1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /*
18 * Test FlowGraph
19 *
20 * This file also tests a few different conversion techniques because
21 * sometimes that have caused compiler bugs.
22 */
23
24 #include <iostream>
25
26 #include <gtest/gtest.h>
27
28 #include <aaudio/AAudio.h>
29 #include "client/AAudioFlowGraph.h"
30 #include "flowgraph/ClipToRange.h"
31 #include "flowgraph/Limiter.h"
32 #include "flowgraph/MonoBlend.h"
33 #include "flowgraph/MonoToMultiConverter.h"
34 #include "flowgraph/RampLinear.h"
35 #include "flowgraph/SinkFloat.h"
36 #include "flowgraph/SinkI16.h"
37 #include "flowgraph/SinkI24.h"
38 #include "flowgraph/SinkI32.h"
39 #include "flowgraph/SinkI8_24.h"
40 #include "flowgraph/SourceFloat.h"
41 #include "flowgraph/SourceI16.h"
42 #include "flowgraph/SourceI24.h"
43 #include "flowgraph/SourceI8_24.h"
44 #include "flowgraph/resampler/IntegerRatio.h"
45
46 using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph;
47 using namespace RESAMPLER_OUTER_NAMESPACE::resampler;
48
49 using TestFlowgraphResamplerParams = std::tuple<int32_t, int32_t, MultiChannelResampler::Quality>;
50
51 enum {
52 PARAM_SOURCE_SAMPLE_RATE = 0,
53 PARAM_SINK_SAMPLE_RATE,
54 PARAM_RESAMPLER_QUALITY
55 };
56
57 constexpr int kInt24Min = 0xff800000;
58 constexpr int kInt24Max = 0x007fffff;
59
60 constexpr int kBytesPerI24Packed = 3;
61
62 constexpr int kNumSamples = 8;
63 constexpr std::array<float, kNumSamples> kInputFloat = {
64 1.0f, 0.5f, -0.25f, -1.0f,
65 0.0f, 53.9f, -87.2f, -1.02f};
66
67 // Corresponding PCM values as integers.
68 constexpr std::array<int16_t, kNumSamples> kExpectedI16 = {
69 INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN,
70 0, INT16_MAX, INT16_MIN, INT16_MIN};
71
72 constexpr std::array<int32_t, kNumSamples> kExpectedI32 = {
73 INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN,
74 0, INT32_MAX, INT32_MIN, INT32_MIN};
75
76 constexpr std::array<int32_t, kNumSamples> kExpectedI8_24 = {
77 kInt24Max, 1 << 22, kInt24Min / 4, kInt24Min,
78 0, kInt24Max, kInt24Min, kInt24Min};
79
80 // =================================== FLOAT to I16 ==============
81
82 // Simple test that tries to reproduce a Clang compiler bug.
83 __attribute__((noinline))
local_convert_float_to_int16(const float * input,int16_t * output,int count)84 void local_convert_float_to_int16(const float *input,
85 int16_t *output,
86 int count) {
87 for (int i = 0; i < count; i++) {
88 int32_t n = (int32_t) (*input++ * 32768.0f);
89 *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
90 }
91 }
92
TEST(test_flowgraph,local_convert_float_int16)93 TEST(test_flowgraph, local_convert_float_int16) {
94 std::array<int16_t, kNumSamples> output;
95
96 // Do it inline, which will probably work even with the buggy compiler.
97 // This validates the expected data.
98 const float *in = kInputFloat.data();
99 int16_t *out = output.data();
100 output.fill(777);
101 for (int i = 0; i < kNumSamples; i++) {
102 int32_t n = (int32_t) (*in++ * 32768.0f);
103 *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip
104 }
105 for (int i = 0; i < kNumSamples; i++) {
106 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
107 }
108
109 // Convert audio signal using the function.
