->he_capab->he_supported);
790 	switch (current_mode->mode) {
791 	case HOSTAPD_MODE_IEEE80211B:
792 		return Generation::WIFI_STANDARD_LEGACY;
793 	case HOSTAPD_MODE_IEEE80211G:
794 		return current_mode->ht_capab == 0 ?
795 				Generation::WIFI_STANDARD_LEGACY : Generation::WIFI_STANDARD_11N;
796 	case HOSTAPD_MODE_IEEE80211A:
797 		if (current_mode->he_capab->he_supported) {
798 			return Generation::WIFI_STANDARD_11AX;
799 		}
800 		return current_mode->vht_capab == 0 ?
801 		       Generation::WIFI_STANDARD_11N : Generation::WIFI_STANDARD_11AC;
802 	case HOSTAPD_MODE_IEEE80211AD:
803 		return Generation::WIFI_STANDARD_11AD;
804 	default:
805 		return Generation::WIFI_STANDARD_UNKNOWN;
806 	}
807 }
808 
getChannelBandwidth(struct hostapd_config * iconf)809 ChannelBandwidth getChannelBandwidth(struct hostapd_config *iconf)
810 {
811 	wpa_printf(MSG_DEBUG, "getChannelBandwidth %d, isHT=%d, isHT40=%d",
812 		   iconf->vht_oper_chwidth, iconf->ieee80211n,
813 		   iconf->secondary_channel);
814 	switch (iconf->vht_oper_chwidth) {
815 	case CONF_OPER_CHWIDTH_80MHZ:
816 		return ChannelBandwidth::BANDWIDTH_80;
817 	case CONF_OPER_CHWIDTH_80P80MHZ:
818 		return ChannelBandwidth::BANDWIDTH_80P80;
819 		break;
820 	case CONF_OPER_CHWIDTH_160MHZ:
821 		return ChannelBandwidth::BANDWIDTH_160;
822 		break;
823 	case CONF_OPER_CHWIDTH_USE_HT:
824 		if (iconf->ieee80211n) {
825 			return iconf->secondary_channel != 0 ?
826 				ChannelBandwidth::BANDWIDTH_40 : ChannelBandwidth::BANDWIDTH_20;
827 		}
828 		return ChannelBandwidth::BANDWIDTH_20_NOHT;
829 	case CONF_OPER_CHWIDTH_2160MHZ:
830 		return ChannelBandwidth::BANDWIDTH_2160;
831 	case CONF_OPER_CHWIDTH_4320MHZ:
832 		return ChannelBandwidth::BANDWIDTH_4320;
833 	case CONF_OPER_CHWIDTH_6480MHZ:
834 		return ChannelBandwidth::BANDWIDTH_6480;
835 	case CONF_OPER_CHWIDTH_8640MHZ:
836 		return ChannelBandwidth::BANDWIDTH_8640;
837 	default:
838 		return ChannelBandwidth::BANDWIDTH_INVALID;
839 	}
840 }
841 
forceStaDisconnection(struct hostapd_data * hapd,const std::vector<uint8_t> & client_address,const uint16_t reason_code)842 bool forceStaDisconnection(struct hostapd_data* hapd,
843 			   const std::vector<uint8_t>& client_address,
844 			   const uint16_t reason_code) {
845 	struct sta_info *sta;
846 	if (client_address.size() != ETH_ALEN) {
847 		return false;
848 	}
849 	for (sta = hapd->sta_list; sta; sta = sta->next) {
850 		int res;
851 		res = memcmp(sta->addr, client_address.data(), ETH_ALEN);
852 		if (res == 0) {
853 			wpa_printf(MSG_INFO, "Force client:" MACSTR " disconnect with reason: %d",
854 			    MAC2STR(client_address.data()), reason_code);
855 			ap_sta_disconnect(hapd, sta, sta->addr, reason_code);
856 			return true;
857 		}
858 	}
859 	return false;
860 }
861 
862 // hostapd core functions accept "C" style function pointers, so use global
863 // functions to pass to the hostapd core function and store the corresponding
864 // std::function methods to be invoked.
865 //
866 // NOTE: Using the pattern from the vendor HAL (wifi_legacy_hal.cpp).