110 output.fill(777);
111 local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples);
112 for (int i = 0; i < kNumSamples; i++) {
113 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
114 }
115 }
116
TEST(test_flowgraph,module_sinki16)117 TEST(test_flowgraph, module_sinki16) {
118 static constexpr int kNumSamples = 8;
119 std::array<int16_t, kNumSamples + 10> output; // larger than input
120
121 SourceFloat sourceFloat{1};
122 SinkI16 sinkI16{1};
123
124 sourceFloat.setData(kInputFloat.data(), kNumSamples);
125 sourceFloat.output.connect(&sinkI16.input);
126
127 output.fill(777);
128 int32_t numRead = sinkI16.read(output.data(), output.size());
129 ASSERT_EQ(kNumSamples, numRead);
130 for (int i = 0; i < numRead; i++) {
131 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
132 }
133 }
134
135 // =================================== FLOAT to I32 ==============
136 // Simple test that tries to reproduce a Clang compiler bug.
137 __attribute__((noinline))
clamp32FromFloat(float f)138 static int32_t clamp32FromFloat(float f)
139 {
140 static const float scale = (float)(1UL << 31);
141 static const float limpos = 1.;
142 static const float limneg = -1.;
143
144 if (f <= limneg) {
145 return INT32_MIN;
146 } else if (f >= limpos) {
147 return INT32_MAX;
148 }
149 f *= scale;
150 /* integer conversion is through truncation (though int to float is not).
151 * ensure that we round to nearest, ties away from 0.
152 */
153 return f > 0 ? f + 0.5 : f - 0.5;
154 }
155
local_convert_float_to_int32(const float * input,int32_t * output,int count)156 void local_convert_float_to_int32(const float *input,
157 int32_t *output,
158 int count) {
159 for (int i = 0; i < count; i++) {
160 *output++ = clamp32FromFloat(*input++);
161 }
162 }
163
TEST(test_flowgraph,simple_convert_float_int32)164 TEST(test_flowgraph, simple_convert_float_int32) {
165 std::array<int32_t, kNumSamples> output;
166
167 // Do it inline, which will probably work even with a buggy compiler.
168 // This validates the expected data.
169 const float *in = kInputFloat.data();
170 output.fill(777);
171 int32_t *out = output.data();
172 for (int i = 0; i < kNumSamples; i++) {
173 int64_t n = (int64_t) (*in++ * 2147483648.0f);
174 *out++ = (int32_t)std::min((int64_t)INT32_MAX,
175 std::max((int64_t)INT32_MIN, n)); // clip
176 }
177 for (int i = 0; i < kNumSamples; i++) {
178 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
179 }
180 }
181
TEST(test_flowgraph,local_convert_float_int32)182 TEST(test_flowgraph, local_convert_float_int32) {
183 std::array<int32_t, kNumSamples> output;
184 // Convert audio signal using the function.