867 //
868 // Callback to be invoked once setup is complete
869 std::function<void(struct hostapd_data*)> on_setup_complete_internal_callback;
onAsyncSetupCompleteCb(void * ctx)870 void onAsyncSetupCompleteCb(void* ctx)
871 {
872 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
873 	if (on_setup_complete_internal_callback) {
874 		on_setup_complete_internal_callback(iface_hapd);
875 		// Invalidate this callback since we don't want this firing
876 		// again in single AP mode.
877 		if (strlen(iface_hapd->conf->bridge) > 0) {
878 			on_setup_complete_internal_callback = nullptr;
879 		}
880 	}
881 }
882 
883 // Callback to be invoked on hotspot client connection/disconnection
884 std::function<void(struct hostapd_data*, const u8 *mac_addr, int authorized,
885 		const u8 *p2p_dev_addr)> on_sta_authorized_internal_callback;
onAsyncStaAuthorizedCb(void * ctx,const u8 * mac_addr,int authorized,const u8 * p2p_dev_addr,const u8 * ip)886 void onAsyncStaAuthorizedCb(void* ctx, const u8 *mac_addr, int authorized,
887 		const u8 *p2p_dev_addr, const u8 *ip)
888 {
889 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
890 	if (on_sta_authorized_internal_callback) {
891 		on_sta_authorized_internal_callback(iface_hapd, mac_addr,
892 			authorized, p2p_dev_addr);
893 	}
894 }
895 
896 std::function<void(struct hostapd_data*, int level,
897 			enum wpa_msg_type type, const char *txt,
898 			size_t len)> on_wpa_msg_internal_callback;
899 
onAsyncWpaEventCb(void * ctx,int level,enum wpa_msg_type type,const char * txt,size_t len)900 void onAsyncWpaEventCb(void *ctx, int level,
901 			enum wpa_msg_type type, const char *txt,
902 			size_t len)
903 {
904 	struct hostapd_data* iface_hapd = (struct hostapd_data*)ctx;
905 	if (on_wpa_msg_internal_callback) {
906 		on_wpa_msg_internal_callback(iface_hapd, level,
907 					type, txt, len);
908 	}
909 }
910 
createStatus(HostapdStatusCode status_code)911 inline ndk::ScopedAStatus createStatus(HostapdStatusCode status_code) {
912 	return ndk::ScopedAStatus::fromServiceSpecificError(
913 		static_cast<int32_t>(status_code));
914 }
915 
createStatusWithMsg(HostapdStatusCode status_code,std::string msg)916 inline ndk::ScopedAStatus createStatusWithMsg(
917 	HostapdStatusCode status_code, std::string msg)
918 {
919 	return ndk::ScopedAStatus::fromServiceSpecificErrorWithMessage(
920 		static_cast<int32_t>(status_code), msg.c_str());
921 }
922 
923 // Method called by death_notifier_ on client death.
onDeath(void * cookie)924 void onDeath(void* cookie) {
925 	wpa_printf(MSG_ERROR, "Client died. Terminating...");
926 	eloop_terminate();
927 }
928 
929 }  // namespace
930 
931 namespace aidl {
932 namespace android {
933 namespace hardware {
934 namespace wifi {
935 namespace hostapd {
936 
Hostapd(struct hapd_interfaces * interfaces)937 Hostapd::Hostapd(struct hapd_interfaces* interfaces)
938 	: interfaces_(interfaces)
939 {
940 	death_notifier_ = AIBinder_DeathRecipient_new(onDeath);
941 }
942 
addAccessPoint(const IfaceParams & iface_params,const NetworkParams & nw_params)943 ::ndk::ScopedAStatus Hostapd::addAccessPoint(
944 	const IfaceParams& iface_params, const NetworkParams& nw_params)
945 {
946 	return addAccessPointInternal(iface_params, nw_params);
947 }
948 
removeAccessPoint(const std::string & iface_name)949 ::ndk::ScopedAStatus Hostapd::removeAccessPoint(const std::string& iface_name)
950 {
951 	return removeAccessPointInternal(iface_name);
952 }
953 
terminate()954 ::ndk::ScopedAStatus Hostapd::terminate()
955 {
956 	wpa_printf(MSG_INFO, "Terminating...");
957 	// Clear the callback to avoid IPCThreadState shutdown during the
958 	// callback event.