185 output.fill(777);
186 local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples);
187 for (int i = 0; i < kNumSamples; i++) {
188 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
189 }
190 }
191
TEST(test_flowgraph,module_sinki32)192 TEST(test_flowgraph, module_sinki32) {
193 std::array<int32_t, kNumSamples + 10> output; // larger than input
194
195 SourceFloat sourceFloat{1};
196 SinkI32 sinkI32{1};
197
198 sourceFloat.setData(kInputFloat.data(), kNumSamples);
199 sourceFloat.output.connect(&sinkI32.input);
200
201 output.fill(777);
202 int32_t numRead = sinkI32.read(output.data(), output.size());
203 ASSERT_EQ(kNumSamples, numRead);
204 for (int i = 0; i < numRead; i++) {
205 EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i;
206 }
207 }
208
TEST(test_flowgraph,module_mono_to_stereo)209 TEST(test_flowgraph, module_mono_to_stereo) {
210 static const float input[] = {1.0f, 2.0f, 3.0f};
211 float output[100] = {};
212 SourceFloat sourceFloat{1};
213 MonoToMultiConverter monoToStereo{2};
214 SinkFloat sinkFloat{2};
215
216 sourceFloat.setData(input, 3);
217
218 sourceFloat.output.connect(&monoToStereo.input);
219 monoToStereo.output.connect(&sinkFloat.input);
220
221 int32_t numRead = sinkFloat.read(output, 8);
222 ASSERT_EQ(3, numRead);
223 EXPECT_EQ(input[0], output[0]);
224 EXPECT_EQ(input[0], output[1]);
225 EXPECT_EQ(input[1], output[2]);
226 EXPECT_EQ(input[1], output[3]);
227 EXPECT_EQ(input[2], output[4]);
228 EXPECT_EQ(input[2], output[5]);
229 }
230
TEST(test_flowgraph,module_ramp_linear)231 TEST(test_flowgraph, module_ramp_linear) {
232 constexpr int singleNumOutput = 1;
233 constexpr int rampSize = 5;
234 constexpr int numOutput = 100;
235 constexpr float value = 1.0f;
236 constexpr float initialTarget = 10.0f;
237 constexpr float finalTarget = 100.0f;
238 constexpr float tolerance = 0.0001f; // arbitrary
239 float output[numOutput] = {};
240 RampLinear rampLinear{1};
241 SinkFloat sinkFloat{1};
242
243 rampLinear.input.setValue(value);
244 rampLinear.setLengthInFrames(rampSize);
245 rampLinear.output.connect(&sinkFloat.input);
246
247 // Check that the values go to the initial target instantly.
248 rampLinear.setTarget(initialTarget);
249 int32_t singleNumRead = sinkFloat.read(output, singleNumOutput);
250 ASSERT_EQ(singleNumRead, singleNumOutput);
251 EXPECT_NEAR(value * initialTarget, output[0], tolerance);
252
253 // Now set target and check that the linear ramp works as expected.
254 rampLinear.setTarget(finalTarget);
255 int32_t numRead = sinkFloat.read(output, numOutput);
256 const float incrementSize = (finalTarget - initialTarget) / rampSize;
257 ASSERT_EQ(numOutput, numRead);
258
259 int i = 0;
260 for (; i < rampSize; i++) {
261 float expected = value * (initialTarget + i * incrementSize);
262 EXPECT_NEAR(expected, output[i], tolerance);
263 }
264 for (; i < numOutput; i++) {
265 float expected = value * finalTarget;
266 EXPECT_NEAR(expected, output[i], tolerance);
267 }
268 }
269
270 // It is easiest to represent packed 24-bit data as a byte array.
271 // This test will read from input, convert to float, then write
272 // back to output as bytes.
TEST(test_flowgraph,module_packed_24)273 TEST(test_flowgraph, module_packed_24) {
274 static const uint8_t input[] = {0x01, 0x23, 0x45,
275 0x67, 0x89, 0xAB,
276 0xCD, 0xEF, 0x5A};
277 uint8_t output[99] = {};
278 SourceI24 sourceI24{1};
279 SinkI24 sinkI24{1};
280
281 int numInputFrames = sizeof(input) / kBytesPerI24Packed;
282 sourceI24.setData(input, numInputFrames);
283 sourceI24.output.connect(&sinkI24.input);
284
285 int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
286 ASSERT_EQ(numInputFrames, numRead);
287 for (size_t i = 0; i < sizeof(input); i++) {
288 EXPECT_EQ(input[i], output[i]);
289 }
290 }
291
TEST(test_flowgraph,module_clip_to_range)292 TEST(test_flowgraph, module_clip_to_range) {
293 constexpr float myMin = -2.0f;
294 constexpr float myMax = 1.5f;
295
296 static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
297 static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
298 float output[100];
299 SourceFloat sourceFloat{1};
300 ClipToRange clipper{1};
301 SinkFloat sinkFloat{1};
302
303 int numInputFrames = sizeof(input) / sizeof(input[0]);
304 sourceFloat.setData(input, numInputFrames);
305
306 clipper.setMinimum(myMin);
307 clipper.setMaximum(myMax);
308
309 sourceFloat.output.connect(&clipper.input);
310 clipper.output.connect(&sinkFloat.input);
311
312 int numOutputFrames = sizeof(output) / sizeof(output[0]);
313 int32_t numRead = sinkFloat.read(output, numOutputFrames);
314 ASSERT_EQ(numInputFrames, numRead);
315 constexpr float tolerance = 0.000001f; // arbitrary
316 for (int i = 0; i < numRead; i++) {
317 EXPECT_NEAR(expected[i], output[i], tolerance);
318 }
319 }
320
TEST(test_flowgraph,module_mono_blend)321 TEST(test_flowgraph, module_mono_blend) {
322 // Two channel to two channel with 3 inputs and outputs.
323 constexpr int numChannels = 2;
324 constexpr int numFrames = 3;
325
326 static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000};
327 static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500};
328 float output[100];
329 SourceFloat sourceFloat{numChannels};
330 MonoBlend monoBlend{numChannels};
331 SinkFloat sinkFloat{numChannels};
332
333 sourceFloat.setData(input, numFrames);
334
335 sourceFloat.output.connect(&monoBlend.input);
336 monoBlend.output.connect(&sinkFloat.input);
337
338 int32_t numRead = sinkFloat.read(output, numFrames);
339 ASSERT_EQ(numRead, numFrames);
340 constexpr float tolerance = 0.000001f; // arbitrary
341 for (int i = 0; i < numRead; i++) {
342 EXPECT_NEAR(expected[i], output[i], tolerance);
343 }
344 }
345
TEST(test_flowgraph,module_limiter)346 TEST(test_flowgraph, module_limiter) {
347 constexpr int kNumSamples = 101;
348 constexpr float kLastSample = 3.0f;
349 constexpr float kFirstSample = -kLastSample;
350 constexpr float kDeltaBetweenSamples = (kLastSample - kFirstSample) / (kNumSamples - 1);
351 constexpr float kTolerance = 0.00001f;
352
353 float input[kNumSamples];
354 float output[kNumSamples];
355 SourceFloat sourceFloat{1};
356 Limiter limiter{1};
357 SinkFloat sinkFloat{1};
358
359 for (int i = 0; i < kNumSamples; i++) {
360 input[i] = kFirstSample + i * kDeltaBetweenSamples;
361 }
362
363 const int numInputFrames = std::size(input);
364 sourceFloat.setData(input, numInputFrames);
365
366 sourceFloat.output.connect(&limiter.input);
367 limiter.output.connect(&sinkFloat.input);
368
369 const int numOutputFrames = std::size(output);
370 int32_t numRead = sinkFloat.read(output, numOutputFrames);
371 ASSERT_EQ(numInputFrames, numRead);
372
373 for (int i = 0; i < numRead; i++) {
374 // limiter must be symmetric wrt 0.