959 	callbacks_.clear();
960 	eloop_terminate();
961 	return ndk::ScopedAStatus::ok();
962 }
963 
registerCallback(const std::shared_ptr<IHostapdCallback> & callback)964 ::ndk::ScopedAStatus Hostapd::registerCallback(
965 	const std::shared_ptr<IHostapdCallback>& callback)
966 {
967 	return registerCallbackInternal(callback);
968 }
969 
forceClientDisconnect(const std::string & iface_name,const std::vector<uint8_t> & client_address,Ieee80211ReasonCode reason_code)970 ::ndk::ScopedAStatus Hostapd::forceClientDisconnect(
971 	const std::string& iface_name, const std::vector<uint8_t>& client_address,
972 	Ieee80211ReasonCode reason_code)
973 {
974 	return forceClientDisconnectInternal(iface_name, client_address, reason_code);
975 }
976 
setDebugParams(DebugLevel level)977 ::ndk::ScopedAStatus Hostapd::setDebugParams(DebugLevel level)
978 {
979 	return setDebugParamsInternal(level);
980 }
981 
addAccessPointInternal(const IfaceParams & iface_params,const NetworkParams & nw_params)982 ::ndk::ScopedAStatus Hostapd::addAccessPointInternal(
983 	const IfaceParams& iface_params,
984 	const NetworkParams& nw_params)
985 {
986 	int channelParamsSize = iface_params.channelParams.size();
987 	if (channelParamsSize == 1) {
988 		// Single AP
989 		wpa_printf(MSG_INFO, "AddSingleAccessPoint, iface=%s",
990 			iface_params.name.c_str());
991 		return addSingleAccessPoint(iface_params, iface_params.channelParams[0],
992 		    nw_params, "", "");
993 	} else if (channelParamsSize == 2) {
994 		// Concurrent APs
995 		wpa_printf(MSG_INFO, "AddDualAccessPoint, iface=%s",
996 			iface_params.name.c_str());
997 		return addConcurrentAccessPoints(iface_params, nw_params);
998 	}
999 	return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
1000 }
1001 
generateRandomOweSsid()1002 std::vector<uint8_t>  generateRandomOweSsid()
1003 {
1004 	u8 random[8] = {0};
1005 	os_get_random(random, 8);
1006 
1007 	std::string ssid = StringPrintf("Owe-%s", random);
1008 	wpa_printf(MSG_INFO, "Generated OWE SSID: %s", ssid.c_str());
1009 	std::vector<uint8_t> vssid(ssid.begin(), ssid.end());
1010 
1011 	return vssid;
1012 }
1013 
addConcurrentAccessPoints(const IfaceParams & iface_params,const NetworkParams & nw_params)1014 ::ndk::ScopedAStatus Hostapd::addConcurrentAccessPoints(
1015 	const IfaceParams& iface_params, const NetworkParams& nw_params)
1016 {
1017 	int channelParamsListSize = iface_params.channelParams.size();
1018 	// Get available interfaces in bridge
1019 	std::vector<std::string> managed_interfaces;
1020 	std::string br_name = StringPrintf(
1021 		"%s", iface_params.name.c_str());
1022 	if (!GetInterfacesInBridge(br_name, &managed_interfaces)) {
1023 		return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
1024 			"Get interfaces in bridge failed.");
1025 	}
1026 	if (managed_interfaces.size() < channelParamsListSize) {
1027 		return createStatusWithMsg(HostapdStatusCode::FAILURE_UNKNOWN,
1028 			"Available interfaces less than requested bands");
1029 	}
1030 	// start BSS on specified bands
1031 	for (std::size_t i = 0; i < channelParamsListSize; i ++) {
1032 		IfaceParams iface_params_new = iface_params;
1033 		NetworkParams nw_params_new = nw_params;
1034 		iface_params_new.name = managed_interfaces[i];
1035 
1036 		std::string owe_transition_ifname = "";
1037 		if (nw_params.encryptionType == EncryptionType::WPA3_OWE_TRANSITION) {
1038 			if (i == 0 && i+1 < channelParamsListSize) {
1039 				owe_transition_ifname = managed_interfaces[i+1];
1040 				nw_params_new.encryptionType = EncryptionType::NONE;