375 EXPECT_NEAR(output[i], -output[kNumSamples - i - 1], kTolerance);
376 if (i > 0) {
377 EXPECT_GE(output[i], output[i - 1]); // limiter must be monotonic
378 }
379 if (input[i] == 0.f) {
380 EXPECT_EQ(0.f, output[i]);
381 } else if (input[i] > 0.0f) {
382 EXPECT_GE(output[i], 0.0f);
383 EXPECT_LE(output[i], M_SQRT2); // limiter actually limits
384 EXPECT_LE(output[i], input[i]); // a limiter, gain <= 1
385 } else {
386 EXPECT_LE(output[i], 0.0f);
387 EXPECT_GE(output[i], -M_SQRT2); // limiter actually limits
388 EXPECT_GE(output[i], input[i]); // a limiter, gain <= 1
389 }
390 if (-1.f <= input[i] && input[i] <= 1.f) {
391 EXPECT_EQ(input[i], output[i]);
392 }
393 }
394 }
395
TEST(test_flowgraph,module_limiter_nan)396 TEST(test_flowgraph, module_limiter_nan) {
397 constexpr int kArbitraryOutputSize = 100;
398 static const float input[] = {NAN, 0.5f, NAN, NAN, -10.0f, NAN};
399 static const float expected[] = {0.0f, 0.5f, 0.5f, 0.5f, -M_SQRT2, -M_SQRT2};
400 constexpr float tolerance = 0.00001f;
401 float output[kArbitraryOutputSize];
402 SourceFloat sourceFloat{1};
403 Limiter limiter{1};
404 SinkFloat sinkFloat{1};
405
406 const int numInputFrames = std::size(input);
407 sourceFloat.setData(input, numInputFrames);
408
409 sourceFloat.output.connect(&limiter.input);
410 limiter.output.connect(&sinkFloat.input);
411
412 const int numOutputFrames = std::size(output);
413 int32_t numRead = sinkFloat.read(output, numOutputFrames);
414 ASSERT_EQ(numInputFrames, numRead);
415
416 for (int i = 0; i < numRead; i++) {
417 EXPECT_NEAR(expected[i], output[i], tolerance);
418 }
419 }
420
TEST(test_flowgraph,module_sinki16_multiple_reads)421 TEST(test_flowgraph, module_sinki16_multiple_reads) {
422 static constexpr int kNumSamples = 8;
423 std::array<int16_t, kNumSamples + 10> output; // larger than input
424
425 SourceFloat sourceFloat{1};
426 SinkI16 sinkI16{1};
427
428 sourceFloat.setData(kInputFloat.data(), kNumSamples);
429 sourceFloat.output.connect(&sinkI16.input);
430
431 output.fill(777);
432
433 // Read the first half of the data
434 int32_t numRead = sinkI16.read(output.data(), kNumSamples / 2);
435 ASSERT_EQ(kNumSamples / 2, numRead);
436 for (int i = 0; i < numRead; i++) {
437 EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i;
438 }
439
440 // Read the rest of the data
441 numRead = sinkI16.read(output.data(), output.size());
442 ASSERT_EQ(kNumSamples / 2, numRead);
443 for (int i = 0; i < numRead; i++) {
444 EXPECT_EQ(kExpectedI16.at(i + kNumSamples / 2), output.at(i)) << ", i = " << i;
445 }
446 }
447
448 // =================================== FLOAT to Q8.23 ==============
449 __attribute__((noinline))
clamp24FromFloat(float f)450 static int32_t clamp24FromFloat(float f)
451 {
452 static const float scale = 1 << 23;
453 return (int32_t) lroundf(fmaxf(fminf(f * scale, scale - 1.f), -scale));
454 }
455
local_convert_float_to_i8_24(const float * input,int32_t * output,int count)456 void local_convert_float_to_i8_24(const float *input,
457 int32_t *output,
458 int count) {
459 for (int i = 0; i < count; i++) {
460 *output++ = clamp24FromFloat(*input++);
461 }
462 }
463
TEST(test_flowgraph,local_convert_float_to_i8_24)464 TEST(test_flowgraph, local_convert_float_to_i8_24) {
465 std::array<int32_t, kNumSamples> output;
466 // Convert audio signal using the function.
467 output.fill(777);
468 local_convert_float_to_i8_24(kInputFloat.data(), output.data(), kNumSamples);
469 for (int i = 0; i < kNumSamples; i++) {
470 EXPECT_EQ(kExpectedI8_24.at(i), output.at(i)) << ", i = " << i;
471 }
472 }
473
TEST(test_flowgraph,module_sinkI8_24)474 TEST(test_flowgraph, module_sinkI8_24) {
475 std::array<int32_t, kNumSamples + 10> output; // larger than input
476
477 SourceFloat sourceFloat{2};
478 SinkI8_24 sinkI8_24{2};
479
480 sourceFloat.setData(kInputFloat.data(), kNumSamples);
481 sourceFloat.output.connect(&sinkI8_24.input);
482
483 output.fill(777);
484 int32_t numRead = sinkI8_24.read(output.data(), output.size());
485 ASSERT_EQ(kNumSamples, numRead);
486 for (int i = 0; i < numRead; i++) {
487 EXPECT_EQ(kExpectedI8_24.at(i), output.at(i)) << ", i = " << i;
488 }
489 }
490
TEST(test_flowgraph,module_sourceI8_24)491 TEST(test_flowgraph, module_sourceI8_24) {
492 static const int32_t input[] = {1 << 23, 1 << 22, -(1 << 21), -(1 << 23), 0, 1 << 25,
493 -(1 << 25)};
494 static const float expected[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 4.0f, -4.0f};
495 float output[100];
496
497 SourceI8_24 sourceI8_24{1};
498 SinkFloat sinkFloat{1};
499
500 int numSamples = std::size(input);
501
502 sourceI8_24.setData(input, numSamples);
503 sourceI8_24.output.connect(&sinkFloat.input);
504
505 int32_t numRead = sinkFloat.read(output, numSamples);
506 ASSERT_EQ(numSamples, numRead);
507 for (int i = 0; i < numRead; i++) {
508 EXPECT_EQ(expected[i], output[i]) << ", i = " << i;
509 }
510 }
511
checkSampleRateConversionVariedSizes(int32_t sourceSampleRate,int32_t sinkSampleRate,MultiChannelResampler::Quality resamplerQuality)512 void checkSampleRateConversionVariedSizes(int32_t sourceSampleRate,
513 int32_t sinkSampleRate,
514 MultiChannelResampler::Quality resamplerQuality) {
515 AAudioFlowGraph flowgraph;
516 aaudio_result_t result = flowgraph.configure(AUDIO_FORMAT_PCM_FLOAT /* sourceFormat */,
517 1 /* sourceChannelCount */,
518 sourceSampleRate,
519 AUDIO_FORMAT_PCM_FLOAT /* sinkFormat */,
520 1 /* sinkChannelCount */,
521 sinkSampleRate,
522 false /* useMonoBlend */,
523 false /* useVolumeRamps */,
524 0.0f /* audioBalance */,
525 resamplerQuality);
526
527 IntegerRatio ratio(sourceSampleRate, sinkSampleRate);
528 ratio.reduce();
529
530 ASSERT_EQ(AAUDIO_OK, result);
531
532 const int inputSize = ratio.getNumerator();
533 const int outputSize = ratio.getDenominator();
534 float input[inputSize];
535 float output[outputSize];
536
537 for (int i = 0; i < inputSize; i++) {
538 input[i] = i * 1.0f / inputSize;
539 }
540
541 int inputUsed = 0;
542 int outputRead = 0;
543 int curInputSize = 1;
544
545 // Process the data with larger and larger input buffer sizes.
546 while (inputUsed < inputSize) {
547 outputRead += flowgraph.process((void *) (input + inputUsed),
548 curInputSize,
549 (void *) (output + outputRead),
550 outputSize - outputRead);
551 inputUsed += curInputSize;
552 curInputSize = std::min(curInputSize + 5, inputSize - inputUsed);
553 }
554
555 ASSERT_EQ(outputSize, outputRead);
556
557 for (int i = 1; i < outputSize; i++) {
558 // The first values of the flowgraph will be close to zero.
559 // Besides those, the values should be strictly increasing.