1041 			} else {
1042 				owe_transition_ifname = managed_interfaces[0];
1043 				nw_params_new.isHidden = true;
1044 				nw_params_new.ssid = generateRandomOweSsid();
1045 			}
1046 		}
1047 
1048 		ndk::ScopedAStatus status = addSingleAccessPoint(
1049 		    iface_params_new, iface_params.channelParams[i], nw_params_new,
1050 		    br_name, owe_transition_ifname);
1051 		if (!status.isOk()) {
1052 			wpa_printf(MSG_ERROR, "Failed to addAccessPoint %s",
1053 				   managed_interfaces[i].c_str());
1054 			return status;
1055 		}
1056 	}
1057 	// Save bridge interface info
1058 	br_interfaces_[br_name] = managed_interfaces;
1059 	return ndk::ScopedAStatus::ok();
1060 }
1061 
addSingleAccessPoint(const IfaceParams & iface_params,const ChannelParams & channelParams,const NetworkParams & nw_params,const std::string br_name,const std::string owe_transition_ifname)1062 ::ndk::ScopedAStatus Hostapd::addSingleAccessPoint(
1063 	const IfaceParams& iface_params,
1064 	const ChannelParams& channelParams,
1065 	const NetworkParams& nw_params,
1066 	const std::string br_name,
1067 	const std::string owe_transition_ifname)
1068 {
1069 	if (hostapd_get_iface(interfaces_, iface_params.name.c_str())) {
1070 		wpa_printf(
1071 			MSG_ERROR, "Interface %s already present",
1072 			iface_params.name.c_str());
1073 		return createStatus(HostapdStatusCode::FAILURE_IFACE_EXISTS);
1074 	}
1075 	const auto conf_params = CreateHostapdConfig(iface_params, channelParams, nw_params,
1076 					br_name, owe_transition_ifname);
1077 	if (conf_params.empty()) {
1078 		wpa_printf(MSG_ERROR, "Failed to create config params");
1079 		return createStatus(HostapdStatusCode::FAILURE_ARGS_INVALID);
1080 	}
1081 	const auto conf_file_path =
1082 		WriteHostapdConfig(iface_params.name, conf_params);
1083 	if (conf_file_path.empty()) {
1084 		wpa_printf(MSG_ERROR, "Failed to write config file");
1085 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1086 	}
1087 	std::string add_iface_param_str = StringPrintf(
1088 		"%s config=%s", iface_params.name.c_str(),
1089 		conf_file_path.c_str());
1090 	std::vector<char> add_iface_param_vec(
1091 		add_iface_param_str.begin(), add_iface_param_str.end() + 1);
1092 	if (hostapd_add_iface(interfaces_, add_iface_param_vec.data()) < 0) {
1093 		wpa_printf(
1094 			MSG_ERROR, "Adding interface %s failed",
1095 			add_iface_param_str.c_str());
1096 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1097 	}
1098 	struct hostapd_data* iface_hapd =
1099 	    hostapd_get_iface(interfaces_, iface_params.name.c_str());
1100 	WPA_ASSERT(iface_hapd != nullptr && iface_hapd->iface != nullptr);
1101 	// Register the setup complete callbacks
1102 	on_setup_complete_internal_callback =
1103 		[this](struct hostapd_data* iface_hapd) {
1104 			wpa_printf(
1105 			MSG_INFO, "AP interface setup completed - state %s",
1106 			hostapd_state_text(iface_hapd->iface->state));
1107 			if (iface_hapd->iface->state == HAPD_IFACE_DISABLED) {
1108 				// Invoke the failure callback on all registered
1109 				// clients.
1110 				for (const auto& callback : callbacks_) {
1111 					auto status = callback->onFailure(
1112 						strlen(iface_hapd->conf->bridge) > 0 ?
1113 						iface_hapd->conf->bridge : iface_hapd->conf->iface,
1114 							    iface_hapd->conf->iface);
1115 					if (!status.isOk()) {
1116 						wpa_printf(MSG_ERROR, "Failed to invoke onFailure");
1117 					}
1118 				}
1119 			}
1120 		};
1121 
1122 	// Register for new client connect/disconnect indication.
1123 	on_sta_authorized_internal_callback =
1124 		[this](struct hostapd_data* iface_hapd, const u8 *mac_addr,
1125 			int authorized, const u8 *p2p_dev_addr) {
1126 		wpa_printf(MSG_DEBUG, "notify client " MACSTR " %s",
1127 				MAC2STR(mac_addr),
1128 				(authorized) ? "Connected" : "Disconnected");
1129 		ClientInfo info;
1130 		info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
1131 			iface_hapd->conf->bridge : iface_hapd->conf->iface;
1132 		info.apIfaceInstance = iface_hapd->conf->iface;
1133 		info.clientAddress.assign(mac_addr, mac_addr + ETH_ALEN);
1134 		info.isConnected = authorized;
1135 		for (const auto &callback : callbacks_) {
1136 			auto status = callback->onConnectedClientsChanged(info);
1137 			if (!status.isOk()) {
1138 				wpa_printf(MSG_ERROR, "Failed to invoke onConnectedClientsChanged");
1139 			}
1140 		}
1141 		};
1142 
1143 	// Register for wpa_event which used to get channel switch event
1144 	on_wpa_msg_internal_callback =
1145 		[this](struct hostapd_data* iface_hapd, int level,
1146 			enum wpa_msg_type type, const char *txt,
1147 			size_t len) {
1148 		wpa_printf(MSG_DEBUG, "Receive wpa msg : %s", txt);
1149 		if (os_strncmp(txt, AP_EVENT_ENABLED,
1150 					strlen(AP_EVENT_ENABLED)) == 0 ||
1151 			os_strncmp(txt, WPA_EVENT_CHANNEL_SWITCH,
1152 					strlen(WPA_EVENT_CHANNEL_SWITCH)) == 0) {
1153 			ApInfo info;
1154 			info.ifaceName = strlen(iface_hapd->conf->bridge) > 0 ?
1155 				iface_hapd->conf->bridge : iface_hapd->conf->iface,
1156 			info.apIfaceInstance = iface_hapd->conf->iface;
1157 			info.freqMhz = iface_hapd->iface->freq;
1158 			info.channelBandwidth = getChannelBandwidth(iface_hapd->iconf);
1159 			info.generation = getGeneration(iface_hapd->iface->current_mode);
1160 			info.apIfaceInstanceMacAddress.assign(iface_hapd->own_addr,
1161 				iface_hapd->own_addr + ETH_ALEN);
1162 			for (const auto &callback : callbacks_) {
1163 				auto status = callback->onApInstanceInfoChanged(info);
1164 				if (!status.isOk()) {
1165 					wpa_printf(MSG_ERROR,
1166 						   "Failed to invoke onApInstanceInfoChanged");
1167 				}
1168 			}
1169 		} else if (os_strncmp(txt, AP_EVENT_DISABLED, strlen(AP_EVENT_DISABLED)) == 0
1170                            || os_strncmp(txt, INTERFACE_DISABLED, strlen(INTERFACE_DISABLED)) == 0)
1171 		{
1172 			// Invoke the failure callback on all registered clients.
1173 			for (const auto& callback : callbacks_) {
1174 				auto status = callback->onFailure(strlen(iface_hapd->conf->bridge) > 0 ?
1175 					iface_hapd->conf->bridge : iface_hapd->conf->iface,
1176 						    iface_hapd->conf->iface);
1177 				if (!status.isOk()) {
1178 					wpa_printf(MSG_ERROR, "Failed to invoke onFailure");
1179 				}
1180 			}
1181 		}
1182 	};
1183 
1184 	// Setup callback
1185 	iface_hapd->setup_complete_cb = onAsyncSetupCompleteCb;
1186 	iface_hapd->setup_complete_cb_ctx = iface_hapd;
1187 	iface_hapd->sta_authorized_cb = onAsyncStaAuthorizedCb;
1188 	iface_hapd->sta_authorized_cb_ctx = iface_hapd;
1189 	wpa_msg_register_aidl_cb(onAsyncWpaEventCb);
1190 
1191 	if (hostapd_enable_iface(iface_hapd->iface) < 0) {
1192 		wpa_printf(
1193 			MSG_ERROR, "Enabling interface %s failed",
1194 			iface_params.name.c_str());
1195 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1196 	}
1197 	return ndk::ScopedAStatus::ok();
1198 }
1199 
removeAccessPointInternal(const std::string & iface_name)1200 ::ndk::ScopedAStatus Hostapd::removeAccessPointInternal(const std::string& iface_name)
1201 {
1202 	// interfaces to be removed