560 if (output[i - 1] > 0.01f) {
561 EXPECT_GT(output[i], output[i - 1]);
562 }
563 }
564 }
565
TEST(test_flowgraph,flowgraph_varied_sizes_all)566 TEST(test_flowgraph, flowgraph_varied_sizes_all) {
567 const int rates[] = {8000, 11025, 22050, 32000, 44100, 48000, 64000, 88200, 96000};
568 const MultiChannelResampler::Quality qualities[] =
569 {
570 MultiChannelResampler::Quality::Fastest,
571 MultiChannelResampler::Quality::Low,
572 MultiChannelResampler::Quality::Medium,
573 MultiChannelResampler::Quality::High,
574 MultiChannelResampler::Quality::Best
575 };
576 for (int srcRate : rates) {
577 for (int destRate : rates) {
578 for (auto quality : qualities) {
579 if (srcRate != destRate) {
580 checkSampleRateConversionVariedSizes(srcRate, destRate, quality);
581 }
582 }
583 }
584 }
585 }
586
checkSampleRateConversionPullLater(int32_t sourceSampleRate,int32_t sinkSampleRate,MultiChannelResampler::Quality resamplerQuality)587 void checkSampleRateConversionPullLater(int32_t sourceSampleRate,
588 int32_t sinkSampleRate,
589 MultiChannelResampler::Quality resamplerQuality) {
590 AAudioFlowGraph flowgraph;
591 aaudio_result_t result = flowgraph.configure(AUDIO_FORMAT_PCM_FLOAT /* sourceFormat */,
592 1 /* sourceChannelCount */,
593 sourceSampleRate,
594 AUDIO_FORMAT_PCM_FLOAT /* sinkFormat */,
595 1 /* sinkChannelCount */,
596 sinkSampleRate,
597 false /* useMonoBlend */,
598 false /* useVolumeRamps */,
599 0.0f /* audioBalance */,
600 resamplerQuality);
601
602 IntegerRatio ratio(sourceSampleRate, sinkSampleRate);
603 ratio.reduce();
604
605 ASSERT_EQ(AAUDIO_OK, result);
606
607 const int inputSize = ratio.getNumerator();
608 const int outputSize = ratio.getDenominator();
609 float input[inputSize];
610 float output[outputSize];
611
612 for (int i = 0; i < inputSize; i++) {
613 input[i] = i * 1.0f / inputSize;
614 }
615
616 // Read half the data with process.
617 int outputRead = flowgraph.process((void *) input,
618 inputSize,
619 (void *) output,
620 outputSize / 2);
621
622 ASSERT_EQ(outputSize / 2, outputRead);
623
624 // Now read the other half of the data with pull.
625 outputRead += flowgraph.pull(
626 (void *) (output + outputRead),
627 outputSize - outputRead);
628
629 ASSERT_EQ(outputSize, outputRead);
630 for (int i = 1; i < outputSize; i++) {
631 // The first values of the flowgraph will be close to zero.
632 // Besides those, the values should be strictly increasing.
633 if (output[i - 1] > 0.01f) {
634 EXPECT_GT(output[i], output[i - 1]);
635 }
636 }
637 }
638
639 // TODO: b/289508408 - Remove non-parameterized tests if they get noisy.
TEST(test_flowgraph,flowgraph_pull_later_all)640 TEST(test_flowgraph, flowgraph_pull_later_all) {
641 const int rates[] = {8000, 11025, 22050, 32000, 44100, 48000, 64000, 88200, 96000};
642 const MultiChannelResampler::Quality qualities[] =
643 {
644 MultiChannelResampler::Quality::Fastest,
645 MultiChannelResampler::Quality::Low,
646 MultiChannelResampler::Quality::Medium,
647 MultiChannelResampler::Quality::High,
648 MultiChannelResampler::Quality::Best
649 };
650 for (int srcRate : rates) {
651 for (int destRate : rates) {
652 for (auto quality : qualities) {
653 if (srcRate != destRate) {
654 checkSampleRateConversionPullLater(srcRate, destRate, quality);
655 }
656 }
657 }
658 }
659 }
660
661 class TestFlowgraphSampleRateConversion : public ::testing::Test,