1203 	std::vector<std::string> interfaces;
1204 	bool is_error = false;
1205 
1206 	const auto it = br_interfaces_.find(iface_name);
1207 	if (it != br_interfaces_.end()) {
1208 		// In case bridge, remove managed interfaces
1209 		interfaces = it->second;
1210 		br_interfaces_.erase(iface_name);
1211 	} else {
1212 		// else remove current interface
1213 		interfaces.push_back(iface_name);
1214 	}
1215 
1216 	for (auto& iface : interfaces) {
1217 		std::vector<char> remove_iface_param_vec(
1218 		    iface.begin(), iface.end() + 1);
1219 		if (hostapd_remove_iface(interfaces_, remove_iface_param_vec.data()) <  0) {
1220 			wpa_printf(MSG_INFO, "Remove interface %s failed", iface.c_str());
1221 			is_error = true;
1222 		}
1223 	}
1224 	if (is_error) {
1225 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1226 	}
1227 	return ndk::ScopedAStatus::ok();
1228 }
1229 
registerCallbackInternal(const std::shared_ptr<IHostapdCallback> & callback)1230 ::ndk::ScopedAStatus Hostapd::registerCallbackInternal(
1231 	const std::shared_ptr<IHostapdCallback>& callback)
1232 {
1233 	binder_status_t status = AIBinder_linkToDeath(callback->asBinder().get(),
1234 			death_notifier_, this /* cookie */);
1235 	if (status != STATUS_OK) {
1236 		wpa_printf(
1237 			MSG_ERROR,
1238 			"Error registering for death notification for "
1239 			"hostapd callback object");
1240 		return createStatus(HostapdStatusCode::FAILURE_UNKNOWN);
1241 	}
1242 	callbacks_.push_back(callback);
1243 	if (aidl_service_version == 0) {
1244 	    aidl_service_version = Hostapd::version;
1245 	    wpa_printf(MSG_INFO, "AIDL service version: %d", aidl_service_version);
1246 	}
1247 	if (aidl_client_version == 0) {
1248 	    callback->getInterfaceVersion(&aidl_client_version);
1249 	    wpa_printf(MSG_INFO, "AIDL client version: %d", aidl_client_version);
1250 	}
1251 	return ndk::ScopedAStatus::ok();
1252 }
1253 
forceClientDisconnectInternal(const std::string & iface_name,const std::vector<uint8_t> & client_address,Ieee80211ReasonCode reason_code)1254 ::ndk::ScopedAStatus Hostapd::forceClientDisconnectInternal(const std::string& iface_name,
1255 	const std::vector<uint8_t>& client_address, Ieee80211ReasonCode reason_code)
1256 {
1257 	struct hostapd_data *hapd = hostapd_get_iface(interfaces_, iface_name.c_str());
1258 	bool result;
1259 	if (!hapd) {
1260 		for (auto const& iface : br_interfaces_) {
1261 			if (iface.first == iface_name) {
1262 				for (auto const& instance : iface.second) {
1263 					hapd = hostapd_get_iface(interfaces_, instance.c_str());
1264 					if (hapd) {
1265 						result = forceStaDisconnection(hapd, client_address,
1266 								(uint16_t) reason_code);
1267 						if (result) break;
1268 					}
1269 				}
1270 			}
1271 		}
1272 	} else {
1273 		result = forceStaDisconnection(hapd, client_address, (uint16_t) reason_code);
1274 	}
1275 	if (!hapd) {
1276 		wpa_printf(MSG_ERROR, "Interface %s doesn't exist", iface_name.c_str());
1277 		return createStatus(HostapdStatusCode::FAILURE_IFACE_UNKNOWN);
1278 	}
1279 	if (result) {
1280 		return ndk::ScopedAStatus::ok();
1281 	}
1282 	return createStatus(HostapdStatusCode::FAILURE_CLIENT_UNKNOWN);
1283 }
1284 
setDebugParamsInternal(DebugLevel level)1285 ::ndk::ScopedAStatus Hostapd::setDebugParamsInternal(DebugLevel level)
1286 {
1287 	wpa_debug_level = static_cast<uint32_t>(level);
1288 	return ndk::ScopedAStatus::ok();
1289 }
1290 
1291 }  // namespace hostapd
1292 }  // namespace wifi
1293 }  // namespace hardware
1294 }  // namespace android
1295 }  // namespace aidl
1296