662 public ::testing::WithParamInterface<TestFlowgraphResamplerParams> {
663 };
664
resamplerQualityToString(MultiChannelResampler::Quality quality)665 const char* resamplerQualityToString(MultiChannelResampler::Quality quality) {
666 switch (quality) {
667 case MultiChannelResampler::Quality::Fastest: return "FASTEST";
668 case MultiChannelResampler::Quality::Low: return "LOW";
669 case MultiChannelResampler::Quality::Medium: return "MEDIUM";
670 case MultiChannelResampler::Quality::High: return "HIGH";
671 case MultiChannelResampler::Quality::Best: return "BEST";
672 }
673 return "UNKNOWN";
674 }
675
getTestName(const::testing::TestParamInfo<TestFlowgraphResamplerParams> & info)676 static std::string getTestName(
677 const ::testing::TestParamInfo<TestFlowgraphResamplerParams>& info) {
678 return std::string()
679 + std::to_string(std::get<PARAM_SOURCE_SAMPLE_RATE>(info.param))
680 + "__" + std::to_string(std::get<PARAM_SINK_SAMPLE_RATE>(info.param))
681 + "__" + resamplerQualityToString(std::get<PARAM_RESAMPLER_QUALITY>(info.param));
682 }
683
TEST_P(TestFlowgraphSampleRateConversion,test_flowgraph_pull_later)684 TEST_P(TestFlowgraphSampleRateConversion, test_flowgraph_pull_later) {
685 checkSampleRateConversionPullLater(std::get<PARAM_SOURCE_SAMPLE_RATE>(GetParam()),
686 std::get<PARAM_SINK_SAMPLE_RATE>(GetParam()),
687 std::get<PARAM_RESAMPLER_QUALITY>(GetParam()));
688 }
689
TEST_P(TestFlowgraphSampleRateConversion,test_flowgraph_varied_sizes)690 TEST_P(TestFlowgraphSampleRateConversion, test_flowgraph_varied_sizes) {
691 checkSampleRateConversionVariedSizes(std::get<PARAM_SOURCE_SAMPLE_RATE>(GetParam()),
692 std::get<PARAM_SINK_SAMPLE_RATE>(GetParam()),
693 std::get<PARAM_RESAMPLER_QUALITY>(GetParam()));
694 }
695
696 INSTANTIATE_TEST_SUITE_P(
697 test_flowgraph,
698 TestFlowgraphSampleRateConversion,
699 ::testing::Values(
700 TestFlowgraphResamplerParams({8000, 11025, MultiChannelResampler::Quality::Best}),
701 TestFlowgraphResamplerParams({8000, 48000, MultiChannelResampler::Quality::Best}),
702 TestFlowgraphResamplerParams({8000, 44100, MultiChannelResampler::Quality::Best}),
703 TestFlowgraphResamplerParams({11025, 24000, MultiChannelResampler::Quality::Best}),
704 TestFlowgraphResamplerParams({11025, 48000,
705 MultiChannelResampler::Quality::Fastest}),
706 TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Low}),
707 TestFlowgraphResamplerParams({11025, 48000,
708 MultiChannelResampler::Quality::Medium}),
709 TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::High}),
710 TestFlowgraphResamplerParams({11025, 48000, MultiChannelResampler::Quality::Best}),
711 TestFlowgraphResamplerParams({11025, 44100, MultiChannelResampler::Quality::Best}),
712 TestFlowgraphResamplerParams({11025, 88200, MultiChannelResampler::Quality::Best}),
713 TestFlowgraphResamplerParams({16000, 48000, MultiChannelResampler::Quality::Best}),
714 TestFlowgraphResamplerParams({44100, 48000, MultiChannelResampler::Quality::Low}),
715 TestFlowgraphResamplerParams({44100, 48000, MultiChannelResampler::Quality::Best}),
716 TestFlowgraphResamplerParams({48000, 11025, MultiChannelResampler::Quality::Best}),
717 TestFlowgraphResamplerParams({48000, 44100, MultiChannelResampler::Quality::Best}),
718 TestFlowgraphResamplerParams({44100, 11025, MultiChannelResampler::Quality::Best})),
719 &getTestName
720 );
721